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Stability of a directional Marangoni flow.

Corentin Tregouet,∗a and Arnaud Saint-Jalmesa

Marangoni flows result from surface-tension gradients, and
these flows occur over finite distances on the surface, but the
subsequent secondary flows can be observed on much larger
lengthscales. These flows play major roles in various pheno-
mena, from foam dynamics to microswimmer propulsion. We
show here that if a Marangoni flow of soluble surfactants is
confined laterally, the flow forms an inertial surface jet. A full
picture of the flows on the surface is exhibited, and the velocity
profile of the jet is predicted analytically, and is successfully
compared with the experimental measurements. Moreover, this
straight jet eventually destabilizes into meanders. A quanti-
tative comparison between the theory and our experimental
observations yields a very good agreement in terms of critical
wavelengths. The characterization and understanding of the
2D flows generated by confined Marangoni spreading is a first
step to understand the role of inertial effects in the Marangoni
flows with and without confinement.

a Univ Rennes, CNRS, IPR (Institut de Physique de Rennes), UMR 6251, F-35000, Rennes, France. E-mail :
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1 Introduction

Marangoni flows can be ignited at a fluid interface by
the occurrence of a surface-tension gradient : they typically
spread over centimeters at the surface, while their verti-
cal extent remains of the order of a millimeter. They are
characterized by their heights which are negligible compa-
red to their horizontal extents, and they can therefore be
considered as a 2D- (or surface-) flows.

At the everyday life scale, Marangoni flows are actually
easy to trigger and are often invoked to explain many ap-
parently simple observations. Indeed, Marangoni effects are
crucial in coating processes, or liquid-film extraction out
of a bath in relation with foaming [1, 2, 3, 4]. Similarly,
they also play a major role in liquid-film rupture and anti-
foaming phenomena, [5, 6, 7, 8, 9], as well as in droplet
spreading [10, 11, 12], and even in the propulsion of small
objects such as swimming droplets [13], solid microswim-
mers [14], or even insects [15, 16].

Consequently, fundamental analyses of these surface
flows have attracted a significant attention [17, 18, 19, 20],
and found direct applications in material design [21] and
microfluidics [22]. Besides, another important feature of
2D flows is that they spontaneously create complex pat-
terns with swirls and coils, and even ending up to two-
dimensional turbulence. The occurrence of such turbulent
flows has been reported in soap films [23, 24, 25], while
other instabilities can be triggered by circular Marangoni
flows [26].

Despite all the attention gathered by such phenomena in
the community, a fundamental but yet unanswered ques-
tions still holds : what is the extent of a Marangoni flow
created by a point source, and how it depends on surfac-

tant properties. In other words, a central question in the
different applications remains, which is to understand how
and how far a directional Marangoni flow extends, espe-
cially in relation with surface micro-swimmers.

Experiments [17, 26, 18, 27, 28] and simulations [19, 20]
show that fast Marangoni flows only extend on a finite ra-
dius (for radial flows) or length (for directional flows), which
can be understood thanks to a power-law analysis balan-
cing in-plane advection and out-of-plane diffusion [26, 18].
Beyond this fast spreading, slower unstable secondary flows
can be observed, which exhibit pluming instabilities [26, 18].
These secondary flows are also limited in space in a radius
of the same order of magnitude as the primary Marangoni
flow. These instabilities could be the key to understand the
discrepancy between the experiments and the analytical
theory that predicts that the Marangoni flow asymptoti-
cally tends to zero far away from the source [29]. Fully un-
derstanding this instability would require more theoretical
analysis of the flow stability [30], and more experiments.

In this paper, we bring first elements to understand the
effect of this pluming phenomenon by studying the flow in
the absence of the usual pluming instability. By confining
the flow laterally, we obtain a slow directional surface flow
which extends beyond the fast Marangoni spreading length.
The other interest of this study is to analyze a flow mi-
micking the flow created behind asymmetrical Marangoni
micro-swimmers. We first study a uniaxial (directional) Ma-
rangoni flow in which we prevent the pluming instability
visible in [26, 18] to develop by confining laterally the flow
on a width smaller than the plume width. The method to
obtain such a flow is detailed in Section 2. We show in
Section 3 that the obtained surface flow extends on a very
long distance compared to what is observed without lateral

1



confinement. Moreover, a meandering instability appears
along the flow. We explain in Section 4 that the inertia of
the boundary layer and its slow diffusive growth are respon-
sible for the extension of the Marangoni flow into an inertial
jet, and that the observed meandering instability is due to
a specific kind of Kelvin-Helmholtz instability described by
Rayleigh.

2 Material and methods

1 Condition and set up for the flow generation

A soluble surfactant solution is deposited on an air/water
interface confined on three sides by a long hallway closed
in one end, as shown in Figure 1.
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Figure 1 – Setup used to generate the surface jet. Thin
walls (gray) are hanged over a water bath (blue), and a
metal needle (black) is used to spread the surfactant solu-
tion on the surface. One of the walls is excited with a beam
(orange) connected to a loudspeaker. (a) : side view. (b) :
top view. (c) : perspective view.

Fresh millipore water is used for the bath and to prepare
the surfactant solution. A daily-made solution of Sodium
Dodecyl Sulfate (SDS) concentrated at 3 times the critical
micellar concentration (CMC) is deposited with a Harvard
Apparatus syringe pump on the air/water interface at a
flow rate of typically Q = 0.6 mL/min (molar flow rate of
qm = 12.2µmol/min). The hallway is formed around the
point of deposition by three walls hanged over the bath
to be just in contact with the water. The needle used as
surfactant injector is placed just over the surface, at the

closed end of the hallway. The length L of the hallway is
between 30 mm and 100 mm.

A comprehensive study of the pluming instability visible
without confinement in [26, 18] will be the topic a future
work, but we observed that the wavelength is close to the
depth of the bath. Accordingly, to hinder the development
of this instability, we confine laterally the flow on a width
whall of 12 mm or 6 mm, while the water height h is al-
ways greater than 30 mm. This also prevents any interac-
tion between the possible vertical vertices [31] and the bot-
tom. Some experiments were performed in shallow water
(h < 10 mm) for comparison, and no noticeable difference
in the flow morphology was observed.

The confinement is effective if the length of the fast Ma-
rangoni flow (the spreading length LMar) respects some
geometrical constraints : whall/2 < LMar < L. This raises
strong conditions on the molar flow rate, which has a strong
effect on the spreading length LMar ∝ q3m [18]. The molar
flow rate and hence the flow speed (v ∝ q−1

m )[18] are the-
refore limited in a reduced range by the geometrical condi-
tions.

Additionally, for the phenomenon to be well controlled,
the surface and the boundary layers must be stable. This
requires to maintain low capillary (Ca = ηv

γ ) and Reynolds

numbers (Re = ρvL
η ), where η, v,ρ, L and γ are respectively

the viscosity, the velocity, the density, the characteristic
length, and the surface tension. But neither the velocity
nor the length are controlled directly : both result from the
diffusion of the surfactants from the surface to the bulk,
and from the molar flowrate of surfactants.

2 Velocity mapping on the surface

Images of the surface are acquired with a USB ca-
mera Mako U-130B mounted with a 25 mm lens from Ed-
mund Optics, enabling a resolution of 5.5 pixel/mm. All the
images are analyzed with ImageJ, and the particle tracking
is made by the Python module trackpy.

A first type of tracer is used to identify the regions of
high velocity : the surfactant solution is emulsified with
sunflower oil to create an oil-in-water emulsion, with a 1-
to-1 oil/water ratio. The oil droplets (of diameter in the
micrometer range) are used as surface tracers, as in some
previous studies on Marangoni flows [26, 18]. Because of the
oil droplets and the lighting from the top, the gray levels on
the flow image are an indication of the velocity : when the
flow is accelerated it tends to dilute the droplets, letting the
dark background appear, while when the flow gets slower,
the droplets concentrate and the image becomes white.

To reveal the streamlines on the surface, a second type of
tracers is used : ground pepper is deposited on the surface,
coupled with grazing-incidence lighting. Unlike the oil dro-
plets, these tracers are large enough to be individually vi-
sible on the images, enabling particle tracking, and they are
dispersed on the surface prior to jet creation. Image corre-
lation enables to calculate the velocity on every point of the
surface. However, the large variations of velocity between
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Figure 2 – The different steps of the uniaxial-flow generation (no excitation) (top view) : a- deposition of surfactant and
emulsion ; b- acceleration due to the Marangoni effect on a length LMar (the acceleration leads to the dilution of the emulsion
and darker colors) ; c- jet : deceleration and focusing ; qm = 14.2µmol/min. Scale bar : 10 mm.

the jet and the rest of the surface prevent this method to be
used for the jet itself. The jet velocity can be measured to
complete the previous measurement, by seeding individual
ground-pepper particles directly in the flow, very carefully
not to disturb or even stop the jet. Despite their hydropho-
bic character, ground-pepper flakes have been shown to be
ideal non-inertial tracers [32], and there are used here with
a packing fraction of typically 5%.

In the first case, the morphology of the flow is clearly
visible, and the instability (and its wavelength) appears at
first sight, but only the second type of tracer solution allows
for precise velocity measurements.

3 Forced destabilization of the flow

In order to analyze the uniaxial-flow stability regarding
the meander instability, one of the lateral wall is fixed to a
loudspeaker, which will be used in the second part of this
work to create small perturbations on the flow at specific
frequencies, as shown in Figure 1. The loudspeaker is po-
wered with a sinusoidal wave at a fixed frequency, and a
movie is recorded at the same frequency to facilitate the
observation of the excited mode with droplet tracers.

Using stroboscopic imaging, the meanders seem to be
at constant positions when they result from the amplifica-
tion of the initial perturbation (unstable frequencies). On
the contrary, if the initial perturbation is stable, its ampli-
tude decreases exponentially. Other frequencies then deve-
lop spontaneously, but are not synchronized with the ca-
mera acquisition rate set to the forcing frequency, so they
appear mobile on the movie. Under stroboscopic imaging,
a fixed (moving) pattern is therefore the evidence that the
forced frequency is unstable (stable).

3 Morphology of the uniaxial flow

The uniaxial-flow shows the same steps as what has been
observed by Le Roux et al.[18], as illustrated in Figure 2
with the use of droplet tracers : (a)- the source, where the
surfactant is deposited, (b)- a Marangoni finite spreading
length LMar which is typically around 50 mm and descri-
bed and analyzed in [18], and (c)- a sharp deceleration
beyond. As whall < h, no pluming instability is observed

after LMar, and the moving fluid continues in a straight
line even beyond the confined area. For this reason, we call
this straight surface flow a surface jet.

1 Velocity field on the surface

Particle tracking is used to investigate the velocity field
on the surface. The superimposition of treated images is
presented in Figure 3a : it is clearly visible that the stream-
lines converge.

The corresponding velocity map is presented in Fi-
gure 3b. On this map, the jet is visible as the region where
velocity is too high and the profile too steep to be measu-
red with this method (between black lines). However, the
velocity profile inside the jet has been measured separately
in the same flow conditions as in Figure 3a,b,c, and is pre-
sented in Figure 3d. It shows a very quick acceleration and
a plateau, in agreement with the grey level in Figure 2, and
then a slow deceleration, from 170 mm/s to a few tens of
mm/s.

Around the jet, we observe lateral zones which represent
the linear growth of the region in motion (dashed lines are
guides for the eyes). An analysis of the velocity profiles
around the jet as shown in Figure 3c highlights the obser-
vation that lateral extension of the velocity profile increases
along the trajectory.

Just at the exit of the hallway, the jet width meets a mi-
nimum, which corresponds to the actual initial jet width.
This width is measured to be wtracking = 6.8 mm in Fi-
gure 3b. After this minimum, the jet-width grows along the
flow, as shown in Figure 3b.

2 Meandering patterns

In the region c of Figure 2, the jet always destabilizes in
meanders with a well-defined wavelength. The instability
then amplifies until destruction of the jet and eddies can be
observed in the outer sides of these meanders as reported
in Figures 4a, 4b, 4c and 5a (droplet tracers).

This destabilization triggers the destruction of the jet
which mixes with the whole surface creating the patterns
accumulating on the surface of finite size, and observed
around the jet in Figures 4b and 4c.
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Figure 3 – Particle tracking with whall = 12 mm and qm = 12.2µmol/min : (a)- the superposition of images lets the
streamlines appear. Scale bar : 10 mm. (b)- the x-velocity map (in cm/s) shows the extension of the jet during convergence
of the streamlines. Guides : black lines delimit the jet, dashed blue lines highlights the extension of the areas driven into
motion by the jet. (c) Velocity profile along cutlines perpendicular to the flow, for different positions along the flow from
upstream (yellow) to downstream (purple). (d) Velocity of a particle in the middle of the jet. Red line : best fit using Eq (9),
with v0 = 189 mm/s, α−1/2δ0 = 0.433 mm in x0 = 35 mm.

Experiments without tracers observed by surface-
deformation detection showed that the jet and the insta-
bility exist without tracers.

The sinusoidal perturbation of the flow enables a stability
analysis of individual modes in the range of interest using a
loudspeaker to create the perturbations observed with stro-
boscopic imaging. High frequencies (short wavelengths) are
found to be stable while low frequencies (large wavelengths)
are found to be unstable, as illustrated in Figure 5a. In the
latter case, the growth of the instability is exponential, as
shown in Figure 5b.

For whall = 6 mm and qm = 5.6µmol/min, the thre-
shold frequency is f0 = 4.25 ± 0.05 Hz, which corresponds
to λ0 = 15± 3 mm, as shown in Figure 5c. For the unstable
frequencies, the wave number appears to be proportional
to the frequency, as shown in Figure 5c, indicating a ce-
lerity (pattern velocity) independent of wavelength, which
means that the system is not dispersive. The measured ce-
lerity is 59± 5 mm/s. The threshold frequency is measured
to depend on the jet width. For whall = 12 mm and qm =
12.2µmol/min, the threshold frequency is f0 = 2 ± 0.1 Hz
which corresponds to wavelengths of λ0 = 21± 3 mm.

4 Rationalization of the observations

1 Length of the flow

The absence of diverging flow in the unconfined area in-
dicates that there is no surface-pressure gradient anymore

in region c of Figure 2. This means that the Marangoni pro-
pulsion of the surface only occurs in the region b of Figure 2,
and stops where the flow decelerates. We deduce from this
observation that the region downstream (c in Figure 2) is
moved by the inertia accumulated in the Marangoni area
(b in Figure 2).

The length of this jet can be theoretically calculated. Ve-
locity within the Marangoni flow can be estimated from
[18] to be of the order of 100 mm/s (U0 = 74 mm/s with
the parameters used in the experiment shown in Figure 2,
). The boundary layer develops during the Marangoni flow
upstream the jet. The Marangoni flow typically extends on
LMar = 50 mm, leading to a boundary layer of depth :

δ0 =

√
νLMar

U0
' 0.82 mm , (1)

where ν = 10−6 m2/s is the kinetic viscosity. This yields a
Reynolds number Re = U0δ0

ν ' 50, which indicates that
the flow is inertial.

The absence of Marangoni effect in the region c means
that the interface is stress-free. In the jet, considering the
whole boundary layer as the system, its mass increases as it
thickens as the square root of time, but the vanishing velo-
city at the lower frontier of the boundary layer ensures no
viscous force on the system. Moreover, the pressure being
kept constant by the atmosphere, the pressure forces on
the boundary layer simply compensate the weight : this
results in a constant momentum and hence a constant pro-
duct vδ, where v is the mean velocity of the boundary layer.
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Figure 4 – Different jets presenting various shapes during destabilization (not excited), always with a clear wavelength.
The flow rate of surfactant deposition and the length of the hallway have been changed for the different pictures. Red dashed
lines represent the middle line of the stream. (a) : qm = 14.2µmol/min and L = 100 mm. (b) : qm = 12.2µmol/min and
L = 100 mm. (c) : qm = 8.1µmol/min and L = 30 mm. Scale bar : 10 mm.
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Figure 5 – (a) The stroboscopic observation highlights the
regularity of the instability at the forced frequency. Width
of hallway : 12 mm, excitation and acquisition : f = 4 Hz.
Vertical dashed lines are guides for the eyes. Scale bar :
10 mm. (b) Exponential growth of the amplitude for a jet
of width whall = 6 mm excited at a frequency of 4 Hz. The
dotted line show the exponential growth with the growth
rate of 1.344 s−1. (c) Wave number k = 2π/λ (correspon-
ding wavelength on the right axis) measured for the dif-
ferent excitation frequencies, width whall = 6 mm and flow
rate qm = 5.6µmol/min. Dashed line represent the celerity
of 59± 5 mm/s.

The shape of the velocity profile is investigated through a
scaling-law analysis : considering initial conditions of velo-
city v0 and boundary layer δ0 in x = x0, the momentum
scales as

p ∼ v(x)δ(x) . (2)

and its conservation yields :

v(x)δ(x) ∼ v0δ0 . (3)

The vorticity oriented along y scales as :

Ω ∼ v

δ
∼ p

δ2
. (4)

The boundary-layer profile results from the advection-
diffusion of vorticity :

v
∂ Ω

∂ x
= ν∆Ω , (5)

which yields
p

δ

p

δ3
d δ

dx
∼ ν p

δ4
, (6)

and finally :
d δ

dx
∼ ν

p
∼ ν

v0δ0
. (7)

It follows that the profile of boundary-layer depth and sur-
face speed are :

δ(x) = δ0

(
1 +

αν

v0δ20
(x− x0)

)
, (8)

and

v(x) = v0

(
1 +

αν

v0δ20
(x− x0)

)−1

, (9)

where α is a numerical prefactor that is assumed to be close
to unity, and will be determined experimentally.

Equation (8) shows that even though the boundary layer
grows with a square-root scaling in time, it follows a linear
growth with respect to the position. Also, Equation (9) for
the initial conditions v0 = 74 mm/s and δ0 = 0.82 mm in
x0 = 0 shows that velocity is divided by two on a length
v0δ

2
0/ν = 50 mm (for α = 1), giving a typical length scale

for the jet in agreement with experiments, as shown in
Figure 3. More precisely, using Equation (9), the best fit
of the experimental data is shown in Figure 3d by the
red line and show a very good agreement between our
theoretical prediction, and the measurements. The obtai-
ned values are v0 = 189 mm/s, and α−1/2δ0 = 0.433 mm
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in x0 = 35 mm. The theoretical depth of the boundary
layer built during the Marangoni flow upstream the jet is
δ0 =

√
νx0/v0 = 0.430 mm, which yields the numerical pre-

factor α = 0.986, that can reasonably be considered equal
to 1.

The good agreement between the experimental velocity
profile and the theory shows that the jet is indeed a surface
flow due to the inertia accumulated in the boundary layer
during the fast Marangoni flow upstream.

2 Jet-width determination

Here we discuss the apparent contradiction between the
convergence of trajectories in Figure 3a and the widening of
the flow in Figure 3b,c. This is common in fluid flows [33],
and comes from the choice of Lagrangian or Eulerian speci-
fication : from a Lagrangian point of view, the jet converges,
as shown by the streamlines in Figure 3a : a physical volume
of fluid tends to go towards the center of the jet. However,
from an Eulerian point of view, each moving volume trans-
fers momentum to its neighbors, making the region of high
velocity extend along the path of the jet, as visible in Fi-
gure 3b.

This experiment shows that the jet is actually larger than
what is observed with the oil-droplet tracers. Indeed, oil-
droplets tracers mark only the streamlines coming from the
source (defining an apparent width wemulsion), while particle
tracking shows the whole extent of the high-speed area,
defining the actual width of the jet : wtracking.

3 Meandering instability

Several types of instabilities have been studied in the li-
terature that could correspond to what is observed in these
experiments : the Kelvin-Helmholtz instability [34], the vis-
cous thread meandering [35], or folding [36], the swirling of
coupled threads [37], the zig-zag instability of vertices [38],
Von-Karman streets [39], or Rayleigh’s development of the
Kelvin-Helmholtz instability for vorticity bands [40].

Each black/white frontier in Figure 4 shows the charac-
teristic features of a Kelvin Helmholtz instability [34, 41].
The anti-symmetry of the patterns facing each other sug-
gests that the two instabilities are coupled. These two ob-
servations and the measurements detailed previously indi-
cate that the present phenomenon is one of the instabilities
described by Rayleigh [40], and more precisely the Kelvin-
Helmholtz destabilization of two coupled and adjacent vor-
ticity bands, as sketched in Figure 6.

Let’s summarize the hypothesis and conclusions of Ray-
leigh. Considering two adjacent bands of vorticity of width
b > 0 of opposite signs, corresponding to a triangular ve-
locity profile illustrated in Figure 6, the destabilization of
the two adjacent vorticity bands is investigated. Novelty of
Rayleigh’s study is the non-zero width of the vorticity band
(a linear velocity profile instead of a step profile), and the
possible coupling between two bands. This model, initially
developed to study a 3D jet, actually describes very preci-
sely the present experiments : it corresponds to both our
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Figure 6 – Velocity profile (black) and vorticity profile
(red) of the jet studied theoretically by Rayleigh[40].

initial configuration (two vorticity bands) and its destabili-
zation (meandering with long wavelengths).

The result of Rayleigh’s calculations is that the two sides
of the jet are coupled, and that destabilization always oc-
curs with anti-symmetric deformations, leading to mean-
ders growing exponentially, while all the other deforma-
tion modes are stable. Moreover, only short wavelengths
λ < λ0 = πb are expected to be stable, and the fastest des-
tabilization occurs for λM = 8πb/5 ' 5b, but the growth
rate is close to its maximum on a large range of frequen-
cies. Finally, according to the classical Kelvin-Helmholtz
analysis, the instability is expected to move with a celerity
which is half of the maximum velocity of the jet. This is all
consistent with our observations.

Kelvin-Helmholtz instabilities perpendicular to the inter-
face are hindered by interfacial tension and density mis-
match between air and water until a threshold speed [42]
of 1.5 m/s, which is never reached in these experiments.

For the free jet as pictured in Figure 2 and 4, as none
of the modes is forced, the observed ones are the fastest,
or a superposition of all the wavelengths around λM. Wa-
velengths observed on Figure 4a (λM = 12.8 ± 3 mm),
Figure 4b (λM = 16.5 ± 3 mm) and Figure 4c (λM =
8.1± 3 mm) yield values for the jet width of 5.1± 0.6 mm,
6.6 ± 0.6 mm and 3.2 ± 0.6 mm respectively. However, due
to the intrinsic low wavelength selectivity of the instability,
the wavelength are not as well defined as for the excited jet
(see Figure 5a).

For the forced destabilization, the measured celerity of
the instability for whall = 6 mm, extracted from Figure 5b,
is independent of the frequency , in agreement with the
Kelvin-Helmoltz theory, and equal to c = 59 ± 5 mm/s.
This value must be compared with the velocity profile from
particle tracking shown in Figure 3b and Figure 3d. Par-
ticle tracking close to the jet shows velocities of the order
of 3 cm/s, and the velocity inside the jet decreases from
150 mm/s to 50 mm/s along the flow. The celerity of the
patterns corresponds to a fraction of the jet velocity, slightly
different from the Kelvin-Helmholtz prediction, which is
calculated for a step-profile. The threshold frequencies λ0
measured in the previous section correspond to jet widths
of wRayleigh = 4.8 ± 0.6 mm when whall = 6 mm, and
wRayleigh = 2b = 6.7 ± 0.6 mm when whall = 12 mm.
This second value can be compared with what has been
measured with particle tracking and shown in Figure 3b
(wtracking = 6.8 ± 0.25 mm). Particle tracking and instabi-
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lity analysis show a very good agreement on the jet width.

5 Summary and conclusion

Spreading of soluble surfactants occurs over a finite dis-
tance on the surface, but the effects of the Marangoni flow
are observed on a much larger length scale due to the inertia
provided to the fluid in the Marangoni flow. Lateral confi-
nement of the flow can change the extent of these inertial
secondary flows. Indeed, if the flow is narrow enough, as
we investigated here, a huge increase of the extent of these
secondary flows is observed, and the flow forms an inertial
surface jet.

Flows are also induced through all the surface that
converge towards the origin of the jet. Thanks to tracers
inside the jet and on the whole surface, a full picture of the
flow on the surface is exhibited, by combining two types of
tracers providing complementary information. The velocity
profile of the jet is predicted analytically and successfully
compared with the experimental measurements.

Finally, the straight jet eventually destabilizes into
meanders. Qualitatively, the observed features are : anti-
symmetric patterns (no varicose patterns), a large wave-
length compared to the jet width, and eddies in the ou-
ter sides of the meanders. This instability is characterized
quantitatively by forcing specific frequencies : the domain
of instability is identified, and wavelength measurements
show that the celerity of the patterns is independent of the
frequency. These features are the signature of a situation
described by Rayleigh that was never observed for surface
flows yet. Quantitative comparison between the theory and
the experimental observations yields a very good agreement
in terms of threshold frequencies.

We have characterized and understood the 2D flows crea-
ted by this configuration of soluble-surfactant directional
spreading under lateral confinement. This is a first step to
understand the role of inertial effects in the Marangoni flows
with and without confinement. Not only this work paves the
way towards a better control of the flows involved in foam
and coating processes, but also it brings a new light in the
study of Marangoni propulsion for natural or artificial sur-
face micro-swimmers.
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Dominique Langevin, and Emmanuelle Rio. What is

the mechanism of soap film entrainment ? Langmuir,
27(22) :13406–13409, 2011.

[3] Jacopo Seiwert, Benjamin Dollet, and Isabelle Cantat.
Theoretical study of the generation of soap films : Role
of interfacial visco-elasticity. Journal of Fluid Mecha-
nics, 739 :124–142, 2014.

[4] Emmanuelle Rio and François Boulogne. Withdrawing
a solid from a bath : How much liquid is coated ? Ad-
vances in Colloid and Interface Science, 247 :100–114,
2017.

[5] V G Levich and V S Krylov. Surface-tension-driven
phenomena. Annual Review of Fluid Mechanics,
1(1) :293–316, 1969.

[6] PR Garrett. Defoaming : theory and industrial appli-
cations, volume 45. CRC Press, 1992.

[7] Nikolai D. Denkov. Mechanisms of foam destruction
by oil-based antifoams. Langmuir, 20(22) :9463–9505,
2004.

[8] D. Langevin. Rheology of adsorbed surfactant mono-
layers at fluid surfaces. Annual Review of Fluid Me-
chanics, 46(1) :47–65, 2014.

[9] V. Miralles, B. Selva, I. Cantat, and M. C. Jullien.
Foam drainage control using thermocapillary stress in
a two-dimensional microchamber. Physical Review Let-
ters, 112(23) :1–5, 2014.

[10] Véronique Pimienta, Michèle Brost, Nina Kovalchuk,
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