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Résumé—This paper tackles GAN optimization and stability
issues in the context of voice conversion. First, to simplify the
conversion task, we propose to use spectral envelopes as inputs.
Second we propose two adversarial weight training paradigms,
the generalized weighted GAN and the generator impact GAN,
both aim at reducing the impact of the generator on the
discriminator, so both can learn more gradually and efficiently
during training. Applying an energy constraint to the cycleGAN
paradigm considerably improved conversion quality. A subjective
experiment conducted on a voice conversion task on the voice
conversion challenge 2018 dataset shows first that despite a
significantly reduced network complexity, the proposed method
achieves state-of-the-art results, and second that the proposed
weighted GAN methods outperform a previously proposed one.

Index Terms—voice conversion, cycleGAN, GAN stability,
adversarial weights

I. INTRODUCTION

A. Related works
Voice identity conversion (VC) consists in modifying the

voice of a source speaker so as to be perceived as the one
of a target speaker. Over the past few years, VC has largely
gained in popularity and in quality [1], [2], in particular with
the development of neural voice conversion algorithms [3],
[4]. VC consists in learning a conversion function between
the acoustic space of a source and a target speaker. This
conversion function is generally learned from a pre-aligned
database (parallel VC) in which the source and the target
speakers pronounce the same set of sentences, so that a direct
correspondence between the frames of the source and target
speakers can be established. Unfortunately, this constraint
reduces the amount of available recordings of source and target
speakers.

Modern VC is mainly based on neural architectures with
the particular objective to extend the VC from parallel to non-
parallel speech databases. The main advantage of non-parallel
VC is that it provides the flexibility to learn the conversion
from ”on-the-fly” speech databases, which can more easily
handle large amount of data and accommodate multiple spea-
kers. These architectures includes Variational Autoencoders
(VAEs) [5]–[7], Generative Adversarial Networks (GANs) [8]–
[12], Phonetic PosteriorGrams (PPGs) [13] and sampleRNNs

The research in this paper has been funded by the ANR project TheVoice :
ANR-17-CE23-0025

[14] among others. The use of GAN architectures [15] for
VC is inspired by advances conducted in the fields of image
generation and manipulation. The cycleGAN is a particular
configuration of GANs which has been specifically formulated
to learn transformations between two different domains or
between unaligned or unpaired datasets with application to
image-to-image translation [16].

The cycleGAN-VC is the extension of the cycleGAN to
the VC task, which has become a standard in non-parallel
VC [8], [10]. The main idea behind the application of the
cycleGAN to VC is that the cycle-consistency encourages the
preservation of the phonetic content through the cycle while
learning to modify the speaker identity. Despite the advances
accomplished in non-parallel VC, cycleGAN-VC still suffers
from important limitations which conduct to conversion of
mitigated quality. One main limitation is due to the well-
known stability issues of the GAN [17], [18]. This issue,
combined to the limited amount of data available in the VC
task, can lead to severe degradation of the voice conversion
quality and the naturalness of the converted speech.

Tackling GAN stability issues has motivated the develop-
ment of multiple ideas and heuristics [17], such as the popular
Wasserstein GAN [19] or the LSGAN [20]. More recently,
so as to tackle stability issues, the weighted GAN has been
introduced [21]. This novel approach, based on game theory,
instead of equally weighted “fake” samples, more attention is
given to samples that fool the discriminator. A particular form
of weighted GAN has been recently applied to VC. [22].

B. Contribution of the paper

This paper proposes two contributions. First, we propose
to use spectral envelopes as inputs instead of using cepstral
coefficients as in [10]. The use of the spectral envelope is as-
sumed to simplify the task for the convolutional networks that
will be required to only slightly move the spectral formants.
Thus we assume to not need an extremely deep network and
we will show that we can achieve similar performance with a
significantly smaller network. Second, we propose to introduce
a constraint as an additional training loss that enforces to
preserve energy contour of the converted speech signal. This
allows us to add a generator loss not depending on adversarial
training, which is expected to contribute to the stability of
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the training. Third, we present a novel method to tackle the
stability issue of GAN training, exploring a novel weighted
GAN approach. We achieve this by adding a weight to the
loss of the discriminator, giving more weight to “true” samples
rather than to “fake” ones.

II. PRELIMINARY WORKS ON CYCLEGAN VC

A. Generative Adversarial Networks

A Generative Adversarial Network (GAN) [15] is a neural
network system composed by a generator G and a discrimi-
nator D, in which the discriminator is trained to discriminate
real samples from generated samples, while the generator is
trained to generate real-like samples, using the discriminator
as the decision rule. The objective can be written as :

min
G

max
D

L(D, G) =Ex⇠p(X)[log D(x)]

+Ez⇠p(Z)[log(1 � D(G(z)))]
(1)

where : x is a sample from a distribution p(X) to be modeled,
z is a sample generated from a random distribution p(Z),
and Ex⇠p(X) represents the expected value of x given the
distribution p(X).

B. Cycle Generative Adversarial Networks

In the cycleGAN architecture [16], [23], a generator GX!Y

reads data from a dataset X and learns to map it into its
respective position in a dataset Y, and vice versa for a generator
GY !X . If X and Y represent languages, this system should
be analogous to two translators. To train these generators, the
cycleGAN framework uses two adversarially trained discri-
minators to discriminate respectively any x 2 X in relation
to GY !X(y) for any y 2 Y and any y 2 Y in relation to
GX!Y (x) for any x 2 X . Since GY !X(GX!Y (x)) should
be equal to x, and GX!Y (GY !X(y)) should be equal to
y, a loss named cycle-consistent loss is added to enforce
this constraint. In the following equations we state the total
objective of the cycleGAN, where Ey⇠PData(y) represents
the expected value for the distribution Y and EY ⇠PData(X)

represents the expected value for the distribution X.
The following equation describes the adversarial loss for the

discriminator DY (the equation for DX is analogous) :

Ladv(GX!Y ,DY ) = Ey⇠PData(y)[log(DY (y))]

+Ex⇠PData(x)[log(1�DY (GX!Y (x)))].
(2)

The following equation describes the cycle-consistency loss,
using L1 norm :

Lcyc(GX!Y ,GY !X) =

Ex⇠PData(x)[||GY !X(GX!Y (x))� x||1]
+Ey⇠PData(y)[||GX!Y (GY !X(y))� y||1].

(3)

The following equation describes the total objective of the
cycleGAN, where �c represents the weight for the cycle-
consistency loss :

Lfull =Ladv(GX!Y , DY ) + Ladv(GY !X , DX)

+�cLcyc(GX!Y , GY !X)
(4)

The cycleGAN-VC, introduced by [10], is trained to
convert a source speaker Mel Frequency Cepstral Coefficients
(MFCCs) into a target speaker MFCCs, so as to perform
VC. Their discriminators task is therefore to discriminate
whether the conversions belong to their respective target
speaker identity or not. In particular, so as to adapt the original
cycleGAN framework, they used Gated CNNs as well as an
identity-mapping loss, which is reported to encourage phonetic
invariance. However, we did not find these two additional ideas
beneficial.

III. GAN WITH ADVERSARIAL WEIGHTS

Generative Adversarial Networks are reported to be difficult
to train. One problem are vanishing gradients when the discri-
minator achieves perfect discrimination, or when the generator
is able to perfectly fool the discriminator, though it is produ-
cing nonsense. Another problem is the instability that is due to
the fact that the discriminator is trained to systematically reject
generated examples independent of their quality. In the case
when the generator generates target samples covering only a
small part of the target space the discriminator will improve
its objective by means of pushing the generator out of the
target space even if it has to wrongly classify some of the real
samples as well. As a result the discriminator will push the
generator away from the target space hindering the generator
to converge.

To solve these issues, many ideas have been proposed, such
as the DCGAN architecture [18]. [24] discussed mini-batch
discrimination, historical averaging, one-sided label smoothing
and virtual batch normalization. Also, new losses have been
proposed, such as the Wasserstein GAN [19] and the LSGAN
[20].

A. Weighted GAN System

Recently, so as to tackle CycleGAN optimization, Paul et
al. developed the weStarGAN [22], implementing the weighted
GAN idea [21] to the starGAN-VC architecture [8]. They do so
by multiplying sample-wise a coefficient to the generator loss.
Their idea is to give less weight to samples poorly produced by
the generator, so that the generator has a stronger motivation
to produce samples similar to the real data. For each sample
j they compute its respective normalised weight wj,g , while
introducing a hyper-parameter ⌘gen :

wj,g = e⌘min(0,Dj)

wj,g =
wj,gPm
j=1 wj,g

, j = 1, ...,m.
(5)

This coefficient is then multiplied sample-wise by the ge-
nerator loss. Note that samples that the discriminator does not
correctly discriminate have a higher weight in the generator
loss. A hypothesis assumed in [22] is that the discriminator
is “faithful” : that quantitatively it returns on average values
above 0.5 when the samples come from the real distribution
and below 0.5 when fake samples are fed to the Discriminator.
This structure is our starting point in our research on the
stability and optimization of the GAN.
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wj,g = e�min(0,Dj)

wj,g =
wj,g�m

j=1 wj,g
, j = 1, ..., m.

(5)

This coefficient is then multiplied sample-wise by the gen-
erator loss. Note that samples that the discriminator does not
correctly discriminate have a higher weight in the generator
loss. A hypothesis assumed in [25] is that the discriminator
is “faithful”: that quantitatively it returns on average values
above 0.5 when the samples come from the real distribution
and below 0.5 when fake samples are fed to the Discriminator.
This structure is our starting point in our research on the
stability and optimization of the GAN.

B. Generalized Adversarial Weights
Since in practice the discriminator might not be be “faith-

ful”, in order to encourage its “faithfulness”, we propose to
train the discriminator rather by fairly produced samples than
by poorly produced ones. This helps to reduces the above
mentioned instability caused by training the discriminator to
judge generated data, no matter how good it is, as equally
wrong. To do so, we further develop Paul et al. idea, by also
applying weights to the discriminator loss. We followed the
exact same procedure: we introduce a hyper-parameter ⌘dis

and for each sample we compute its respective normalised
weight wj,d, following the same procedure as in Eq. (5). This
coefficient is then multiplied sample-wise by the discriminator
loss. Thus samples perceived as poor by the discriminator have
less weighting in the discriminator loss. We name this system
as generalized weighted GAN (geweGAN).

C. Generalized Adversarial Weights
Finally, we introduce a novel weighted GAN technique, also

encouraging the discriminator “faithfulness”. In the proposed
approach, the idea is to encourage the training of the discrim-
inator by weighting samples produced by the generator by a
constant generator impact hyperparameter ⇢gen, so that the
discriminator is rather encouraged by the “real” distribution
than by the generated one. We name this system the generator
impact GAN (gimGAN), since we can control the impact of
the generator on the discriminator loss. The idea is equivalent
to replacing the “hard” label 0 scored by the discriminator on
the samples produced by the generator D(G(x)), by a “soft”
label calculated as:

D(G(x)) + ⇢gen(0 � D(G(x))) 2 [0, 1] (6)

where: ⇢gen(0 � D(G(x))) represents the current distance
of the discriminator relatively to the target “hard” label 0,
weighted by generator impact hyperparameter ⇢gen. Once
again, the motivation behind is to tackle the fact that in the
vanilla GAN, the discriminator is trained to consider samples
produced by the generator as “fake” ones, whatever its quality
is, which might have the effect to discourage the generator to
converge to the correct distribution.

D. Energy constraint
Additionally, we further apply an energy constraint to the

cycleGAN architecture. This constraint enforces preservation
of the energy contour of the original source speech signal
during conversion, and avoids incoherence between source and
converted envelope in the converted speech signal. Further-
more, by means of providing stable feedback to the generator,
this constraint is expected to reduce the instability of the GAN
training. To achieve this, we impose a reconstruction loss on
the amplitude mean for each frame, on both generators. Since
we work with spectral envelopes as inputs, we just add the
following term to the total loss, where �c represents the weight
for the cycle-consistency loss:

Le =�eEx⇠PData(x)[||
T�

t=0

GX!Y (x)x||1]

+ �eEx⇠PData(x)[||
T�

t=0

GY !X(y)y||1]

(7)

This constraint enforces preservation of the energy contour
of the original source speech signal during conversion, and
avoids incoherence between source and converted envelope in
the converted speech signal. Further, by means of providing
stable feedback to the generator, this constraint is expected to
reduce the instability of the GAN training.

IV. EXPERIMENT

The proposed CycleGAN architectures have been trained
and evaluated, using the VCC2018 database [2]. The
VCC2018 training corpus contains 80 short sentences per
speaker, sampled at 16 kHz and quantified on 16 bits. For
the evaluation set, we used the first 5 sentences, whose length
was superior to 2s.

Our architecture was inspired by the DCGAN and by the
cycleGAN-VC [13], [14]. For both generators, we used a
two-layer encoder with convolutions, followed by a two-layer
bottleneck with convolutions and then a two-layer decoder
with transposed convolutions. For both the encoder and the
decoder, we applied a kernel size 2 and a stride size 2,
so as to avoid the checkerboard effect [28], noticing that
consistently better results were obtained when this undesirable
effect was avoided. For the bottleneck, we applied kernel size
3 and and stride size 1. The overall generator has respectfully
256, 512, 512 , 512, 256 and 1 filters. We applied instance
normalization, followed by a ReLU at the end of each layer.
Since spectral envelopes explicitly contain formant informa-
tion, the task becomes much easier allowing us to implant
a rather small generator, compared to traditional cycleGAN
implementations. [13], [14] For both discriminators, we used
4 convolutional layers with a filter size 2, a kernel size 2,
with respectfully 64, 128, 256 and 512 filters. These four
layers were followed by two fully connected layers, with 512
and 1 neurons respectively. We applied instance normalization,
followed by a LeakyReLU at the end of each layer, except
for the last one. Our inputs were of size 32 and 128, for

FIGURE 1. Comparison of GAN with and without generator impact. On left : vanilla GAN, on right : proposed GAN with weighted labels.

B. Generalized Weighted GAN

Since in practice the discriminator might not be “faithful”,
in order to encourage its “faithfulness”, we propose to train
the discriminator rather by fairly produced samples than
by poorly produced ones. This helps to reduces the above
mentioned instability caused by training the discriminator to
judge generated data, no matter how good it is, as equally
wrong. To do so, we further develop Paul et al. idea, by also
applying weights to the discriminator loss. We followed the
exact same procedure : we introduce a hyper-parameter ⌘dis

and for each sample we compute its respective normalised
weight wj,d, following the same procedure as in Eq. (5). This
coefficient is then multiplied sample-wise by the discriminator
loss. Thus samples perceived as poor by the discriminator have
less weighting in the discriminator loss. We name this system
as generalized weighted GAN (geweGAN).

C. Generator Impact GAN

Finally, we introduce a novel weighted GAN technique, also
encouraging the discriminator “faithfulness”. In the proposed
approach, the idea is to encourage the training of the discri-
minator by weighting samples produced by the generator by
a constant generator impact hyperparameter ⇢gen, so that the
discriminator is rather encouraged by the “real” distribution
than by the generated one. We name this system the generator
impact GAN (gimGAN), since we can control the impact of
the generator on the discriminator loss. The idea is equivalent
to replacing the “hard” label 0 scored by the discriminator on
the samples produced by the generator D(G(x)), by a “soft”
label calculated as :

D(G(x)) + ⇢gen(0�D(G(x))) 2 [0, 1] (6)

where : ⇢gen(0 � D(G(x))) represents the current distance
of the discriminator relatively to the target “hard” label 0,
weighted by generator impact hyperparameter ⇢gen. Once
again, the motivation behind is to tackle the fact that in the
vanilla GAN, the discriminator is trained to consider samples
produced by the generator as “fake” ones, whatever its quality
is, which might have the effect to discourage the generator to
converge to the correct distribution. The principle is illustrated
in Figure 1.

D. Energy constraint
Additionally, we further apply an energy constraint to the

cycleGAN architecture. This constraint enforces preservation
of the energy contour of the original source speech signal
during conversion, and avoids incoherence between source and
converted envelope in the converted speech signal. Further-
more, by means of providing stable feedback to the generator,
this constraint is expected to reduce the instability of the GAN
training. To achieve this, we impose a reconstruction loss on
the amplitude mean for each frame, on both generators. Since
we work with spectral envelopes as inputs, we just add the
following term to the total loss, where �c represents the weight
for the cycle-consistency loss :

Le =�eEx⇠PData(x)[||
TX

t=0

GX!Y (x)� x||1]

+ �eEx⇠PData(x)[||
TX

t=0

GY !X(y)� y||1]

(7)

This constraint enforces preservation of the energy contour
of the original source speech signal during conversion, and
avoids incoherence between source and converted envelope in
the converted speech signal. Further, by means of providing
stable feedback to the generator, this constraint is expected to
reduce the instability of the GAN training.

IV. EXPERIMENT

The proposed CycleGAN architectures have been trai-
ned and evaluated, using the VCC2018 database [2]. The
VCC2018 training corpus contains 80 short sentences per
speaker, sampled at 16 kHz and quantified on 16 bits. For
the evaluation set, we used the first 5 sentences, whose length
was superior to 2s.

Our architecture was inspired by the DCGAN and by the
cycleGAN-VC [10], [11]. For both generators, we used a
two-layer encoder with convolutions, followed by a two-layer
bottleneck with convolutions and then a two-layer decoder
with transposed convolutions. For both the encoder and the
decoder, we applied a kernel size 2 and a stride size 2,
so as to avoid the checkerboard effect [25], noticing that
consistently better results were obtained when this undesirable
effect was avoided. For the bottleneck, we applied kernel size
3 and and stride size 1. The overall generator has respectfully
256, 512, 512 , 512, 256 and 1 filters. We applied instance



TABLE I
MOS AND 95% CONFIDENCE INTERVAL OBTAINED FOR THE DIFFERENT VC SYSTEMS.

Male-to-Male (MTM) Female-to-Female (FTF) TOTAL
Speech Signal Class Similarity Naturalness Similarity Naturalness Similarity Naturalness
orig : target 4.96 ± 0.09 4.91 ±0.12 5.00 ±0.00 5.00 ±0.00 4.98 ±0.04 4.96 ±0.05
conv : weGAN 2.52 ± 0.42 2.15 ±0.23 2.29 ±0.40 2.13 ±0.34 2.42 ±0.30 2.16 ±0.20
conv : geweGAN 2.80 ± 0.76 2.20 ±0.30 3.32 ±0.35 3.00 ±0.40 3.10 ±0.47 2.56 ±0.28
conv : gimGAN 3.21 ± 0.37 2.19 ±0.42 3.09 ±0.46 3.41 ±0.36 3.15 ±0.30 2.81 ±0.33
conv : cycleGAN-VC (baseline) 3.33 ± 0.46 2.43 ±0.42 2.75 ±0.33 2.06 ±0.28 3.05 ±0.31 2.27 ±0.27

normalization, followed by a ReLU at the end of each layer.
Since spectral envelopes explicitly contain formant informa-
tion, the task becomes much easier allowing us to implant
a rather small generator, compared to traditional cycleGAN
implementations. [10], [11] For both discriminators, we used
4 convolutional layers with a filter size 2, a kernel size 2,
with respectfully 64, 128, 256 and 512 filters. These four
layers were followed by two fully connected layers, with 512
and 1 neurons respectively. We applied instance normalization,
followed by a LeakyReLU at the end of each layer, except
for the last one. Our inputs were of size 32 and 128, for
frequency bins and time frames respectively. We chose �c and
�e to respectfully be 0.3 and 1. By lowering the traditional
values for the cycle-consistency loss, we rather force GAN
learning than cycle-consistency learning. This means that
more weight is given to the identity learning, the task of
the GAN, than to the phoneme reconstruction learning, the
cycle-consistency task. In fact, otherwise results were found
to be closer to a reconstruction, rather than a conversion.
We applied a batch size 1 and we used least squares error
for the discriminator loss, introduced in the LSGAN [20]
and optimized it with the Adam algorithm, as in [10], [11]
for a total of 800k iterations, with a generator learning rate
of 0.0002 and a discriminator learning rate of 0.0001. We
implemented three GAN variations that all share the same
network structure and input representation. The first variation,
uses the Weighted GAN paradigm (weGAN) from [22] with
⌘gen = 0.1. For the second variation, we implemented the
generalized weighted GAN paradigm (geweGAN) for both the
discriminator and the generator losses, as discussed above,
with ⌘gen = 0.9and ⌘dis = 0.9. For the third variation, we
implemented the generator impact weighted GAN paradigm
(gimGAN), as discussed above, with ⇢gen = 0.9. Finally, we
also implemented cycleGAN-VC [10] as a baseline.

Similarly to previous research on VC, the proposed VC
is focused on spectral voice conversion only. The VC is
based on a source/filter decomposition of the speech signal,
in which the excitation of the source speaker is preserved
during conversion and only the spectral envelope conversion is
learned and modified. The analysis/synthesis engine relies on
superVP, an extended phase vocoder developed by IRCAM 1.
The spectral envelope is estimated from the short-term Fourier
transform (STFT) by using the True Envelope algorithm [26].
The Mel spectral envelope is then computed by integrating the

1. www.forumnet.ircam.fr/product/supervp-max-en/

estimated spectral envelope over 32 Mel filters in which the
energy of each Mel filter is normalized to unity.

A. Experimental setups

The experiment consisted into the judgment by listeners of
singing voice samples, based on the similarity to the target
singer and the naturalness of the singer, as used for the voice
conversion 2018 challenge [2]. Conversion were processed
for all sentences contained in the test set. For the perceptual
experiment, short excerpts were used and presented to the
participants (around 5s.). We chose SF4 and TM4 as the source
and TF3, TF4, TM3 and TM4 as the target. We evaluated the
naturalness and speaker similarity of the converted samples,
with a mean opinion score (MOS) test.

During the experiment, 15 short speech samples, original
source and target speakers, and converted source-to-target
speaker (each having duration of about 5s) were randomly
selected from the test set, and presented to the participant in
a random order. For each speech sample, the participant has
the possibility to listen to an excerpt of the original target
speaker. Then the participant is asked to rate the naturalness
of the converted speech sample and its similarity to the target
speaker. The experiment was conducted on-line, encouraging
the use of headphones and quiet environment. 15 individuals
participated in the experiment.

V. RESULTS AND DISCUSSION

The results of the perceptual evaluation are presented in
table I. An overall result is that the original target speaker
is consistently qualified to have high similarity and quality.
In looking into the average results for all speaker pairs it is
easy to see that the gimGAN and geweGAN variants perform
significantly better than weGAN variant. This shows that the
proposed GAN modifications used for training geweGAN and
gimGAN have a positive impact on similarity and naturalness.
Note that the energy constraint had an important contribution
to these results. Without this constraint the similarity and
naturalness rating are about 0.5 points lower (results not
shown). Finally, the cycleGAN-VC baseline achieves approxi-
mately the same performance in similarity, while gimGAN
and wegeGAN are perceived as more natural with gimGAN
achieving overall the best results where differences in natural-
ness are more pronounced and differences in similarity remain
marginal. Note however, that the geweGAN and gimGAN
networks achieve this performance with about 3 times less
parameters, which results in considerably shorter training and

www.forumnet.ircam.fr/product/supervp-max-en/


inference times, which is expected to be a result of directly
working on the spectral envelope. Looking into the sub groups
for MTM and FTF conversions, one can notice that the best
network changes with gender. While cycleGAN-VC baseline is
best for MTM conversion, wegeGAN has been evaluated best
in the FTF case. These differences in the two gender groups
indicate a relatively strong dependency of the conversion
performance on the speaker.

VI. CONCLUSION

The present paper investigates Voice Conversion with Ge-
nerative Adversarial Networks (GAN), particularly with the
cycleGAN paradigm, addressing optimization and stability
issues. First, we use spectral envelopes as inputs. Second,
so as to optimize and to address the stability issues of the
GAN training we propose a generalization of the weighted
GAN, the geweGAN, and a similar approach, the gimGAN.
Our conducted experiment shows first that both proposed
methods are able to score a better performance than the
previously proposed weighted GAN. Second, it shows that
the proposed method performs similarly to the cycleGAN-
VC baseline on similarity and considerably outperforms it
on quality. Furthermore, these results were achieved using
a significantly smaller network, which significantly reduces
training time. Finally, an additional energy constraint to the
loss was found to be essential for similarity and naturalness
learning. For future work, we plan to combine the proposed
generalized weighted GAN with the generator impact GAN,
so as to further improve the stability of the GAN training
procedure.
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