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Improved data association using buffered pose adjustment for map-aided
localization

Anthony Welte1, Philippe Xu1, Philippe Bonnifait1, Clément Zinoune2

Abstract— Maps provide an important source of information
for autonomous vehicles. They can be used along with cameras
and lidars to localize the vehicle. This requires the ability to
correctly associate observations to features referenced in the
map. The problem is all the more difficult than all observations
are not necessarily referenced, and all map features might not
be detectable with the embedded sensors.

This paper presents an adjustment technique that enables
to increase the number of associations that can be made while
limiting the chance of obtaining wrong associations. This is
achieved by matching observations in batches in a buffer and
matching them regularly. Periodically, the observation buffer
is used to adjust the trajectory used to match observations.
This is done without making any assumption on the association
between observations and map features through a likelihood
maximization process. The adjusted trajectory then provides
the best associations that are used for real-time localization.

The method was tested with data recorded on public roads
using an experimental vehicle. The results show that thanks to
the trajectory adjustment step and the use of an observation
buffer, the number of associations that can be made is increased.
This also results in greater localization accuracy and consistency
with an average error of 0.7 meters at 50 Hz using road
markings and traffic signs.

I. INTRODUCTION

Autonomous vehicle navigation highly depends on an
accurate and reliable localization with respect to a represen-
tation of the driving environment which is stored in a map.
With High-Definition (HD) maps which contain georefer-
enced features [1], [2] the localization system accuracy can
be improved significantly [3], [4], [5]. Building such maps
can be expensive but we believe that, in the near future,
HD maps of the road network can be deployed on a large
scale. Accurate mapping being itself a challenging task, the
resulting map often contains errors or is incomplete [6] due
to constant evolution of road networks. Such faulty data must
be carefully taken into account.

Improvement of localization using accurate maps can only
be done using sensors able to observe referenced landmarks.
Smart cameras that measure distances to road markings
and road edges (ground features) are being equipped on
commercial vehicles for Advanced Driver-Assistance Sys-
tems (ADAS) such as lane keeping assistant systems. These
sensors have already been used for localization and are
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particularly useful to improve the across track localization
accuracy [3].

Another promising type of sensors is lidar. As lidars mea-
sure distances, they are especially interesting for localization
when combined with maps. Lidars have not only been used
with dense maps [7], [8], [9] but also with sparse feature
maps [10], [11]. From lidars, particular landmarks can be
detected not only using the Cartesian information, but also
thanks to the intensity data returned by most lidars. Indeed
some features such as road signs are easily identified using
lidar intensities as these features have been designed to be
seen at night, thus return most of the laser light.

Using detected features for localization is not straight-
forward. Indeed, detections need to be matched to their
corresponding feature in the map. This problem is especially
important as a wrong association can have a significant
effect on the localization solution which cannot be acceptable
for safety-critical applications like autonomous driving. This
must be achieved in a timely manner as localization needs
to be performed in real time and at high frequencies (at least
50 Hz).

Localization and mapping studied in a SLAM context is
subject to similar problems. Ambiguous matches between
detections and mapped features need to be dealt with as
well as loop closures. For autonomous vehicle navigation
these are rare. The problem of finding correct association is
nonetheless similar with SLAM. This work focuses on the
matching problem of ground features and road sign mea-
surements with georeferenced features in HD maps provided
by a third party. The main contributions of the paper are
the following. i) Our matching approach uses a smoothing
step to improve localization estimates on a local window. ii)
An optimal rigid adjustment of the local trajectory is then
computed. Since the dimension of the adjustment parameter
is small, it enables a real-time and tractable computation
of a multi-hypothesis adjustment without approximation.
This adjustment increases the number of good associations,
leading to an improved localization. iii) We explain how a
filtering scheme is implemented in parallel to provide to the
vehicle a high-frequency pose information. iv) An experi-
mental evaluation using real data is presented. This shows
significant improvements compared to classical snapshot data
association methods.

The next section reviews related work in localization
with perception sensors and maps. Section III introduces the
estimation scheme based on Kalman filtering and the obser-
vations considered in this paper. Section IV details the asso-
ciation process and section V describes the adjustment step.



Finally, section VI presents experimental results obtained
from data recorded on public roads using an experimental
vehicle.

II. RELATED WORK

The matching problem comes up in many fields of
robotics. Image based detectors are typically able to extract
descriptors of the detected features. These descriptors are
compared to those stored in the map, making the matching
problem easier. To alleviate the effect of bad associations,
the localization problem is solved using robust estimation
techniques such as RANSAC [12]. This assumes that the
best association needs to maximize the number of matches
which is not necessarily the case when the map is missing
features.

Descriptors can also be found for point clouds. The authors
in [13], [14] exploit both point cloud descriptors and the
relative distances between mapped and observed features
to provide a matching solution. They build a graph where
each connection represents two coherent (in terms of relative
distance) associations. The associations forming the biggest
clique are then used for localization.

Matching is also a problem studied in SLAM applications.
Although consecutive observations can be matched fairly
easily since the map is built based on those same observa-
tions, SLAM approaches still need to find accurate matches
for loop closure tasks. In [15], the authors build upon the
iSAM2 framework and introduces multi-hypothesis factors
to account for matching ambiguities. This method provides
multiple estimates of the variable depending on the selected
hypothesis. iSAM2 is not suitable for applications where
real-time and high frequency (50 Hz) estimation is critical
and MH-iSAM2 significantly increases the computational
cost making such method unsuited for autonomous vehicles.

Variations of iSAM have been proposed to enable real-time
estimation of the state. Kaess et al. [16] separate the problem
in two: a filtering part operating in real-time and a smoothing
part the periodically integrate the information from the
smoother. The real-time constraint often implies a relaxation
in the ambiguity management, either by disregarding it or
using non-Gaussian noise models [17]. The authors in [18],
[19] proposes to approximate the multi-modal Gaussian by
whichever mode is most likely at the estimation point. This
approach is risky for real-time applications as, although
the dominant mode might improve during the iterative es-
timation process, the first choice will influence the most
recent estimate significantly. For safety critical applications
such as autonomous driving it is preferable not to use such
constraints until the system is confident they are accurate.

Although approaches used in SLAM have shown great
promise, they usually do not enable high frequency state esti-
mation which is critical for autonomous driving applications.
Because in SLAM applications the map is built incrementally
using the same detection system used for localization, the
ambiguous association problem typically occurs at loop
closure. Using highly detailed third party maps results in
ambiguities at almost every observation. For these reasons,

this work uses Kalman filtering in order to guarantee real-
time estimation and relies on a trajectory adjustment before
selecting matches. This step is done without approximating
the multi-modal noise model and is made tractable by only
estimated a 2D rigid transformation of the trajectory instead
of solving the complete state space as would be done using
a SAM framework.

III. LOCALIZATION FILTER

A. Filtering Scheme

Localization is performed using extended Kalman filtering
to estimate the vehicle state xk =

[
xk, yk, θk, vk, ωk

]T
composed of the vehicle two dimensional pose, i.e., position
and heading, along with its longitudinal speed and yaw rate.
The filter combines three kinds of measurements: Dead-
Reckoning (DR) measurements which provide the relative
motion of the vehicle from one time sample to the next,
GNSS measurements giving coarse estimates of the position
and vehicle heading, and perception measurements from a
camera and a 3D lidar that are used to localize the vehicle
within a map through Kalman’s updates. The filtering is
derived classically as follows:

Prediction: x̂k|k−1 = fk
(
x̂k−1|k−1

)
P k|k−1 = F kP k−1|k−1F

>
k +Qk

Update: ỹk = zk − hk
(
x̂k|k−1

)
Sk = HkP k|k−1H

>
k +Rk

Kk = P k|k−1H
>
k S
−1
k

x̂k|k = x̂k|k−1 +Kkỹk
P k|k = (I −KkHk)P k|k−1

where F k and Hk are the Jacobian matrices of respec-
tively the evolution model fk and the observation model hk.

All the measurements are used as observations. Since
GNSS data fusion with DR is well studied in the literature, it
is not detailed in this paper. The measurements used for the
DR estimation of the vehicle are a yaw rate gyro, 4 wheel
encoders and the steering wheel angle. The observation
models used for these sensors follows Ackerman geometry
and are described in-depth in [20].

Perception measurements from cameras or lidars provide
localization information relatively to the sensor reference
frame. To be used for absolute localization, these mea-
surements have to be matched to a map encoding absolute
position. In this work, we suppose to have a HD map contain-
ing road markings, represented as polylines, i.e. sequences
of line segments, and road signs, represented by points
localized at their geometric center. An intelligent camera
is used for road markings detection and a lidar for road
sign detection. Through the rest of the paper, the HD map
M = {m1,m2, . . .} is represented as a set of map features
mi which can either be a line segment (road marking) or a
point (road sign).

B. Observation Models for the Camera and the Lidar

1) Road Markings: ADAS use off-the-shelf smart cam-
eras that are able to return lateral distances to neighboring



Fig. 1: Schema of the vehicle with a road sign observation (red) and a
ground feature observation (blue). The lateral distance ci from the front
bumper to the ground feature is measured as well as the 2D position[

Mxi
Myi

]> of the road sign in the mobile frame.

road markings. These observations are valuable for localiza-
tion as they provide a lateral constraint for state estimation.

Let mi =
[(
xAi , y

A
i

)
,
(
xBi , y

B
i

)]
be a map feature repre-

senting a line segment [AB], where
(
xAi , y

A
i

)
and

(
xBi , y

B
i

)
are the geo-referenced coordinates of points A and B. Let xk
be the vehicle state at time k. The road marking observation
model hmi of the camera measurement ci is given by [3] :

ci = hmi (xk) (1)

=

(
l sin θk + yk − yAi

)
xABi −

(
l cos θk + xk − xAi

)
yABi

xABi cos θk + yABi sin θk

where xABi = xBi − xAi , yABi = yBi − yAi and l is the
longitudinal distance between the camera and vehicle frame
as pictured in Figure 1.

2) Road Signs: Lidars are especially well suited for road
sign detection as they are made to be reflective for visibility
purpose. This results in a high returned intensity. A detector
can therefore be built by thresholding the lidar point cloud
to keep only intensities over a threshold Imin. The resulting
points can be grouped into clusters by Euclidean clustering.
The centroid

(
Mxi,

Myi
)

of each cluster can then be found
by fitting a bounding box to the cluster using principal
component analysis (PCA).

Now, let mi =
(
xSi , y

S
i

)
be a map feature representing a

geo-referenced road sign. The road signs observation model
hsi of the lidar measurement is defined as[

Mxi
Myi

]
= hsi (xk) =

[
cos θk sin θk
− sin θk cos θk

] [
xSi − xk
ySi − yk

]
(2)

IV. DATA ASSOCIATION PROCESS

Associating the detected objects to their corresponding
map features is a critical step. Map features can improve
localization accuracy significantly but require to be correctly
associated. The effects of a bad association are twofold. The
estimation error increases while the uncertainty decreases
because of the new measurement. Then, because the state
has been corrected using bad observation, subsequent obser-
vations can be wrongly matched, worsening the problem.

At a given time k, let Z(k) =
{
z
(k)
1 , z

(k)
2 , . . .

}
be the set

of observed features, which can be a mix of road markings
and signs. The goal of the data association process is to
find for each observation z

(k)
j its corresponding map feature

mi ∈M.

(a) (b)

Fig. 2: Difference between a UNN (a) and Hungarian (b) association
methods. The UNN method matches an observation to its closest feature and
does not match if the feature is already taken, thus the top observation (red)
is associated to the bottom lane marking (black). The Hungarian method,
associates every observation in order to minimize the sum of association
distances. The two observations are thus associated to their correct lane
marking.

A. Unique Nearest Neighbor

Nearest neighbor association is widely used to associate
high level observations to map features. In this paper, the
nearest neighbor association is performed using Mahalanobis
distances with the different map features. This is done to
account for the uncertainty propagation of the predicted mea-
surements. It is also useful for rejecting unlikely associations.

Hence, an observation z
(k)
j is associated with the map

feature mi such that

mi = arg min
mi∈M

(√
y>i,jS

−1
i,j yi,j

)
(3)

where yi,j = z
(k)
j −hi (x̂k), x̂k is an estimate of the vehicle

state and Si,j = HiP kH
>
i +Rj with Hi the Jacobian of

hi, P k and Rj the covariance matrices of respectively the
state estimate and the measurement.

This method allows multiple observations to be associ-
ated with the same feature. To prevent this, when multiple
observations are associated with the same feature, only the
observation with the lowest Mahalanobis distance is kept. We
refer to this method as Unique Nearest Neighbor (UNN).

B. Hungarian Association (Kuhn-Munkres)

UNN can either associate an observation with its closest
feature, or not associate the observation if that feature
is closer to another observation. Munkres algorithm [21]
performs a global matching considering all observation at
time k. Like the UNN method, it only allows features to be
associated with a single observation. However, it does not
necessarily associate an observation with its closest features
(Figure 2). The method finds matches that minimize the
summed Mahalanobis distances of all matches. Hence, at
time k for an observation set Z(k) of size n, it will find the
subset Mk ⊆M containing n features so that

Mk = arg min
Mk⊆M

( ∑
mi∈Mk

√
y>i,jS

−1
i,j yi,j

)
(4)

where mi is the feature associated to the observation z
(k)
j .

C. Association Rejection

To avoid potential wrong matches, the maximum Maha-
lanobis distance allowed for an association to be valid is
limited. Observations that are too far from their associated
feature are discarded. This step is done through a rejection
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Fig. 3: Steps of the matching algorithm. Blue: measurements, Green: pose
estimates, Red: road signs (dots are mapped, the cross is not), Black:
markings. (a) The measurements available at the current time. (b) Buffered
observations and estimates. (c) Smoothed trajectory. (d) Adjusted trajectory
used for the final matching.

step that only allows association with a small enough dis-
tance. For an observation z

(k)
j associated with a map feature

mi, the observation is considered valid if

y>i,jS
−1
i,j yi,j < F−1χ2 (1− α; d) (5)

where Fχ2 is the cumulative distribution function of a χ2 law
with a degree of freedom d = 1 for road markings and d = 2
for road signs. The value α ∈ [0, 1] quantifies the probability
of rejecting the association (i, j) when it is actually valid.

V. BUFFERED POSE ADJUSTMENT FOR AN IMPROVED
ASSOCIATION

When using in real-time high level features, such as road
markings or signs, the observation set Z(k) at time k is of
limited size. Having few observations can lead to wrong data
association as many ambiguities can arise due to a large
pose uncertainty. Moreover, if the perception modules are
asynchronous, the markings from the camera and the signs
from the lidar are likely to arrive at different times.

The final objective is to use the exteroceptive measures
with the best association in the update of the filter. Consider
for instance the real situation of Figure 3 (a) where a
missing road sign is detected but unfortunately there are
other signs nearby. In order to limit association ambiguities,
the observations are not matched in a snapshot manner.
Buffers containing the observations are used with filtered
state estimates (see Figure 3 (b)). Hence, the matching is
performed using more observations thus limiting the risk
of ambiguous matching. The observation buffer provides
a larger number of measurements and allows a globally
consistent matching, which is known to be more robust.

Thanks to this approach another problem can be addressed.
Estimation errors which are time-correlated can cause incor-
rect matchings. A Kalman smoothing is first applied on the
buffer to correct the jaggedness of the filtered estimates (see
Figure 3 (c)). Then, an adjustment of the whole trajectory
over the buffer is made to compensate as much as possible
the filter errors to find the best data association. Figure 3
(d) shows the final result. It can be noticed that the faulty
road sign measurement has been sufficiently shifted away

such that a wrong matching will be rejected in the last filter
update.

The observation buffer is processed at a low frequency
(e.g. every 250ms) since it cannot always be treated within
the filter update period. Once the association of all the
exteroceptive measurements is done, the new matches are
provided to the Kalman filter estimator. The localization filter
is run again starting from the first matched observation to
provide an improved real-time localization. This is explained
more in-depth in Section V-C.

Let K be the most recent time of the observation
buffer, with which the matching is solved. Let ZK ={
Z(k) |k ∈ JK − S,KK

}
be the set of all the observations

over a buffer of size S. The goal is to associate all the
elements of ZK simultaneously. The following sections detail
the steps used to achieve this. The vehicle trajectory is first
smoothed. It is then adjusted using the observations. The
adjusted trajectory is finally used to match observations to
map features.

A. Pose Smoothing

Instead of directly using the filtered state estimates x̂k|k,
with k ∈ JK − S,KK, we propose to first compute better
state estimates over the buffer using a Kalman smoother [22].
To do so, a backward pass is performed as follows:

x̂k|K = x̂k|k + Jk
(
x̂k+1|K − x̂k+1|k

)
(6)

P k|K = P k|k + Jk
(
P k+1|K − P k+1|k

)
J>k (7)

where
Jk = P k|kF

>
k+1P

−1
k+1|k (8)

Thus, from the filtered estimates
{
x̂k|k |k ∈ JK − S,KK

}
,

smoothed state estimates X̂K =
{
x̂k|K |k ∈ JK − S,KK

}
are obtained. These are more accurate with less uncertainty
which will be very useful for the data association process.

B. Pose Adjustment

An additional way to improve the state estimation is to
maximize the likelihood of all the states in the buffer given
all the observations:

L
(
xK−S , . . . ,xK

∣∣∣Z(K−S), . . . ,Z(K)
)

(9)

Maximizing this likelihood function in equation (9) for
all the poses is the buffer is computationally. Moreover,
the temporal coherence between the successive state es-
timates coming from the evolution model could be de-
graded. Instead, we propose to estimate a unique 2D lo-
cal rigid transformation, i.e., a translation and a rotation,
δ =

[
δx, δy, δθ

]
to all the state estimates x̂k|K so that the

likelihood of the resulting states is maximized. Let X̃K(δ) =
{x̃k (δ) |k ∈ JK − S,KK} be the δ-adjusted state estimates
defined as follows:

x̃k =

x̃kỹk
θ̃k

 =

cos δθ − sin δθ 0
sin δθ cos δθ 0

0 0 1

x̂k|Kŷk|K
θ̂k|K

+

δxδy
δθ


(10)

A new likelihood function is defined as



L (δ |ZK ) = L
(
x̃K−S , . . . , x̃K

∣∣∣Z(K−S), . . . ,Z(K)
)

(11)

which can be rewritten as

L (δ |ZK ) =
∏

k∈JK−S,KK

L
(
x̃k (δ)

∣∣∣Z(k)
)

(12)

=
∏

k∈JK−S,KK

∏
z
(k)
j ∈Z(k)

L
(
x̃k (δ)

∣∣∣z(k)j

)
The observation z

(k)
j is related to the state estimate x̃k via

the map features M = {m1,m2, . . .}. Suppose that z
(k)
j

is one of the observations at time k associated to the map
feature mi, then the corresponding likelihood is expressed
as follows with a Gaussian assumption:

Li,j

(
x̃k (δ)

∣∣∣z(k)j

)
= 1√

(2π)d|S̃i,j |
exp

(
−1

2
ỹ>i,jS̃

−1
i,j ỹi,j

)
(13)

with

ỹi,j = z
(k)
j − hi (x̃k (δ)) , S̃i,j = HiP k|KH

T
i +Rj

(14)
and d = 1 for road markings and d = 2 for road signs.

Because the association between z
(k)
j and mi is not known

at this stage, all the map features M in the vicinity have to
be considered. From the law of total probability, we have

L
(
x̃k (δ)

∣∣∣z(k)j

)
=
∑

mi∈M

Li,j

(
x̃k (δ)

∣∣∣z(k)j

)
Pi,j (15)

where Pi,j is the probability that z
(k)
j corresponds to mi.

A discrete uniform distribution over Pi,j is chosen, as no
additional information such as appearance or shape cues on
the detections or on the features is available. So there is no
reason to favor one association over another.

The likelihood function in equation (15) does not take into
consideration the fact that the sensors may detect features
that either do not exist or have not been mapped. To account
for this, we propose to add a non-association probability P∅,j
and a likelihood L∅,j which leads to

L
(
x̃k (δ)

∣∣∣z(k)j

)
=
∑

mi∈M

Li,j

(
x̃k (δ)

∣∣∣z(k)j

)
Pi,j+L∅,jP∅,j

(16)
In practice, maximizing the likelihood in equation (12)

may lead to a large adjustment δ, especially when there
are some spatial invariance, i.e., along a straight lane. In
order to constrain the spacial adjustment, we propose to
reformulate the maximum likelihood estimation into a max-
imum a posteriori (MAP) one. For that purpose, we set
the a priori distribution over δ as δ ∼ N

(
0;PK|K

)
. We

chose arbitrarily the most recent covariance matrix estimate
PK|K from the buffer as a representative measure of the pose
uncertainty. The resulting MAP estimation is then defined as

δ̂ = arg max
δ

(L (δ |ZK )P (δ)) (17)

= arg max
δ

(
L (δ |ZK ) exp

(
−1

2
δ>P−1K|Kδ

))

In practice, it is more convenient to minimize the negative
log likelihood

δ̂ = arg min
δ

(− logL (δ |ZK )− logP (δ)) (18)

= arg min
δ

 ∑
k∈JK−S,KK

∑
z
(k)
j ∈Z(k)

− logL
(
x̃k (δ)

∣∣∣z(k)j

)

+
1

2
δ>P−1K|Kδ

)
This minimization problem is solved using the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) algorithm which is an
approximation of the Newton method. The algorithm con-
verges in fewer than 10 iterations in 67% of cases but a
maximum number of iterations is also set such that the
matching step always ends in time to provide matches.

C. Matching and Integration in the Filter

The adjusted trajectory is an improvement over the filtered
trajectory. However, as quantifying the resulting uncertainty
attached to it is not easy, it is only used to improve the
matching of features. This matching is then used in the filter.

Once the δ-adjusted trajectory has been found, it can be
used to associate observations by applying methods presented
in Section IV. The newly associated observations can now
be used in the filtering scheme.

Because the matching cannot always be performed within
the filter update period, it is instead run at a higher period
∆tm. Therefore, when using the buffer pose adjustment
method, road sign and road marking observation are not used
directly to estimate the state. The state is estimated without
these observations for some time before they are associated
and can be used.

The matching starts at time sample K using observations
and state estimates from time K − S to K. In parallel, the
filter keeps estimating states without map feature observa-
tions to always get a real-time estimate. When the matching
is done, the filter might have estimated states beyond time
K. The filter is then run again starting at time K − S up to
current time to account for the new matches that have been
made.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

The method has been evaluated on real data. The sensor
data was recorded using an experimental Renault ZOE, see
Figure 4, equipped with a u-blox M8T GNSS, an intelligent
camera by Mobileye providing up to four simultaneous road
marking measurements at 3.7 Hz, and a Velodyne VLP-
32C lidar used to detect road signs at 10 Hz (using the
threshold Imin = 230). The vehicle was also equipped with
a Novatel SPAN-CPT that combines Real Time Kinematic
(RTK) GNSS and high accuracy IMU data to provide cen-
timeter level accuracy. This system is only used as a ground
truth to evaluate the localization quality. The sensor data
were recorded using the ROS framework and all sensors
except the camera were synchronized to the GNSS time.



Fig. 4: Left: Experimental vehicle with GNSS, lidar and camera. Right: tra-
jectory used to test the algorithm (red: Rambouillet 1, yellow: Rambouillet
2).

The non-accurate synchronization of the camera has not been
found to be detrimental to the localization as these lateral
measurements do not change significantly as the vehicle
moves.

The data has been recorded on open roads through the
commercial district of the city of Rambouillet, France. The
trajectory used to evaluate in detail the method consists in
several stretches of straight roads separated by roundabouts,
as shown in red on Figure 4. Further results will be presented
in section VI-E on the yellow trajectory and on trajectories
recorded in Compiègne. The Mobileye camera was able to
detect road markings only during the straight portions. The
road sign detector provided measurements along the entire
trajectory, although there were more road signs close to
intersections and roundabouts.

The map used in this experiment is a HD map that
references road markings as line segments and road signs
as points in two dimensions. The map was built by a third
party map provider and is expected to have centimeter level
of accuracy.

Several configurations have been tested in these experi-
ments. Results are presented when the two matching strate-
gies (UNN and HG) are applied in real-time. In this case,
measurements are used as they are received and matched di-
rectly to be used in the next filter update. The same matching
strategies are also applied after the method presented in this
paper has been used (Buffered UNN and Buffered HG). The
observations are not used directly but are saved to be matched
every ∆tm. The entire matching step has been found to take
31 ms on average on an Intel i7-7820HQ processor. ∆tm
was chosen high enough (250 ms) such that the matching
always ends within this period. In both cases, the localization
is performed at 50 Hz. The buffer length is chosen at 5s
(S = 250), the reason for this choice is explained in section
VI-D.

Thanks to a test trajectory with a ground truth, the model
uncertainty of the camera has been found to increase linearly
with the lateral distance to the observed markings. Therefore,
the measurement covariance matrix is chosen as Rm =[
(λ · ci)2

]
, where λ is a scaling factor (chosen at 0.1). We

have observed that the uncertainty of road sign measurements
can be simply modeled as a diagonal matrix Rs = σ2

s ·I2×2.
This has been estimated by a statistical analysis and found
σRS = 0.2m.

As the Mobileye camera is a black-box from which the

Fig. 5: Localization error and observation availability depending on the
rejection rate α. Results are given for the UNN, Hungarian (HG), Buffered
UNN (BUNN) and Buffered HG (BHG). The solid lines show the local-
ization error. The dashed line (road markings) and dotted lines (road signs)
describe the percentage of matched features.

raw images are not available, evaluating the correctness
of the association is impossible. Instead, the proportion of
observation that can be matched is studied as well as its
effect on localization accuracy. Finally, the influence of the
buffer size is assessed.

B. Observation Availability

The number of observations that can be matched to fea-
tures directly affect the localization accuracy. As expected,
increasing the rejection factor α results in fewer observations
for every configuration. However, our method performs better
as the adjustment step reduces the distances to features and
therefore allows matching more map features that will be
used in the filter. Moreover, since the number of matches
remains almost constant until the rejection rate reaches α =
0.7 (see Figure 5), its value can be set high which limits the
chance of bad associations.

The availability of road marking feature matches is similar
for every method. The UNN approach performs slightly
worse than the Hungarian association as it only matches if an
observation is closest to the features. When two side-by-side
ground features are detected, the estimation error can cause
the UNN approach to only match a single observation while
the Hungarian approach can match both, see Figure 2. Using
the proposed method, the advantage of using the Hungarian
method is reduced as the adjustment step compensates for
the estimation error.

Please note that the road sign matching is greatly improved
using an observation buffer and an adjustment step. The
adjustment step enables to reduce the observation residuals
used for the matching, limiting the effect of the non-linearity
of the model. Also, because all observations contained in the
buffer are being matched, observations that could not have
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the four configurations. It shows the covariance weighted error (without unit)
over a 30 s stretch of the test trajectory for the four tested configurations.
Samples above the threshold line indicate a loss of consistency of the
estimate. The results are presented for a rejection rate of α = 0.05 for every
configuration. Although decreasing the rejection rate α should increase the
number of observations thus increase the accuracy, it also results in bad
matches for methods UNN (red) and HG (green).

been matched earlier might be matched in the following itera-
tions of the matching process. For road signs association, the
Hungarian method does not provide significant improvement
compared to UNN.

C. Localization Accuracy and Consistency

If the matching can be correctly done, a higher number of
observations will result in a greater accuracy. This is true for
all configurations, as the rejection rate α is chosen bigger,
the number of matches decreases and the localization error
increases. The observation error increases steadily when the
UNN and Hungarian method are used alone. Because of
the adjustment step, the number of matches for the buffered
configurations only starts to decrease for high rejection rates.
The localization error follows a similar pattern: it increases
slowly until α = 0.6 at which point the number of matches
drops and the error increases.

When the matching is not buffered, the Hungarian method
results in errors smaller by around 2 cm. Its ability to
associate more road markings explains this improvement.
However, when matching using an adjusted trajectory, the
two methods are not noticeably different whichever rejection
risk is chosen. Hence the UNN method is preferred as it is
computationally less expensive to run.

Configurations without adjustment are less accurate be-
cause of the fewer measurements that can be matched. To
increase the number of matches, a solution would be to lower
the rejection rate. This, however, increases the change of
erroneous matching. For rejection rate lower than 0.05%,
a road sign is incorrectly matched greatly affecting the
consistency of the state estimate, as shown in Figure 6. Since
consistency is very important for the integrity of localization
for autonomous vehicle navigation, we believe that snapshot
matching approaches are not well suited in this context.

Given the localization for different rejection rate, α is
chosen at 0.5 such that the maximum association distance
is as small as possible while still keeping some margin to
avoid risking the loss of accuracy occurring for α > 0.6.
With this value, the localization error averages at 0.28 m
and has not been found to go beyond 1 m at any point of
the trajectory.

Fig. 7: Distribution of the localization error depending of the buffer size (the
rejection rate is chosen at α = 0.5). Buffers too short lead to ambiguous
associations thus larger errors. Additionally, a rigid transformation cannot
properly adjust the trajectory leading to fewer matches and decreased
accuracy.

D. Buffer Size Influence

Our method has two components that contribute to im-
proving matching, the optimization step enables to reduce
residuals, making matching easier thus increasing the number
of observations. The second component is the use of past
observations in the optimization step. Indeed, the adjustment
step is dependent on the number of observations it has
available. If the optimization is performed in a snapshot fash-
ion using only to the current observations, the optimization
converges toward the closest map feature to the observations.
This would not help the matching as when a single road
sign is observed, it would be matched to the closest feature.
Hence, erroneous matchings would occur. Using a buffer
of observations provides a more detailed picture of what is
observed thus constraining the optimization and preventing
the most recent measurements to be the sole influence on the
matching.

The length of the buffer affects the number of observations
considered. A longer buffer should therefore result in fewer
ambiguous matchings. The buffer should, however, be small
enough as the smoother state estimates are transformed in a
rigid manner by the optimization, see equation (10).

Figure 7 shows the localization error of the vehicle for
different buffer lengths. It can be seen that buffers shorter
than 3 s are not sufficient as outliers start to appear. This
is due to the lack of unambiguous measurements in small
buffers to compensate for ambiguous ones. In this case, the
error is due to an erroneous road sign matching in a situation
similar to that described in Figure 3. With small buffers, there
are not enough measurements to constrain the adjustment
in orientation and laterally and the observed road sign is
matched to the wrong feature (the observed sign was not
referenced in the map).

Longer buffers enable to better adjust the trajectory but to
a point. For buffers longer than 10 s, the localization error
starts to increase. This is the result of the assumption made
for the adjustment that the trajectory only needs to be moved
rigidly. Hence, too long buffers result in higher residuals after
adjustment. This causes more observations to be rejected,
finally affecting the localization error. For a rejection rate of
α = 0.5, a buffer length of 5 s has been found to be sufficient



TABLE I: Average localization error (in meter) for each method
tested on different trajectories.

BUNN UNN HG
α 0.5 0.05 0.5 0.05 0.5

Rambouillet 1 0.25 0.31 0.42 0.3 0.43
Rambouillet 2 0.68 1.25 2.75 1.26 2.75
Compiègne 1 0.75 0.94 0.97 0.88 0.96
Compiègne 2 0.57 0.65 0.73 0.60 0.73
Compiègne 3 0.77 0.78 0.83 0.78 0.82

to enable unambiguous matches while still providing enough
measurements.

E. Evaluation Using Different Datasets

To further evaluate the performance of the proposed ap-
proach, it has been tested on another recording done in
Rambouillet and on three other experiments carried out in
another city (Compiègne) obtained with a similarly equipped
vehicle. The five trajectories amount to 21 km of roads (50
minutes). Table I contains the average localization error for
different datasets. It can be seen that in all cases the proposed
method performs better (by 16% on average) although some-
time marginally (Compiègne 3). The parameters used for the
buffered method were kept the same as those identified with
the first Rambouillet trajectory. Even with a low α, the UNN
and HG methods rarely achieve accuracies similar to our
approach. These results also show that optimized parameters
on a particular trajectory lead to a good accuracy in different
environments which shows a good robustness of the method.

VII. CONCLUSION

In this paper, an adjustment method aiming at improving
features matching for map-aided localization has been pre-
sented. The quality of the localization is greatly improved
by using signs and markings in buffers. Indeed, adjusting the
trajectory before matching increases the number of road signs
that can be matched sixfold. Through the minimization step
described in this work, the adjustment can be made without
making assumptions on the observations correspondence to
map features. This also enables to set stricter rejection
rate while keeping a good measurement availability. The
quality of the adjustment step depends on the number of
observations it uses. This work shows that by only keeping
measurements from the last 5 seconds, the adjustment can
converge satisfactorily and not result in wrong associations
that would affect the localization error. Because of the
increased number of observations that are matched, the
accuracy of the localization system is also improved. In urban
environment, the localization error averages 0.66 meters and
rarely goes beyond a meter.
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