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The theory of Kolmogorov, enunciated for very large Reynolds numbers, has progres-
sively been shown to be inoperative for characterizing flows of practical relevance. Yet,
in a recent study by Alves Portela et al. (2020), the turbulence statistics in the very
near wake of a square prism at modest Reynolds numbers, reveal a significant portion of
scales complying with a cascade of Kolmogorov-type. By resorting to a generalized ver-
sion of the Kármán-Howarth-Kolmogorov equation, this intriguing observation is shown
to be an illusion, hiding a measurable influence of coherent structures and statistical
inhomogeneity. This striking conclusion highlights that a complete statistical theory of
turbulence cannot dispense with the influence of large scales, possibly coherent, motions.
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1. Introduction

Despite its ubiquity, turbulence continues to challenge mathematicians, physicists, and
engineers because of the complex hierarchy of eddies of fluid motion, which interact in a
puzzling manner. Kolmogorov (1941a) was the first to hypothesize that for asymptotically
large Reynolds numbers, a clear separation is expected between the processes acting at
large, intermediate and dissipative scales. The information conveyed by the large scales
is likely to decline after the first non-linear interactions so that there should exist a scale
beyond which turbulence becomes universal and therefore locally isotropic. Under the
same assumption of sufficiently large Reynolds numbers, Kolmogorov (1941b) carried



2 F. Thiesset, L. Danaila

out a statistical analysis of the velocity field by considering the turbulent kinetic energy
probed at fixed scale defined as the distance between two points. His analysis showed that,
for locally isotropic turbulence, the energy transfer between scales in the intermediate
range is constant and proportional to the mean energy dissipation rate. This result,
known as the 4/5th law, is often considered the only exact (yet asymptotic) theory of
turbulence.

However, the Reynolds numbers achievable in laboratory experiments are far smaller
than would be required for Kolmogorov’s 4/5th law to apply. In such situations, scale sep-
aration does not occur. The effect of finite Reynolds number, i.e. the combined influence
of small-scale (viscous) and large-scale effects, has been accounted for in the generalized
Kármán–Howarth–Kolmogorov equation, which is derived from first principles without
the need to invoke any particular symmetry of the flow (e.g. Danaila et al. 2001; Hill
2001). Extensive research on this theory in the last three decades (see, e.g., Qian 1997;
Danaila et al. 2002; Marati et al. 2004; Antonia & Burattini 2006; Valente & Vassilicos
2015) has demonstrated the predominant role of non-stationarity in decaying flows, statis-
tical inhomogeneities, turbulent kinetic energy production, turbulent/pressure diffusion,
and the general concept of forcing.

To complicate matters further, the large scales sometimes reveal an identifiable and
regular behaviour related to the type of hydrodynamical instability that has led to their
creation. These are generally referred to as coherent structures (see for example Reynolds
& Hussain 1972). They occur within most flows but they remain poorly understood be-
cause coherent motion possesses non-universal characteristics associated with initial and
boundary conditions. Townsend (1990) synthesized this conundrum in the following terms
”at this distance [50’s] it may seem to be nearly the end of purely statistical approaches
before concepts of eddy structure began to assume importance”. Eighty years since Kol-
mogorov’s theory, there remain open questions such as the way coherent motion interacts
with randomly fluctuating turbulent eddies and how the former can be incorporated into
a statistical theory of turbulence. Does the organized motion influence the cascade pro-
cess? Since coherent structures generally emerge from velocity shear, does the cascade
process become sensitive to inhomogeneities? The recent work by Alves Portela et al.
(2020) sheds new light on these long standing questions and proves that the effect of
coherent motion needs to be explicitly accounted for.

2. Overview

The turbulence community owes a great deal to Reynolds & Hussain (1972) who first
highlighted the dynamical influence of coherent structures or ’organized waves’. They
came up with the astute idea of decomposing the fluctuating field into mean, coherent and
random components and found that a portion of the energy conveyed by the organized
structures could be transferred to random motion. However, they considered one-point
statistics and thus could not gain insight into the scales affected by the coherent motion.

This issue has been addressed more recently by Thiesset et al. (2013) who showed
that coherent motion may act to force the cascade between scales. They found that in
contrast with classical decaying turbulence, the transfer of energy in wakes behind two-
dimensional generators was systematically enhanced, and therefore closer to the asymp-
totic Kolmogorov scaling. This observation was further confirmed by invoking structure
functions conditioned by the phase of the coherent motion (Thiesset et al. 2014), which is
the two-point extension of the one-point phase-averaged statistics introduced by Reynolds
& Hussain (1972). Within this framework they showed that both the energy distribu-
tion and its transfer at a given scale are modulated (in amplitude) by the time-periodic
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dynamics of the coherent motion. Using two-point statistics, they derived the transport
equations for the second-order structure functions of both coherent and random compo-
nents of the velocity field to characterise the turbulent cascade process in the presence
of coherent structures. They found that at a fixed location in the flow, energy transfer
between scales is significantly enhanced when coherent motion is present, and diminished
in its absence.

Alves Portela et al. (2020) apply a similar methodology to derive fully inhomoge-
neous and anisotropic Kármán–Howarth–Kolmogorov equations for the kinetic energy
in the presence of quasi-periodic coherent structures, accounting for inhomogeneities of
the mean flow. The novelty of their approach is to use this theoretical framework to
explore the very near-field of the wake behind a prism where the scale/space features re-
main largely unknown, in contrast with intermediate and far-field flows. They use direct
numerical simulations (DNS) to calculate the contributions of all processes including
turbulence decay and production, pressure/turbulent-diffusion and the forcing due to
coherent structures.

The total (coherent + random) energy transferred is restored, because all terms are
computed from the first principles. Alves Portela et al. (2020) then discovered that there
exists a reasonable portion of scales which surprisingly comply with the Kolmogorov con-
stant energy transfer in the cascade. The authors qualify this result as ”a clearly non-
Kolmogorov yet Kolmogorov sounding [cascade]”. Indeed, Kolmogorov’s theory should
not apply for the Reynolds numbers investigated by Alves Portela et al. (2020) in the
presence of the strong inhomogeneity and anisotropy of the flow. Could coherent mo-
tion and/or inhomogeneity be responsible for this apparent constant energy transfer?
Using the previously introduced triple decomposition for the velocity structure func-
tions, Alves Portela et al. (2020) showed that the constant total energy transfer hides a
contribution of the forcing associated with the coherent motion. By further decompos-
ing the total transfer term into an inhomogeneous and homogeneous contribution, they
find that inhomogeneities also contribute directly to the energy transfer in addition to
manifesting themselves through the appearance of additional terms in the generalized
Kármán-Howarth-Kolmogorov equations.

Impressively, they characterise how energy is transferred from the injection, through
the mean velocity gradients, to the coherent motion and finally to the random fluctua-
tions. While this general picture is believed to apply to most flows, this is the first time
that this complex process is unravelled in a quantitative way, enabled uniquely by the
combination of theory and DNS. Moreover, the Kármán–Howarth–Kolmogorov equation
for turbulent motion in the presence of coherent structures appears to be the most ap-
propriate framework to quantify the extent and range of scales over which each effect
influences the total energy transfer, including the forcing associated with the coherent
motion. The work of Alves Portela et al. (2020) provides a significant step forward in
characterising the effects of inlet/boundary conditions in a complex, inhomogeneous and
anisotropic flow, with the ultimate aim of predicting them at Reynolds numbers typically
encountered in the laboratory.

3. Future

The work by Alves Portela et al. (2020) opens new avenues of investigation of the intri-
cate interactions between coherence and turbulence. Will the organized motion continue
to influence the cascade process when the inlet velocity is increased, and/or when travel-
ling through the intermediate and far field? How are each individual velocity components
and cross correlations affected? How do different directional components of energy flux



4 F. Thiesset, L. Danaila

perceive the coherent motion, beyond the circularly averaged transfer term considered by
Alves Portela et al. (2020)? How can this information be used to build physics-informed
predictive tools such as Large-Eddy-Simulation models? Answers to these open questions
may be provided by generalized Kármán-Howarth-Kolmogorov equations in the presence
of periodic forcing.

In addition, the decomposition of the transfer term proposed by Alves Portela et al.
(2020) into homogeneous and inhomogeneous contributions may help to ascertain the
role of statistical inhomogeneity. The question of the uniqueness of such a decomposition
which is addressed in Alves Portela et al. (2020) should be further examined.

Finally, it is worth stressing that in some flows, coherent structures do not possess a pe-
riodic signature or multiple periodic motions can be at play (e.g. farms of wind turbines).
In such situations, phase averages are precluded and classical two-point statistics (cor-
relation and structure functions) may not remain appropriate. One is then likely to rely
on some other statistical tool such as low-pass or band-pass filters, Proper-Orthogonal-
or Dynamic-Mode-Decomposition, or wavelets to name a few. By pursuing work in this
direction, one should be able to explicitly identify the different processes (transfer, pro-
duction, dissipation) in such a new space of scales, flow positions and time.
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