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FBS4: A Forward-Backward Splitting algorithm for
constrained tensor decomposition

Elaheh Sobhani, Pierre Comon, Christian Jutten, and Massoud Babaie-Zadeh

Abstract—Tensors (multi-way arrays) are very practical in
various applications such as chemometrics, text mining, med-
ical image and signal processing, where desired parameters
are estimated by tensor decomposition. It has been shown
that constrained tensor decomposition performs better than
unconstrained in parameter identification problems. Most tensor
decomposition algorithms are based on Alternating Least Squares
(ALS), and for constrained decomposition it is needed to solve a
constrained minimization in each step of ALS. Over the past
decade, some algorithms based on ALS have been proposed
for constrained (mostly non-negative) tensor decomposition, and
applied Alternating Direction Method of Multipliers (ADMM)
or proximal methods to handle the constraint. Although ADMM
based method performs efficiently in various cases, there is
no convergence guarantee for this method in case of non-
convex constraint. On the other hand, proximal based methods
proposed so far suffer from lack of expected accuracy in the
decomposition, while there is a convergence proof for these kinds
of methods even in case of non-convexity. In this paper, an
algorithm is proposed based on ALS for constrained tensor
decomposition, which utilizes a particular proximal method
called Forward-Backward Splitting to handle the constraint. We
call this algorithm FBS4, which stands for ‘“Forward-Backward
Splitting with Smart initialization for tensor CP decompositions
under non-negativity, Sparsness or Simplex constraints”. FBS4 is
theoretically one step ahead compared to ADMM-based methods,
since (i) the provided convergence analysis of FBS4 holds true for
both convex and non-convex constraints such as sparsity; (ii) in
practice FBS4 enables to manage a large range of constraints
such as non-negativity, simplex set and sparsity; (iii) computer
results show that FBS4 achieves state-of-the-art performances;
(iv) FBS4 algorithm is simpler and faster compared to other
algorithms based on proximal approaches.

Index Terms—Tensor decomposition, Proximal, Forward-
Backward Splitting, constraint, non-negative, simplex, sparsity.

I. INTRODUCTION

Considering vectors and matrices as one-way and two-way
arrays, respectively, the concept can be extended to tensors as
multi-way arrays which can have more than two dimensions.
Although vectors/matrices can be seen as tensors of order one
or two, tensors usually refer to an array with more than two
ways [[1], [2].

Tensors have appeared in many applications so far, such as
Blind Source Separation (BSS) based on data cumulants [1]],
component analysis in chemistry [3]], estimation and localiza-
tion of sources (Direction Of Arrival (DOA)) [4]. In addition,
the importance of tensors has been revealed in many tasks of
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machine learning including classification [_2]], data fusion [5]],
topic modeling [6], [7] and the estimation of parameters in
mixture models [6]].

In order to recover latent variables by means of tensors, typ-
ically data tensor is decomposed into some multi-way arrays
(vectors, matrices or tensors) which can be interpreted as the
desired latent variables of the problem. There are two prevalent
decompositions in the literature: Tucker decomposition [8] and
Canonical Polyadic (CP) decomposition [|1]], also referred to as
CANDECOMP or PARAFAC [9] in some communities. The
major part of literature on tensors is devoted to algorithms for
these decompositions and their variants [1], [2], [S].

According to the application, it is preferred to add some
constraints to the tensor decomposition which results nor-
mally in much more accurate and reasonable solutions. Non-
negativity, belonging to simplex space, orthogonality and
sparsity are some examples of key constraints often introduced
in applications such as medical image and signal process-
ing [10], probability estimation in topic modeling [7]], [[11]]
and dictionary learning [|12].

Generally, the algorithms of constrained tensor decompo-
sition are inspired from constrained matrix decomposition
(factorization). For instance, the algorithms mentioned in [[10]
for Non-negative Tensor Factorization (NTF) are the exten-
sions of Non-negative Matrix Factorization (NMF). Moreover,
many of the existing algorithms are based on Alternating
Optimization (AO) [2] or its special case, Alternating Least
Squares (ALS) [5], in which the data fidelity term in AO is
the least square error.

Over the past decade, some algorithms [13]-[15] have
been proposed for constrained tensor decomposition based on
AO or ALS, where in each step, a constrained minimization
over one parameter is carried out. In each step, Alternating
Direction Method of Multipliers (ADMM) [16] or proximal
methods [17] have been applied to solve the constrained
minimization.

Although Alternating Optimization-Alternating Direction
Method of Multipliers (AO-ADMM) [13] shows better per-
formance for constrained tensor decomposition [18]] compared
to traditional approaches, there is no convergence guarantee
in case of non-convex constraints such as sparsity. On the
other hand, it is proved that the algorithms based on proximal
method [14], [15[, [19] converge to a critical point of the
problem even for non-convex constraints, but the performances
of these kinds of algorithms have not yet achieved that of AO-
ADMM.

In this paper, an algorithm for constrained tensor decom-
position is proposed, which is based on ALS. In each step
of this new algorithm, a constrained minimization is solved



by means of a specific proximal approach called Forward-
Backward Splitting [|17]], [20]. We call this algorithm FBS4,
which stands for “Forward-Backward Splitting with Smart ini-
tialization for tensor CP decompositions under non-negativity,
Sparsness or Simplex constraints”. Compared to recent al-
gorithms, e.g. [13]], [14], the contributions of this paper are
of high practical and theoretical interests for many scientists,
since:

o it achieves much better performance compared to state-
of-the-art methods including [[14],

e it is simpler to understand and implement,

« it is able to easily manage a large range of constraints,

« there is a convergence proof, which remains valid even
for non-convex constraints, unlike AO-ADMM.

The paper is organized as follows. In Section some
preliminaries about tensor, CP decomposition and proximal
methods are reviewed. Some recent algorithms for constrained
tensor decomposition utilizing ADMM or proximal methods
are studied in Section FBS4 is described in Section [[V] as
well as a convergence analysis. Section [V] eventually reports
computer results.

Notation. Vectors, matrices and tensors are denoted with
bold lowercases (e.g. a), bold uppercases (e.g. A) and bold
calligraphic letters (e.g. T), respectively. The tensor (outer)
product and Khatri-Rao product are denoted by ® and ©,
respectively.

II. PRELIMINARY
A. Tensor and CP decomposition

Tensors can be considered as a multi-linear map from a
vector space to another one [1f], or they are simply multi-
way (multi-dimensional or multi-index) numerical arrays [5]],
[10]. The order of an array refers to the number of its
ways [21]. Vectors and matrices are one-way and two-way
arrays, respectively, but usually tensor refers to an array with
three or more ways [2]].

A decomposable tensor of order N is a tensor product of
N vectors [1], ie., D = aV @a® ...@a™. According
to [9], any tensor can be written as a linear combination of
finite number of decomposable tensors,

R
T =>_\D(r), (1)

r=1
where 7T is a tensor of order N, and
D(r) = aV2a? . @a™. I compact form, (1)

can be represented as T = [A; A(1)7A(2),...7A(N)]], in
which X is a coefficient vector of size R containing the
values of )\, and agl),a£2),...a£N) are the ™ columns
of N loading matrices A(l),A(z),...,A(N), respectively.
The N matrices A(l),A(Q),...,A(N) are called mode-1,
mode-2. ..., mode-N loading matrices, respectively, since
their columns are responsible for the construction of the first,
second, ..., N™ dimension of T [5].

For the sake convenience, tensors are sometimes trans-
formed into matrices [[1]. This transformation is called unfold-
ing or flattering and can be done in each mode. The resulting

matrix in mode n is called mode-n unfolding [1]] and is denoted
by 7.

For each tensor, the minimum value of R for which
holds is called tensor rank [1]. Therefore, the rank of a de-
composable tensor is one. The decomposition described in (T])
is called Polyadic decomposition 9] or also CANDECOMP or
PARAFAC [1].

Based on the number of knowns and unknowns in (T)), the
expected rank of a tensor is defined as:

o A D
R = ’VI—N-FZZ‘?%—"

where N is the order of the tensor of dimensions 11 X...Xny
and D =[], n,. It has been shown in [22] that R < R° — 1
ensures almost surely the uniqueness of decomposition ().
If this polyadic decomposition is unique, it can be called
Canonical Polyadic (CP) decomposition [1].

As in practice, data stored in the form of a tensor are
usually corrupted by noise, then the best rank- R approximation
must be estimated. Although low-rank approximation is useful,
generally it is ill-posed [23]], [24], since the set of tensors of
rank at most R is not closed [1]]. Therefore, imposing some
constraints such as non-negativity in the CP decomposition is
proposed in the literature to overcome this difficulty. Some
prevalent constraints are listed below:

- Non-negativity: All the loading matrices and the coef-
ficient vector are supposed to be non-negative even if
the tensor to decompose is not completely non-negative
due to noise. There is a rich literature on the tensor
decomposition under this constraint [J5]].

- Simplex: This constraint usually appears in the models
involving a probabilistic analysis [6]], [7]], [L1]. All or part
of the columns/rows of the loading matrices and/or the
coefficient vector in should belong to a simplex set
defined by: $ £ {x : 2 > 0, ||z|, = 1}

- Orthogonality: it can be imposed between columns of
loading matrices or between decomposable tensors, D,.,
in (@ [1]I, [25]. The former constraint is widely used in
blind source separation after standardization [26].

- Sparsity: In some applications [[12], it may be needed
to impose sparsity constraints on loading matrices or
coefficient vectors. The exact sparsity constraint is also
known as cardinality constraint, and defines a non-convex
set [[13]]. Cardinality of a vector can be measured by the
£y pseudo-norm (or the counting norm), which is the
number of non-zero entries. Since ¢y is a non-convex
function, sometimes its convex approximation such as the
£1 norm [20] or Smoothed ¢y (SLO) [27] is used instead.

B. Proximal concept and approach

In the sequel, some properties of functions and definitions
are required, which are defined as follows:

* Lower semi-continuity [28]: Suppose R = [~00, +00).
The function f : R™ — R is called lower semi-continuous
on R™ if liminf,_,z f(x) > f(x) holds for every T €
R™.



* Sub-gradient [28, Definition 8.3]: Suppose R =
[~00, +00]. For a function f : R™ + R and a point
T for which f(Z) is finite, a vector v € R"™ is said
to be the sub-gradient of f at T, i.e. v € If(T), if
f@x)> f(@)+ <v,x —T > +o(|x —F|).

* Kurdyka-Lojasiewicz property (KL) [29]: denote the
domain of a function f by dom(f). The function
f:R™— R U {400} has the Kurdyka-Lojasiewicz prop-
erty at «* € dom(f) if there exist n € (0,+o0], a
neighborhood U of * and a continuous concave function
© :]0,n7) — R, such that:

1) »(0) =0,

2) ¢ is differentiable on (0, 7),

3) ¢'(y) =0 forall y € (0,7),

4) The Kurdyka-Lojasiewicz inequality,

¢ (f(x) — f(x"))dist(0,0f (x)) > 1,

holds for all & € UN|[f(x*) < f < f(z*)+n],
where dist denotes the distance function. In the rest
of paper, this property is referred to as “KL”, in short.

In the rest of this section, proximal concept and approaches
are reviewed.

1) Proximity operator: The projection of a vector & € RY
onto a closed convex set § C R¥ is a classical problem in sig-
nal processing which can be formulated as [17, (31,42,141)]:

.. 1
argmin {ls(y) + §|Iw - yll%} , 2)

yERN

where ig is the indicator function defined by:
if yes

. A 0
is(y) = ~ if yé&s

Let To(RY) be the class of lower semi-continuous convex
functions f : RY s (—o0, +00], with dom(f) # @. Then is
belongs to To(RY).

According to the proposition of Moreau in 1962 [30]], the
definition of Proximity operator is obtained by replacing is(y)
in (@) with any arbitrary function in T'o(RY):

Definition 1 (Proximity operator [17]). For every x € RY,
the unique solution of the following minimization problem:

. 1
argmin /(y) + 5o ~ vl ®

yeRN
is defined as the proximity operator of the function f €
To(RY), and it is denoted by proxx;(w). Thus, the proximity
operator of [ is prox; : RY — RY, and it is characterized
by:

p =prox;(z) & (x —p) € 0f(p), V(w,p)eRY xRV,

Note that Of (p) is replaced by ¥V f(p) for differentiable f.

The above definition indicates that prox ;(x) is a point that
minimizes f and simultaneously is as close as possible to x.
Therefore, prox ,(z) is also called a proximal point of T with
respect to [ [20].

Algorithm 1 Forward-Backward Splitting [[17]], [31]
Input: 5, o € RY .
1: Fix € € (0, min{1, =})
2: for k:0,12,2,... do
3: L E|E,— —€
Yk € [ 5 ]

4y, =xr — v Vh(xk)

5 ag € e 1]

6 Tpy1 = x + ag(prox., ,(yy) — Tk)
7: end for

2) Forward-Backward Splitting: In many signal process-
ing applications, the cost function to be minimized is the
sum of two functions where one of them is usually non-
differentiable or even non-convex. By following a proximal
approach, these kinds of problems can be solved by means of
a particular algorithm called Forward-Backward Splitting. Let
us now explain this algorithm.

Theorem 1 (Forward-Backward Splitting [[17]], [29]). Suppose
f: RY — RU {+oo} is a proper lower semi-continuous
function which has KL property and is bounded from below.
If f can be spilt into two parts as f = h + g, where g is
lower semi-continuous and h : RN +— R is a finite valued,
differentiable function with a [3-Lipschitz continuous gradient,
i.e., 38 such that:

IVh(z) = Vh(y)2 < Bllz — yll2,

then it can be shown [31)] that the minimizer of f satisfies the
following fixed point equation:

x = prox. ,(x — YVh(z)), “4)

where v € (0, +00).

Equation suggests an iterative approach, called the
Forward-Backward Splitting algorithm:

®)

where the values of v, should be chosen from a suitable
bounded interval.

Several variations of implementing Forward-Backward
Splitting exist, and are reported in [17]. Two of them are
restated (Algorithms [T} and 2)) to which we will refer in the
rest of the paper. In Algorithm |1} a relaxation parameter, A,
has been introduced and cannot exceed 1. Algorithm [2] is
proposed in [32], [33]] as a proximal gradient algorithm. It
is usually expected to have global convergence when the cost
function to be minimized is convex [29], which means that
the algorithm generates a converging sequence to the solution
regardless of the starting point. It has been shown that every
sequence generated by Algorithms [I] and [2] converges to a
solution of min f [31]], [34].

However, if the objective function is non-convex, the mono-
tonicity of the sequences generated by descent methods will
be broken and oscillatory behaviors may appear [29]]. In order
to achieve convergence in this kind of cases, it is necessary to
limit ourselves to functions with some particular properties,

Tp+1 = prox,,(xx — 1 Vh(zk)),



Algorithm 2 Beck-Teboulle proximal gradient algorithm [[17]
Input: 8, o € RY

1: Set zp = xg and tg =1

2: for k=0,1,2,... do

3y, =2z — B 'Vh(z)

4 Tpq = Pfoxg—lg(yk)

1+ /4t +1

5 tgpy1 = t 21
6: A =1+ K
Tkt
T Zgg1 = T + M (Tpp1 — k)
8: end for

such as KL [29]]. It has been proved that the sequence xg
generated by Theorem [I] converges to a critical point of
f = h + g, if the mentioned sequence is bounded [29].

In many applications (including FBS4 in this paper), the
function g is an indicator function of a particular set, i, and
its proximity operator is a projection onto that set [[17]. If the
desired set is non-convex, the projection onto it may not result
to a unique point. It has been proved [29] that in spite of the
multivalued projection, the convergence property of Theorem/[I]
is not influenced. Note that this interesting conclusion is valid
only if the assumptions of Theorem [I] are satisfied, the most
important being the KL property satisfied by h + ic.

III. RELATED WORKS

In this section, some papers in which constrained (mostly
non-negativity) CP decomposition is investigated by means of
a proximal approach are reviewed. FBS4 will be compared to
all of them in Section [V]

A. Alternating Optimization-Alternating Direction Method of
Multipliers (AO-ADMM) [|13|]

As mentioned in [17], [20], Alternating Direction Method of
Multipliers (ADMM) [16]] can be considered as a special case
of proximal method. In [13]], constrained CP decomposition
by means of ADMM is discussed.

Since minimizing the cost function of the CP decomposition
over all loading matrices is a non-convex problem, a common
strategy to transform it to a convex function is Alternating
Optimization (AO) [2], in which by fixing all the loading
matrices (initializing or using their previous estimation) except
one of them, one tries to minimize the cost function over just
one loading matrix. AO-ADMM attempts to minimize the cost
function overeach loading matrix by ADMM. The details of
AO-ADMM for constrained CP decomposition can be found
in [7]], [11], [13[]. The proposed algorithm in [13] is capable
of applying several constraints on loading matrices, such as
non-negativity, sparsity, smoothness, cardinality, etc.

The convergence of AO is mentioned in [35], [36]]. Although
the convergence of AO-ADMM for convex constraints, such
as non-negativity, has been proved in [13]], the convergence of
ADMM is not guaranteed for non-convex constraints such as
cardinality (¢, pseudo-norm) [[13]], [16].

B. Alternating Proximal Gradient (APG) [14]

In [[14], three kinds of updates based on the proximal
concept are introduced, namely original, proximal and prox-
linear, for updating the unknown variables of a particular
type of constrained optimization, including constrained tensor
decomposition.

Prox-linear is similar to Forward-Backward Splitting in sev-
eral respects, since the required assumption for its convergence
is the Lipschitz continuous gradient of differentiable part of
cost function and the KL property. In addition, for some usual
constraints such as belonging to a particular set (i.e. indicator
function), the prox-linear update reduces to the projection onto
the set, as Forward-Backward Splitting.

The main difference between APG and the method proposed
herein (FBS4) is the algorithm chosen for implementing the
proximal approach. In fact, APG is based on Algorithm [2]
while it shall be seen in Section [[V]that the algorithm utilized
in FBS4 is Algorithm [T}

C. Fast Non-negative Tensor Factorization-APG (FastNTF-
APG) [|19]

FastNTF-APG [19]] is a modified version of APG [14]
dedicated to non-negative tensor decomposition. In [19], it
is mentioned that, contrary to classical algorithms of Non-
negative Tensor Factorization (NTF), which suffer from slow
convergence especially in practical applications, FastNTF-
APG speeds up NTF and overcomes this bottleneck by com-
bining APG with low rank approximation.

D. Block Coordinate Variable Metric Forward-Backward (BC-
VMFB) [15]], [37)], [38]]

The cost function proposed in [15], [38]] includes two main
parts: data fidelity and regularization terms. The latter is capa-
ble of considering hard constraints such as non-negativity and
regularizations such as sparsity. The method used for solving
the resulting minimization is Block Coordinate Variable Metric
Forward-Backward (BC-VMEFB) [37].

BC-VMFB consists of two main steps: a gradient step
related to data fidelity, which is assumed to be differentiable
with S-Lipschitz gradient, and a proximal step linked to the
regularization term, for which a new proximity operator should
be calculated. This proximity operator of the function ¢ is
associated with a symmetric positive definite matrix P by the
following definition [/15]:

1
proxp ,(v) = argmin §Hu —v||p + ¢(v)
u

where ||z|% = (z, Px), and (,-) is the inner product. In the
above definition of proximity operator, P is called precondi-
tioning matrix [I5]. Definition [I] of proximity operator given
in Section [[I-B] may be obtained from the above definition if
P is the identity matrix. It is observed empirically in [39] that
utilizing preconditioning matrix speeds up the convergence of
Proximal Alternating Linearized Minimization (PALM).



IV. FORWARD-BACKWARD SPLITTING WITH SMART
INITIALIZATION (FBS4)

In this section, we describe FBS4, the method we propose
for constrained (e.g. non-negativity) CP decomposition. First,
in Section the cost function, its solution by means of
Forward-Backward Splitting and FBS4 algorithm, based on
Algorithm |1] are introduced. Then, some prevalent constraints
such as non-negativity, sparsity, and explain FBS4 algorithm
for these particular constraints in Section |[V-B| are discussed.
In Section the convergence theorem for FBS4 is briefly
quoted, whereas the complete convergence analysis can be
found in Appendix

A. Formulation and algorithm
Consider the N-th order tensor 7~ € RI1*/2X--In of rank
R. Assume that T = [[A;A(l),A(z), . .,A(N)ﬂ, where A €
R% and A ¢ RI=xR A general problem of constrained CP
decomposition of 7 can be formulated as follows:
1
min ~[|7 - [A; AD, AP
AAM 2
st CAN),Cam (A™), 1<n <N

,AMN)1% (6)

where || - || is the Frobenius norm and Cx(X), € 4 (A™)
are, respectively the constraints over vector A (including
abovementioned constraint, i.e. A € Rf, such as belonging
to a simplex set) and matrix A™.

As mentioned in Section a common strategy is to
solve @) via AO. Moreover, a constrained optimization can be
transformed into an unconstrained one by adding the indicator
function of the constraint set to the cost function. To be more
precise, at the n step of AO for solving (6), we have:

. 1 n . n
min 2|7~ A0, ..., A® AN e, (AT),

A
(N
where ie ., (A™) is defined as follows:

. 0 if A™ e, um
Ay — A
lCA(n) ( ) { 00 Zf A(n) g eA(n)

The vector X is omitted in , since it can be calculated by
normalizing loading matrices (A™). Otherwise, vector A as
one of the unknown variables can be optimized in one of the
steps of AO.

Define W £ (AM . .0 AMDoA Do 0AM)T,
Then by the mode-n unfolding of (7), we have:

1
min | T — AMW[ + de ., (AT). (@)

Al An)

Note that ic (A™) is a lower semi-continuous func-
tion (see Appendix and %HT(") — AMWW|2, is finite
valued, differentiable and [-Lipschitz continuous gradient
where 8 = |[WW?7|, denotes the spectral norni'| of matrix
WWT (see Appendix |A| for calculation. Since, WW 7T
is a symmetric matrix, its singular values are the squared of

ISpectral norm of a matrix is defined as its maximum singular value [40].
21t is mentioned in [19] that the Lipschitz constant is |W W7 ||, but as
we prove in Appendix the Lipschitz constant is in fact the |[WW 7 ||,.

Algorithm 3 Algorithm of FBS4

Input: 7", €4, initial A((J"), nell,...,N]
Output: Estimated A™, n € [1,...,N]
1: repeat
22 forn=1,2,...,N do
3: W=AMo...0AY oAV o oA
4 B = {max(singular value(W))}?
5 sety=+and =1
6: for k=0,1,2,... do
7 Yy =AW — AW wwT) - 7w
8 AL = A +alproje (V) -~ ALY)
9 end for B
10:  end for
11: until some termination criterion

those of W. Moreover, the cost function in (8) is proper,
lower semi-continuous with KL property [29]. Consequently,
all the required assumptions of Theorem [I] are satisfied for (8},
and according to this theorem, the minimizer of is the
convergence point of the following fixed point equation:

n n n n T
AM = prox.;, {A™ (AP WWT - wT M),
Since the proximity operator of Yie , is the projection onto

C o, we have:

T
A™ = projo  {AW —4(ADWWT —WwT™ ). (9)

An)

FBS4 is described in Algorithm [3] Although, Algorithm [3|
is based upon Algorithm [I] we experimentally find the proper
values of some parameters of Algorithm [T] such as 7; and oy,
to obtain best results. As it is expressed in Algorithm [3| we
ignore ¢ and fix the value of 7, = < in all iterations over k. In
addition, we remove the effect of a, by setting it to 1 in linear
updating of the estimated variable (Line 8 in Algorithm [3).

We now review the main theoretical and practical advan-
tages of Algorithm [3| Firstly, it can be applied even on non-
convex and non-smooth constraints such as cardinality [29],
and this does not affect its convergence. Secondly, it does
not require any critical setting of the parameters. The only
parameters to be set are v and «, where the suggested values
(y = 4 and @ = 1) in Algorithm [3[ are almost always
suitable. Thirdly, compared to state-of-the-art methods such as
APG and BC-VMFB, FBS4 is easy enough to understand and
implement. Fourthly, contrary to APG or BC-VMFB, FBS4
works with variables in matrix form, so there is no need
to vectorize loading matrices. This brings an advantage in
working with large dimension tensors. Fifthly, FBS4 is smartly
initialized, which permits a faster convergence. Last but not
least, as it is developed in the next section, FBS4 can be
adapted to many different constraints.

B. Some constraints

As mentioned before, the FBS4 is not limited to any
particular constraint. Any constraint whose indicator function
satisfies the assumptions of Theorem [I] can be considered. In



this section, the required modifications of Algorithm [3] are
described, for some widespread constraints.

1) Non-negativity: Non-negativity is one of the most com-
mon constraints in the literature. In many applications such
as image processing [10] or chemometrics [41]], the non-
negativity of loading matrices is essential and helpful in
the performance of tensor decomposition. Non-negative con-
straints of (G) are expressed as: A™ € R % and X € RE.

The projection to the non-negative orthant is done with
the max operator thereby line 8 of Algorithm [3] would be
Af:H A" 4+ a(max(Y,0) — AM). In other words, the
proximity operator of the non- negative constraint retains the
non-negative elements of the array and replaces its negative
values with zero.

2) Simplex set: In applications involving probability esti-
mation or distribution approximation, the simplex (or prob-
ability simplex) constraint unavoidably appears [7], [11].
A vector & € RFP belongs to the simplex set S' if
{zT1=1, 7, >0,i€[l,...,P]}. This constraint can be
written as { A" (:,j) € 8™, je€[1,...,R],ne[l,...,N]}
and A € S%. An algorithm for projecting a vector onto
the simplex set is proposed in [42]]. Therefore, the line 8
of Algorithm [3] would include a projection algorithm to the
simplex, whose input is Y.

An efficient way to apply the simplex constraint to all the
columns of loading matrices A™ n € [1,...,N] and to the
coefficient vector A is to first combine A with one of the
loading matrices, let us say AN, By combination, we mean
Ag\N) = A™)Diag(\), where Diag(\) is a diagonal matrix
containing A on its diagonal. Then, the simplex constraint
may be applied to every column of every matrix A™ n €
[1,...,N —1], and only to the vectorization of matrix A&N).
Each entry A, of A is eventually obtained by normalizing the
rth column of matrix A&N) with respect to ¢; norm, and the
resulting normalized matrix yields an estimation of AN 1t
can then be proved easily that estimated A and every column
of loading matrix A™) indeed lie in the simplex.

3) Sparsity with {y pseudo-norm (cardinality): In some
applications such as two dimensional dictionary learning, a
constraint on the number of non-zero elements of loading
matrices (or cardinality) is needed [12f]. This constraint is
measured with ¢y pseudo-norm and known as sparsity in
compressive sensing [43]].

In penalized form, an ¢y pseudo-norm term is added to the
cost function [44]. Although ¢, is non-convex, the resulted
cost function can be solved by means of Theorem [T} In order
to use Algorithm [3| with a cardinality constraint, the proximity
operator of ¢y should be calculated. It is mentioned in [20],
[29] that the proximity operator of ¢, is a function called hard-
thresholding, defined as follows:

lyl >n

sl
ﬁ@%_{Olyén

With this in mind, the line 8 of Algorithm in-
cludes applymg hard thresholding on each element of Y
[ 5/(1 J) (7, 1 J= 1))
Sparsity with ¢y norm: A common and convex approx-
imation of ¢y pseudo-norm is ¢; norm. The resulting cost

function obtained by replacing ¢y, with ¢; norm is called
LASSO regression [43]], [44]]. In [20], it is stated that according
to (3), the proximity operator of ¢1(x) is ffm,where Iy is
called soft-thresholding, and is defined as:
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C. Convergence guarantee

The overall convergence of Algorithm (3| has been proved
in [45]] (convergence of Proximal Alternating Linearized Min-
imization (PALM)). Based on Theorem |1} the convergence of
each step of AO is next discussed.

The convergence of Theorem [l is studied in [14], [29],
[46]. In [[14], the convergence analysis is proved provided that
the cost function is convex and continuous. Since we look
for weaker assumptions, we ignore the proof of [14] in this
section.

In this section, we restate the convergence theorem of
Forward-Backward Splitting from [29]], [46]], which is not only
applicable for continuous and convex cost functions, but is
also usable for non-smooth and non-convex functions (or non-
convex set of constraint).

Theorem 2 (Convergence of Forward-Backward Split-
ting [29], [46]). Suppose f : RN +— R U {+oc} is a proper
lower semi-continuous function which has KL property and
is bounded from below. Assume that f can be spilt into two
parts as f = h + g, where g is lower semi-continuous and
h: RN — R is a finite valued, differentiable function with a
B-Lipschitz continuous gradient.

If the sequence generated by Algorithm |3|is bounded, then
this sequence will converge to a critical point of f. In addition,
by choosing v € [0, B] the values of the cost function are not
increasing.

Proof. See Appendix [Al Note that the proof of Theorem [2] is
provided by means of [29], [46]] but with much more details,
which makes it significantly easier to follow. O

V. EXPERIMENTAL RESULTS

In this section, experimental results obtained by decompo-
sitions of third order tensors are reported, either generated
synthetically or coming from real data sets.

We compare FBS4 with those described in Section
namely AO-ADMM (13|, APG [14]], FastNTF-APG [19] and
BC-VMFB [15 Algorithms are first tested on artificially
generated non-negative third order tensors, constructed from
factors belonging to the simplex or not. In some cases, the
t