Experiments on growth series of braid groups

Jean Fromentin

To cite this version:

Jean Fromentin. Experiments on growth series of braid groups. 2021. hal-02929264v2

HAL Id: hal-02929264
https://hal.science/hal-02929264v2
Preprint submitted on 27 Jan 2021 (v2), last revised 14 Apr 2021 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
EXPERIMENTS ON GROWTH SERIES OF BRAID GROUPS

JEAN FROMENTIN

ABSTRACT. We introduce an algorithmic framework to investigate spherical and geodesic growth series of braid groups relatively to the Artin’s or Birman–Ko–Lee’s generators. We present our experimentation in the case of three and four strands and conjecture rational expressions for the spherical growth series with respect to the Birman–Ko–Lee’s generators.

1. Introduction

Originally introduced as the group of isotopy classes of \(n \)-strands geometric braids, the braid group \(B_n \) admits many finite presentations by generators and relations. From each finite semigroup generating set \(S \) of \(B_n \) we can define at least two growth series. The spherical growth series counts elements of \(B_n \) by their distance from the identity in the Cayley graph \(\text{Cay}(B_n, S) \) of \(B_n \) with respect to \(S \). The geodesic growth series counts geodesic paths starting from the identity by length in \(\text{Cay}(B_n, S) \).

In case of Artin’s generators \(\Sigma_n = \\{\sigma_1^{\pm 1}, \ldots, \sigma_{n-1}^{\pm 1}\} \) of \(B_n \) the only known significant results are for \(n \leq 3 \). L. Sabalka determines [24] both the spherical and geodesic growth series of \(B_3 \). To this end, he constructs an explicit deterministic finite automaton recognizing the language of geodesic \(\Sigma_3 \)-words. In particular he obtains the rationality of both series. Similar results were obtained by J. Mairesse and F. Mathéus in case of Artin–Tits groups of dihedral type [23]. In page 57 of her PhD thesis [2], M. Albenque gives the first 13 terms of the spherical series of \(B_4 \) relatively to \(\Sigma_4 \).

Here we introduce a new algorithmic framework to compute the first terms of the spherical and geodesic growth series of \(B_n \) relatively to both Artin’s or Birman–Ko–Lee’s generators. Experimentations allow us to conjecture rational expressions for the spherical growth series of \(B_3 \) and \(B_4 \) and geodesic growth series of \(B_3 \) relatively to the Birman–Ko–Lee’s generators. We also obtain the first 26 terms of the spherical and geodesic growth series of \(B_4 \) with respect to \(\Sigma_4 \) but this is not enough to formulate any conjecture in this case. Experiments presented in this paper were carried out using the \textsc{Calculco} computing platform [25].

The paper is organized as follows. Section 2 recalls basic definitions and presents already known result on the subject. In section 3 we describe a first algorithm to explore spherical and geodesic combinatorics of braids relatively to Artin’s or Birman–Ko–Lee generators. Section 4 is devoted to the notion of braid template which allows us to parallelize the algorithms obtained in the previous section. In section 5 we show how to reduce the exploration space by introducing reduced braid templates. Experimentation results are detailed in the last section.

2020 Mathematics Subject Classification. Primary 20F36, 20F10; Secondary 20F69, 68R15.

Key words and phrases. Braid group, spherical growth series, geodesic growth series, algorithm.
2. Context

2.1. Growth series. Let S be a finite generating set of a semigroup M. We denote by S^* the set of all words on the alphabet S, which are called S-words. The empty word is denoted by ε. For every S-word u, we denote by $|u|$ its length and by \bar{n} the element of M it represents. We say that two S-words u and v are equivalent, denoted $u \equiv v$, if they represent the same element in M.

Definition 2.1. The S-length of an element $x \in M$, denoted $|x|_S$, is the length of a shortest S-word representing x. An S-word u satisfying $|u| = |\bar{u}|_S$ is geodesic.

The S-length of an element $x \in M$ corresponds to the distance between x and the identity in the Cayley graph of M with respect to the finite generating set S.

Definition 2.2. For any $\ell \in \mathbb{N}$, we denote by $g(M, S; \ell)$ the number of geodesic S-words of length ℓ. The geodesic growth series of M with respect to S is

$$G(M, S) = \sum_{\ell \in \mathbb{N}} g(M, S; \ell) t^\ell.$$

If the language of geodesic S-words is regular then the series $G(M, S)$ is rational.

Definition 2.3. For any $\ell \in \mathbb{N}$, we denote by $s(M, S; \ell)$ the number of elements in M of length ℓ. The spherical growth series of M with respect to S is

$$S(M, S) = \sum_{x \in M} t^{\bar{|x|}_S} = \sum_{\ell \in \mathbb{N}} s(M, S; \ell) t^\ell.$$

If there exists a regular language composed of geodesic S-words in bijection with M then the series $S(M, S)$ is rational.

2.2. Artin’s braid presentation. The first presentation of the braid group B_n was given by E. Artin in [4] :

$$B_n \simeq \langle \sigma_1, \ldots, \sigma_{n-1} \mid \sigma_i \sigma_j = \sigma_j \sigma_i \text{ for } |i - j| \geq 2 \rangle.$$ (1)

Definition 2.4. For all $n \geq 2$, we denote by Σ_n^+ the set $\{\sigma_1, \ldots, \sigma_{n-1}\}$ and by Σ_n the set $\Sigma_n^+ \cup (\Sigma_n^+)^{-1}$.

Artin’s presentation of B_n implies that Σ_n^+ is a set of group generators of B_n. However the braid σ_i^{-1} cannot be represented by any Σ_n^+-word. For our purpose, it is fundamental to view a monoid (or a group) as a quotient of a finitely generated free monoid. As a monoid, the braid group B_n is presented by generators Σ_n and relation of (1) plus relations

$$\sigma_i \sigma_i^{-1} = \sigma_i^{-1} \sigma_i = \varepsilon \text{ for all } 1 \leq i \leq n-1.$$ (2)

In [24], L. Sabalka constructed an explicit deterministic finite state automaton recognizing the language of geodesic Σ_3-words. He obtains the following rational value for the geodesic growth series of B_3 relatively to the Artin’s generators Σ_3 :

$$G(B_3, \Sigma_3) = \frac{t^4 + 3t^3 + t + 1}{{(t^2 + 2t - 1)(t^2 + t - 1)}}.$$ (3)
Moreover, using the finite state automaton recognizing the language of short-lex normal form of B_3 [17] he obtains:

$$S(B_3, \Sigma_3) = \frac{(t + 1)(2t^3 - t^2 + t - 1)}{(t - 1)(2t - 1)(t^2 + t - 1)}. \quad (4)$$

The positive braid monoid B^+_n is the submonoid of B_n generated by Σ^+_n. Since every Σ^+_n-word is geodesic, the geodesic growth series $G(B^+_n, \Sigma^+_n)$ is irrelevant. An explicit rational formula for the spherical growth series $S(B^+_n, \Sigma^+_n)$ was obtained by A. Bronfman in [8] and later by M. Albenque in [1]. These results were extended to positive braid monoids of type B and D in [3] and for each Artin–Tits monoids of spherical type in [18].

2.3. Dual’s braid presentation. In [7], J. Birman, K. H. Ko and S. J. Lee introduced a new generator family of B_n, called Birman-Ko-Lee’s or dual generators.

Definition 2.5. For $1 \leq p < q$ we define $a_{p,q}$ to be the braid

$$a_{p,q} = \sigma_p \ldots \sigma_{q-2} \sigma_{q-1}^{-1} \sigma_{q-2}^{-1} \ldots \sigma_p^{-1}. \quad (5)$$

For all $n \geq 2$, we put $\Sigma^+_n = \{a_{p,q} | 1 \leq p < q \leq n\}$ and $\Sigma^*_n = \Sigma^+_n \cup (\Sigma^+_n)^{-1}$.

![Figure 2. The letter $a_{1,4}$ codes for the braid in which strands 1 and 4 cross under strands 2 and 3.](image)

We write $[p, q]$ for the interval $\{p, \ldots, q\}$ of \mathbb{N}, and we say that $[p, q]$ is nested in $[r, s]$ if we have $r < p < q < s$.

Lemma 2.6. [7] In terms of Σ^+_n, the group B_n is presented by the relations

$$a_{p,q}a_{r,s} = a_{r,s}a_{p,q} \quad \text{for} \ [p, q] \ \text{and} \ [r, s] \ \text{disjoint or nested}, \quad (6)$$

$$a_{p,q}a_{q,r} = a_{q,r}a_{p,q} = a_{p,r}a_{p,q} \quad \text{for} \ 1 \leq p < q < r \leq n. \quad (7)$$

Note that the definition of $a_{p,q}$ given here is not exactly that of [7] but it is coherent with previous papers of the author.

As for Artin’s generators, the braid group B_n admits a monoid presentation with generators Σ^*_n, relations (6) and (7) together with

$$a_{p,q} a_{p,q}^{-1} = a_{q,p}^{-1} a_{p,q} = \varepsilon \quad \text{for all} \ 1 \leq p < q \leq n. \quad (8)$$
Except in the case $n = 2$, which is trivial, there are no results in the literature on the growth series of B_n with respect to Σ^*_n.

The Birman–Ko–Lee monoid $B_n^{*,+}$, also called dual braid monoid in [5], is the submonoid of B_n generated by Σ^*_n. The term dual was used by D. Bessis since the Garside structure of B_n^+ and $B_n^{*,+}$ share symmetric combinatorial values. In [3], M. Albenque and P. Nadeau give a rational expression for the spherical growth series $S(B_n^*, \Sigma_n^*)$; they also treat the case of dual braid monoids of type B.

2.4. Some words about Garside presentations. The two monoids B_n^+ and $B_n^{*,+}$ equip the braid group B_n with two Garside structures: the classical one [21] and the dual one [7, 5]. The reader can consult [14] and [13] for a general introduction to Garside theory. Here it is sufficient to know that each Garside structure provides simple elements which generate the corresponding Garside monoid. Let us denote by C_n and D_n the simple elements of the Garside monoid B_n^* and $B_n^{*,+}$ respectively.

In [11], P. Dehornoy starts the study of the spherical combinatorics of B_n^* relatively to C_n. In particular he formulates a divisibility conjecture which has been proven by F. Hivert, J.-C. Novelli and J.-Y. Thibon in [22]. A similar result was obtained for braid monoids of type B in [19]. The spherical combinatorics of $B_n^{*,+}$ relatively to D_n was also considered by P. Biane and P. Dehornoy in [6]; they reduce the computation of $s(B_n^{*,+}, D_n; 2)$ to that of free cumulants for a product of independent variables.

R. Charney establishes in [9] that the spherical growth series of Artin–Tits groups of spherical type with respect to their standard simple elements are rationals. In particular she obtains the rationality of $S(B_n, C_n)$. This result was generalized for all Garside groups by P. Dehornoy in [10]. This implies in particular the rationality of $S(B_n, D_n)$.

3. Counting braids

We fix an integer $n \geq 2$ and S_n denotes either Σ_n (Artin’s generators of B_n) or Σ_n^* (dual generators of B_n).

Definition 3.1. For $n \geq 2$ and $\ell \in \mathbb{N}$ we denote by $B_n(S_n, \ell)$ the set of braids of B_n whose S_n-length is ℓ.

Since the equality $s(B_n, S_n; \ell) = \text{card} (B_n(S_n, \ell))$ holds, we compute $s(B_n, S_n; \ell)$ by constructing the set $B_n(S_n, \ell)$. Each braid of B_n with S_n-length ℓ is the product of a braid of S_n-length $\ell - 1$ and a generator $x \in S_n$. In particular we have

$$B_n(S_n, \ell) \subseteq \{ \beta \cdot x \mid (\beta, x) \in B_n(S_n, \ell - 1) \times S_n \},$$

and so we can construct $B_n(S_n, \ell)$ by induction on $\ell \geq 1$.

3.1. Representative sets. From an algorithmic point of view, a braid is naturally represented by a word. We extend this notion to any subset of $B_n(S_n, \ell)$.

Definition 3.2. We say that a set W of S_n-words represents a subset X of B_n whenever W is a set of unique geodesic representatives for X.

Example 3.3. For all $n \geq 2$, the set $\{ \varepsilon \}$ represents $B_n(S_n, 0)$. Since relations (1), (2), together with relations (6)-(8) of Artin and dual semigroup presentation of B_n preserve parity of word length we have the following property:

$$\text{two } S_n\text{-words } u \text{ and } v \text{ are equivalent only if } |u| \equiv |v| \text{ mod } 2. \quad (10)$$
In particular any S_n-word of length ≤ 1 is geodesic. As two different letters of S_n represent different braids of B_n the set S_n represents $B_n(S_n, 1)$.

The previous example gives a representative set of $B_n(S_n, \ell)$ for $\ell \leq 1$. We now tackle the construction of a representative set W_ℓ of $B_n(S_n, \ell)$ for $\ell \geq 2$. Using an inductive argument we can assume we already have obtained a set $W_{\ell-1}$ representing $B_n(S_n, \ell-1)$ and then consider the set

$$W' = \{wx \text{ for } (w, x) \in W_{\ell-1} \times S_n\}. \quad (11)$$

A first step to obtain W_ℓ consists in removing all non-geodesic words from W'. For this we have to test if a given word of W' is geodesic or not. A naive general solution consists in testing if a word $u \in W'$ is equivalent to a S_n-word of length at most $\ell-1$. However, as words of W' are obtained by appending a letter to a geodesic word, we can restrict the search space:

Lemma 3.4. For $\ell \geq 2$, let u be a geodesic S_n-word of length $\ell-1$ and x a letter of S_n. If the S_n-word $v = ux$ is not geodesic then there exists a geodesic S_n-word w of length $\ell-2$ which is equivalent to v.

Proof. Assume v is not geodesic. There exists a S_n-geodesic word w equivalent to v and satisfying $|w| < |v|$. By (10) we must have $|w| \leq |v| - 2 = \ell - 2$. From the equality $v = ux$ we obtain $u \equiv wx^{-1}$ and so $u \equiv wx^{-1}$. Since u is geodesic we must have $|wx^{-1}| \geq \ell - 1$, implying $|w| \geq \ell - 2$ and so $|w| = \ell - 2$. \hfill \square

3.2. Geodesic words. For all $\ell \in \mathbb{N}$ the number $g(B_n, S_n; \ell)$ can be obtained at no cost during the construction of a representative set of $B_n(S_n, \ell)$.

Definition 3.5. For a braid $\beta \in B_n$ we denote by $\omega_{S_n}(\beta)$ the number of geodesic S_n-words representing β.

Proposition 3.6. For $\beta \in B_n$ a braid with $\ell = |\beta|_{S_n} \geq 1$, we have

$$\omega_{S_n}(\beta) = \sum_{x \in S_n, |\beta x^{-1}|_{S_n} = \ell-1} \omega_{S_n}(\beta x^{-1}).$$

Proof. Let W be the set of geodesic S_n-words representing β. The cardinality of W is then $\omega_{S_n}(\beta)$. For all $x \in S_n$ we denote by W_x the words of W ending with x. Since all words of W have length $\ell \geq 1$ we must have

$$W = \bigsqcup_{x \in S_n} W_x.$$

Let us fix an element $y \in S_n$. By construction, any word of W_y has length $\ell-1$, represents the braid βy^{-1} and is geodesic. Hence W_y is not empty if and only if the S_n-length of βy^{-1} is $\ell-1$, which gives

$$\omega_{S_n}(\beta) = \text{card}(W) = \sum_{x \in S_n} \text{card}(W_x) = \sum_{x \in S_n} \text{card}(W_x).$$

Assume βy^{-1} has S_n-length $\ell-1$. Since for any geodesic S_n-word v representing βy^{-1}, the word vy is a geodesic representative of β, the braid βy^{-1} has exactly $\omega_{S_n}(\beta y^{-1})$ geodesic representatives in W_y. Therefore card(W_y) is $\omega_{S_n}(\beta y^{-1})$ and the result follows. \hfill \square
3.3. A first algorithm. We can now give a first algorithm returning a representative set W_ℓ of $B_n(S_n, \ell)$ for $\ell \geq 2$. In order to determine $g(B_n, S_n; \ell)$ we also compute the value of ω_{S_n} for all words in W_ℓ.

In order to construct by induction a representative set W, we must test if a given word u is equivalent to a word occuring in W:

Definition 3.7. For a set W of S_n-words we say that a S_n-word u appears in W, denoted by $u \triangleleft W$, if u is equivalent to a word v of W.

In an algorithmic context a S_n-word is represented as an array of integers plus another integer ω which eventually correspond to $\omega_{S_n}(\pi)$. Whenever two variables u and v stand for the S_n-words u and v we use:
- $u \cdot \omega$ to design the integer ω associated to the word u;
- uv to design the product $u \cdot \omega$.

Algorithm 1 — RepSet : For $\ell \geq 2$, returns a set W_ℓ representing $B_n(S_n, \ell)$ from two sets $W_{\ell-1}$ and $W_{\ell-2}$ representing $B_n(S_n, \ell-1)$ and $B_n(S_n, \ell-2)$ respectively. For each word $u \in W_{\ell-1}$, the value of $u \cdot \omega$ is assumed to be $\omega_{S_n}(\pi)$.

```plaintext
1: function RepSet($W_{\ell-1}, W_{\ell-2}$)
2:     $W_\ell \leftarrow \emptyset$
3:     for $x \in S_n$ do
4:         for $u \in W_{\ell-1}$ do
5:             $v \leftarrow ux$
6:             if $v \not\triangleleft W_{\ell-2}$ then
7:                 if $v \not\triangleleft W_\ell$ then $\triangleright$ a new braid $\pi$ of $S_n$-length $\ell$ is found
8:                     $W_\ell \leftarrow W_\ell \cup \{v\}$
9:                     $v \cdot \omega \leftarrow u \cdot \omega$
10:                else $\triangleright v$ is another geodesic word representing $\pi$
11:                    $w \leftarrow$ the word in $W_\ell$ equivalent to $v$
12:                    $w \cdot \omega \leftarrow w \cdot \omega + u \cdot \omega$
13:             end if
14:         end for
15:     end for
16: return $W_\ell$
17: end function
```

Proposition 3.8. Let $\ell \geq 2$ be an integer. Running on sets $W_{\ell-1}$ and $W_{\ell-2}$ representing $B_n(S_n, \ell-1)$ and $B_n(S_n, \ell-2)$ respectively, algorithm RepSet returns a representing set W_ℓ of $B_n(S_n, \ell)$. Moreover for all $u \in W_\ell$, the value of $u \cdot \omega$ is the integer $\omega_{S_n}(\pi)$.

Proof. Let W' be the set of (11) and W_ℓ be the set returning by RepSet. The two “for loops” on line 3 and 4 guarantee $W_\ell \subseteq W'$. By lemma 3.4 and hypotheses on $W_{\ell-1}$ and $W_{\ell-2}$, condition $v \not\triangleleft W_{\ell-2}$ of line 6 tests if the word $v = ux$ is geodesic. The second if statement line 7 guarantees we append a word v in W_ℓ if and only if v does not appear in W_ℓ. The set W_ℓ is then a representative set of $B_n(S_n, \ell)$. The result about ω_{S_n} is a direct consequence of Proposition 3.6.

To be complete we must explain how to test if a S_n-word u appears in a set of S_n-words. This can be achieved using a normal form (like the Garside’s normal form) but such a normal form doesn’t provide geodesic representatives. As, for our
future research, we want to store braids using geodesic representatives, we prefer to use another method.

3.4. Dynnikov’s coordinates. Originally defined in [16] from the geometric interpretation of the braid group B_n as the mapping class group of the n-punctured disk of \mathbb{R}^2, the Dynnikov’s coordinates admit a purely algebraic definition from the action of B_n on \mathbb{Z}^{2n}.

For $x \in \mathbb{Z}$, we denote by x^+ the non-negative integer max($x, 0$) and by x^- the non-positive integer min($x, 0$). We first define an action of Artin’s generators on \mathbb{Z}^4.

Definition 3.9. For all $i \in [1, n-1]$ and all $(x_1, y_1, x_2, y_2) \in \mathbb{Z}^4$ we put

$$(x_1, y_1, x_2, y_2) \cdot \sigma_i = (x'_1, y'_1, x'_2, y'_2) \quad \text{and} \quad (x_1, y_1, x_2, y_2) \cdot \sigma_i^{-1} = (x''_1, y''_1, x''_2, y''_2)$$

where

$$
x'_1 = x_1 + y_1^+ + (y_2^+ - t_1)^+ \\
y'_1 = y_2 - t_1^+ \\
x'_2 = x_2 + y_2^+ + (y_1^+ + t_1)^- \\
y''_2 = y_1 + t_1^+ \\
x''_2 = x_2 - y_2^- - (y_1^- - t_2)^- \\
y''_2 = y_1 - t_2^-
$$

with $t_1 = x_1 - y_1^- - x_2 + y_2^+$ and $t_2 = x_1 + y_1^- - x_2 - y_2^+$.

We can now define an action of Σ_n-words on \mathbb{Z}^{2n}.

Definition 3.10. For $i \in [1, n-1]$, $e = \pm 1$ and $(a_1, b_1, \ldots, a_n, b_n) \in \mathbb{Z}^{2n}$ we put

$$(a_1, b_1, \ldots, a_n, b_n) \cdot \sigma_i^e = (a'_1, b'_1, \ldots, a'_n, b'_n)$$

where $(a'_i, b'_i, a'_{i+1}, b'_{i+1}) = (a_i, b_i, a_{i+1}, b_{i+1}) \cdot \sigma_i^e$ and $a'_k = a_k$, $b'_k = b_k$ for k not belonging to $\{i, i+1\}$.

Definition 3.11. For a Σ_n-word u we define Dyn(u) to be $(0, 1, \ldots, 0, 1) \cdot u$. Similarly for an Σ_n-word v we define Dyn(v) to be Dyn(u) where u is the Σ_n-word obtained from u using relation (5) of Definition 2.5.

Naturally defined on braid words, Dynnikov’s coordinates is a braid invariant.

Proposition 3.12. For all S_n-words u and v we have Dyn(u) = Dyn(v) if and only if $u \equiv v$.

Proof. Direct consequence of Corollary 2.24 page 225 of [15].

We now go back to the problem of testing if a given S_n-word appears in a set W of S_n-words. A solution consists in representing the set W in machine by an array. To test if the word u appears in W we can compute Dyn(u) and compare it to all the values of Dyn(v) whenever v go through W. This method needs $1 + \text{card}(W)$ computations of Dynnikov’s coordinates. If words in W are sorted by their Dynnikov’s coordinates we can test if u appear in W using at most $\log_2(\text{card}(W))$ computations of Dynnikov’s coordinates. A more efficient solution is obtained using an unordered_set [26] based on a hash function. The insertion and lookup complexity is then constant in average on a RAM machine depending of the hash function.
As the objective of the current paper is to deepen our knowledge on combinatorics of \(B_4\), we define a hash function for four strand braids. Assume \(\beta\) is a braid of \(B_4\) given by a \(S_4\)-word \(u\). The hash of \(\beta\) is

\[
\text{hash}(\beta) = \sum_{i=1}^{4} \left(\text{rem}(a_i, 256) \times 256^{2i-2} + \text{rem}(b_i, 256) \times 256^{2i-1} \right),
\]

where \((a_1, b_1, \ldots, a_4, b_4) = \text{Dyn}(u)\) and \(\text{rem}(k, 256)\) is the positive remainder of \(k\) modulo 256. By construction, \(\text{hash}(\beta)\) is an integer lying in \([0, 2^{64} - 1]\) and so our hash function is very well suited for 64 bits computers.

3.5. Space complexity. Here again we focus on the case \(n = 4\). The smallest addressable unit of memory on common computers is the byte which can have 256 different values. As the set \(\Sigma_4\) has 6 elements we can store three \(\Sigma_4\)-letters using one byte (\(6^3 = 216\)). Hence a \(\Sigma_4\)-word of length \(\ell\) requires \(\lceil \frac{\ell}{8} \rceil\) bytes to be stored. Since there are 12 elements in \(\Sigma_4^*\), a \(\Sigma_4^*\)-word of length \(\ell\) requires \(\lceil \frac{\ell}{4} \rceil\) bytes to be stored.

Assume we want to determine a representative set of \(B_4(\Sigma_4, 21)\). The memory needed by the algorithm RepSet is at least the space needed to store \(\Sigma_4\)-words of \(W_{21}\). By Table 2 of Section 6 there are approximately 60 \(\cdot\) 10\(^9\) elements in this set. With the above storage method of a \(\Sigma_4\)-word, the algorithm needs \(7 \cdot 60 \cdot 10^9\) bytes, i.e., 391Go of memory to run, which is too much. To reduce the memory requirement we can split the sets \(B_n(S_n, \ell)\) in many subsets depending of the values of certain braid invariants.

In case we want to determine \(g(B_n, S_n; \ell)\) we also store the value of \(\omega_{S_n}(\pi)\) for all words in obtained representative sets.

4. Braid template

Here again \(n\) is an integer \(\geq 2\) and \(S_n\) denotes either \(\Sigma_n\) or \(\Sigma_n^*\). Each braid invariant \(i\) corresponds to a map from \(B_n\) to a set \(X\).

Definition 4.1. A set of braid invariants \(\iota_1, \ldots, \iota_m\) is said to be *inductively stable* if for every braid \(\beta \in B_n(S_n, \ell)\) and every \(x \in S_n\), and every \(k = 1, \ldots, m\), the value of \(\iota_k(\beta \cdot x)\) depends only on \(\iota_1(\beta), \ldots, \iota_m(\beta)\) and \(x\) but not on \(\beta\) itself.

The aim of this section is to determine an inductively stable set of braid invariants in order to split in many pieces the determination of a representative set of \(B_n(S_n, \ell)\).

4.1. Permutation. For \(n \geq 2\) we denote by \(\mathfrak{S}_n\) the set of all bijections of \(\{1, \ldots, n\}\) into itself. The transposition \((i \ i+1)\) of \(\mathfrak{S}_n\) exchanging \(i\) and \(i+1\) is denoted \(s_i\).

Definition 4.2. We denote by \(\pi : B_n \to \mathfrak{S}_n\) the surjective homomorphism of \((B_n, \cdot)\) to \((\mathfrak{S}_n, \circ)\) defined by \(\pi(\sigma) = s_i\).

If \(\beta\) is a braid of \(B_n\) then \(\pi(\beta)\) is the permutation of \(\mathfrak{S}_n\) such that the strand ending at position \(i\) starts at position \(\pi(\beta)(i)\).

Example 4.3. For \(\beta = \sigma_1^{-1}\sigma_1\sigma_2\) we have \(\pi(\beta) = s_1 s_2 s_1 s_2 = \left(\begin{array}{c} 1 & 2 \\ 3 & 1 \end{array} \right)\), as illustrated on the following diagram:
As \(\pi \) is an homomorphism, for all \(\beta \in B_n \) and \(x \in S_n \) we have \(\pi(\beta \cdot x) = \pi(\beta) \circ \pi(x) \) and so the singleton \(\{ \pi \} \) is inductively stable.

Lemma 4.4. For \(1 \leq i < j \leq n \) we have \(\pi(a_{p,q}) = (p q) \).

Proof. As \(\pi \) is an homomorphism, Definition 2.5 gives
\[
\pi(a_{p,q}) = \pi(\sigma_p) \circ \ldots \circ \pi(\sigma_{q-1}) \circ \pi(\sigma_{q-2})^{-1} \circ \ldots \circ \pi(\sigma_p)^{-1}
= (p \, p+1) \circ \ldots \circ (q-1 \, q) \circ (q-2 \, q-1) \circ \ldots \circ (p \, p+1)
= (p \, q).
\]

4.2. **Linking numbers.** Assume \(\beta \) is a braid of \(B_n \) and let \(i \) and \(j \) be two different integers of \([1,n]\). The linking number of the two strands \(i \) and \(j \) in \(\beta \) is the algebraic number of crossings in \(\beta \) involving the strands \(i \) and \(j \). A positive crossing \((\sigma_k) \) counts for +1 whereas a negative one \((\sigma_k)^{-1} \) counts for -1:

\[
\begin{align*}
\begin{array}{c}
\begin{tikzpicture}
\draw (-2,0) -- (2,0);
\draw (0,-1) -- (0,1);
\draw (-1,1) -- (1,-1);
\end{tikzpicture}
\end{array}
\Rightarrow +1
\end{align*}
\begin{align*}
\begin{array}{c}
\begin{tikzpicture}
\draw (-2,0) -- (2,0);
\draw (0,-1) -- (0,1);
\draw (-1,-1) -- (1,1);
\end{tikzpicture}
\end{array}
\Rightarrow -1
\end{align*}
\]

Definition 4.5. For \(\beta \in B_n \) and \(i, j \) two different integers of \([1,n]\) we denote by \(\ell_{i,j}(\beta) \) the linking number of strands \(i \) and \(j \) in \(\beta \). The map \(\ell_{i,j} : B_n \to \mathbb{Z} \) is then a braid invariant.

A priori, our definition of linking numbers depends of a diagram coding the braid and not on the braid itself. An immediate argument using relations (1) and (2) guarantees this is not the case. The reader can consult [12] page 29 for a more formal definition of linking number\(^1\) based on an integral definition and a geometric realization of \(\beta \) in \(\mathbb{R}^3 \).

Lemma 4.6. Let \(i, j \) be two integers satisfying \(1 \leq i < j \leq n \) and \(e = \pm 1 \).

- For all \(k \in [1, n-1] \) we have
\[
\ell_{i,j}(\sigma_k^e) = \begin{cases}
 e & \text{if } i = k \text{ and } j = k+1, \\
 0 & \text{otherwise}.
\end{cases}
\]

- For all \(1 \leq p < q \leq n \) we have
\[
\ell_{i,j}(a_{p,q}^e) = \begin{cases}
 e & \text{if } i = p \text{ and } j = q, \\
 1 & \text{if } i = p \text{ and } j < q, \\
-1 & \text{if } p < i \text{ and } j = q, \\
 0 & \text{otherwise}.
\end{cases}
\]

Proof. The case of \(\sigma_k^e \) is immediate. The different values of \(\ell_{i,j}(a_{p,q}^e) \) can be obtained from the following diagram of \(a_{p,q}^e = \sigma_p \ldots \sigma_{q-2} \sigma_{q-1}^{-1} \sigma_{q-2}^{-1} \ldots \sigma_p^{-1} \):

\[\text{Diagram of } a_{p,q}^e = \sigma_p \ldots \sigma_{q-2} \sigma_{q-1} \sigma_{q-2}^{-1} \ldots \sigma_p^{-1} \]

\(^1\)In fact, the two definitions are slightly different but we have \(\ell_{i,j}(\beta) = 2\lambda_{i,j}(\beta) \).
Lemma 4.7. For β and γ two braids of B_n and $1 \leq i < j \leq n$ we have

$$\ell_{i,j}(\beta \cdot \gamma) = \ell_{i,j}(\beta) + \ell_{\pi(\beta)^{-1}(i), \pi(\beta)^{-1}(j)}(\gamma),$$

with the convention $\ell_{p,q} = \ell_{q,p}$ for $p > q$.

Proof. Immediate as soon as we consider the following diagram:

$$\begin{array}{c}
\begin{array}{ccc}
\pi(\beta)^{-1}(i) & \pi(\beta)^{-1}(j) & \\
\pi(\beta)^{-1}(i) & \pi(\beta)^{-1}(j) & \\
\beta & \gamma & \\
\end{array}
\end{array}$$

Corollary 4.8. The set of invariants $\{\pi\} \cup \{\ell_{i,j}, 1 \leq i < j \leq n\}$ is inductively stable.

Proof. A direct consequence of Lemma 4.7 together with the fact that π is a homomorphism.

4.3. Template. We now introduce the notion of template of a braid which will be used to parallelize the determination of a representative set of $B_n(S_n, \ell)$.

Definition 4.9. The template of a braid $\beta \in B_n$ is the tuple

$$\tau(\beta) = (\pi(\beta), \ell_{1,2}(\beta), \ell_{1,3}(\beta), \ell_{2,3}(\beta), \ldots, \ell_{1,n}(\beta), \ell_{n-1,n}(\beta)) \in \mathfrak{S}_{n} \times \mathbb{Z}^{n(n+1)/2},$$

where integer $\ell_{i,j}(\beta)$ appears before $\ell_{r,s}(\beta)$ whenever (i, j) is smaller than (r, s) with respect to the the co-lexicographic ordering on \mathbb{N}^2: $(i, j) < (p, q)$ if $j < q$ or if $j = q$ and $i < p$. For a braid template t we denote by $t[\pi]$, resp. $t[\ell_{i,j}]$ the corresponding component. For $\ell \in \mathbb{N}$ we denote by $T_n(S_n, \ell)$ the set $\{\tau(\beta), \beta \in B_n(S_n, \ell)\}$ and by T_n the set $\{\tau(\beta), \beta \in B_n\}$ of all templates on B_n.

Lemma 4.10. For all $\beta \in B_n$ and all $x \in S_n$, the template $\tau(\beta) * x = \tau(\beta \cdot x)$ depends only of $\tau(\beta)$ and x.

Proof. A direct consequence of Corollary 4.8 and Definition 4.9.

Example 4.11. Let t be a template of T_3 with $t[\pi]$ the cycle $(1 \ 3 \ 2)$. Let us compute the template $t * a_{1,3}^{-1}$. We write $t = (\pi, \ell_{1,2}, \ell_{1,3}, \ell_{2,3})$. The inverse of π is the cycle $(1 \ 2 \ 3)$ and so we obtain $\pi^{-1}((1, 2)) = (2, 3)$, $\pi^{-1}((1, 3)) = (1, 2)$ and $\pi^{-1}((2, 3)) = (1, 3)$. Eventually, from $\ell_{1,2}(a_{1,3}^{-1}) = 1$, $\ell_{1,3}(a_{1,3}^{-1}) = -1$ and $\ell_{2,3}(a_{1,3}^{-1}) = -1$ we obtain

$$t * a_{1,3}^{-1} = ((1 \ 3 \ 2) \circ (1 \ 3), \ell_{1,2} + \ell_{2,3}(a_{1,3}^{-1}), \ell_{1,3} + \ell_{1,2}(a_{1,3}^{-1}), \ell_{2,3} + \ell_{1,3}(a_{1,3}^{-1}))$$

$$= ((1 \ 2), \ell_{1,2} - 1, \ell_{1,3} + 1, \ell_{2,3} - 1).$$
Definition 4.12. For $\ell \in \mathbb{N}$ and $t \in T_n$ we denote by $B_n(S_n, \ell, t)$ the set of all braids of B_n with S_n-length ℓ and template t.

By very definitions we have

$$B_n(S_n, \ell) = \bigcup_{t \in T_n(S_n, \ell)} B_n(S_n, \ell, t). \quad (12)$$

Algorithm 2 – TempRepSet is a “template” version of Algorithm 1 – RepSet for which we assume we dispose of a function $\text{Load}(n, \ell, t)$ loading a representative set of $B_n(S_n, \ell, t)$ from a storage memory like a hard disk. We also assume we have a function $\text{Save}(W, n, \ell, t)$ saving a representative set of $B_n(S_n, \ell, t)$ to that storage memory.

Algorithm 2 – TempRepSet: For an integer $\ell \geq 1$ and a template t of T_n, saves a representative set $W_{\ell, t}$ of $B_n(S_n, \ell, t)$ and returns the pair $(\text{card}(W_{\ell, t}), \sum_{u \in W_{\ell, t}} \omega S_n(u))$

1: function TempRepSet(ℓ, t) 2: $W_{\ell, t} \leftarrow \emptyset$ 3: $W_{\ell-2, t} \leftarrow \text{Load}(n, \ell-2, t)$ \hspace{1cm} $\triangleright W_{\ell-2, t}$ is empty whenever $\ell = 1$. 4: $n_g \leftarrow 0$ 5: for $x \in S_n$ do 6: \hspace{1cm} $t_x \leftarrow t \ast x^{-1}$ 7: \hspace{1cm} $W_{\ell-1, x} \leftarrow \text{Load}(n, \ell-1, t_x)$ 8: \hspace{1cm} for $u \in W_{\ell-1, x}$ do 9: \hspace{2cm} $v \leftarrow u \ast x$ 10: \hspace{1cm} if $v \not\in W_{\ell-2, t}$ then 11: \hspace{2cm} if $v \not\in W_{\ell, t}$ then 12: \hspace{3cm} $W_{\ell, t} \leftarrow W_{\ell, t} \cup \{v\}$ 13: \hspace{2cm} $v \cdot \omega \leftarrow u \cdot \omega$ 14: \hspace{2cm} else 15: \hspace{3cm} $w \leftarrow$ the word in $W_{\ell, t}$ equivalent to v 16: \hspace{3cm} $w \cdot \omega \leftarrow w \cdot \omega + u \cdot \omega$ 17: \hspace{2cm} end if 18: \hspace{2cm} $n_g \leftarrow n_g + u \cdot \omega$ 19: \hspace{2cm} end if 20: end for 21: end for 22: $\text{Save}(W_{\ell, t}, n, \ell, t)$ 23: return $(\text{card}(W_{\ell, t}), n_g)$ 24: end function

In order to compute a representative set of $B_n(S_n, \ell)$ using Algorithm TempRepSet we must first compute the template set $T_n(S_n, \ell)$. From inclusion (9) we obtain

$$T_n(S_n, \ell) \subseteq \{t \ast x \mid (t, x) \in T_n(S_n, \ell-1) \times S_n\}. \quad (13)$$

A template t from the set in the right-hand side of (13) belongs to $T_n(S_n, \ell)$ if and only if there exists a braid $\beta \in B_n(S_n, \ell)$ such that $\tau(\beta) = t$. Hence a full run consists in calling the function TempRepSet for each template t from the set in the right-hand side of (13). Such a template t will belongs to $T_n(S_n, \ell)$ if and only if the returned value is different from $(0, 0)$. Putting all pieces together we obtain Algorithm 3 – Combi.
Algorithm 3 – COMBI: Returns a pair of arrays of positive integers \((n_s, n_g)\) satisfying relations \(n_s[\ell] = s(B_n, S_n; \ell)\) and \(n_g[\ell] = g(B_n, S_n; \ell)\) for all \(\ell \leq \ell_{\max}\).

1: function COMBI(\(\ell_{\max}\))
2: \(n_s[0] \leftarrow 1\)
3: \(n_g[0] \leftarrow 1\)
4: \(T \leftarrow \{(1_{1_{n}}, 0, \ldots, 0)\}\) \(\triangleright\) template set \(T_n(S_n, 0)\)
5: for \(\ell\) from 1 to \(\ell_{\max}\) do
6: \(T' \leftarrow \emptyset\)
7: \(n_s[\ell] \leftarrow 0; n_g[\ell] \leftarrow 0\)
8: for \(t \in T\) do
9: for \(x \in S_n\) do
10: \(t_x \leftarrow t * x\)
11: \((n'_s, n'_g) \leftarrow \text{TEMPRepSet}(\ell, t_x)\)
12: if \((n'_s, n'_g) \neq (0, 0)\) then
13: \(T' \leftarrow T' \cup \{t'\}\)
14: \(n_s[\ell] \leftarrow n_s[\ell] + n'_s\)
15: \(n_g[\ell] \leftarrow n_g[\ell] + n'_g\)
16: end if
17: end for
18: end for
19: \(T \leftarrow T'\) \(\triangleright\) template set \(T_n(S_n, \ell)\)
20: end for
21: return \((n_s, n_g)\)
22: end function

5. Reduced braid templates

Here again \(n\) is an integer \(\geq 2\) and \(S_n\) denotes either \(\Sigma_n\) or \(\Sigma_n^*\). Experiments using Algorithm 2 – TEMPRepSet suggest that some sets \(B_n(S_n, \ell, t)\) are in bijection for a given \(\ell\). We can use this fact to improve the efficiency of Algorithm 3 – COMBI and reduce the needed storage space.

5.1. Stable word maps.

Definition 5.1. A bijection \(\mu\) of the set of \(S_n\)-words is \(S_n\)-stable if

- \(i\) for all \(S_n\)-word \(u\) we have \(|\mu(u)| = |u|\);
- \(ii\) for all \(S_n\)-words \(u\) and \(v\) we have \(\mu(u) \equiv \mu(v) \Leftrightarrow u \equiv v\);
- \(iii\) for all \(S_n\)-word \(u\) the template \(\tau(\mu(u))\) depends only on \(\tau(\overline{u})\).

For such a \(S_n\)-stable map \(\mu\) we denote by \(\mu^T\) the map of \(T_n\) defined by

\[
\mu^T(t) = \tau(\mu(u))
\]

where \(u\) is any \(S_n\)-word satisfying \(\tau(\overline{u}) = t\). We also define a bijection \(\overline{\mu}\) of \(B_n\) by

\[
\overline{\mu}(\beta) = \mu(u),
\]

where \(u\) is any \(S_n\)-word satisfying \(\overline{u} = \beta\).

Whenever \(\mu\) is \(S_n\)-stable, Condition \(iii\)) of Definition 5.1 guarantees that the template of the image by \(\overline{\mu}\) of a braid \(\beta\) does not depend on \(\beta\) but on its template \(t\) and so \(\mu^T\) is well defined.

Lemma 5.2. For every \(S_n\)-stable bijection \(\mu\), we have

- \(i\) \(\mu^T\) is a permutation of \(T_n\),
- \(ii\) a \(S_n\)-word \(u\) is geodesic if and only if \(\mu(u)\) is.
Proposition 5.4. For braid group ℓ let 1 be a finite set S_n. By the disjoint union of $T_n(S_n, \ell)$ for $\ell \geq 0$.

Let us now prove ii). Let u be a S_n-word. If the word $v = \mu(u)$ is not geodesic then there exists a strictly shorter S_n-word v' equivalent to v. As μ is a bijection we put $u' = \mu^{-1}(v')$. We obtain $\mu(u) = v \equiv v' = \mu(u')$. From conditions ii) and i) of 5.1 we have $u \equiv u'$ together with $|u| = |v| > |v'| = |u'|$ and so u is not geodesic.

A similar argument establishes the converse implication.

5.2. Examples. Let us now introduce some useful examples of S_n-stable bijections. Eventually such a S_n-stable bijection μ will be used to obtain a representative set of $T_n(S_n, \ell, \mu^T(t))$ from a representative set of $T_n(S_n, \ell, t)$. This is why it is necessary to specify how to obtain $\mu^T(t)$ from t in propositions 5.3, 5.4, 5.8 and 5.13. However the reader may choose to ignore these parts without affecting the understanding of the rest of the article.

5.2.1. First examples.

Proposition 5.3. The map inv_{S_n} of S_n-words defined by

$$\text{inv}_{S_n}(x_1 \cdots x_t) = x_t^{-1} \cdots x_1^{-1}$$

is S_n-stable. Moreover for all template $t \in T_n$ we have

$$\text{inv}_{S_n}^T(t)[\pi] = t[\pi]^{-1}$$

and

$$\text{inv}_{S_n}^T(t)[\ell_{i,j}] = -t[\ell_{t[\pi][i], t[\pi][j]}] \quad \text{for } 1 \leq i < j \leq n.$$

Proof. Condition i) of Definition 5.1 is immediate. For two S_n-words u and v, the relation $u \equiv v$ is equivalent to $v^{-1}u \equiv \varepsilon$ which is itself equivalent to $v^{-1} \equiv u^{-1}$, hence Condition ii) is established. Let u be an S_n-word and v be $\text{inv}_{S_n}(u)$. By definition, we have $\pi = \pi^{-1}$. Since π is an homomorphism we have $\pi(\pi) = \pi(\pi^{-1})^{-1}$. Let $1 \leq i < j \leq n$ be two integers. From $1 = \overline{\pi u}$, Lemma 4.7 implies

$$0 = \ell_{i,j}(1) = \ell_{i,j}(\pi) + \ell_{\pi(i), \pi(j)}(\pi)$$

and so $\ell_{i,j}(\pi) = -\ell_{\pi(i), \pi(j)}(\pi)$. Therefore Condition iii) is also satisfied.

We now point out a divergence between the Artin and dual presentations of the braid group B_n.

Proposition 5.4. For $n \geq 3$, the map of S_n-words θ_{S_n} defined by

$$\theta_{S_n}(x_1 \cdots x_t) = x_t^{-1} \cdots x_1^{-1}$$

is S_n-stable if and only if $S_n = \Sigma_n$. Moreover for all template $t \in T_n$ we have

$$\theta_{\Sigma_n}^T[\pi] = t[\pi]^{-1} \quad \text{and} \quad \theta_{\Sigma_n}^T[\ell_{i,j}] = -t[\ell_{i,j}] \quad \text{for } 1 \leq i < j \leq n.$$

Proof. By construction, Condition i) of Definition 5.1 is satisfied. Let us establish Condition ii) for θ_{Σ_n}. It is sufficient to prove $\theta(u) \equiv \theta(v)$ whenever $u = v$ is a relation of the Artin’s semigroup presentation of B_n. Let $i \in [1, n-1]$. We have $\theta(\sigma_i \sigma_i^{-1}) = \sigma_i^{-1} \sigma_i \equiv \varepsilon$, $\theta(\sigma_i^{-1} \sigma_i) = \sigma_i \sigma_i^{-1} \equiv \varepsilon$ and so we get

$$\theta(\sigma_i \sigma_i^{-1}) = \theta(\sigma_i^{-1} \sigma_i) = \theta(\varepsilon).$$

Assume now i and j are integers of $[1, n-1]$ satisfying $|i - j| \geq 2$. From $\sigma_i \sigma_j \equiv \sigma_j \sigma_i$ we obtain successively

$$\sigma_j^{-1} \sigma_i \sigma_j \equiv \sigma_i, \quad \sigma_j^{-1} \sigma_i \equiv \sigma_j \sigma_i^{-1}, \quad \sigma_i^{-1} \sigma_j \sigma_i \equiv \sigma_j^{-1}, \quad \sigma_i^{-1} \sigma_j^{-1} \equiv \sigma_j^{-1} \sigma_i^{-1},$$

and finally

$$\theta(\sigma_i \sigma_j) = \theta(\sigma_j \sigma_i).$$
and so $\theta(\sigma_i \sigma_j) = \sigma_j^{-1} \sigma_i^{-1} = \sigma_i^{-1} \sigma_j^{-1} = \theta(\sigma_j \sigma_i)$. A similar sequence of equivalences implies $\theta(\sigma_i \sigma_j \sigma_i) = \theta(\sigma_j \sigma_i \sigma_j)$ for i, j in $[1, n-1]$ with $|i - j| \leq 1$.

Let u be an Σ_n-word. For $x \in \Sigma_n$, the permutation $\pi(x)$ is a transposition and so the relation $\pi(x) = \pi(x^{-1})$ holds. Hence we obtain $\pi(\theta_{\Sigma_n}(u)) = \pi(\pi(u))$. We denote by Φ_{Σ_n} the homomorphism of Σ_n-words defined for every integer k in $[1, n-1]$ by $\Phi_{\Sigma_n}(\sigma_k) = \sigma_{n-k}$.

5.2. Garside homomorphisms. We now consider the “word version” of the classical and dual Garside automorphisms of B_n.

Definition 5.5. The Garside automorphism of B_n is $\Phi_n(\beta) = \Delta_\beta \Delta_n^{-1}$ where Δ_n is given by $\Delta_1 = \sigma_1$ and $\Delta_k = \sigma_1 \cdots \sigma_{k-1} \Delta_{k-1}$ for $k \geq 3$.

For example we have $\Delta_4 = \sigma_1 \sigma_2 \sigma_3 \cdot \Delta_3 = \sigma_1 \sigma_2 \sigma_3 \cdot \sigma_1 \sigma_2 \cdot \Delta_1 = \sigma_1 \sigma_2 \sigma_3 \cdot \sigma_1 \sigma_2 \cdot \sigma_1$, which corresponds to the following diagram:

For all $k \in [1, n]$ we have:

$$\pi(\Delta_n)(k) = n+1-k. \quad (14)$$

As we can notice in the previous diagram, the braid Δ_n can be represented by a diagram in which each two strands cross exactly once implying

$$\ell_{i,j}(\Delta_n) = 1 \quad \text{and} \quad \ell_{i,j}(\Delta_n^{-1}) = -1. \quad (15)$$

The result involving Δ_n^{-1} is a direct consequence of that of Δ_n together with Proposition 5.3. The following lemma is a well-known result about the Garside automorphism Φ_n.

Lemma 5.6. For $n \geq 3$, the automorphism Φ_n has order 2 and for every integer k in $[1, n-1]$ we have $\Phi_n(\sigma_k) = \sigma_{n-k}$.

Proof. Let $k \in [1, n-1]$. Relation $\Phi_n(\sigma_k) = \sigma_{n-k}$ is an easy verification from the Artin presentation of B_n (see Lemma I.3.6 of [12]). We conclude with $\Phi_n^2(\sigma_k) = \Phi_n(\sigma_{n-k}) = \sigma_{n-(n-k)} = \sigma_k$.

Definition 5.7. We denote by Φ_n the homomorphism of Σ_n-words defined for every integer k in $[1, n]$ by $\Phi_n(\sigma_k) = \sigma_{n-k}$.
By Lemma 5.6, for every Σ_n-word u we have
\[\Phi_n(u) = \overline{\Phi_n(u)} = \Delta_n \pi \Delta_n^{-1}. \] (16)

Proposition 5.8. The map Φ_n is Σ_n-stable. Moreover for every template $t \in T_n$ we have:
\[\Phi_n^T(t)[\pi] = n + 1 - t[\pi](n + 1 - k) \quad \text{for all } k \in [1, n], \]
\[\Phi_n^T(t)[\ell_{ij}] = [\ell_{n+1-j,n+1-i}] \quad \text{for all } 1 \leq i < j \leq n. \]

Proof. Condition $i)$ and $ii)$ of Definition 5.1 are easily established since Φ_n is defined from the conjugation Φ_n which induces a bijection on Σ_n. We now prove Condition $iii)$ of Definition 5.1. Let u be a Σ_n-word. By (16) we have
\[\pi(\Phi_n(u)) = \pi(\Delta_n) \circ \pi(\Delta_n)^{-1} \circ \pi(\Delta_n). \]
Relation (14) implies that for all integer $k \in [1, n]$ we have
\[\pi(\Phi_n(u))(k) = n+1 - \pi(\Delta_n)(n+1 - k). \] (17)

Let $1 \leq i < j \leq n$ be two integers. Lemma 4.7 together with (15) give
\[\ell_{ij}(\Phi_n(u)) = \ell_{ij}(\Delta_n \overline{\Delta_n} \Delta_n^{-1}) = \ell_{ij}(\Delta_n \overline{\Delta_n} \Delta_n^{-1}) + \ell_{pi}(\Delta_n \overline{\Delta_n} \Delta_n^{-1} \Delta_n \overline{\Delta_n} \Delta_n^{-1}) \]
\[= \ell_{ij}(\Delta_n \overline{\Delta_n} \Delta_n^{-1} \Delta_n \overline{\Delta_n} \Delta_n^{-1}) - 1 \]
\[= \ell_{ij}(\Delta_n \overline{\Delta_n} \Delta_n^{-1} \Delta_n \overline{\Delta_n} \Delta_n^{-1} \Delta_n \overline{\Delta_n} \Delta_n^{-1}) + \ell_{pi}(\Delta_n \overline{\Delta_n} \Delta_n^{-1} \Delta_n \overline{\Delta_n} \Delta_n^{-1} \Delta_n \overline{\Delta_n} \Delta_n^{-1}) \]
\[= \ell_{n+1-i,n+1-j} = \ell_{n+1-j,n+1-i}. \]
\[\square \]

Definition 5.9. The dual Garside automorphism of B_n is $\phi_n(\beta) = \delta_n \beta \delta_n^{-1}$ where δ_n is given by $\delta_n = a_1 \cdots a_{n-1} a_n = a_1 \cdots a_{n-1}$.

For example we have $\delta_4 = a_1 a_2 a_3$ and $\delta_4^{-1} = a_3^{-1} a_2^{-1} a_1^{-1}$ which correspond to the following diagrams:

\[\delta_4 \simeq \] \[\delta_4^{-1} \simeq \] (18)

Notation 5.10. For all $n \in \mathbb{N}$ and $k \in [0, n+1]$ we put
\[[k]_n = \begin{cases} 1 & \text{if } k = n+1, \\ n & \text{if } k = 0, \\ k & \text{otherwise}. \end{cases} \]

Moreover for all integers i and j the symbol $1_{i=j}$ equals 1 if the relation $i = j$ holds and 0 otherwise.

As we can directly see on diagrams of (18), for all $k \in [1, n]$ we have
\[\pi(\delta_n)(k) = [k+1]_n. \] (19)

moreover for all $1 \leq i < j \leq n$ we have
\[\ell_{ij}(\delta_n) = 1_{i=1} \quad \text{and} \quad \ell_{ij}(\delta_n^{-1}) = -1_{j=n}. \] (20)
Lemma 5.11. The automorphism $\overline{\phi}_n$ has order n and for all $1 \leq p < q \leq n$ we have

$$\overline{\phi}_n(a_{p,q}) = a_{[p],n,[q+1],n}$$

with the convention $a_{i,j} = a_{j,i}$ whenever $j > i$ holds.

Proof. Computation of $\overline{\phi}_n(a_{p,q})$ is an easy verification from Birman–Ko–Lee’s presentation of B_n. The result on the order of $\overline{\phi}_n$ is then an immediate consequence. \qed

Definition 5.12. We denote by ϕ_n the homomorphism of Σ^*_n-words defined for all integers p and q with $1 \leq p < q \leq n$ by

$$\phi_n(a_{p,q}) = a_{[p],n,[q+1],n}$$

Proposition 5.13. The map ϕ_n is Σ^*_n-stable. Moreover for every template $t \in T_n$ we have

$$\phi_n^T(t)[\pi](k) = [1 + t[\pi][k-1]]_n \quad \text{for all } k \in [1,n],$$

$$\phi_n^T(t)[\pi]_i = t[\pi][i]_n + 1 - 1[1 + t[\pi][n]]_n = j \quad \text{for all } 1 \leq i < j \leq n.$$

Proof. The proof is similar to that of Proposition 5.8. We detail only the case of Condition iii). Let u be an Σ^*_n-word and k be in $[1,n]$. From (19) we obtain

$$\pi(\phi_n(u))(k) = \pi(\delta_n)(\pi(\overline{\pi})(\pi(\delta_n)^{-1}(k)))$$

$$= \pi(\delta_n)(\pi(\overline{\pi})([k-1]_n))$$

$$= [1 + \pi(\overline{\pi})([k-1]_n)]_n.$$

Let $1 \leq i < j \leq n$ be two integers. Lemma 4.7 implies

$$\ell_{i,j}(\phi_n(u)) = \ell_{i,j}(\delta_n \cdot \overline{\pi} \cdot \delta_n^{-1}) = \ell_{i,j}(\delta_n \cdot \overline{\pi}) + \ell_{\pi(\delta_n)^{-1}(i),\pi(\delta_n)^{-1}(j)}(\delta_n^{-1}).$$

From (20) we get that $\ell_{\pi(\delta_n)^{-1}(i),\pi(\delta_n)^{-1}(j)}(\delta_n^{-1})$ is non zero iff $\pi(\delta_n \cdot \overline{\pi})^{-1}(j) = n$, i.e., if $\pi(\delta_n \cdot \overline{\pi})(n) = j$ which is equivalent to $[1 + \pi(\overline{\pi})(n)]_n = j$. We then obtain

$$\ell_{i,j}(\phi_n(u)) = \ell_{i,j}(\delta_n \cdot \overline{\pi}) + \begin{cases} -1 & \text{if } [1 + \pi(\overline{\pi})(n)]_n = j, \\ 0 & \text{otherwise}, \end{cases}$$

$$= \ell_{i,j}(\delta_n \cdot \overline{\pi}) - 1[1 + \pi(\overline{\pi})(n)]_n = j.$$
Lemma 5.15. We have $G_{\Sigma_n} \simeq (\mathbb{Z}/2\mathbb{Z})^3$ and $G_{\Sigma^*_n} \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$.

Proof. Let $u = \sigma_{i_1}^{e_1} \cdots \sigma_{i_m}^{e_m}$ be a Σ_n-word with $e_1, \ldots, e_m \in \{-1, +1\}$. From
\[
\text{inv}_{\Sigma_n}(\theta_{\Sigma_n}(u)) = \text{inv}_{\Sigma_n}(\sigma_{i_1}^{e_1} \cdots \sigma_{i_m}^{e_m}) = \sigma_{i_m}^{e_m} \cdots \sigma_{i_1}^{e_1},
\]
\[
\theta_{\Sigma_n}(\text{inv}_{\Sigma_n}(u)) = \theta_{\Sigma_n}(\sigma_{i_1}^{e_1} \cdots \sigma_{i_m}^{e_m}) = \sigma_{i_m}^{e_m} \cdots \sigma_{i_1}^{e_1},
\]
we obtain that the maps inv_{Σ_n} and θ_{Σ_n} commute on Σ_n-words. Let t be a template of T_n and v be a Σ_n-word representing a braid of template t. We have
\[
(\text{inv}_{\Sigma_n}^T \circ \theta_{\Sigma_n}^T)(t) = \tau \left((\text{inv}_{\Sigma_n} \circ \theta_{\Sigma_n})(v) \right) = \tau \left((\theta_{\Sigma_n} \circ \text{inv}_{\Sigma_n})(v) \right) = (\theta_{\Sigma_n}^T \circ \text{inv}_{\Sigma_n}^T)(t)
\]
and so $\text{inv}_{\Sigma_n}^T$ and $\theta_{\Sigma_n}^T$ commute. Similar arguments establish the commutation of θ_{Σ_n} and Φ_n, inv_{Σ_n} and Φ_n, and $\text{inv}_{\Sigma_n}^T$ and ϕ_n. Hence we have
\[
G_{\Sigma_n} = \langle \text{inv}_{\Sigma_n}^T \rangle \times \langle \theta_{\Sigma_n}^T \rangle \times \langle \Phi_n^T \rangle \quad \text{and} \quad G(\Sigma_n^*) = \langle \text{inv}_{\Sigma_n}^T \rangle \times \langle \phi_n^T \rangle.
\]
The maps $\theta_{\Sigma_n}^T$ and $\text{inv}_{\Sigma_n}^T$ have order 2 since it is the case for θ_{Σ_n} and inv_{Σ_n} by construction. From Lemma 5.6 and Lemma 5.11 the map Φ_n and ϕ_n have order 2 and n respectively. The results follow.

From a geometric point of view, the maps $\text{inv}_{\Sigma_n}^T$, $\theta_{\Sigma_n}^T$, and Φ_n^T can be seen as reflections along the coordinate planes of the 3-space and the result on G_{Σ_n} is immediate. If we consider the base points of the braid evenly placed in a circumference, the maps $\theta_{\Sigma_n}^T$ and Φ_n^T correspond respectively to a reflection along a plane and to a rotation of order n along an axis orthogonal to this plane, establishing the result on $G_{\Sigma_n^*}$.

Example 5.16. We recall that the template of a braid $\beta \in B_4$ is
\[
\tau(\beta) = (\pi(\beta), \ell_{1,2}(\beta), \ell_{1,3}(\beta), \ell_{2,3}(\beta), \ell_{1,4}(\beta), \ell_{2,4}(\beta), \ell_{3,4}(\beta))
\]
(21)
The template of $\sigma_1 \sigma_2^{-1}$ seen in B_4 is $t = ((1 \ 2 \ 3), 1, -1, 0, 0, 0, 0)$. Using Propositions 5.3, 5.4 and 5.13 we obtain
\[
\text{inv}_{\Sigma_4}^T(t) = ((1 \ 3 \ 2), 0, -1, 1, 0, 0, 0),
\]
\[
\theta_{\Sigma_4}^T(t) = ((1 \ 2 \ 3), -1, 1, 0, 0, 0, 0),
\]
\[
\Phi_4^T(t) = ((2 \ 4 \ 3), 0, 0, 0, 0, -1, 1),
\]
\[
(\text{inv}_{\Sigma_4}^T(t) \circ \theta_{\Sigma_4}^T)(t) = ((1 \ 3 \ 2), 0, 1, -1, 0, 0, 0),
\]
\[
(\text{inv}_{\Sigma_4}^T(t) \circ \Phi_4^T)(t) = ((2 \ 3 \ 4), 0, 0, 1, 0, -1, 0),
\]
\[
(\theta_{\Sigma_4}^T \circ \Phi_4^T)(t) = ((2 \ 4 \ 3), 0, 0, 0, 0, 1, -1),
\]
\[
(\text{inv}_{\Sigma_4}^T \circ \theta_{\Sigma_4}^T \circ \Phi_4^T)(t) = ((2 \ 3 \ 4), 0, 0, -1, 0, 1, 0),
\]
and so the set $G \star t$ has exactly 8 elements.

From a given template $t \in T_n$ we obtain $\text{red}_{S_n}(t)$ by computing the set $G_{S_n} \star t$ and picking its minimal element.
5.4. Template reduction. Now we define a total ordering on \(T_n \). We start with permutations of \(\mathfrak{S}_n \).

Definition 5.17. For \(\sigma \) and \(\sigma' \) two permutations of \(\mathfrak{S}_n \) we write \(\sigma < \sigma' \) whenever
\[
(\sigma(1), \ldots, \sigma(n)) <_{\text{CoLEX}} (\sigma'(1), \ldots, \sigma'(n)),
\]
i.e., whenever there exists \(k \in [1, n] \) such that \(\sigma(n) = \sigma'(n), \ldots, \sigma(k+1) = \sigma'(k+1) \) and \(\sigma(k) < \sigma'(k) \).

For example, the ordering of permutations occurring in Example 5.16 is
\[
(234) < (243) < (123) < (132).
\]

Definition 5.18. For two templates \(t = (\sigma, (\ell_{i,j})_{1 \leq i < j \leq n}) \) and \(t' = (\sigma', (\ell'_{i,j})_{1 \leq i < j \leq n}) \) we write \(t < t' \) whenever
\[
(\sigma, \ell_{1,2}, \ldots, \ell_{1,n}, \ldots, \ell_{n-1,n}) <_{\text{LEX}} (\sigma', \ell'_{1,2}, \ldots, \ell'_{1,n}, \ldots, \ell'_{n-1,n}),
\]
where we recall that the integers \(\ell_{i,j} \) are enumerated following a co-lexicographic ordering on their indices (see Definition 4.9). For a template \(t \) we denote by \(\text{red}_{\mathfrak{S}_n}(t) \) the minimal element of \(G_{\mathfrak{S}_n} \ast t \). We say that a template \(t \in T_n \) is \(S_n \)-reduced if \(\text{red}_{\mathfrak{S}_n}(t) = t \) holds. For an integer \(\ell \in \mathbb{N} \) we denote by \(R_n(\mathfrak{S}_n, \ell) \) the set of reduced templates lying in \(T_n(\mathfrak{S}_n, \ell) \).

Example 5.19. We reconsider template \(t \) of Example 5.16. By (22) we obtain
\[
\text{red}_{\mathfrak{S}_n}(t) = ((234), 0, 0, -1, 0, 1, 0),
\]
which is equal to \((\text{inv}_{\mathfrak{S}_n}^T \circ \theta_{\Sigma^T} \circ \Phi_{\Sigma^T})t) \).

Proposition 5.20. For \(\mu \) a \(S_n \)-stable map of \(S_n \)-words, \(\ell \) an integer \(\geq 0 \) and \(t \) a template of \(T_n \) we have
\[
\bar{\pi}(B_n(\mathfrak{S}_n, \ell, t)) = B_n(\mathfrak{S}_n, \ell, \mu^T(t))
\]
and \(\text{card}(B_n(\mathfrak{S}_n, \ell, t)) = \text{card}(B_n(\mathfrak{S}_n, \ell, \mu^T(t))) \).

Proof. A direct consequence of Definition 5.1. \(\square \)

Corollary 5.21. Let \(\ell \) be an integer. We have
\[
s(B_n, \mathfrak{S}_n, \ell) = \sum_{t \in R_n(\mathfrak{S}_n, \ell)} \text{card}(B_n(\mathfrak{S}_n, \ell, t)) \cdot \text{card}(G_{\mathfrak{S}_n} \ast t).
\]

Proof. We have
\[
B_n(\mathfrak{S}_n, \ell) = \bigsqcup_{t \in T_n(\mathfrak{S}_n, \ell)} B_n(\mathfrak{S}_n, \ell, t) = \bigsqcup_{t_r \in R_n(\mathfrak{S}_n, \ell)} \bigsqcup_{t \in G_{\mathfrak{S}_n} \ast t_r} B_n(\mathfrak{S}_n, \ell, t)
\]
Assume \(r \) is a template of \(R_n(\mathfrak{S}_n, \ell) \) and \(t \) lies in \(G_{\mathfrak{S}_n} \ast t_r \). Then there exists a \(S_n \)-stable bijection \(\mu \in G_{\mathfrak{S}_n} \) satisfying \(t = \mu^T(t_r) \). It follows from Proposition 5.20 that the set \(B_n(\mathfrak{S}_n, \ell, t) \) has the same cardinality as \(B_n(\mathfrak{S}_n, \ell, t_r) \). So we obtain
\[
s(B_n, \mathfrak{S}_n, \ell) = \text{card}(B_n(\mathfrak{S}_n, \ell)) = \sum_{t_r \in R_n(\mathfrak{S}_n, \ell)} \sum_{t \in G(\mathfrak{S}_n) \ast t_r} \text{card}(B_n(\mathfrak{S}_n, \ell, t))
\]
\[= \sum_{t_r \in R_n(\mathfrak{S}_n, \ell)} \text{card}(B_n(\mathfrak{S}_n, \ell, t_r)) \times \text{card}(G_{\mathfrak{S}_n} \ast t_r) \text{.} \quad \square \]
5.5. Algorithmic improvement. We now give an improvement of the algorithms of Section 4 using Corollary 5.21. From Corollary 5.21 we know how to obtain \(s(B_n, S_n, \ell) \) from an enumeration of braids associated to a reduced template. As in Section 4 we assume we have a function \(\text{LoadRed}(n, \ell, t) \) loading from the storage memory a representative set of \(B_n(S_n, \ell, t) \) where \(t \) is a reduced template. We also assume we have a function \(\text{SaveRed}(W, n, \ell, t) \) which saves a representative set \(W \) of \(B_n(S_n, \ell, t) \) whenever \(t \) is a reduced template.

Enumerating only braids with a reduced template reduces the requirements of storage space. But there is a little difficulty. The template \(t_x \) used in the call of \(\text{Load} \) line 6 of Algorithm 2 – \(\text{TempRepSet} \) is not necessarily reduced. However, thanks to Proposition 5.20 we have

\[
B_n(S_n, \ell, t) = g^{-1}(B_n(S_n, \ell, \text{red}_{S_n}(t)));
\]

where \(g^T(t) = \text{red}_{S_n}(t) \). Hence if \(W_r \) is a representative set of \(B_n(S_n, \ell, \text{red}_{S_n}(t)) \) then \(W = g^{-1}(W_r) \) is a representative set of \(B_n(S_n, \ell, t) \). We then obtain Algorithm 4 – \(\text{LoadFromRed} \) that can return any representative set of \(B_n(S_n, \ell, t) \) from the storage of braids of \(S_n \)-length \(\ell \) with a reduced template.

Algorithm 4 – \(\text{LoadFromRed} \) : Returns a representative set \(\bar{W} \) of \(B_n(S_n, \ell, t) \) from the storage of representative sets of braids of length \(\ell \) having a reduced template.

1: \textbf{function} \(\text{LoadFromRed}(n, \ell, t) \)
2: \(t_r \leftarrow \text{red}_{S_n}(t) \) \hfill \triangleright \text{the minimal element of } G_{S_n, t}
3: \text{determine } g \in G_{S_n} \text{ such that } t = g^T(t_r)
4: \(W_r \leftarrow \text{LoadRed}(n, \ell, t_r) \)
5: \(\bar{W} \leftarrow \emptyset \)
6: \textbf{for } \mathbf{w} \in W_r \textbf{ do}
7: \(\bar{W} \leftarrow \bar{W} \cup \{g^{-1}(\mathbf{w})\} \)
8: \textbf{end for}
9: \textbf{return } \bar{W}
10: \textbf{end function}

The improved version \(\text{RedTempRepSet} \) of Algorithm 2 – \(\text{TempRepSet} \) is obtained replacing calls of \(\text{Load} \) by \(\text{LoadRed} \) and call of \(\text{Save} \) by \(\text{SaveRed} \).

By Corollary 5.21 the number \(s(B_n, S_n, \ell) \) can be determined by running Algorithm \(\text{RedTempRepSet} \) on all reduced templates of \(T_n(S_n, \ell) \). As for braids we can’t determine reduced templates of \(T_n(S_n, \ell) \) considering only reduced templates of \(T_n(S_n, \ell-1) \). Assume we dispose of the set \(R_n(S_n, \ell-1) \) of reduced templates of \(T_n(S_n, \ell-1) \). First we reconstruct the set \(T_n(S_n, \ell-1) \) using

\[
T_n(S_n, \ell-1) = \{ g(t) \mid (g, t) \in G_{S_n} \times R_n(S_n, \ell-1) \}.
\]

As a second step we use (13) to obtain a superset \(T_n' \) of \(T_n(S_n, \ell) \). Then we filter element of \(T_n' \) keeping only reduced templates by testing if a template is minimal in its orbit under the action of \(G_{S_n} \). Eventually we obtain the set \(R_n(S_n, \ell) \) of reduced templates containing the reduced templates of \(T_n(S_n, \ell) \). Moreover a template of \(R_n(S_n, \ell) \) is a reduced template of \(T_n(S_n, \ell) \) if and only if there exists a braid \(\beta \in B_n(S_n, \ell) \) having this precise template. These lead to Algorithm 5 – \(\text{RedCombi} \), which is an improved version of Algorithm 3 – \(\text{Combi} \).
Algorithm 5 – RedCombi: Returns a pair of arrays of number \((n_s, n_g)\) satisfying \(n_s[\ell] = s(B_n, S_n, \ell)\) and \(n_g[\ell] = g(B_n, S_n, \ell)\) for all \(\ell \leq \ell_{\text{max}}\)

1: function RedCombi(\(\ell_{\text{max}}\))
2: \(n_s[0] \leftarrow 1; n_g[0] \leftarrow 1\)
3: \(R \leftarrow \{(1_{B_n}, 0, \ldots, 0)\}\) \(\triangleright\) reduced templates of \(T_n(S_n, 0)\)
4: for \(\ell\) from 1 to \(\ell_{\text{max}}\) do
5: \(R' \leftarrow \emptyset\)
6: \(n_s[\ell] \leftarrow 0; n_g[\ell] \leftarrow 0\)
7: for \(t_r \in R\) do
8: for \(t \in G_{S_n} \star t_r\) do
9: for \(x \in S_n\) do
10: \(t' \leftarrow t \star x\)
11: if \(t'\) is reduced and \(t' \not\in R'\) then
12: \((n_s'[\ell], n_g'[\ell]) \leftarrow \text{RedTempRepSet}(\ell, t')\)
13: if \(n_s'[\ell] \neq 0\) then
14: \(R' \leftarrow R' \cup \{t'\}\)
15: \(n_s[\ell] \leftarrow n_s[\ell] + n_s'[\ell] \times \text{card}(G_{S_n} \star t')\)
16: \(n_g[\ell] \leftarrow n_g[\ell] + n_g'[\ell] \times \text{card}(G_{S_n} \star t')\)
17: end if
18: end if
19: end for
20: end for
21: \(R \leftarrow R'\) \(\triangleright\) reduced templates of \(T_n(S_n, \ell)\)
22: end for
23: return \((n_s, n_g)\)
24: end function

6. Results

For our experimentations we have coded a distributed version of Algorithm 5 – RedCombi following a client / server model. Roughly speaking the server runs the core of Algorithm 5 while clients run Algorithm 4 – RedTempRepSet in parallel. Technical details are voluntarily omitted. The source code of our program is available on GitHub [20].

These programs were executed on a single computational node\(^2\) of the computing platform \textsc{Calculco} [25]. This node is equipped with 256 Go of RAM together with two processors AMD Epyc 7702 with 64 cores each for a total of 128 cores. In addition of this computational node we have used a distributed storage space of 30 To storing files containing representative sets.

6.1. Three strands. As values of \(S(B_3, \Sigma_3)\) and \(G(B_3, \Sigma_3)\) are already known since the work of L. Sabalka [24] we have started our experimentation on the dual presentation of \(B_3\) (see Table 1).

Using Padé approximant on obtained values we can conjecture rational expression for the spherical and geodesic growth series of \(B_3\) relatively to dual generators.

\(^2\)Financed by the project BQR CIMPA 2020 and the laboratory LMPA.
EXPERIMENTS ON GROWTH SERIES OF BRAID GROUPS 21

Table 1. Combinatorics of B_3 relatively to dual generators Σ_3^*.

<table>
<thead>
<tr>
<th>ℓ</th>
<th>$s(B_3, \Sigma_3^*, \ell)$</th>
<th>$g(B_3, \Sigma_3^*, \ell)$</th>
<th>ℓ</th>
<th>$s(B_3, \Sigma_3^*, \ell)$</th>
<th>$g(B_3, \Sigma_3^*, \ell)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>11</td>
<td>38910</td>
<td>6639606</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>6</td>
<td>12</td>
<td>83966</td>
<td>26216418</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>30</td>
<td>13</td>
<td>180222</td>
<td>103827366</td>
</tr>
<tr>
<td>3</td>
<td>54</td>
<td>126</td>
<td>14</td>
<td>385922</td>
<td>412169970</td>
</tr>
<tr>
<td>4</td>
<td>134</td>
<td>498</td>
<td>15</td>
<td>819198</td>
<td>1639212246</td>
</tr>
<tr>
<td>5</td>
<td>318</td>
<td>1926</td>
<td>16</td>
<td>1736702</td>
<td>652834778</td>
</tr>
<tr>
<td>6</td>
<td>734</td>
<td>7410</td>
<td>17</td>
<td>3670014</td>
<td>26027690886</td>
</tr>
<tr>
<td>7</td>
<td>1662</td>
<td>28566</td>
<td>18</td>
<td>7733246</td>
<td>103853269650</td>
</tr>
<tr>
<td>8</td>
<td>3710</td>
<td>110658</td>
<td>19</td>
<td>16252926</td>
<td>41639810486</td>
</tr>
<tr>
<td>9</td>
<td>8190</td>
<td>431046</td>
<td>20</td>
<td>34078718</td>
<td>1656237864738</td>
</tr>
<tr>
<td>10</td>
<td>17918</td>
<td>1687890</td>
<td>21</td>
<td>71303166</td>
<td>6617984181606</td>
</tr>
</tbody>
</table>

Conjecture 6.1. The spherical and geodesic growth series of B_3 relatively to dual generators are

$$S(B_3, \Sigma_3^*) = \frac{(t + 1)(2t^2 - 1)}{(t - 1)(2t - 1)^2}, \quad G(B_3, \Sigma_3^*) = \frac{12t^3 - 2t^2 + 3t - 1}{(2t - 1)(3t - 1)(4t - 1)}.$$

If the previous conjecture is true the growth rate of $s(B_3, \Sigma_3^*, \ell)$ is 2 while that of $g(B_3, \Sigma_3^*, \ell)$ is 4.

6.2. Four strands. In her thesis [2], M. Albenque computes the value $s(B_4, \Sigma_4, \ell)$ up to $\ell \leq 12$. Running our algorithm on the 128-cores node of the CALCULCO platform we determine the spherical and geodesic combinatorics of B_4 relatively to Artin’s generators up to length 25 (see Table 2).

Table 2. Combinatorics of B_4 relatively to Artin’s generators Σ_4.

<table>
<thead>
<tr>
<th>ℓ</th>
<th>$s(B_4, \Sigma_4, \ell)$</th>
<th>$g(B_4, \Sigma_4, \ell)$</th>
<th>ℓ</th>
<th>$s(B_4, \Sigma_4, \ell)$</th>
<th>$g(B_4, \Sigma_4, \ell)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>13</td>
<td>90007466</td>
<td>281799158</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>6</td>
<td>14</td>
<td>27218486</td>
<td>1153638466</td>
</tr>
<tr>
<td>2</td>
<td>26</td>
<td>30</td>
<td>15</td>
<td>82133734</td>
<td>4710108514</td>
</tr>
<tr>
<td>3</td>
<td>98</td>
<td>142</td>
<td>16</td>
<td>247557852</td>
<td>19186766743</td>
</tr>
<tr>
<td>4</td>
<td>338</td>
<td>646</td>
<td>17</td>
<td>745421660</td>
<td>7800483510</td>
</tr>
<tr>
<td>5</td>
<td>1110</td>
<td>2870</td>
<td>18</td>
<td>2242595598</td>
<td>316591341864</td>
</tr>
<tr>
<td>6</td>
<td>3542</td>
<td>12558</td>
<td>19</td>
<td>6741618434</td>
<td>1283041428650</td>
</tr>
<tr>
<td>7</td>
<td>11098</td>
<td>54026</td>
<td>20</td>
<td>20252254058</td>
<td>5193053664554</td>
</tr>
<tr>
<td>8</td>
<td>34362</td>
<td>229338</td>
<td>21</td>
<td>6080068860</td>
<td>2099489396598</td>
</tr>
<tr>
<td>9</td>
<td>105546</td>
<td>963570</td>
<td>22</td>
<td>182422321452</td>
<td>84795241908498</td>
</tr>
<tr>
<td>10</td>
<td>322400</td>
<td>4016674</td>
<td>23</td>
<td>547032636641</td>
<td>34217368884002</td>
</tr>
<tr>
<td>11</td>
<td>980904</td>
<td>16641454</td>
<td>24</td>
<td>1639548505920</td>
<td>1379691672165334</td>
</tr>
<tr>
<td>12</td>
<td>2975728</td>
<td>68614150</td>
<td>25</td>
<td>4911638066620</td>
<td>555924179216166</td>
</tr>
</tbody>
</table>

For information the storage of all braids of B_4 with geodesic Σ_4-length ≤ 25 and reduced templates requires 26 To of disk space.

In case of dual generators we have reached length 17 (see Table 3).

Using Padé approximant on our values we can conjecture the value of the spherical growth series of B_4 relatively to dual generators.
Table 3. Combinatorics of B_4 relatively to dual generators Σ_4^\ast.

<table>
<thead>
<tr>
<th>ℓ</th>
<th>$s(B_4, \Sigma_4^\ast, \ell)$</th>
<th>$g(B_4, \Sigma_4^\ast, \ell)$</th>
<th>ℓ</th>
<th>$S(B_4, \Sigma_4^\ast, \ell)$</th>
<th>$g(B_4, \Sigma_4^\ast, \ell)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>7438.366</td>
<td>708368.540</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>35773.324</td>
<td>612821.364</td>
</tr>
<tr>
<td>2</td>
<td>84</td>
<td>132</td>
<td>11</td>
<td>173885.572</td>
<td>52826999.612</td>
</tr>
<tr>
<td>3</td>
<td>478</td>
<td>1340</td>
<td>12</td>
<td>844277.874</td>
<td>454136092.148</td>
</tr>
<tr>
<td>4</td>
<td>2500</td>
<td>12788</td>
<td>13</td>
<td>4095929.948</td>
<td>3895624824.092</td>
</tr>
<tr>
<td>5</td>
<td>12612</td>
<td>117452</td>
<td>14</td>
<td>19853981.932</td>
<td>33359143410.468</td>
</tr>
<tr>
<td>6</td>
<td>62570</td>
<td>1053604</td>
<td>15</td>
<td>96242356.958</td>
<td>285259736104.444</td>
</tr>
<tr>
<td>7</td>
<td>303356</td>
<td>9311420</td>
<td>16</td>
<td>466262144.180</td>
<td>2436488694821.748</td>
</tr>
<tr>
<td>8</td>
<td>1506212</td>
<td>81488628</td>
<td>17</td>
<td>2258320991652</td>
<td>20790986906580.060</td>
</tr>
</tbody>
</table>

Conjecture 6.2. The spherical growth series of B_4 relatively to dual generators is

$$S(B_4, \Sigma_4^\ast) = \frac{(t + 1)(10t^6 - 10t^5 - 3t^4 + 11t^3 - 4t^2 - 3t + 1)}{(t - 1)(5t^2 - 5t + 1)(10t^4 - 20t^3 + 19t^2 - 8t + 1)}$$}

(23)

If the previous conjecture is true, the growth rate of $s(B_4, \Sigma_4^\ast, \ell)$ is given by the inverse of the maximal root of the denominator of (23), which is approximately 4.8. Unfortunately we are not able to formulate such a conjecture for the geodesic growth series of B_4 relatively to dual generators.

Acknowledgments. The author wishes to thank the anonymous referee for his/her very sharp comments.

References

Univ. Littoral Côte d’Opale, UR 2597, LMPA. Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville, F-62100 Calais, France

Email address: fromentin@math.cnrs.fr