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FBS4: A Forward-Backward Splitting algorithm for
constrained tensor decomposition

Elaheh Sobhani, Pierre Comon, Christian Jutten, and Massoud Babaie-Zadeh

Abstract—Tensors (multi-way arrays) are very practical in
various applications such as chemometrics, text mining, med-
ical image and signal processing, where desired parameters
are estimated by tensor decomposition. It has been shown
that constrained tensor decomposition performs better than
unconstrained in parameter identification problems. Most tensor
decomposition algorithms are based on Alternating Least Squares
(ALS), and for constrained decomposition it is needed to solve a
constrained minimization in each step of ALS. Over the past
decade, some algorithms based on ALS have been proposed
for constrained (mostly non-negative) tensor decomposition, and
applied Alternating Direction Method of Multipliers (ADMM)
or proximal methods to handle the constraint. Although ADMM
based method performs efficiently in various cases, there is
no convergence guarantee for this method in case of non-
convex constraint. On the other hand, proximal based methods
proposed so far suffer from lack of expected accuracy in the
decomposition, while there is a convergence proof for these kinds
of methods even in case of non-convexity. In this paper, an
algorithm is proposed based on ALS for constrained tensor
decomposition, which utilizes a particular proximal method
called Forward-Backward Splitting to handle the constraint. We
call this algorithm FBS4, which stands for “Forward-Backward
Splitting with Smart initialization for tensor CP decompositions
under non-negativity, Sparsness or Simplex constraints”. FBS4 is
theoretically one step ahead compared to ADMM-based methods,
since (i) the provided convergence analysis of FBS4 holds true for
both convex and non-convex constraints such as sparsity; (ii) in
practice FBS4 enables to manage a large range of constraints
such as non-negativity, simplex set and sparsity; (iii) computer
results show that FBS4 achieves state-of-the-art performances;
(iv) FBS4 algorithm is simpler and faster compared to other
algorithms based on proximal approaches.

Index Terms—Tensor decomposition, Proximal, Forward-
Backward Splitting, constraint, non-negative, simplex, sparsity.

I. INTRODUCTION

Considering vectors and matrices as one-way and two-way
arrays, respectively, the concept can be extended to tensors as
multi-way arrays which can have more than two dimensions.
Although vectors/matrices can be seen as tensors of order one
or two, tensors usually refer to an array with more than two
ways [1], [2].

Tensors have appeared in many applications so far, such as
Blind Source Separation (BSS) based on data cumulants [1],
component analysis in chemistry [3], estimation and localiza-
tion of sources (Direction Of Arrival (DOA)) [4]. In addition,
the importance of tensors has been revealed in many tasks of
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machine learning including classification [2], data fusion [5],
topic modeling [6], [7] and the estimation of parameters in
mixture models [6].

In order to recover latent variables by means of tensors, typ-
ically data tensor is decomposed into some multi-way arrays
(vectors, matrices or tensors) which can be interpreted as the
desired latent variables of the problem. There are two prevalent
decompositions in the literature: Tucker decomposition [8] and
Canonical Polyadic (CP) decomposition [1], also referred to as
CANDECOMP or PARAFAC [9] in some communities. The
major part of literature on tensors is devoted to algorithms for
these decompositions and their variants [1], [2], [5].

According to the application, it is preferred to add some
constraints to the tensor decomposition which results nor-
mally in much more accurate and reasonable solutions. Non-
negativity, belonging to simplex space, orthogonality and
sparsity are some examples of key constraints often introduced
in applications such as medical image and signal process-
ing [10], probability estimation in topic modeling [7], [11]
and dictionary learning [12].

Generally, the algorithms of constrained tensor decompo-
sition are inspired from constrained matrix decomposition
(factorization). For instance, the algorithms mentioned in [10]
for Non-negative Tensor Factorization (NTF) are the exten-
sions of Non-negative Matrix Factorization (NMF). Moreover,
many of the existing algorithms are based on Alternating
Optimization (AO) [2] or its special case, Alternating Least
Squares (ALS) [5], in which the data fidelity term in AO is
the least square error.

Over the past decade, some algorithms [13]–[15] have
been proposed for constrained tensor decomposition based on
AO or ALS, where in each step, a constrained minimization
over one parameter is carried out. In each step, Alternating
Direction Method of Multipliers (ADMM) [16] or proximal
methods [17] have been applied to solve the constrained
minimization.

Although Alternating Optimization-Alternating Direction
Method of Multipliers (AO-ADMM) [13] shows better per-
formance for constrained tensor decomposition [18] compared
to traditional approaches, there is no convergence guarantee
in case of non-convex constraints such as sparsity. On the
other hand, it is proved that the algorithms based on proximal
method [14], [15], [19] converge to a critical point of the
problem even for non-convex constraints, but the performances
of these kinds of algorithms have not yet achieved that of AO-
ADMM.

In this paper, an algorithm for constrained tensor decom-
position is proposed, which is based on ALS. In each step
of this new algorithm, a constrained minimization is solved
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by means of a specific proximal approach called Forward-
Backward Splitting [17], [20]. We call this algorithm FBS4,
which stands for “Forward-Backward Splitting with Smart ini-
tialization for tensor CP decompositions under non-negativity,
Sparsness or Simplex constraints”. Compared to recent al-
gorithms, e.g. [13], [14], the contributions of this paper are
of high practical and theoretical interests for many scientists,
since:
• it achieves much better performance compared to state-

of-the-art methods including [14],
• it is simpler to understand and implement,
• it is able to easily manage a large range of constraints,
• there is a convergence proof, which remains valid even

for non-convex constraints, unlike AO-ADMM.
The paper is organized as follows. In Section II, some

preliminaries about tensor, CP decomposition and proximal
methods are reviewed. Some recent algorithms for constrained
tensor decomposition utilizing ADMM or proximal methods
are studied in Section III. FBS4 is described in Section IV, as
well as a convergence analysis. Section V eventually reports
computer results.

Notation. Vectors, matrices and tensors are denoted with
bold lowercases (e.g. a), bold uppercases (e.g. A) and bold
calligraphic letters (e.g. T ), respectively. The tensor (outer)
product and Khatri-Rao product are denoted by ⊗ and �,
respectively.

II. PRELIMINARY

A. Tensor and CP decomposition

Tensors can be considered as a multi-linear map from a
vector space to another one [1], or they are simply multi-
way (multi-dimensional or multi-index) numerical arrays [5],
[10]. The order of an array refers to the number of its
ways [21]. Vectors and matrices are one-way and two-way
arrays, respectively, but usually tensor refers to an array with
three or more ways [2].

A decomposable tensor of order N is a tensor product of
N vectors [1], i.e., D = a(1)⊗a(2) . . .⊗a(N). According
to [9], any tensor can be written as a linear combination of
finite number of decomposable tensors,

T =

R∑
r=1

λrD(r), (1)

where T is a tensor of order N , and
D(r) = a

(1)
r ⊗a(2)

r . . .⊗a(N)
r . In compact form, (1)

can be represented as T = Jλ;A(1),A(2), . . . ,A(N)K, in
which λ is a coefficient vector of size R containing the
values of λr and a

(1)
r ,a

(2)
r , . . .a

(N)
r are the rth columns

of N loading matrices A(1),A(2), . . . ,A(N), respectively.
The N matrices A(1),A(2), . . . ,A(N) are called mode-1,
mode-2. . . . , mode-N loading matrices, respectively, since
their columns are responsible for the construction of the first,
second, . . . , N th dimension of T [5].

For the sake convenience, tensors are sometimes trans-
formed into matrices [1]. This transformation is called unfold-
ing or flattering and can be done in each mode. The resulting

matrix in mode n is called mode-n unfolding [1] and is denoted
by T (n).

For each tensor, the minimum value of R for which (1)
holds is called tensor rank [1]. Therefore, the rank of a de-
composable tensor is one. The decomposition described in (1)
is called Polyadic decomposition [9] or also CANDECOMP or
PARAFAC [1].

Based on the number of knowns and unknowns in (1), the
expected rank of a tensor is defined as:

R◦ ,

⌈
D

1−N +
∑
i ni

⌉
,

where N is the order of the tensor of dimensions n1×. . .×nN
and D =

∏
i ni. It has been shown in [22] that R ≤ R◦ − 1

ensures almost surely the uniqueness of decomposition (1).
If this polyadic decomposition is unique, it can be called
Canonical Polyadic (CP) decomposition [1].

As in practice, data stored in the form of a tensor are
usually corrupted by noise, then the best rank-R approximation
must be estimated. Although low-rank approximation is useful,
generally it is ill-posed [23], [24], since the set of tensors of
rank at most R is not closed [1]. Therefore, imposing some
constraints such as non-negativity in the CP decomposition is
proposed in the literature to overcome this difficulty. Some
prevalent constraints are listed below:

- Non-negativity: All the loading matrices and the coef-
ficient vector are supposed to be non-negative even if
the tensor to decompose is not completely non-negative
due to noise. There is a rich literature on the tensor
decomposition under this constraint [5].

- Simplex: This constraint usually appears in the models
involving a probabilistic analysis [6], [7], [11]. All or part
of the columns/rows of the loading matrices and/or the
coefficient vector in (1) should belong to a simplex set
defined by: S , {x : x ≥ 0, ‖x‖1 = 1}

- Orthogonality: it can be imposed between columns of
loading matrices or between decomposable tensors, Dr,
in (1) [1], [25]. The former constraint is widely used in
blind source separation after standardization [26].

- Sparsity: In some applications [12], it may be needed
to impose sparsity constraints on loading matrices or
coefficient vectors. The exact sparsity constraint is also
known as cardinality constraint, and defines a non-convex
set [13]. Cardinality of a vector can be measured by the
`0 pseudo-norm (or the counting norm), which is the
number of non-zero entries. Since `0 is a non-convex
function, sometimes its convex approximation such as the
`1 norm [20] or Smoothed `0 (SL0) [27] is used instead.

B. Proximal concept and approach

In the sequel, some properties of functions and definitions
are required, which are defined as follows:

* Lower semi-continuity [28]: Suppose R = [−∞,+∞].
The function f : Rn 7→ R is called lower semi-continuous
on Rn if lim infx→x f(x) ≥ f(x) holds for every x ∈
Rn.
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* Sub-gradient [28, Definition 8.3]: Suppose R =
[−∞,+∞]. For a function f : Rn 7→ R and a point
x for which f(x) is finite, a vector v ∈ Rn is said
to be the sub-gradient of f at x, i.e. v ∈ ∂f(x), if
f(x) ≥ f(x)+ < v,x− x > +o(|x− x|).

* Kurdyka-Lojasiewicz property (KL) [29]: denote the
domain of a function f by dom(f). The function
f : Rn 7→ R ∪ {+∞} has the Kurdyka-Lojasiewicz prop-
erty at x∗ ∈ dom(f) if there exist η ∈ (0,+∞], a
neighborhood U of x∗ and a continuous concave function
ϕ : [0, η) 7→ R+ such that:
1) ϕ(0) = 0,
2) ϕ is differentiable on (0, η),
3) ϕ′(y) ≥ 0 for all y ∈ (0, η),
4) The Kurdyka-Lojasiewicz inequality,

ϕ′(f(x)− f(x∗))dist(0, ∂f(x)) ≥ 1,

holds for all x ∈ U ∩ [f(x∗) < f < f(x∗) + η],
where dist denotes the distance function. In the rest
of paper, this property is referred to as “KL”, in short.

In the rest of this section, proximal concept and approaches
are reviewed.

1) Proximity operator: The projection of a vector x ∈ RN
onto a closed convex set S ⊂ RN is a classical problem in sig-
nal processing which can be formulated as [17, (31,42,141)]:

argmin
y∈RN

{
iS(y) +

1

2
‖x− y‖22

}
, (2)

where iS is the indicator function defined by:

iS(y) ,
{

0 if y ∈ S

∞ if y 6∈ S

Let Γ0(RN ) be the class of lower semi-continuous convex
functions f : RN 7→ (−∞,+∞], with dom(f) 6= ∅. Then iS
belongs to Γ0(RN ).

According to the proposition of Moreau in 1962 [30], the
definition of Proximity operator is obtained by replacing iS(y)
in (2) with any arbitrary function in Γ0(RN ):

Definition 1 (Proximity operator [17]). For every x ∈ RN ,
the unique solution of the following minimization problem:

argmin
y∈RN

f(y) +
1

2
‖x− y‖22, (3)

is defined as the proximity operator of the function f ∈
Γ0(RN ), and it is denoted by proxf (x). Thus, the proximity
operator of f is proxf : RN 7→ RN , and it is characterized
by:

p = proxf (x)⇔ (x− p) ∈ ∂f(p), ∀(x,p) ∈ RN × RN .

Note that ∂f(p) is replaced by ∇f(p) for differentiable f .

The above definition indicates that proxf (x) is a point that
minimizes f and simultaneously is as close as possible to x.
Therefore, proxf (x) is also called a proximal point of x with
respect to f [20].

Algorithm 1 Forward-Backward Splitting [17], [31]

Input: β, x0 ∈ RN

1: Fix ε ∈ (0,min{1, 1
β
})

2: for k = 0, 1, 2, . . . do
3: γk ∈ [ε,

2

β
− ε]

4: yk = xk − γk∇h(xk)
5: αk ∈ [ε, 1]
6: xk+1 = xk + αk(proxγkg(yk)− xk)
7: end for

2) Forward-Backward Splitting: In many signal process-
ing applications, the cost function to be minimized is the
sum of two functions where one of them is usually non-
differentiable or even non-convex. By following a proximal
approach, these kinds of problems can be solved by means of
a particular algorithm called Forward-Backward Splitting. Let
us now explain this algorithm.

Theorem 1 (Forward-Backward Splitting [17], [29]). Suppose
f : RN 7→ R ∪ {+∞} is a proper lower semi-continuous
function which has KL property and is bounded from below.
If f can be spilt into two parts as f = h + g, where g is
lower semi-continuous and h : RN 7→ R is a finite valued,
differentiable function with a β-Lipschitz continuous gradient,
i.e., ∃β such that:

‖∇h(x)−∇h(y)‖2 ≤ β‖x− y‖2,

then it can be shown [31] that the minimizer of f satisfies the
following fixed point equation:

x = proxγg(x− γ∇h(x)), (4)

where γ ∈ (0,+∞).

Equation (4) suggests an iterative approach, called the
Forward-Backward Splitting algorithm:

xk+1 = proxγg(xk − γk∇h(xk)), (5)

where the values of γk should be chosen from a suitable
bounded interval.

Several variations of implementing Forward-Backward
Splitting exist, and are reported in [17]. Two of them are
restated (Algorithms 1, and 2) to which we will refer in the
rest of the paper. In Algorithm 1, a relaxation parameter, λk,
has been introduced and cannot exceed 1. Algorithm 2 is
proposed in [32], [33] as a proximal gradient algorithm. It
is usually expected to have global convergence when the cost
function to be minimized is convex [29], which means that
the algorithm generates a converging sequence to the solution
regardless of the starting point. It has been shown that every
sequence generated by Algorithms 1 and 2 converges to a
solution of min f [31], [34].

However, if the objective function is non-convex, the mono-
tonicity of the sequences generated by descent methods will
be broken and oscillatory behaviors may appear [29]. In order
to achieve convergence in this kind of cases, it is necessary to
limit ourselves to functions with some particular properties,
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Algorithm 2 Beck-Teboulle proximal gradient algorithm [17]

Input: β, x0 ∈ RN
1: Set z0 = x0 and t0 = 1
2: for k = 0, 1, 2, . . . do
3: yk = zk − β−1∇h(zk)
4: xk+1 = proxβ−1g(yk)

5: tk+1 =
1 +

√
4t2k + 1

2

6: λk = 1 +
tk − 1

tk+1
7: zk+1 = xk + λk(xk+1 − xk)
8: end for

such as KL [29]. It has been proved that the sequence xk
generated by Theorem 1 converges to a critical point of
f = h+ g, if the mentioned sequence is bounded [29].

In many applications (including FBS4 in this paper), the
function g is an indicator function of a particular set, iC , and
its proximity operator is a projection onto that set [17]. If the
desired set is non-convex, the projection onto it may not result
to a unique point. It has been proved [29] that in spite of the
multivalued projection, the convergence property of Theorem 1
is not influenced. Note that this interesting conclusion is valid
only if the assumptions of Theorem 1 are satisfied, the most
important being the KL property satisfied by h+ iC .

III. RELATED WORKS

In this section, some papers in which constrained (mostly
non-negativity) CP decomposition is investigated by means of
a proximal approach are reviewed. FBS4 will be compared to
all of them in Section V.

A. Alternating Optimization-Alternating Direction Method of
Multipliers (AO-ADMM) [13]

As mentioned in [17], [20], Alternating Direction Method of
Multipliers (ADMM) [16] can be considered as a special case
of proximal method. In [13], constrained CP decomposition
by means of ADMM is discussed.

Since minimizing the cost function of the CP decomposition
over all loading matrices is a non-convex problem, a common
strategy to transform it to a convex function is Alternating
Optimization (AO) [2], in which by fixing all the loading
matrices (initializing or using their previous estimation) except
one of them, one tries to minimize the cost function over just
one loading matrix. AO-ADMM attempts to minimize the cost
function overeach loading matrix by ADMM. The details of
AO-ADMM for constrained CP decomposition can be found
in [7], [11], [13]. The proposed algorithm in [13] is capable
of applying several constraints on loading matrices, such as
non-negativity, sparsity, smoothness, cardinality, etc.

The convergence of AO is mentioned in [35], [36]. Although
the convergence of AO-ADMM for convex constraints, such
as non-negativity, has been proved in [13], the convergence of
ADMM is not guaranteed for non-convex constraints such as
cardinality (`0 pseudo-norm) [13], [16].

B. Alternating Proximal Gradient (APG) [14]

In [14], three kinds of updates based on the proximal
concept are introduced, namely original, proximal and prox-
linear, for updating the unknown variables of a particular
type of constrained optimization, including constrained tensor
decomposition.

Prox-linear is similar to Forward-Backward Splitting in sev-
eral respects, since the required assumption for its convergence
is the Lipschitz continuous gradient of differentiable part of
cost function and the KL property. In addition, for some usual
constraints such as belonging to a particular set (i.e. indicator
function), the prox-linear update reduces to the projection onto
the set, as Forward-Backward Splitting.

The main difference between APG and the method proposed
herein (FBS4) is the algorithm chosen for implementing the
proximal approach. In fact, APG is based on Algorithm 2,
while it shall be seen in Section IV that the algorithm utilized
in FBS4 is Algorithm 1.

C. Fast Non-negative Tensor Factorization-APG (FastNTF-
APG) [19]

FastNTF-APG [19] is a modified version of APG [14]
dedicated to non-negative tensor decomposition. In [19], it
is mentioned that, contrary to classical algorithms of Non-
negative Tensor Factorization (NTF), which suffer from slow
convergence especially in practical applications, FastNTF-
APG speeds up NTF and overcomes this bottleneck by com-
bining APG with low rank approximation.

D. Block Coordinate Variable Metric Forward-Backward (BC-
VMFB) [15], [37], [38]

The cost function proposed in [15], [38] includes two main
parts: data fidelity and regularization terms. The latter is capa-
ble of considering hard constraints such as non-negativity and
regularizations such as sparsity. The method used for solving
the resulting minimization is Block Coordinate Variable Metric
Forward-Backward (BC-VMFB) [37].

BC-VMFB consists of two main steps: a gradient step
related to data fidelity, which is assumed to be differentiable
with β-Lipschitz gradient, and a proximal step linked to the
regularization term, for which a new proximity operator should
be calculated. This proximity operator of the function ϕ is
associated with a symmetric positive definite matrix P by the
following definition [15]:

proxP ,ϕ(v) = argmin
u

1

2
‖u− v‖2P + ϕ(v)

where ‖x‖2P = 〈x,Px〉, and 〈·, ·〉 is the inner product. In the
above definition of proximity operator, P is called precondi-
tioning matrix [15]. Definition 1 of proximity operator given
in Section II-B may be obtained from the above definition if
P is the identity matrix. It is observed empirically in [39] that
utilizing preconditioning matrix speeds up the convergence of
Proximal Alternating Linearized Minimization (PALM).
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IV. FORWARD-BACKWARD SPLITTING WITH SMART
INITIALIZATION (FBS4)

In this section, we describe FBS4, the method we propose
for constrained (e.g. non-negativity) CP decomposition. First,
in Section IV-A, the cost function, its solution by means of
Forward-Backward Splitting and FBS4 algorithm, based on
Algorithm 1 are introduced. Then, some prevalent constraints
such as non-negativity, sparsity, and explain FBS4 algorithm
for these particular constraints in Section IV-B are discussed.
In Section IV-C, the convergence theorem for FBS4 is briefly
quoted, whereas the complete convergence analysis can be
found in Appendix A.

A. Formulation and algorithm

Consider the N -th order tensor T ∈ RI1×I2×...IN of rank
R. Assume that T = Jλ;A(1),A(2), . . . ,A(N)K, where λ ∈
RR+ and A(n) ∈ RIn×R. A general problem of constrained CP
decomposition of T can be formulated as follows:

min
λ,A(n)

1

2
‖T − Jλ;A(1),A(2), . . . ,A(N)K‖2F (6)

s.t. Cλ(λ),CA(n)(A(n)), 1 ≤ n ≤ N

where ‖ · ‖F is the Frobenius norm and Cλ(λ),CA(n)(A(n))
are, respectively the constraints over vector λ (including
abovementioned constraint, i.e. λ ∈ RR+, such as belonging
to a simplex set) and matrix A(n).

As mentioned in Section III-A, a common strategy is to
solve (6) via AO. Moreover, a constrained optimization can be
transformed into an unconstrained one by adding the indicator
function of the constraint set to the cost function. To be more
precise, at the nth step of AO for solving (6), we have:

min
A(n)

1

2

∥∥T − JA(1), . . . ,A(n), . . . ,A(N)K
∥∥2
F
+ iC

A(n)
(A(n)),

(7)
where iC

A(n)
(A(n)) is defined as follows:

iC
A(n)

(A(n)) =

{
0 if A(n) ∈ CA(n)

∞ if A(n) 6∈ CA(n)

.

The vector λ is omitted in (7), since it can be calculated by
normalizing loading matrices (A(n)). Otherwise, vector λ as
one of the unknown variables can be optimized in one of the
steps of AO.

Define W , (A(N)�. . .�A(n+1)�A(n−1)�. . .�A(1))T .
Then by the mode-n unfolding of (7), we have:

min
A(n)

1

2
‖T (n) −A(n)W ‖2F + iC

A(n)
(A(n)). (8)

Note that iC
A(n)

(A(n)) is a lower semi-continuous func-
tion (see Appendix A) and 1

2‖T
(n) −A(n)W ‖2F is finite

valued, differentiable and β-Lipschitz continuous gradient
where β = ‖WW T ‖σ denotes the spectral norm1 of matrix
WW T (see Appendix A for calculations2). Since, WW T

is a symmetric matrix, its singular values are the squared of

1Spectral norm of a matrix is defined as its maximum singular value [40].
2It is mentioned in [19] that the Lipschitz constant is ‖WW T ‖F , but as

we prove in Appendix A, the Lipschitz constant is in fact the ‖WW T ‖σ .

Algorithm 3 Algorithm of FBS4

Input: T , CA(n) , initial A(n)
0 , n ∈ [1, . . . , N ]

Output: Estimated A(n), n ∈ [1, . . . , N ]
1: repeat
2: for n = 1, 2, . . . , N do
3: W = (A(N) � . . .�A(n+1) �A(n−1) � . . .�A(1))T

4: β = {max(singular value(W ))}2
5: set γ = 1

β and α = 1
6: for k = 0, 1, 2, . . . do
7: Y = A

(n)
k − γ(A(n)

k (WW T )− T (n)W T )

8: A
(n)
k+1 = A

(n)
k + α(projC

A(n)
(Y )−A(n)

k )

9: end for
10: end for
11: until some termination criterion

those of W . Moreover, the cost function in (8) is proper,
lower semi-continuous with KL property [29]. Consequently,
all the required assumptions of Theorem 1 are satisfied for (8),
and according to this theorem, the minimizer of (8) is the
convergence point of the following fixed point equation:

A(n) = proxγiC
A(n)
{A(n) − γ(A(n)WW T −WT (n)T )}.

Since the proximity operator of γiC
A(n)

is the projection onto
CA(n) , we have:

A(n) = projC
A(n)
{A(n)−γ(A(n)WW T −WT (n)T )}. (9)

FBS4 is described in Algorithm 3. Although, Algorithm 3
is based upon Algorithm 1, we experimentally find the proper
values of some parameters of Algorithm 1 such as γk and αk
to obtain best results. As it is expressed in Algorithm 3, we
ignore ε and fix the value of γk = 1

β in all iterations over k. In
addition, we remove the effect of αk by setting it to 1 in linear
updating of the estimated variable (Line 8 in Algorithm 3).

We now review the main theoretical and practical advan-
tages of Algorithm 3. Firstly, it can be applied even on non-
convex and non-smooth constraints such as cardinality [29],
and this does not affect its convergence. Secondly, it does
not require any critical setting of the parameters. The only
parameters to be set are γ and α, where the suggested values
(γ = 1

β and α = 1) in Algorithm 3 are almost always
suitable. Thirdly, compared to state-of-the-art methods such as
APG and BC-VMFB, FBS4 is easy enough to understand and
implement. Fourthly, contrary to APG or BC-VMFB, FBS4
works with variables in matrix form, so there is no need
to vectorize loading matrices. This brings an advantage in
working with large dimension tensors. Fifthly, FBS4 is smartly
initialized, which permits a faster convergence. Last but not
least, as it is developed in the next section, FBS4 can be
adapted to many different constraints.

B. Some constraints

As mentioned before, the FBS4 is not limited to any
particular constraint. Any constraint whose indicator function
satisfies the assumptions of Theorem 1 can be considered. In
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this section, the required modifications of Algorithm 3 are
described, for some widespread constraints.

1) Non-negativity: Non-negativity is one of the most com-
mon constraints in the literature. In many applications such
as image processing [10] or chemometrics [41], the non-
negativity of loading matrices is essential and helpful in
the performance of tensor decomposition. Non-negative con-
straints of (6) are expressed as: A(n) ∈ RIn×R+ and λ ∈ RR+.

The projection to the non-negative orthant is done with
the max operator, thereby line 8 of Algorithm 3 would be
A

(n)
k+1 = A

(n)
k + α(max(Y , 0)−A(n)

k ). In other words, the
proximity operator of the non-negative constraint retains the
non-negative elements of the array and replaces its negative
values with zero.

2) Simplex set: In applications involving probability esti-
mation or distribution approximation, the simplex (or prob-
ability simplex) constraint unavoidably appears [7], [11].
A vector x ∈ RP belongs to the simplex set SP if
{xT1 = 1, xi ≥ 0, i ∈ [1, . . . , P ]}. This constraint can be
written as {A(n)(:, j) ∈ SIn , j ∈ [1, . . . , R], n ∈ [1, . . . , N ]}
and λ ∈ SR. An algorithm for projecting a vector onto
the simplex set is proposed in [42]. Therefore, the line 8
of Algorithm 3 would include a projection algorithm to the
simplex, whose input is Y .

An efficient way to apply the simplex constraint to all the
columns of loading matrices A(n), n ∈ [1, . . . , N ] and to the
coefficient vector λ is to first combine λ with one of the
loading matrices, let us say A(N). By combination, we mean
A

(N)
λ = A(N)Diag(λ), where Diag(λ) is a diagonal matrix

containing λ on its diagonal. Then, the simplex constraint
may be applied to every column of every matrix A(n), n ∈
[1, . . . , N − 1], and only to the vectorization of matrix A(N)

λ .
Each entry λr of λ is eventually obtained by normalizing the
rth column of matrix A(N)

λ with respect to `1 norm, and the
resulting normalized matrix yields an estimation of A(N). It
can then be proved easily that estimated λ and every column
of loading matrix A(N) indeed lie in the simplex.

3) Sparsity with `0 pseudo-norm (cardinality): In some
applications such as two dimensional dictionary learning, a
constraint on the number of non-zero elements of loading
matrices (or cardinality) is needed [12]. This constraint is
measured with `0 pseudo-norm and known as sparsity in
compressive sensing [43].

In penalized form, an `0 pseudo-norm term is added to the
cost function [44]. Although `0 is non-convex, the resulted
cost function can be solved by means of Theorem 1. In order
to use Algorithm 3 with a cardinality constraint, the proximity
operator of `0 should be calculated. It is mentioned in [20],
[29] that the proximity operator of `0 is a function called hard-
thresholding, defined as follows:

fhη (y) ,

{
y |y| > η
0 |y| ≤ η .

With this in mind, the line 8 of Algorithm 3 in-
cludes applying hard-thresholding on each element of Y
([fh√

2γ
(Y(i,j))]

(In,R)
(i=1,j=1)).

4) Sparsity with `1 norm: A common and convex approx-
imation of `0 pseudo-norm is `1 norm. The resulting cost

function obtained by replacing `0 with `1 norm is called
LASSO regression [43], [44]. In [20], it is stated that according
to (3), the proximity operator of `1(x) is fs√

2γ
,where fsη is

called soft-thresholding, and is defined as:

fsη (y) ,

 y − η y > η
0 |y| ≤ η

y + η y < −η
.

C. Convergence guarantee

The overall convergence of Algorithm 3 has been proved
in [45] (convergence of Proximal Alternating Linearized Min-
imization (PALM)). Based on Theorem 1, the convergence of
each step of AO is next discussed.

The convergence of Theorem 1 is studied in [14], [29],
[46]. In [14], the convergence analysis is proved provided that
the cost function is convex and continuous. Since we look
for weaker assumptions, we ignore the proof of [14] in this
section.

In this section, we restate the convergence theorem of
Forward-Backward Splitting from [29], [46], which is not only
applicable for continuous and convex cost functions, but is
also usable for non-smooth and non-convex functions (or non-
convex set of constraint).

Theorem 2 (Convergence of Forward-Backward Split-
ting [29], [46]). Suppose f : RN 7→ R ∪ {+∞} is a proper
lower semi-continuous function which has KL property and
is bounded from below. Assume that f can be spilt into two
parts as f = h + g, where g is lower semi-continuous and
h : RN 7→ R is a finite valued, differentiable function with a
β-Lipschitz continuous gradient.

If the sequence generated by Algorithm 3 is bounded, then
this sequence will converge to a critical point of f . In addition,
by choosing γ ∈ [0, 1

β ], the values of the cost function are not
increasing.

Proof. See Appendix A. Note that the proof of Theorem 2 is
provided by means of [29], [46] but with much more details,
which makes it significantly easier to follow.

V. EXPERIMENTAL RESULTS

In this section, experimental results obtained by decompo-
sitions of third order tensors are reported, either generated
synthetically or coming from real data sets.

We compare FBS4 with those described in Section III,
namely AO-ADMM [13], APG [14], FastNTF-APG [19] and
BC-VMFB [15]3. Algorithms are first tested on artificially
generated non-negative third order tensors, constructed from
factors belonging to the simplex or not. In some cases, the
tensors are corrupted with additive noise. Next, experiments
on real data sets are described, namely colored images and
amino acid fluorescence data sets [3], under non-negativity
constraint.

3We would like to thank the corresponding authors of FastNTF-APG [19]
and BC-VMFB [15], Guoxu Zhou and Caroline Chaux, respectively, who
sent us the MATLAB codes of their methods. The MATLAB codes of AO-
ADMM [13] and APG [14] are made available by the authors at [47] and
[48], respectively. Therefore, the original codes of authors have been used to
obtain the results reported in all figures of this section.
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All computer experiments reported in this section have been
executed on a laptop with a processor of 3.1 GHz Intel Core i5,
16 GB RAM, running macOS Mojav and MATLAB 2019a.

A. Synthetic data

Algorithms are examined on three kinds of synthetic third
order tensors:

1- Small tensors of size 10× 10× 10 and of rank R = 6,
2- Medium tensors of size 50×50×50 and of rank R = 10,
3- Large tensors of size 200×200×200 and of rank R = 20.
According to the considered constraints (non-negativity or

simplex), we generate randomly (uniform distribution) loading
matrices and coefficient vector. Then, the noiseless tensor T o
is computed via (1). In order to work in a noisy context, a
noise tensor is added, Tn, with Gaussian i.i.d. entries with zero
mean and unit variance, of same size as T o, and weighted by
parameter σ. The variance σ2 of the additive noise is adjusted
such that we reach a desired Signal to Noise Ratio (SNR)
according to the following relation:

SNR = 10 log10

1
M

∑
i,j,k T o(i, j, k)2

1
M

∑
i,j,k σ

2Tn(i, j, k)2
,

where M is the total number of elements of tensors T o or
Tn.

Let us discuss two technical points about the practical
implementation:

* In order to compare the performances of algorithms fairly,
we force all the algorithms to run for an identical time.

* Instead of random initialization, which is usual in the
literature, we have used a smart initialization by means
of [49]. To be more precise, first, we decompose the
desired tensor thanks to the closed-form described in [49].
Then, we use the resulting loading matrices as ini-
tialization for Algorithm 3. In some cases (e.g. large
tensors), we use a few iterations of AO-ADMM as a smart
initialization.

1) Non-negative constraint: The entries of loading matri-
ces and coefficient vector λ are independently drawn from a
uniform distribution (without column normalization). Tensors
are then built using (1). The size of generated matrices are
10 × 6, 50 × 10 and 200 × 20 for small, medium and large
tensors, respectively. The size of the coefficient vector is equal
to the rank of tensors, R, in all cases (R being equal to either
6, 10 or 20).

Denote by T the desired tensor to be decomposed,
T = T o + σTn. After decomposing T , the estimation of T o
can be calculated through (1), as a rank-R approximation,
which we call T̂ . The relative reconstruction error is computed
as follows:

ε(T̂ ) =
‖T̂ − T o‖2F
‖T o‖2F

(10)

Figure 1 (Left) shows the relative reconstruction error of
the noiseless small tensor (of size 10× 10× 10, R = 6). Fig-
ure. 1 (Right) relates to the relative reconstruction error when
the small tensor to be decomposed is noisy, and SNR = 20dB.
With non-negative constraints, in order to be able to track

Fig. 1: Left: Small tensor of size 10 × 10 × 10, R = 6, noiseless, Right:
Small tensor of size 10× 10× 10, R = 6, SNR = 20dB

Fig. 2: Left: Medium tensor of size 50× 50× 50, R = 10, noiseless, Right:
Medium tensor of size 50× 50× 50, R = 10, SNR = 20dB

the causes of performance differences, all the algorithms are
initialized smartly with the method of [49].

Most of the methods have succeeded to achieve acceptable
relative errors as demonstrated in Fig. 1 (Left). However, BC-
VMFB, in spite of our effort to adjust its parameters properly
and our consulting the corresponding author about parameters,
results in a relative error around 0.2 or 0.3. Therefore, in order
to be able to distinguish the differences between errors of other
methods, we have been forced to omit BC-VMFB from the
comparisons.

As it is shown in Fig. 1 (Left), FBS4 and AO-ADMM
outperform other methods in decomposing noiseless small
tensors. Moreover, FBS4 converges faster than AO-ADMM.
Although APG and FastNTF-APG are based on Forward-
Backward Splitting as FBS4, their performance is weaker
than FBS4. This is because their algorithm are based on
Algorithm 2, while FBS4 is based on Algorithm 1. The
different behaviors of Algorithm 1 and Algorithm 2 have been
explained in [17]. In addition, since FastNTF-APG tries to
decompose a low-rank approximation of the desired tensor,
it can be expected that FastNTF-APG returns less accurate
decomposition than FBS4 and APG. For noisy small tensor,
as it is shown in Fig. 1 (Left), all the methods perform almost
the same, but FBS4 converges a bit faster than others.

Figure 2 (Left) shows the result obtained after decom-
posing and reconstructing a noiseless medium tensor of size
50× 50× 50, R = 10, and Fig. 2 (Right) depicts the relative
reconstruction error after decomposing a noisy medium tensor
of size 50 × 50 × 50, R = 10 with SNR = 20dB. In
these experiments, as before, all the algorithms are initialized
smartly with the method of [49] to have fair comparisons. The
results for medium tensors (Fig. 2 (Left and Right)) are almost
the same as those of small tensors (Fig. 1 (Left and Right))
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Fig. 3: Left: Large tensor of size 200×200×200, R = 20, noiseless, Right:
Large tensor of size 200× 200× 200, R = 20, SNR = 20dB

except that AO-ADMM converges faster than FBS4.
Figures 3 (Left and Right) are related to large tensors of

size 200 × 200 × 200, R = 20, in which FBS4 is initialized
with 1000 iterations and two seconds of running AO-ADMM,
respectively. All the other algorithms initialized smartly with
the method of [49]. Comparing Fig. 3 (Left) to the results for
noiseless medium tensors, FBS4 performs a bit better than
AO-ADMM, but instead AO-ADMM converges faster than
FBS4. Moreover, FBS4 and AO-ADMM outperform the other
two methods, APG and FastNTF-APG. However, in noisy
context, almost all the algorithms achieve the same level of
relative reconstruction error and AO-ADMM converges faster
than the others. Parameter γ in Algorithm 3 is set to 1.9

β for
Fig. 3 (Right).

2) Simplex constraint: The entries of loading matrices and
coefficient vector λ are independently drawn from a uniform
distribution, and columns are normalized with respect to the `1
norm. Then tensor T o is computed via (1). For space reasons,
we report in this section only the simulation results for medium
tensors of size 50×50×50, R = 10 under simplex constraint.
The size of generated matrices A,B,C are 50 × 10 and the
size of the coefficient vector λ is R.

To the best of our knowledge, the only algorithm in the
literature that considers simplex constraints for tensor decom-
position is AO-ADMM [13].

The relative reconstruction error is computed by (10). Sim-
ilarly, the relative error of the estimation of loading matrices
and coefficient vector can be computed. If we denote the
first mode loading matrix and its estimation by A and Â,
respectively, the relative error of estimation A is as follows:

ε(Â) =
‖Â−A‖2F
‖A‖2F

.

The relative error of other loading matrices and coefficient
vector is computed in the same way.

It is hard to assess the relative error made on loading
matrices, because of scaling and permutation ambiguities of
tensor decomposition [1]. Under the simplex constraint, we
resolve scaling ambiguity by normalizing the columns of
loading matrices and coefficient vector with respect to the `1
norm. In addition, we use the Hungarian algorithm [50], [51]
to fix the permutation ambiguity.

Figures 4-8 (Left) correspond to the performance of FBS4
and AO-ADMM for the decomposition of a noiseless medium
tensor of size 50 × 50 × 50, R = 10 under the simplex con-
straint. As shown in Figs. 4-8 (Left), AO-ADMM converges

Fig. 4: Left: The reconstruction error (50 × 50 × 50, R = 10, noiseless),
Right: The reconstruction error (50× 50× 50, R = 10, SNR = 20dB)

Fig. 5: Left: The error of first mode loading matrix A (50×50×50, R = 10,
noiseless), Right: The error of first mode loading matrixA (50×50×50, R =
10, SNR = 20dB)

faster than FBS4, but both of these methods achieve almost
the same value of relative error.

Figures 4-8 (Right) correspond to the performances of FBS4
and AO-ADMM for the decomposition of a medium tensor of
size 50×50×50, R = 10 with SNR = 20dB under the simplex
constraint. As shown in Figs. 4-8 (Right), FBS4 performs
better than AO-ADMM, for estimating loading matrices and
the coefficient vector λ, although the reconstruction error
(Fig. 4, right) achieved by the two algorithms is almost the
same. Both algorithms are initialized smartly by the method
of [49] in all of the experiments of this section.

B. Real data

In this section, the performances of the algorithms men-
tioned in Sections III and IV are evaluated on two real data
sets, namely Amino acids and Color images.

The Amino acids data set consists of five samples, each of
which contains different amounts of three amino acids, namely
Tryptophan (Trp), Tyrosine (Tyr), Phenylalanine (Phe) [52]. In
fluorescence spectrometry, the excitation spectrum (the light
that is absorbed by the sample) and the emission spectrum (the
light emitted by the sample) can be measured simultaneously.
This kind of measurement ends in a specific matrix known as
Excitation Emission Matrix (EEM) [3].

In the well-known Amino acids data set, the excitation and
emission spectrum of EEM are measured, respectively over
wave-length range of (240 nm − 300 nm) and (250 nm −
450 nm), every nanometer. Therefore, the Amino acids data
set is a non-negative real tensor of size 201×61×5. Although
there are some small negative values in the data, the tensor
is supposed to be non-negative, since it is constructed from
non-negative values which are the intensity measurements of
EEM [52].
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Fig. 6: Left: The error of second mode loading matrix B (50×50×50, R =
10, noiseless), Right: The error of second mode loading matrix B (50×50×
50, R = 10, SNR = 20dB)

Fig. 7: Left: The error of third mode loading matrixC (50×50×50, R = 10,
noiseless), Right: The error of third mode loading matrix C (50 × 50 ×
50, R = 10, SNR = 20dB)

The other real data set contains color images, which are
stored in arrays of size height×width×3, where “height” and
“width” correspond to the size of RGB images in pixels. As
the intensities are non-negative values, the tensor of a color
image is non-negative.

1) Amino acid: The Amino acids data set is available on
the web [53]. It is discussed in [3] that these data is describable
with CP of rank R = 3. By decomposing Amino acids tensor,
three loading matrices are obtained: Emission of size 201×3,
Excitation of size 61× 3, and Amount matrix of size 5× 3.

We have applied Several non-negative CP decomposition
algorithms of Sections III and IV with the smart initialization
provided by [49] on Amino acid data. Then, each column
of estimated Emission/Excitation matrix is plotted versus
emission/excitation wave-length (Figs. 9-11).

By comparing the known fluorescence spectrometry re-
sults [3] of Trp, Tyr and Phe with Figs. 9-11, it can be
interpreted that FBS4 and AO-ADMM result in the closest
diagrams to the expected ones. Therefore, these two methods
are the most reliable ones.

2) Image reconstruction: Color images are the most acces-
sible examples of real data tensors. In this section, algorithms
of Section III and IV are applied on colored version of Lena
image (Fig. 12 (Right)) under non-negativity constraint and
with the smart initialization provided by [49].

In this experiment, the performances of algorithms are
compared using Peak Signal to Noise Ratio (PSNR), which
is computed based on the original image and its noisy version
(or its reconstruction): Given an original image, Imorg of size

Fig. 8: Left: The error of the coefficient vector λ (50 × 50 × 50, R = 10,
noiseless), Right: The error of the coefficient vector λ (50× 50× 50, R =
10, SNR = 20dB)

Fig. 9: Left: Estimated emission of first amino acid, Right: Estimated emission
of second amino acid

P ×Q and its reconstruction, Imrec, PSNR is defined as:

PSNR(dB) = 10 log10
Max2

I

MSE
,

MSE =

∑P
p=1

∑P
p=1(Imorg(p, q)− Imrec(p, q))

2

PQ
,

where MaxI is the maximum possible pixel value, which is
255 in this experiment over Lena image.

Unlike Amino acids data set, the proper rank of color
images as a tensor is not known. This makes it hard to fit
the best decomposition that results in the minimum level
of relative reconstruction error. However, in Fig. 12 (Left),
a range of ranks is considered, and for each of them, the
PSNR of reconstructed images generated by the algorithms is
compared. As shown in Fig. 12 (Left), the larger the chosen
rank, the higher the resulting PSNR. Nevertheless, increasing
rank of CP decomposition algorithms is very costly in terms of
computation complexity and execution time. Therefore, there
is a trade-off between increasing rank of decomposition (which
results in higher PSNR) and running time.

In order to compare the algorithms more precisely, the
values of the PSNR corresponding to rank R = 20 are
available in Table I. In addition, the reconstructed images by
FBS4 algorithm and FastNTF-APG are depicted in Fig. 13. It
can be concluded from Table I and Fig. 13 that by choosing
rank R = 20, FBS4 and FastNTF-APG result in the best and
the worst PSNR, respectively.

This experiment can be viewed as an image compression,
since from visual perspective, the reconstructed image has
the same quality as the original image. In other words,
instead of storing 128 × 128 × 3 = 49152 pixel values
of the colored Lena image, one can reconstruct it with an
acceptable PSNR from the three factor matrices, that is, from
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Fig. 10: Left: Estimated emission of third amino acid, Right: Estimated
excitation of first amino acid

Fig. 11: Left: Estimated excitation of second amino acid, Right: Estimated
excitation of third amino acid

TABLE I: PSNR of reconstructed Lena image for rank R = 20

Method AO-ADMM APG FastNTF-APG FBS4
PSNR (dB) 29.92 29.81 29.00 29.94

2× (128× 20) + 3× 20 = 5180 elements, which represents
a compression around 89.46%.

VI. CONCLUSION

In this paper, an algorithm, FBS4, was proposed based
on ALS for constrained tensor decomposition, utilizing a
particular proximal method called Forward-Backward Split-
ting [17]. A convergence analysis was provided for FBS4
which, unlike the convergence of AO-ADMM [13], guarantees
the convergence towards a critical point for both convex and
non-convex constraints such as sparsity.

We compared practically FBS4 algorithm to AO-ADMM,
APG [14], FastNTF-APG [19] and BC-VMFB [15]. The
computer experiments showed that FBS4 algorithm performs
better than proximal based methods (APG, FastNTF-APG and
BC-VMFB) especially in noiseless context, and it is also
competitive with AO-ADMM. Although, the experiments had
been dedicated to non-negativity and simplex set constraints,
FBS4 can be easily adapted for managing many different con-
straints such as cardinality. In fact, sparsity was not explicitly
addressed in computer experiments of the paper, due to lack
of space. However, it has been described in Sec IV how FBS4
can be applied with such a constraint.

APPENDIX A
CONVERGENCE ANALYSIS OF FBS4

Let us define h(A(n)) and g(A(n)) as follows:

h(A(n)) ,
1

2
‖T (n) −A(n)W ‖2F

g(A(n)) , iC
A(n)

(A(n)),

Fig. 12: Left: Reconstruction performances of algorithms versus each of
chosen rank, Right: Original image (128× 128× 3)

Fig. 13: Left: Reconstructed image by FastNTF-APG with PSNR = 29.00dB
(chosen rank R = 20), Right: Reconstructed image by FBS4 with PSNR =
29.94dB (chosen rank R = 20)

whereW = (A(N) � . . .�A(n+1) �A(n−1) � . . .�A(1))T .
Since h(A(n)) has quadratic form, the “Lipschitz” constant

of its gradient can be calculated. The gradient of h(A(n)) is
computed as follows:

h(A(n)) =
1

2
‖T (n) −A(n)W ‖2F

=
1

2
trace{(T (n) −A(n)W )T (T (n) −A(n)W )}

⇒ ∇A(n)h(A(n)) = −WT (n)T +A(n)WW T

In calculating the gradient, the following relations have been
used:

∇A trace{AB} = BT ,
∇A trace{ABATC} = CTABT +CAB.

Now, the Lipschitz constant of ∇A(n)h(A(n)) can be calcu-
lated as follows: h(A(n)) is β-Lipschitz gradient, i.e.,

‖∇A(n)h(X)−∇A(n)h(Y )‖F ≤ β‖X − Y ‖F

⇒ β = max
‖∇A(n)h(X)−∇A(n)h(Y )‖F

‖X − Y ‖F
∇A(n)h(X)−∇A(n)h(Y ) = (X − Y )WW T

⇒ β = max
‖(X − Y )WW T ‖F
‖X − Y ‖F

.

Note that the definition of “spectral norm” of a matrix is:

‖A‖σ , max
‖AX‖F
‖X‖F

,

which is equal to the maximum singular value ofA. Therefore,
we have:

β = ‖WW T ‖σ.

The problem is minA(n) h(A(n))+g(A(n)). By means of a
well-known lemma, called “Descent Lemma” [29], we want to
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show that instead of minA(n) h(A(n))+g(A(n)), the following
problem can be solved:

A
(n)
k+1 = argmin

A(n)

h(A
(n)
k )+

trace{(A(n) −A(n)
k )∇A(n)h(A(n)T }+ 1

2µ
‖A(n) −A(n)

k ‖
2
F

+ g(A(n)), (11)

where A(n)
k is the kth estimation of A(n) and µ ∈ (0,

1

β
).

In [29], “Descent Lemma” is mentioned as follows:

Lemma 1 (Descent Lemma [29] (Lemma 3.1)). let f : Rd →
R be a continuously differentiable function with gradient ∇f
assumed β-Lipschitz continuous. Then,

f(x) ≤ f(y) + 〈∇f(y),x− y〉+ β

2
‖x− y‖22, ∀x,y ∈ Rd

By considering µ ∈ (0,
1

β
), obviously, the following equa-

tion resulted from “Descent Lemma” can be written:

f(x)≤ f(y) + 〈∇f(y),x− y〉+ 1

2µ
‖x− y‖22. (12)

In order to show that minimizing (11) is equivalent to
minA(n) h(A(n)) + g(A(n)), it is needed to rewrite (12)
for matrix variables, A(n) and A

(n)
k , instead of x and y,

respectively:

h(A(n))≤ h(A(n)
k ) + 〈∇h(A(n)

k ),A(n) −A(n)
k 〉

+
1

2µ
‖A(n) −A(n)

k ‖
2
F (13)

Note that Euclidean norm is equal to Frobenius
norm for matrix variables, and inner product of
matrices 〈∇h(A(n)

k ),A(n) −A(n)
k 〉 is equal to

trace{(A(n) −A(n)
k )(∇A(n)h(A

(n)
k ))

T
}. By adding g(A(n))

to the both sides of (13), we have:

h(A(n)) + g(A(n))≤h(A(n)
k ) + 〈∇h(A(n)

k ),A(n) −A(n)
k 〉

+
1

2µ
‖A(n) −A(n)

k ‖
2
F + g(A(n))

(14)

It is obvious that instead of minA(n) h(A(n)) + g(A(n)),
the right hand side of (14) can be minimized equivalently. It
is good to see that how minimizing (14) is equal to standard
form of proximal problems:

min
A(n)

h(A(n)) + g(A(n))

≡ min
A(n)

h(A
(n)
k ) + 〈∇h(A(n)

k ),A(n) −A(n)
k 〉

+
1

2µ
‖A(n) −A(n)

k ‖
2
F + g(A(n))

≡ min
A(n)
〈∇h(A(n)

k ),A(n) −A(n)
k 〉

+
1

2µ
‖A(n) −A(n)

k ‖
2
F + g(A(n)). (15)

By simple calculations, it can be seen that (15) is equal to:

min
A(n)

1

2
‖A(n)−(A(n)

k −µ∇A(n)h(A
(n)
k ))‖2F+µg(A

(n)). (16)

Let us review the definition of the standard form of a proximal
problem:

proxµg(x) = argmin
y

1

2
‖x− y‖22 + µg(y).

So, (16) can be rewritten as:

A
(n)
k+1 = proxµg(A

(n)
k − µ∇A(n)h(A

(n)
k )).

Let us go back to (15), which can be rewritten as:

A
(n)
k+1 = argmin

A(n)

trace{(A(n) −A(n)
k )(∇A(n)h(A

(n)
k ))

T
}

+
1

2µ
‖A(n) −A(n)

k ‖
2
F + g(A(n)). (17)

Since A(n)
k+1 is the minimizer of (17), we have:

trace{(A(n)
k+1 −A

(n)
k )(∇A(n)h(A

(n)
k ))

T
}

+
1

2µ
‖A(n)

k+1 −A
(n)
k ‖

2
F + g(A

(n)
k+1) ≤ g(A

(n)
k ). (18)

To prove that x∗ is a critical point of f , we have to show
that:

∂f

∂x
|x=x∗ = 0.

We call the cost function of (17) “fe”, and according to (17),
A

(n)
k+1 is a critical point of fe. FONC of fe reveals the

following relation:

0 ∈ ∂fe

∂A(n)
|
A(n)=A

(n)
k+1

⇒

0 ∈ ∇A(n)h(A
(n)
k ) +

1

µ
(A(n) −A(n)

k ) + ∂g(A(n))|
A(n)=A

(n)
k+1

.

(19)

Note that since g is a non-derivative function, its sub-gradient,
∂g is used. By means of Lemma 1 for h(A(n)), we have:

h(A
(n)
k+1) ≤ h(A

(n)
k ) + trace{(A(n)

k+1 −A
(n)
k )∇h(A(n)

k )
T
}

+
β

2
‖A(n)

k+1 −A
(n)
k ‖

2
F . (20)

Recall that the cost function in Theorem 1 is
f(A(n)) = h(A(n)) + g(A(n)). By adding (18) and (20), we
have

h(A
(n)
k+1) + g(A

(n)
k+1) ≤ h(A

(n)
k ) + g(A

(n)
k )

− (
1

2µ
− β

2
)‖A(n)

k+1 −A
(n)
k ‖

2
F

⇒ f(A
(n)
k+1) ≤ f(A

(n)
k )

− (
1

2µ
− β

2
)‖A(n)

k+1 −A
(n)
k ‖

2
F . (21)

Since 0 ≤ µ ≤ 1

β
, or equivalently (

1

2µ
− β

2
) ≥ 0, then

f(A
(n)
k+1) ≤ f(A(n). On the other hand, the cost function is

bounded from below, since it is a summation of the norm
of a bounded amount (h(A(n)

k ) =
1

2
‖T (n) − A(n)

k W ‖2F ,

A
(n)
k is bounded as it is a projection over a bounded space

in each iteration) and a projection over a bounded space



12

(g(A(n)
k ) = iC

A(n)
(A

(n)
k )). Therefore, the cost function is de-

creasing and bounded from below, and consequently it proves
that the cost function converges.

From convergence of the cost function, we want to show that
A

(n)
k+1−A

(n)
k → 0. To this end, sum up (21) for k = 0, . . . ,∞:

∞∑
k=0

(
1

2µ
−β
2
)‖A(n)

k+1 −A
(n)
k ‖

2
F

≤ f(A(n)
0 )− f(A(n)

∞ )

Since the right hand side is bounded and (
1

2µ
− β

2
) ≥ 0, then

A
(n)
k+1 −A

(n)
k → 0. Now let us mention the following remark

to which we will refer in the sequel:

Remark 1 (Converging subsequence). Since {A(n)
k }∞k=0 is a

bounded sequence (as it is a projection over bounded space),
therefore according to Bolzano-Weierstrass theorem [54],
there exists a converged subsequence like {A(n)

kj
}∞j=0 which

converges to A(n)∗.

Now, it is needed to show that A(n)∗ is a critical point of
the cost function. Let define:

U j , ∇A(n)h(A
(n)
kj

)−∇A(n)h(A
(n)
kj−1

)− 1

µ
(A

(n)
kj
−A(n)

kj−1
).

It can be shown that U j ∈
∂f

∂A(n)
|
A

(n)
kj

, because by adding

∇A(n)h(A
(n)
k+1) to the two sides of (19), we have:

∇A(n)h(A
(n)
k+1) ∈ ∇A(n)h(A

(n)
k+1) +∇A(n)h(A

(n)
k )

+
1

µ
(A

(n)
k+1 −A

(n)
k ) + ∂g(A

(n)
k+1)⇒

∇A(n)h(A
(n)
k+1)−∇A(n)h(A

(n)
k )− 1

µ
(A

(n)
k+1 −A

(n)
k )

∈ ∇A(n)h(A
(n)
k+1) + ∂g(A

(n)
k+1).

By considering k as kj−1, we have U j ∈
∂f

∂A(n)
|
A

(n)
kj

. Now,

we want to show that U j → 0:

‖U j‖F = ‖∇A(n)h(A
(n)
kj

)−∇A(n)h(A
(n)
kj−1

)

− 1

µ
(A

(n)
kj
−A(n)

kj−1
)‖F ⇒

‖U j‖F
a
≤ ‖∇A(n)h(A

(n)
kj

)−∇A(n)h(A
(n)
kj−1

)‖F

+
1

µ
‖A(n)

kj
−A(n)

kj−1
‖F ⇒

b
≤ β‖A(n)

kj
−A(n)

kj−1
‖F +

1

µ
‖A(n)

kj
−A(n)

kj−1
‖F (22)

“a” is because of triangular inequality, and “b” is because
of gradient Lipschitz property of h(A(n)). According to the
Remark. 1, “Converging subsequence”, the right hand side
of (22) converges to zero, so U j → 0. Here, a definition
and a lemma that will be helpful to complete the proof are
reviewed.

Definition 2 (Definition of graph [45]). A graph of a function,
say q : Rd → (−∞,+∞], is {(u, t) ∈ Rd+1 : q(u) = t}.

Lemma 2 ( [45]). Let {(Xk,Uk)}k∈N be a sequence in
graph of the sub-gradient of a function, ∂F , that converges to
(X,U) as k →∞. If F (Xk) converges to F (X) as k →∞,
then (X,U) ∈ graph(∂F ).

So far, a converging subsequence A(n)
kj

for the cost function
is considered, and that U j ∈ ∂f was showed. Therefor,
{(A(n)

kj
,U j)}∞j=0 is a sequence in graph of the sub-gradient of

the cost function. In Remark. 1, “Converging subsequence”,
we mentioned that the sub-sequent A(n)

kj
converges to A(n)∗,

and in (22) we proved that U j → 0. So, {(A(n)
kj
,U j)}∞j=0

converges to (A(n)∗, 0). According to Lemma 2, (A(n)∗, 0) ∈
graph(∂f). In the other words, 0 ∈ ∂f

∂A(n)
|A(n)∗ which

means that A(n)∗ is a critical point of the cost function. This
completes the proof.
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