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[1] In some regions of the Amazon, global biogeophysical models have difficulties in
reproducing measured seasonal patterns of net ecosystem exchange (NEE) of carbon
dioxide. The global process‐based biosphere model Organizing Carbon and Hydrology in
Dynamic Ecosystems (ORCHIDEE) used in this study showed that a standard model
parameterization produces seasonal NEE patterns that are opposite in phase to the eddy
flux data of the tropical evergreen forest at the Tapajós km 67 site (Brazil), like many
other global models. However, we optimized several key parameters of ORCHIDEE using
eddy covariance data of the Tapajós km 67 site in order to identify the driving factors
of the seasonal variations in CO2 flux in this tropical forest ecosystem. The validity of the
retrieved parameter values was evaluated for two other flux tower sites in the Amazon.
The different tested optimization scenarios showed that only a few parameters
substantially improve the fit to NEE and latent heat data. Our results confirm that these
forests have the ability to maintain high transpiration and photosynthesis during the
dry season in association with a large soil depth (Dsoil = 10 m) and a rooting system
density that decreases almost linearly with depth (Hroot = 0.1). Previous analyses of
seasonal variations in eddy covariance fluxes indicated that higher GPP levels were
reached in the dry season compared to the wet season. Our optimization analysis suggests
that this pattern could be caused by a leaf flush at the start of the dry season increasing
the photosynthetic capacity of the canopy. Nevertheless, the current model structure is
not yet able to simulate such a leaf flush, and we therefore suggest improving the
ORCHIDEE model by including a specific phenology module that is driven by light
availability for the tropical evergreen plant functional types. In addition, our results
highlight both the potential and the limitations of flux data to improve global terrestrial
models. Several parameters were not identifiable, and the risk of overfitting of the
model was illustrated. Nevertheless, we conclude that these models can be improved
substantially by assimilating site level flux data over the tropics.

Citation: Verbeeck, H., P. Peylin, C. Bacour, D. Bonal, K. Steppe, and P. Ciais (2011), Seasonal patterns of CO2 fluxes in
Amazon forests: Fusion of eddy covariance data and the ORCHIDEE model, J. Geophys. Res., 116, G02018,
doi:10.1029/2010JG001544.

1. Introduction

[2] The forest biome of Amazonia is a major component
of the earth ecosystem. These forests account for 15% of
global terrestrial photosynthesis [Field et al., 1998] and are
a major contributor to observed interannual variations in the
terrestrial carbon sink [Bousquet et al., 2000]. Furthermore,
evaporation and condensation over Amazonia are major
engines of global atmospheric circulation [Sellers et al.,
1997]. Unfortunately, this biome is currently facing threats
from deforestation and climate change [Malhi et al., 2008].
These forests are subject to increasingly severe drought
episodes through the El Niño–Southern Oscillation (ENSO)
[Misra, 2008] and possibly through deforestation‐driven
reductions in rainfall [Nepstad et al., 2002]. The first climate
projections that included dynamic vegetation and an inter-
active carbon cycle predicted a dieback of the Amazonian
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forest by the year 2100 [Cox et al., 2004], resulting from
regional drying in Amazonia. However, the fate of the
Amazonian forest predicted by global models is still highly
uncertain, particularly their response and resilience to
drought stress. Therefore, these models need to be thor-
oughly tested with observational data [Cox et al., 2004].
[3] In some regions of the Amazon, global biogeophysical

models have difficulties in reproducing the seasonal pattern
of net ecosystem exchange (NEE) of carbon dioxide. Eddy
covariance measurements of NEE of an old growth forest
(Tapajós km 67 site) near Santarém (Brazil) revealed an
unexpected seasonal pattern of NEE where CO2 is lost to the
atmosphere in the wet season and gained by the ecosystem
in the dry season [Saleska et al., 2003]. This pattern was
observed at other sites in Amazonia [Bonal et al., 2008] and
is opposite to the standard predicted NEE seasonal cycles
of several global models: TEM, IBIS [Saleska et al., 2003],
SiB3 [Baker et al., 2008]. Two different underlying mech-
anisms have been proposed to explain this unexpected
seasonal pattern: (1) a dominating response of respiration on
precipitation patterns [Saleska et al., 2003] with wetter
conditions increasing respiration emissions of CO2 and (2) a
photosynthetic or phenological positive response to elevated
light levels during dry season [Huete et al., 2006] (i.e., leaf
flush just before start of the dry season) combined with the
ability to maintain high photosynthesis levels during the
dry season [Hutyra et al., 2007]. This ability can be sus-
tained by deep roots which access deep soil water reserves
[Nepstad et al., 1994], deep soil water columns with high
water storage and/or movement of water in the soil via
hydraulic redistribution [Oliveira et al., 2005] or capillary
rise [Romero‐Saltos et al., 2005].
[4] Baker et al. [2008] could not match the SIB3 model

with the NEE data of the Santarém km 83 site by including
each of these effects individually. Only when the different
effects were combined into the SIB3 model, the NEE fol-
lowed roughly the actual unexpected observed seasonal
pattern. Furthermore, Ichii et al. [2007] showed that rooting
depth strongly controls seasonal variation in modeled Gross
Primary Production (GPP) in the Amazon and that it was
only when deep rooting systems (e.g., 10 m) were consid-
ered, that flux‐derived or satellite‐based GPP in the dry
season were successfully tracked for the Tapajós km 67 site.
Accordingly, Poulter et al. [2009] showed that deep soil
water access was critical to maintain dry season GPP with
the LPJmL model compared against MODIS GPP estimates,
whereas implementing a seasonal LAI did not enhance sim-
ulated dry‐season GPP. However, these latter authors found
indications that canopy photosynthesis was also regulated
by the seasonality of biochemical processes, represented by
the maximum carboxylation capacity (Vcmax).
[5] The three mentioned studies [Baker et al., 2008; Ichii

et al., 2007; Poulter et al., 2009] are based on “manual
tuning” of model parameters, or implementation of new
equations encapsulating underlying processes of the
observed seasonal NEE patterns. In contrast, assimilating
flux tower data into land surface models with a more rig-
orous and statistical approach (accounting for all sources of
uncertainties on model and observations) offers the oppor-
tunity to (1) constrain specific model parameter values and
uncertainties, and (2) identify crucial mechanisms control-
ling the energy, water and carbon budgets or gain hints on

missing processes in the model structure [Williams et al.,
2009]. This opportunity leads to improved model predic-
tions and to a better understanding of the underlying pro-
cesses of observed patterns.
[6] In this study we optimized the parameters of a pro-

cess‐based model using eddy covariance data of the Tapajós
km 67 site (Brazil) in order to mimic the seasonal response
of CO2 and water fluxes to dry/wet conditions in this trop-
ical forest ecosystem. We validated the optimized model at
two different flux tower sites in the Amazon: Reserva Jaru
(Brazil) and Guyaflux (French Guiana). We used the
Organizing Carbon and Hydrology in Dynamic Ecosystems
(ORCHIDEE) global model that describes water, energy and
CO2 flux variations driven by climate, vegetation and soil
information, as well as biomass, litter and soil carbon pools
dynamics [Krinner et al., 2005]. ORCHIDEE is the land
surface component of an earth system model used for the
next IPCC climate simulations. By optimizing the model
parameter values, we tried to identify the driving factors of
the seasonal CO2 flux response in the Amazon. We use a
Bayesian method that allows to account for prior knowledge
on the parameters and to fully account for different sources
of uncertainties. We tested whether the ORCHIDEE model
is able to simulate the correct seasonal cycle of fluxes in
response to seasonal drought by optimizing several key
model parameters or whether the model structure needs
substantial improvements. We tried to identify the unac-
counted processes by letting several parameters vary over
time in the optimization (i.e., each month a new parameter
value is optimized). This led to suggestions for model
structure improvement. In addition, the information content
of the flux data is analyzed (i.e., the ability of the data to
constrain the parameters), using the posterior error covari-
ance matrix on the parameters. We finally assessed the
relevance of the optimization by comparing the optimized
parameters to available field data.
[7] More precisely, the following questions are addressed:

(1) What is the potential of NEE and latent heat (LE)
measurements from a single flux tower site to optimize the
parameters of a process‐based terrestrial model ORCHIDEE?
(2) Does the model calibration at one site improve the sim-
ulation at other similar sites in the Amazon basin? (3) Which
of the previous mentioned mechanisms (respiration or pho-
tosynthesis/phenology) is dominating the seasonal NEE
pattern at the Tapajós site? (4) What are the unaccounted
processed that need to be included in ORCHIDEE for
improved simulations for evergreen tropical forest ecosys-
tems?

2. Materials and Methods

2.1. Site Description

[8] The Tapajós National Forest km 67 site (54°48′ W, 2°
51′ S) is described in detail by Saleska et al. [2003]; a brief
description is given here. The Tapajós National Forest is
located on the eastern side of the Tapajós river, and extends
from 50 to 150 km south of the city of Santarém, Para,
Brazil. The study site is an old‐growth moist tropical
evergreen forest, but it is likely that the site is recovering
from recent disturbance that created high mortality (possibly
triggered by drought associated with strong El Niño events
of the 1990s) resulting in a small net sink or even a source of
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CO2 because the woody biomass is currently growing and
the soil is probably losing carbon. The average annual
temperature and humidity are 25°C and 85%. Soils are
nutrient‐poor clay oxisols with low organic content.
Observations in deep soil pits near the site found roots up to
12 m depth [Nepstad et al., 2002]. The canopy is charac-
terized by large emergent trees up to 55 m height and a
closed canopy at about 40 m. The average annual precipi-
tation is 1920 mm yr−1, with typically a 5 month dry season
between July and November (months with less than 100 mm
of rainfall). During El Niño years much of the Amazon
basin experiences decreased precipitation with large spatial
and inter annual variation [Misra, 2008]. There are relatively
strong seasonal variations in solar radiation, air temperature,
and vapor pressure deficit which all increase substantially
with the seasonal decline in precipitation, while soil mois-
ture declines.
[9] The validity of the model parameters retrieved for the

Tapajós site was further tested for two other sites in Ama-
zonia, the Guyaflux which is located in French Guiana and
also encounters strong seasonal variations in environmental
conditions [Bonal et al., 2008] and the Reserva Jaru site
which is located in northern Rondônia, Brazil [von Randow
et al., 2004] (Table 1). For a detailed description of these
sites, we refer to literature [Bonal et al., 2008; von Randow
et al., 2004].

2.2. Model

[10] The ORCHIDEE biogeochemical ecosystem model
(Organizing Carbon and Hydrology in Dynamic Ecosys-
tems) was originally developed for global applications,
including the coupling with atmospheric models [Krinner
et al., 2005]. It is a process‐driven model, which calcu-
lates fluxes between the land and the atmosphere on a
30 min time step. In this study, we applied the model in
“grid point mode” for individual sites, forced by 30 min
gap‐filled meteorological measurements from eddy covari-
ance towers.
[11] The model contains a biophysical module dealing

with photosynthesis and energy balance calculations each
30 min and a carbon dynamics module dealing with the allo-
cation of assimilates, autotrophic respiration components,
foliar development, mortality and soil organic matter decom-
position on a daily time step. The standard ORCHIDEE
equations are given by Ducoudré et al. [1993], Krinner et al.
[2005], and Santaren et al. [2007]. The equations that con-
tain the different parameters optimized in this study and the
equations that differ from thementioned publications are given
in Appendix A.
[12] As in most global biogeochemical models, the veg-

etation is classified into plant functional types (PFT), with

13 different PFTs over the globe [Krinner et al., 2005].
Distinct PFTs follow the same set of governing equations,
with different parameter values for each PFT, except for the
calculation of the phenology, which involves a specific
functional scheme for each PFT with different equations. The
considered sites were assumed to consist of one single PFT:
tropical evergreen broadleaved forest, which is assumed
to have no leaf seasonal cycle [Botta et al., 2000]. This
assumption has been adopted by many ecosystem models
until recently [Sitch et al., 2003; Cox et al., 2004].

2.3. Data Assimilation System

[13] We optimized model parameters for the Tapajós site
using a Bayesian statistical approach that accounts for all
sources of uncertainties, from the model, the data and the
parameters. Our approach is described in detail by Santaren
et al. [2007] and C. Bacour et al. (Joint assimilation of
eddy‐covariance flux measurements and satellite observa-
tions within a process‐oriented biosphere model, manuscript
in preparation, 2010). With the assumption of Gaussian
errors for both the observations and the prior parameters, the
optimal parameter set corresponds to the minimum of the
cost function J(x):

J xð Þ ¼ 1

2
y� H xð Þð ÞtR�1 y� H xð Þð Þ þ x� xbð ÞtP�1

b x� xbð Þ� �ð1Þ
and contains both the mismatch between modeled and
observed fluxes and the mismatch between prior and opti-
mized parameters. x is the vector of unknown parameters,
xb the prior parameters, H(x) the model and y the vector of
observations. The error covariance matrices R and Pb

describe the prior uncertainties on the observations and
parameters, respectively. We acknowledge that the assump-
tion of Gaussian errors might be violated for eddy covariance
data [Lasslop et al., 2008].
[14] To minimize the cost function we used an efficient

gradient‐based iterative algorithm, called L‐BFGS‐B [Zhu
et al., 1995]. This algorithm allows prescribing an upper/
lower limit for each parameter. At each iteration we calcu-
late the derivatives of J(x) with the Tangent Linear model of
ORCHIDEE, which was derived automatically with the
numerical TAF tool (Transformation of Algorithms in
FORTRAN). The L‐BFGS‐B algorithm does not provide
uncertainties or error correlations between optimized para-
meters. Therefore, once the minimum is reached, the pos-
terior error covariance matrix on the parameters Pa is
calculated from the prior error covariance matrices and
the Jacobian of the model at the minimum of the cost
function, using the linearity assumption [Tarantola, 1987].
Large absolute values of the corresponding error correla-

Table 1. General Information on the Flux Tower Sites Used for Optimization (Tapajós) and Validation (Reserva Jaru and Guyaflux)

Tapajós Reserva Jaru Guyaflux

Country Brazil Brazil French Guiana
Period 2002–2004 2000–2002 2004–2006
Latitude; longitude 2.85°S; 54.80°W 10.08°S; 61.93°W 5.28°N; 52.91°W
Canopy height 40–55 m 35–45 m 35 m
Altitude 88 m 191 m 35 m
Dry season Jul–Nov May–Sep Sep–Dec
Flux data reference Saleska et al. [2003] von Randow et al. [2004] and Kruijt et al. [2004] Bonal et al. [2008]
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tions (close to 1) indicate that the observations do not
provide independent information to distinguish a given pair
of parameters.

2.4. Eddy Flux Data

[15] Three years (2002–2004) of NEE and LE eddy
covariance fluxes from the Tapajós site were assimilated for
model parameter optimization. The validity of the retrieved
parameters was verified for 3 years of NEE and LE data for
the Jaru (2000–2002) and Guyaflux (2004–2006) sites
(Table 1). The Tapajós site is the main focus of this study
and its data will be described here in detail. The Tapajós site
is well suited for eddy covariance measurements as it lies on
exceptionally flat terrain on a plateau that extends several
kilometres in all wind directions. Standard instrumentation
[Saleska et al., 2003] and flux data processing (correction,
gap filling and partitioning) methodologies were used
[Papale et al., 2006; Reichstein et al., 2005]. For model
parameter optimization we only used original (non‐gap‐
filled) measured fluxes of NEE and LE from 3 years of
measurements (2002–2004) [Hutyra et al., 2008]. Within
the 3 years 47% of the half‐hourly NEE and 45% of the
half‐hourly LE data was missing. These gaps are distributed
equally over the growing season and not larger than a few
days. Daily means were only calculated when more than
80% of the half‐hourly data were available. The observed
lack of closure of the energy balance in the eddy flux data
was about 20% of the net radiation (Rn), a bias that should be
kept in mind when interpreting the results for LE. Moreover,
previous tests of our optimization setup [Santaren et al.,
2007] showed that adding sensible heat (H) and Rn to the
data assimilation system did not constrain the parameters
significantly better than NEE and LE alone. We therefore
chose to assimilate daily mean observations of LE and NEE
only.
[16] The “data” error covariance matrix (R) should include

both the error on the measurements and the error on the
model process representation. The random measurement
error on the observed fluxes is known not to be constant
[Lasslop et al., 2008] and can be estimated as the residual of
the gap‐filling algorithm [Moffat et al., 2007; Lasslop et al.,
2008]. On the other hand, model errors are rather difficult to
assess and may be much larger than the measurement error
itself. Lasslop et al. [2008] indicate that potential systematic
errors in flux data and models would need to be addressed in
data assimilation approaches. However, given the difficul-
ties to estimate these different terms (especially the model
component), we chose a simple approach, as in most pre-
vious optimization studies. The data uncertainties are
defined as a function of the root mean squared error (RMSE)
between the prior model and the observations (Bacour et al.,
manuscript in preparation, 2010). These prior errors can be
further scaled in order to ensure that the final model‐data
misfit is consistent with the chosen uncertainties. We thus
scaled the prior error for NEE by a factor of 5 in order to get
similar weight in the misfit function for NEE and LE. In the
results we evaluate the impact of the data error on the
retrieved parameters by comparing the difference between
scaling (sNEE = RMSEprior/5) and no scaling (sNEE =
RMSEprior) for the prior NEE error. For LE, we did not scale
the error (sLE = RMSEprior), given the potential bias in
energy balance closure. This resulted in uncertainties on the

observed NEE and LE of 0.5 10−5 g C m−2 s−1 (scaled) and
20 W m−2, respectively, which are comparable to the errors
proposed by Richardson et al. [2006] and Lasslop et al.
[2008]. These errors correspond to 5% of the maximum
daytime value of each flux. The errors for NEE are of the
same order of magnitude as those estimated by Chevallier
et al. [2006] for ORCHIDEE compared to several other
eddy flux tower sites.
[17] The autocorrelation and cross correlation between LE

and NEE observation errors are assumed to be small in our
study and are thus neglected [Lasslop et al., 2008]. The
model error autocorrelations, although potentially signifi-
cant [Chevallier et al., 2006], are also neglected in R.

2.5. Model Initialization

[18] Initial carbon pool sizes are required for each model
run. Biomass and soil carbon pools are initialized to their
equilibrium values from a 2000 year long spin‐up driven by
cycling the 3 years of climate inputs and increasing the
atmospheric CO2 concentrations from 1850 on. For Tapajós
this initialization results in a modeled long‐term annual
NEE being a small net sink of 0.21Mg C ha−1 yr−1, reflecting
the disequilibrium between GPP and ecosystem respiration
(Reco) induced by rising CO2. However, in reality the forest
could be a net carbon sink or source depending on the time
elapsed since the last disturbance. The Tapajós km 67 site was
measured to be a net source of CO2 of 1.3 Mg C ha−1 yr−1 to
the atmosphere [Saleska et al., 2003], attributed to a lagged
response to former disturbance (see section 2.1). The quasi‐
equilibrium assumption used in the ORCHIDEE spin‐up thus
leads to errors in flux estimates [Carvalhais et al., 2008]. This
may disturb the retrieved parameter values and decrease the
quality of the fit. Therefore optimizing vegetation and soil
carbon pools at the end of the spin‐up is needed for consis-
tency with observed fluxes [Carvalhais et al., 2010]. We let
the inversion correct for this bias by optimizing two para-
meters related to the disequilibrium of carbon pools: (1)Ksoilc,
a multiplicative factor which adjusts the initial soil carbon
pools from the spin‐up [Santaren et al., 2007], and (2) LAIinit,
the LAI at the start of the model run correcting the LAI based
on the spin‐up run.

2.6. Performed Optimizations

[19] The optimized parameters and their prior values are
given in Table 2. To identify the driving factors of the
observed seasonal patterns in NEE and LE, we conducted
several optimizations. The first optimization (O1) included
only the photosynthesis parameters, the other parameters
being kept constant. In each consecutive optimization we
added a new group of parameters (O2–O7) (Table 3). The
last optimizations (O8–O12) all included the 22 parameters
of Table 2, but each of these optimizations allowed one or
several parameters to vary each month. Each of the sce-
narios (O1–O12) was performed twice: once with unscaled
errors for NEE (a‐scenarios) and once with scaled errors for
NEE (b‐scenarios). The goodness of fit of the different
optimizations was assessed by the root mean squared error
(RMSE) and the Akaike information criterion (AIC)
[Akaike, 1974]. In addition to the goodness of fit, the AIC
also includes a penalty as a function of the number of
estimated (optimized) parameters. This penalty discourages
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model overfitting. We normalized both statistics according
to their value for the prior model runs.

2.7. Evaluation of the Optimized Model

[20] In order to test the validity of the optimized model,
the optimized set of parameters was evaluated using two
independent data sets of NEE and LE from the flux towers
of Guyaflux and Jaru (Table 1). The Guyaflux site is located

in the very north of the neotropical rain forest, has a less
strong dry season but has deep soils comparable to the
Tapajós site [Bonal et al., 2008]. The Jaru site is located in
the southwest of Amazonia and is characterized by soils
with only 3.5 m depth, where the bedrock appears [von
Randow et al., 2004]. The model performance for the
prior and two optimized parameter sets (O7b and O11b) is
evaluated for Tapajós and the two validation sites. The

Table 2. ORCHIDEE Parameters That Are Optimized in This Study and Their Prior Values for the Plant Functional Type of Tropical
Evergreen Foresta

Parameter Description Prior Value Prior Range Units sprior

Photosynthesis
Vcmax Maximum carboxylation capacity 65 24–130 mmol m−2s−1 42.4
b Ball‐Berry slope 9 0–12 ‐ 4.8
CTopt Factor controlling acclimation of optimal temperature for photosynthesis 37 17.5–48 ‐ 12.2
CTmax Factor controlling acclimation of maximum temperature for photosynthesis 55 27–71 ‐ 17.6
CTmin Factor controlling acclimation of minimum temperature for photosynthesis 2 −7 17 ‐ 9.6

Phenology
LAImax Maximum obtainable LAI for a PFT 5.82 0.1–9 m2 m−2 3.56
SLA Specific leaf area 0.0154 0.001–0.04 m2 g−1 0.0156
Lage Mean critical leaf age 730 70–950 days 352
l Leaf clumping factor 0.63 0.5–1 ‐ 0.2
LAIinit LAI at t0, corrected LAI from spin‐up 5.82 0–9 m2 m−2 3.6

Respiration/Carbon Balance
Q10 Temperature dependence of heterotrophic respiration 1.99372 0.5–3 ‐ 1.0
Ksoilc Multiplicative factor that adjust the initial (soil) carbon stocks from spin‐up 1 0.25–4 ‐ 1.5
IMR Intercept of relation between maintenance respiration and temperature 1 0.1–2 ‐ 0.76
SMR Slope of relation between maintenance respiration and temperature 0.12 0.001–0.5 ‐ 0.1996
KGR Fraction of assimilates available for growth that is respired 0.28 0.1–0.5 ‐ 0.16

Soil Water Availability
Hroot Parameter describing the exponential root profile 0.80 0.01–6.5 ‐ 2.6
Dsoil Soil depth 1.5 0.1–12 m 4.76

Stomatal Response on Soil Water Availability
fstress Parameter that determines threshold of soil water content. Under this

threshold stomata start to close.
6 0.8–25 ‐ 9.68

Heterotrophic Respiration Response on Soil Water Availability
c Parameter of soil/litter humidity function 0.29 0.1–1 ‐ 0.36
b Parameter of soil/litter humidity function 2.4 0.1–10 ‐ 3.96

Decomposition
hcrit Litter layer thickness 0.02 0.01–0.025 m 0.006
Zdecomp Parameter describing the profile of organic matter content in the soil 0.2 0.05–5 ‐ 1.98

aCorresponding equations are given in Appendix A. The prior errors (sprior) correspond to 40% of the prior range of variation. PFT, plant functional
type.

Table 3. Description of the Different Optimizations Conducted in This Studya

Code Description (Included Parameters From Table 2) Number of Parameters

O1 Photosynthesis (5) 5
O2 O1 + phenology (5) 10
O3 O2 + respiration/carbon balance (5) 15
O4 O3 + soil water availability (2) 17
O5 O4 + stomatal response on soil water availability (1) 18
O6 O5 + heterotrophic respiration response on soil water availability (2) 20
O7 O6 + decomposition (2) 22
O8 O7 + monthly varying Vcmax (36) 57
O9 O7 + monthly varying c and b (72) 92
O10 O7 + monthly varying SLA (36) 57
O11 O7 + monthly varying Vcmax, and SLA (72) 92
O12 O7 + monthly varying Vcmax, c, b, and SLA (144) 162

aThe included parameter group(s) and numbers of parameters for each optimization are given. Parameters of each group are given in Table 2. Each
scenario was performed two times: (1) with unscaled errors for NEE and (2) with scaled errors for NEE.
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results are quantified using Taylor diagrams [Taylor, 2001].
Taylor plots are polar coordinate displays of the linear cor-
relation coefficient (r), centered RMSE (pattern error with-
out considering bias), and the standard deviation.

3. Results and Discussion

3.1. Need for Deeper Soils and Different Root Profiles

[21] In general, the prior model shows carbon uptake
during the wet season (negative values of NEE) and
extremely high carbon releases at the end of the dry season
(Figure 1), while the measured fluxes show the opposite
behavior. The only period when the prior model has a rea-
sonable fit to the NEE data is the wet season of 2004. In
contrast, the prior model generally fits nicely the LE data
(Figure 2), except from a too low LE flux at the end of 2004
and a too strong decrease of LE at the end of the dry season
of 2002 and 2004, showing that the model is incorrectly
simulating a drought stress response at the end of the dry
season. The strongest discrepancies between model and data
for both NEE and LE during the dry season are found during
the years 2002 and 2004.
[22] The goodness of fit of the different optimization

scenarios shows that optimizing model parameters resulted
in a better fit to the eddy covariance data. A general trend of
the RMSE of each scenario shows that adding more para-
meters into the assimilation system resulted in a better
model‐data fit for both NEE and LE (Figure 3) (RMSE was
reduced up to 50%), as expected from an increased number
of degrees of freedom. The AIC value that takes into
account the degrees of freedom (number of optimized

parameters), indicates less improvement when more para-
meters are optimized. Especially for LE, overfitting is sug-
gested as all scenarios from O5 to O12 perform equally well
as O4. It is also clear that only the scenarios including the
soil depth (Dsoil) and the root profile parameter (Hroot,
describing the exponential root profile) (optimization sce-
narios O4–O12) were able to significantly improve the fit
for both NEE and LE. This result is qualitatively similar to
the results obtained by Baker et al. [2008] and Poulter et al.
[2009]. Resulting seasonal flux patterns show that opti-
mizing these two parameters (O4) is needed to remove the
incorrect drought stress response from the model both for
NEE (Figure 1) and LE (Figure 2).
[23] Dsoil and Hroot are the parameters that most signifi-

cantly changed compared to their prior values in the dif-
ferent optimization scenarios (Figure 4). Moreover, the
posterior error correlation matrix shows that the optimiza-
tion is able to distinguish between these two parameters
(Figure 5) (correlation is only −0.013). The resulting opti-
mized soil depth of around 10 m (9.9 ± 3.9 m) corresponds
to what is observed in the field [Nepstad et al., 2002], and
confirms previous modeling inferences based upon satellite
greenness index values [e.g., Kleidon and Heimann, 1999;
Ichii et al., 2007] or flux measurements [Grant et al., 2009].
This deep rooting pattern of Amazonian forest trees allows
excess precipitation received during the wet season to be
transpired during the dry season [Nepstad et al., 1994] and
thus provides an important mechanism to overcome sea-
sonal drought [Markewitz et al., 2010]. The resulting low
value of Hroot (0.11 ± 0.13) indicates that the vegetation is
less sensitive to drought stress compared to the standard

Figure 1. (top) Measured and modeled seasonal patterns of daily mean NEE (g C m−2 s−1) of the
Tapajós km 67 site (10 day running means). Eddy covariance measurements (black line) are compared
with the prior model (green), optimization O2b (red), and optimization O4b (blue). (bottom) The monthly
measured precipitation (mm). Dry periods are indicated in gray (<100 mm month−1).
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parameterization of this PFT (Hroot = 0.80), because the
decrease of root density with soil depth becomes less
exponential and rather linear, resulting in a much slower and
less strong impact of soil drying on photosynthesis and
transpiration.
[24] The retrieved parameter set from scenario O7b was

tested for validity at the Guyaflux and Jaru site. The Taylor
plots (Figure 6) clearly indicate that the performance of the
model improved substantially, both for NEE and LE, for all
sites compared to the prior model performance. This con-
firms that the parameter set retrieved from the individual
Tapajós flux site is more appropriate than the standard
parameters for these tropical evergreen sites within the same
region, but with different soil and climate conditions. This
result highlights the potential of our approach, i.e., optimi-
zation at one site and evaluation at independent sites, to
improve process‐based models for a given region and eco-
system. Nevertheless, model improvement was less pro-
nounced (i.e., the correlation coefficient did not increase) for
NEE at the Jaru site. We suspect that this could be associ-
ated with the shallow soil found at this site. The validation
of the parameters for different sites thus further confirms the
major role of deep soils in the seasonal variations of NEE
and LE in Amazonia.

3.2. Level of Constraint on the Different Parameters

[25] When comparing the different optimization scenarios
using constant parameters (Figure 3, O1–O7), it appears that
only a few parameters really improve the fit (soil water
availability parameters, respiration parameters), while other
parameters marginally contribute to a better fit (decompo-

sition parameters, heterotrophic respiration response on soil
water availability parameters, stomatal response on soil
water availability). Photosynthesis and phenology para-
meters only improved the fit in case small errors were used
for NEE (Figure 3b).
[26] From the posterior error correlations (Figure 5) it is

clear that the information content of the flux data is not
sufficient to distinguish between all included parameters.
Nevertheless, the majority of the ORCHIDEE parameters
are well constrained by the assimilated eddy covariance
data, as shown by strong error reductions in Figure 4. This
confirms previous studies that showed that complex models
with a large amount of parameters can be well constrained
by continuous eddy covariance data [Braswell et al., 2005;
Santaren et al., 2007].
[27] The posterior error correlations give us a better insight

into the structure of a complex model like ORCHIDEE.
As expected, the strongest correlations (with an absolute
value above 0.5) appeared between parameters of the same
process (e.g., between different photosynthesis parameters or
between different decomposition parameters). In addition,
several interesting error correlations are found between
parameters of different processes. Some of them are logical:
e.g., high anti (negative) correlation between decomposition
parameter c (describing the response on soil water avail-
ability) and leaf age (which is determining litter input), and
the anti correlation between parameter c and the temperature
dependence of the heterotrophic respiration, Q10. In contrast,
the anti correlation between KGR (fraction of assimilates for
growth that are respired) and the Ball‐Berry slope b in the
stomatal model is more difficult to explain (Figure 5). The

Figure 2. (top) Measured and modeled seasonal patterns of daily mean LE (W m−2) of the Tapajós km
67 site (10 day running means). Eddy covariance measurements (black line) are compared with the prior
model (green), optimization O3b (red), and optimization O4b (blue). (bottom) The monthly measured pre-
cipitation (mm). Dry periods are indicated in gray (<100 mm month−1).
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existence of large error correlations between the different
ORCHIDEE parameters highlights the need for additional
independent data to better constrain the model.
[28] Only small differences between posterior parameter

values from the different optimization scenarios are found. It
is rather difficult to compare the resulting parameters with
values measured in the field. In evergreen tropical forests,
there is a huge species richness and large geographical gra-
dients in species composition [e.g., ter Steege et al., 2006],
which make it very difficult to obtain field measurements of
parameters that are representative for the spatial scale of the
flux tower footprint. Second, parameters defined from eco-
system‐scale observations are different from parameters
determined at the scale of the processes (i.e., leaf measure-
ments), because of covarying effects between processes. The
optimized Vcmax parameter (63 ± 20 mmol CO2 m

−2 s−1) falls
within the wide range of values measured at the Tapajós km
67 site (from 10 (bottom canopy) to 106 (top canopy) mmol
CO2 m

−2 s−1 [Domingues et al., 2005]). The resulting Vcmax

value corresponds to values currently used in global vege-

tation models for tropical forests (43–82 mmol m−2 s−1

[Domingues et al., 2005]), but is different from the low Vcmax

values recently obtained by Kattge et al. [2009] for tropical
trees on oxisols (about 29 mmol m−2 s−1). These low values
are probably an underestimation of Vcmax as represented in
global models, because they resulted in simulations with the
BETHY model [Kattge et al., 2009] that underestimated the
GPP of tropical forests by 21% compared to the global
database of Luyssaert et al. [2007].
[29] The optimized values for specific leaf area SLA

(0.011–0.019 m2 g−1, depending on the optimization sce-
nario) fall within the range of the measured SLA values at
the Tapajós site (0.005 m2 g−1 at the top of the canopy up to
0.020 m2 g−1 at the bottom of the canopy [Domingues et al.,
2005]).
[30] We tested all optimization scenarios with unscaled

prior errors (a‐scenarios) on the one hand and with scaled
(5 times smaller) prior errors for NEE (b‐scenarios) on the other
hand, as described in the methods to investigate the influence
of the weight given to the data by tightening the prior errors.

Figure 3. Goodness of fit of different optimization scenarios for NEE and LE. (a and b) Root mean
squared error (RMSE) normalized against the prior RMSE for NEE and latent heat (LE) for each optimi-
zation scenario (O1–O12); (c and d) the normalized Akaike information criterion (AIC) of NEE and LE
for each optimization scenario (O1–O12). Figures 3a and 3c show the results when prior errors for NEE
are unscaled (sNEE = 2 10−5 g C m−2 s−1); Figures 3b and 3d show results when prior errors for NEE are
scaled (sNEE = 0.5 10−5 g C m−2 s−1); prior errors for LE are equal in both cases (sLE = 10 W m−2).
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Figure 4. Resulting parameter values and their standard deviations. Prior values (crosses) are compared
with optimized values: O7a (asterisks), O7b (open circles), O12a (open triangles), and O12b (open
inverted triangles). Details on the optimized parameters can be found in Table 2. For the O12 scenarios:
Vcmax, SLA, b, and c values represent means of the achieved monthly values with their standard deviations.
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Smaller errors on NEE data increase the importance of the
NEE observations in the cost function. Note that in several
cases (O7–O12) this leads to a decrease of the RMSE for LE
(Figure 3b). In contrast, by increasing the relative weight of
NEE in the optimization, a better fit for NEE is already
achieved with a few parameters only (O1–O2) (even with
unrealistic soil depths of 1.5 m). As expected, the posterior
error on several parameters appeared to be smaller in case of
smaller errors for NEE (Figure 4). Nevertheless, the mean
posterior parameter values were not significantly different in
both cases.
[31] We analyzed the model‐data residuals after the dif-

ferent optimizations and found still a strong correlation
between the residuals and the magnitude of the flux (data not
shown) for NEE and LE. This finding could not be explained
by any significant correlation between the residuals and
climatic forcing variables.

3.3. Seasonal Parameter Optimization

[32] In the different optimization scenarios O8–O12 we
varied different parameters over time to investigate if they
would bring more information on the underlying factors of
the seasonal patterns in NEE. Although the AIC for LE
(Figure 3) suggests overfitting when we compare these
scenarios with the achieved fit of scenario (O7), it is clear
that some extra improvement for NEE could be achieved by
the different scenarios (O8–O12) (Figures 3 and 7).
[33] The resulting monthly values of the parameters b and

c that describe the response of heterotrophic respiration to
soil water content (Appendix A, equation (A15)) were only

slightly different (lower) in the dry season compared to the
wet season (data not shown). This resulted only in a mar-
ginal improvement of the fit to the NEE (O9, O12 Figure 3)
and did not contribute to improve the fit to the seasonal
pattern of Reco derived from eddy covariance (Figure 9b).
The observed seasonality in b and c and the discrepancies
between measured and modeled Reco suggest that the
model structure needs a stronger response of decomposition
to litter and soil humidity in evergreen tropical forests. This
is in agreement with the conclusions of Saleska et al. [2003]
on processes controlling the seasonal pattern of NEE. We
anticipate that the current two layer soil hydrology model in
ORCHIDEE does not provide the flexibility to define low
water stress on GPP and significant water stress on hetero-
trophic respiration during the dry season. Therefore, the
opportunity to use amultiple‐layer soil hydrology [d’Orgeval
et al., 2008] in ORCHIDEE is promising for tropical ever-
green forests.
[34] The strongest improvement of the modeled seasonal

pattern of NEE was achieved by optimizing monthly values
of SLA (O10) or by optimizing both SLA and Vcmax every
month (O11, Figure 7). The resulting seasonality in these two
parameters is rather weak, but both parameters show an
increase during the dry season to fit the NEE and LE
observations (Figure 8). The retrieved monthly parameters
did not result in better model performance for the Guyaflux
and Jaru site (Figure 6), showing that we cannot generalize
the seasonal parameter variations inferred from one location
to another. The model performance of the O11b parameter
set was lower compared to the O7b parameters, which was

Figure 5. Posterior error correlation matrix after optimization O7b, assimilating both NEE and LE with
scaled errors for NEE.
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expected due to a different timing and intensity of the dry
season at these locations.
[35] The seasonality observed in the parameters for

Tapajós correspond qualitatively to the phenomenon of a
leaf flush resulting in a weak seasonality of LAI [Malhado

et al., 2009] combined with an increased photosynthetic
capacity during the dry season. The increased photosyn-
thetic capacity is probably achieved by a leaf renewal at the
beginning of the dry season, which is confirmed by leaf
litterfall observed at the Tapajós km 67 site from July 2000

Figure 6. Taylor diagrams of model performance. The benchmark (obs) corresponds to the observed
daily NEE or LE. Simulations using optimized parameter sets O7b (7) and O11b (11) retrieved at the
Tapajós site are compared to the prior model (prior) performance. The model performance is shown
for NEE and LE based on 3 years of daily simulated and measured values for the Tapajós, Guyaflux,
and Jaru sites.

VERBEECK ET AL.: SEASONAL C FLUXES IN AMAZON FORESTS G02018G02018

11 of 19



until June 2005 [Rice et al., 2008]. Leaf flush appears during
the dry season when light availability is maximal and has
been observed in the field at the Tapajós [Hutyra et al.,
2007; Malhado et al., 2009] and Guyaflux site [Bonal
et al., 2008]. These findings confirm that solar radiation is
the primary limiting factor for ecosystem processes in ever-
green wet tropical forests in the Amazon, as previously sug-
gested by modeling or remote sensing approaches [Myneni
et al., 2007; Poulter et al., 2009].
[36] Moreover, our study highlights that the (optimized)

ORCHIDEE model does not successfully simulate pheno-
logical processes for tropical evergreen forests, including
the measured seasonality in leaf litterfall (not shown). To
improve future versions of ORCHIDEE, we suggest includ-
ing a module taking into account seasonal variations in leaf
flush linked to light availability. In addition, the link of the
actual Vcmax with leaf age in the model would synchronize the
pattern of photosynthetic capacity with this leaf flush as
suggested by our results.

3.4. Photosynthesis and Respiration

[37] NEE, which is relatively small in tropical evergreen
forest, is the result of two large gross fluxes: photosynthesis
(GPP) and ecosystem respiration (Reco). Unfortunately no
direct measurements of these gross fluxes exist at stand
level. However, it is interesting to compare the modeled
gross fluxes with the gross fluxes derived from the
NEE measurements by flux partitioning using empirical
techniques.
[38] The GPP empirically derived from eddy flux mea-

surements [Reichstein et al., 2005] shows a clear seasonal

pattern (Figure 9a), with high photosynthesis in the wet
season and a decrease at the start of the dry season, followed
by an increase of GPP during the dry season. The runs with
the prior model result in seasonal patterns that strongly
differ from observed values (Figure 9a). However, the
unrealistic drops in GPP of the prior model at the end of the
dry season disappear in the optimized model runs, and a
seasonal pattern with higher GPP during the dry season is
found. The optimized GPP patterns are consistent with the
empirical GPP patterns observed by MODIS EVI (Enhanced
Vegetation Index) [Huete et al., 2006]. However, the GPP
derived from eddy flux measurements show much lower
values at the start of the dry season which is not consistent
with both our optimized model and the MODIS EVI results
[Huete et al., 2006]. These inconsistencies highlight the
uncertainty in all current GPP estimates during the dry
season in evergreen tropical forests.
[39] A similar story appears for Reco (Figure 9b). The

Reco derived values from eddy flux data after Reichstein
et al. [2005] show a distinct seasonal pattern, with low
respiration during the dry season and the highest values
during wet periods. This seasonal pattern was found to
dominate the resulting seasonal variations in NEE. In con-
trast, the optimized model shows the absence of a clear
seasonal pattern, with even slightly higher respiration fluxes
during the dry season. Seasonal variations in Reco in trop-
ical rain forests strongly depend on seasonal variations in
soil respiration [Bonal et al., 2008]. However, soil respira-
tion data measured with automated chambers at the Tapajós
km 67 site from April 2001 to April 2003 [Varner and
Keller, 2009] show only a slight decrease during the dry

Figure 7. (top) Measured and modeled seasonal patterns of daily mean NEE (g C m−2 s−1) of the
Tapajós km 67 site (10 day running means). Eddy covariance measurements (black) are compared with
the prior model (green), optimization O7b (red), and optimization O11b (blue). (bottom) The monthly
measured precipitation (mm). Dry periods are indicated in gray (<100 mm month−1).
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season (Figure 10). When we compare the seasonal pattern
of modeled autotrophic and heterotrophic respiration to the
measured respiration patterns (Figure 10), we must conclude
that the seasonality is not well captured by the model. The
simulated respiration components are probably dominated in
the model by a response to temperature, which does not
show a clear seasonal pattern at this site. We therefore
suggest improving the respiration module with the response
to soil water availability in multiple soil layers as the main
driver for respiration in tropical evergreen forest.
[40] Nevertheless, the order of magnitude of the simulated

heterotrophic respiration is in agreement with the soil res-
piration data and the ratio of the annual sum of modeled
autotrophic respiration over modeled GPP (0.61) corre-
sponds to the values for tropical forests derived from a
global database ranging from 0.6 up to 0.8 [Piao et al.,
2010], which confirms that simulated autotrophic respira-
tion is of the correct order of magnitude.

3.5. Carbon Pools and the Equilibrium Assumption

[41] The spin‐up run to initiate the ORCHIDEE carbon
pools assumes that the pools are in quasi‐equilibrium,

increasing steadily because GPP is driven up by increasing
atmospheric CO2. In contrast, eddy covariance and bio-
metric observations suggest that the Tapajós km 67 site is a
net source (1.3 Mg C ha−1 yr−1) [Saleska et al., 2003].
However, the biomass pools resulting from the spin‐up
run compare reasonably well to the observed carbon pools
(Table 4). Therefore we can assume that the quasi‐equilibrium
assumption is appropriate to initiate the biomass pools for
this study.
[42] In contrast, the total soil carbon is largely under-

estimated by the spin‐up run (41.95 Mg C ha−1) compared
to the measured data from a nearby oxisol (142.1 Mg C
ha−1). The optimized multiplicative factor Ksoilc increased
the initial carbon pool by 20% (50.3 Mg C ha−1) (Table 4).
Although the initial soil carbon pool is underestimated by
the spin‐up run, the order of magnitude of the heterotrophic
soil respiration compares well to soil respiration data, as we
described in section 3.4. This apparent inconsistency is
probably the result of an underestimation of the passive soil
carbon pool by the ORCHIDEE modeled soil carbon
dynamics based on the Century model [Parton et al., 1988].
Sensitivity tests that increased the passive soil carbon pool

Figure 8. Mean seasonal patterns (2004–2006) of precipitation (mm) and two ORCHIDEE parameters
optimized each month according to optimization scenario O11b: maximum carboxylation capacity (Vcmax,
mmol m−2 s−1), and specific leaf area (SLA, m2 g−1).
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(by 100 and 200%) in the model, showed only a marginal
effect on heterotrophic respiration (not shown). These
findings probably show that in this region there is a large
soil carbon pool that is relatively passive and decomposes
with a very slow turnover rate. Probably the soil carbon
dynamics model does not allow enough soil organic matter

to transfer from the active to the passive pool to build up
enough carbon in the soil over centuries.

4. Conclusions

[43] The prior model showed that the standard ORCHIDEE
parameterization behaves like many other global models

Figure 9. Measured and modeled seasonal patterns of (a) GPP and (b) Reco (g C m−2 s−1) (10 day run-
ning means): partitioned NEE eddy covariance measurements (black) are compared with the prior model
(green), optimization O7b (red), and optimization O12b (blue). The monthly measured precipitation (mm)
is shown at the bottom of Figures 9a and 9b. Dry periods are indicated in gray (<100 mm month−1).
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[Saleska et al., 2003; Baker et al., 2008] and simulates sea-
sonal NEE patterns that are opposite in phase to the eddy flux
data at the Tapajós km 67 site. However, optimized scenarios
better fitted the observed data. The different optimization
scenarios showed that only a few optimized parameters
substantially improved the fit with NEE and LE data. Our
results confirm in the first place that these forests have the
ability to maintain high transpiration and photosynthesis
during the dry season and that the soil depth (Dsoil) and the
Hroot parameter (describing the exponential root profile) are
key parameters to model this ability in ORCHIDEE. The
resulting values for these parameters are substantially dif-
ferent from the standard values for the tropical evergreen
forest PFT. A soil depth of 10 m and a Hroot parameter of 0.1
are suggested, corresponding to a root distribution that de-
creases almost linearly with depth and leads to much lower
drought stress sensitivity of photosynthesis and transpiration.
The retrieved parameter values for Tapajós generally
improved the model performance at the Guyaflux and Jaru
site. Nevertheless, future work should retrieve and compare
optimized model parameters for different evergreen forest
sites (with different seasonal NEE patterns) in the Amazon
basin in order to study the spatial parameter variability. In
addition, redoing optimizations with a multiple‐layer soil
hydrology [d’Orgeval et al., 2008] may allow better captur-
ing the seasonal drying of the soil from the top, and correlated
litter decomposition inhibition in the dry upper soil layers.

[44] Our results indicate that even a higher GPP is reached
in the dry season compared to the wet season, most likely
caused by a leaf flush at the start of the dry season
increasing the photosynthetic capacity of the canopy. The
current model structure is not able to simulate such a leaf
flush. We therefore suggest improving the ORCHIDEE
model by including a specific phenology module that is
driven by light availability for the tropical evergreen PFT.
[45] Both the eddy covariance and soil respiration data

suggest that there is a drop of ecosystem respiration asso-
ciated with decreasing soil moisture during the dry season,
which was not captured by our modeling results. We suggest
a critical evaluation of the respiration parameterization in
ORCHIDEE in tropical evergreen sites, taking into account
soil water availability as a key driver. To evaluate the
simulation of the different respiration components by
ORCHIDEE a thorough comparison with multiple data
sources is needed. In addition, vertical distribution of soil
organic carbon, both its injection by root mortality and its
decomposition will be needed. Intuition suggests that the
stiffer optimized root distribution should distribute soil C at
deeper horizons, where there is enough moisture to sustain
decomposition during dry season. A data assimilation exer-
cise with multiple constraints (e.g., partitioned eddy fluxes,
soil respiration data, and carbon inventory data) would be
appropriate.
[46] In general, we can conclude that our data assimilation

exercise resulted in a better view on the underlying factors

Figure 10. Mean seasonal patterns (2002–2004) of modeled respiration fluxes (g C m−2 s−1) based on
optimized parameters (O7b): Reco (green), autotrophic respiration Ra (magenta), and heterotrophic res-
piration (blue). Mean seasonal pattern (2002–2004) of observed Reco derived from eddy covariance mea-
surements (black). Mean season al pattern (April 2001 to April 2003) of observed soil respiration (Rsoil,
blue with error bars) from automated soil chambers [Varner and Keller, 2009] (April 2001 to April 2003).
(top) All lines show 10 day running means. (bottom) The mean seasonal pattern of the monthly measured
precipitation (mm).
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that determine the seasonal patterns of NEE, and leads to
important suggestions for model improvement; neverthe-
less, our results also showed the limitations of flux data
assimilation. Several parameters were not identifiable and
the risk of overfitting of the model was illustrated. Careful
estimation of prior errors of flux data is therefore very
important.
[47] Despite of the limitations of our approach, our results

show that global vegetation models can be improved sub-
stantially by assimilating site level flux data. An improved
parameterization of the ORCHIDEE model, particularly soil
depth and rooting profiles, based on data assimilation of
multiple sites in the Amazon is needed to improve basin‐
scale simulations and GCM climate projections.

Appendix A

[48] Here only the ORCHIDEE equations that contain
parameters that are optimized in this study are briefly listed.
The optimized parameters are shown in bold. For a more
detailed description of the model, we refer to Krinner et al.
[2005] and Santaren et al. [2007].

A1. Leaf Area

[49] Light decreases in the canopy with increasing LAI
following the Lambert‐Beer’s law [Monsi and Saeki, 1953].
The light at the bottom of the canopy (Il) becomes then:

Il ¼ I0 � e�k���LAI ðA1Þ

I0 is the available light at the top of the canopy, k is the
extinction coefficient and l is a factor describing the leaf
clumping. According to Chen et al. [2005] this factor is 0.63
for tropical evergreen forest. The actual leaf area is deter-
mined by multiplying the leaf biomass from carbon alloca-
tion model [Krinner et al., 2005] with the specific leaf area
(SLA). If the leaf area becomes higher than a PFT‐specific
prescribed maximum (LAImax), than no more carbon will be
allocated to leaves.
A2. Photosynthesis

[50] ORCHIDEE uses the Farquhar et al. [1980] model.
The ratio between the maximum carboxylation capacity

(Vcmax) and the potential rate of RuBP regeneration (Vjmax) is
assumed to be constant:

Vjmax ¼ 2 � Vcmax ðA2Þ

The actual maximum carboxylation capacity (Vcmax,actual)
is depending on leaf age, temperature and soil water limi-
tation according to:

Vcmax;actual ¼ "leaf � "temp � "water � Vcmax ðA3Þ

where "leaf is the leaf efficiency depending on the leaf age,
"temp is the temperature dependency and "water is the
dependency on soil water availability. The relative leaf age
of the age class, which is the fraction of the critical leaf age
(Lage) that is reached by that class, is determining the leaf
efficiency. When a new leaf class appears its efficiency rises
quickly from 0 to 1 by the moment when 3% of the critical
age is reached. It stays 1 until a relative age of 50%. After
that, the efficiency decreases linearly to 0.3 until the critical
leaf age is reached. By convoluting the different leaf age
classes the actual Vcmax of the entire canopy is calculated.
The temperature dependency is determined by a function
with a value of 1 at the optimal temperature (Topt) and a
value of 0 at the maximum (Tmax) and minimum temperature
(Tmin):

"temp ¼ Tair � Tminð Þ � Tair � Tmaxð Þ
Tair � Tminð Þ � Tair � Tmaxð Þ � Tair � Topt

� �2 ðA4Þ

The optimal temperature range for photosynthesis is
dynamic and can acclimate to the governing temperature
regime according to the following equations:

Topt ¼ cTopt þ bTopt � Tl þ aTopt � T2
l ðA5Þ

Tmax ¼ cTmax þ bT max � Tl þ aT max � T2
l ðA6Þ

Tmin ¼ cTmin þ bT min � Tl þ aT min � T 2
l ðA7Þ

where aTi, bTi and cTi are parameters and Tl is the long‐term
governing temperature. The dependency ("water) of Vcmax on
soil water availability is described by the following response
function:

"water ¼ 2

1þ exp �fstress � fwð Þ � 1 ðA8Þ

where fw is the water fraction available for the plant in the
root zone (i.e., fw = 0 at wilting point and fw = 1 at field
capacity) calculated based on an exponential root profile and
the soil depth (Dsoil):

fw ¼ max exp �Hroot � Dsoil � adeep
� �

; exp �Hroot � Dsoil � atop
� �� �

ðA9Þ

In equation (A9), Hroot is a parameter describing the expo-
nential root profile, adeep is the dry fraction of the deep soil

Table 4. Initial Carbon Pools of the Tapajós km 67 Site as
Simulated by the Spin‐Up Runs Compared to Field Measurements
From C Inventories (Mg C ha−1)a

Pool

ORCHIDE

InventoryStandard Optimized

Aboveground biomass 168.6 145 (±6)b

Aboveground necromass 29.3 46 (±5)b

Belowground biomass 45.2 17.6 (±6.5)b

Leaf biomass 4.71 4.87 6.21 (±0.2)c

Total soil C 41.95 50.3 142.1 (±7.1)d

aThe corrected initial biomass of leaf and soil carbon is given based on
optimization O12a.

bSaleska et al. [2003].
cMalhado et al. [2009].
dValue obtained at an oxisol at the Tapajós km 83 site [Telles et al.,

2003].
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water reservoir and atop is the dry fraction of the topsoil
water reservoir. This topsoil reservoir has a variable depth
and only exists after rain events. Parameter fstress defines the
soil water fraction below which Vcmax decreases.
[51] The Farquhar photosynthesis model is used here in

combination with the stomatal conductance model accord-
ing to Ball et al. [1987]:

gs ¼ b � A � hr
Ca

þ goffset ðA10Þ

Here b is the slope of the stomatal conductance versus A (the
net carbon assimilation rate) linear relationship, hr the relative
humidity (%) and Ca the CO2 atmospheric concentration.

A3. Autotrophic Respiration

[52] The maintenance respiration (Rm) is a function of
temperature (T) and the biomass (Bi) of each pool i [Ruimy
et al., 1996]:

Ri
m ¼ c Tið Þ � Bi ðA11Þ

c Tið Þ ¼ max ci0 � IMR þ SMR � Tð Þ; 0� � ðA12Þ

where IMR and SMR are the coefficients of the linear tem-
perature relationship and c0 is a parameter specific for each
biomass pool i. Growth respiration (Rg) is computed as a
constant fraction (KGR) of the assimilates available for
growth:

Rg ¼ KGR � A� Rmð Þ ðA13Þ

A4. Heterotrophic Respiration

[53] Two litter pools (metabolic and structural) and three
soil organic matter pools of increasing turnover are con-
sidered in the model. The heterotrophic respiration in each
carbon pool is governed by a first‐order linear differential
equation, where pool specific turnovers have soil moisture
and soil temperature dependencies.

Rh ¼
X
s

�s � Bs � cH � cT ðA14Þ

Bs is the size of each soil carbon pool, as is a pool specific
coefficient partitioning heterotrophic respiration into pools,
cT and cH are inhibition factors that represent the slowing
down of decomposer activity at low temperatures or in dry
(or too wet) soil. The soil/litter humidity inhibition factor cH
is:

cH ¼ max cH min;min 1; aH2 þ bH þ c
� �� � ðA15Þ

where H is humidity of the litter or the organic soil layer.
The particular optimal form of cH depends strongly on the
assumptions and formulation of the hydrological scheme
used. Exploration of the cH function resulted the choice to
set a constant value of 1 for a, 0.25 for cHmin and to vary

b (0–10) and c (0–1) to get realistic shapes of the cH
function. H is calculated as follows:

Hlitter ¼ exp
�hwet
hcrit

� �
ðA16Þ

Hsoil;i ¼ humi � exp
�Zsoil;i�1

Zdecomp

� �
� exp

�Zsoil;i
Zdecomp

� �� �
ðA17Þ

where hwet is the height of the wet litter, hcrit is the total
height of the litter layer, humi is the soil water content in
layer i, Zsoil,i the depth of soil layer i and Zdecomp the
parameter describing the exponential decomposition pro-
file. The temperature inhibition factor cT for heterotrophic
respiration (in litter and soil) is a Q10 function of soil
temperature (Tsoil).

cT ¼ min 1; exp ln Q10ð Þ � Tsoil � 30

10

� �� �
ðA18Þ
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