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[1] We present the results of a validation of atmospheric inversions of CO2 fluxes
using four transport models. Each inversion uses data primarily from surface stations,
combined with an atmospheric transport model, to estimate surface fluxes. The validation
(or model evaluation) consists of running these optimized fluxes through the forward
model and comparing the simulated concentrations with airborne concentration
measurements. We focus on profiles from Cape Grim, Tasmania, and Carr, Colorado,
while using other profile sites to test the generality of the comparison. Fits to the profiles
are generally worse than to the surface data from the inversions and worse than the
expected model‐data mismatch. Thus inversion estimates are generally not consistent with
the profile measurements. The TM3 model does better by some measures than the
other three models. Models perform better over Tasmania than Colorado, and other profile
sites bear out a general improvement from north to south and from continental to marine
locations. There are also errors in the interannual variability of the fit, consistent in
time and common across models. This suggests real variations in sources visible to the
profile but not the surface measurements.

Citation: Pickett‐Heaps, C. A., et al. (2011), Atmospheric CO2 inversion validation using vertical profile measurements:
Analysis of four independent inversion models, J. Geophys. Res., 116, D12305, doi:10.1029/2010JD014887.

1. Introduction

[2] Atmospheric CO2 is increasing as a direct result of
anthropogenic activities, although the increase is approxi-
mately half the rate expected from fossil fuel emission
estimates [Keeling et al., 1995; Francey et al., 1995] due to
carbon uptake by the biosphere and oceans. It is therefore
vital that we understand this mitigating effect and how it
might change in the future with continued changes in the
global climate. Atmospheric inversion models are used to infer
regional spatiotemporal CO2 fluxes from observed atmo-
spheric CO2 measurements using atmospheric transport mod-
els (ATMs). Examples include work by Rayner et al. [1999],
Bousquet et al. [2000], Peylin et al. [2001], Rödenbeck et al.

[2003], Michalak et al. [2004, 2005], Peylin et al. [2005],
Patra et al. [2005a, 2005b], Peters et al. [2007] and Rayner
et al. [2008].
[3] While inversion techniques have advanced our under-

standing of the global carbon cycle, important challenges
remain. The spatiotemporal distribution of atmospheric CO2

data is limited, resulting in large flux uncertainty. Reliable
flux estimates also depend on the accuracy of transport
modeling, with vertical transport being particularly critical
and yet displaying substantial variation between models
[Gurney et al., 2002]. Gurney et al. [2002] and subsequent
similar studies could not assess the quality of the inversion
flux estimates beyond their ability to fit the data used in the
inversion. This paper considers a methodology and data set
to allow for such an assessment.
[4] In an effort to assess inverse flux estimates, one can

look for validation against independent data such as airborne
data [Stephens et al., 2007; Peters et al., 2007] or column‐
integrated measurements [Yang et al., 2007]. Stephens et al.
[2007] performed a validation of inversion models using
vertical profiles. A climatology of the northern hemispheric
vertical CO2 distribution from 10 aircraft sites was compared
with the same vertical CO2 distribution in the TRANSCOM
models used by Gurney et al. [2004]. Nearly all the models
exhibited systematic biases with the observed vertical gra-
dients, in particular during winter that implied too little
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vertical mixing. Moreover, a clear relationship between the
extent of model biases in the vertical gradient and the bal-
ance between tropical and temperate carbon uptake was
found. Thus, models could be differentiated by having greater
consistency with the observed CO2 vertical gradient and
potentially more reliable flux estimates. Chevallier et al.
[2009, 2010] also demonstrated the utility of model differ-
entiation through validation against airborne data.
[5] We present the results of a new inversion model val-

idation study using CO2 profile data. Our study differs from
that of Stephens et al. [2007] because we focus on two
profile sites and perform a detailed evaluation of the models
including an assessment of model consistency (including
intermodel and model‐data consistency). In particular, we
consider interannual and seasonal variations in our validation
analysis. Our profile sites are located in northwest Tasmania
(Cape Grim) and northeast Colorado (Carr), although we
include results from other profile sites for comparison. We
present results from four independent inversion models that,
while differing greatly in technical detail, are all based on
the Bayesian synthesis inversion formulation [Enting, 2002].
We address an important question of whether the profile fit
of any of the four models is consistent with the surface
inversion fit. Such model consistency has important impli-
cations on whether a model can reconcile two observation
data sets (surface data and aircraft data) and whether our
inversion flux estimates may be improved through inclusion
of more data (including aircraft data) using existing transport
models or whether the transport models themselves need
to be improved.
[6] In this study, we use the word ‘validation’ in the same

sense as that used in numerical weather prediction: keeping
some data from the inversion to test its quality. This is not
intended as a performance test of the underlying models.
Even as a validation of the inversion, it is necessarily partial
since the validation only occurs at a few points in the
atmosphere. We may therefore attach more significance to
failures of the inversions to match the independent data than
to success. An equally valid term to model validation is
model evaluation.
[7] The outline of this paper is as follows. Section 2 out-

lines the procedure to cross‐validate inversion models against
airborne data including a description of the two vertical
profile sites, details of the four independent inversion models
and forward simulations and the method of comparing model
CO2 vertical profiles and observed profiles (including sta-
tistical analyses). Sections 3 and 4 present the results of the
comparisons with observed profiles and an analysis of model
consistency. Analysis of types of model error such as repre-
sentation error, errors in the vertical gradient and errors on
seasonal and interannual time scales is also provided.

2. Methods: Comparisons Between the Observed
and Model Concentration Fields

[8] The vertical distribution of atmospheric carbon diox-
ide (CO2) represented by an observed vertical profile is
dependent on CO2 exchange at the Earth’s surface and
atmospheric transport. Modeling this vertical distribution
requires a two‐step process: an optimized flux estimation by
an atmospheric CO2 inversion, followed by a forward sim-
ulation. The resulting simulation can be compared directly

with the observed profile. The model fit to the observed
vertical CO2 distribution reflects on the quality of both the
fluxes and transport, i.e., the whole inversion system.

2.1. Airborne Profile Data Used in This Study

[9] Two profile data sets were predominantly used in this
study (Table 1): the Cape Grim profile data (AIA) and the
profile data from Carr in northeastern Colorado (CAR). The
Cape Grim data was collected as part of the Cape Grim
Overflight Program (1991–2000, The CSIRO‐Marine and
Atmospheric Research) and the Carr data are collected as
part of the NOAA/GMD aircraft profile measurement pro-
gram (C. Sweeney et al., Carbon dioxide climatology of the
NOAA/ESRL Greenhouse Gas Aircraft Network, manu-
script in preparation, 2011), available at http://www.esrl.
noaa.gov/gmd/ccgg/aircraft/index.html. These two data sets
were chosen because (1) at the time of the study, both data
sets consist of a long time series of profile measurements
(>5 years), (2) profiles were flown at frequent, regular
intervals following strict protocols, (3) profiles were flown
from the surface to the upper troposphere (∼8000 m) and
(4) both profile sites are relatively ‘clean air’ measurement
sites (although they significantly differ from each other.)
[10] The Cape Grim profile site (and associated surface

station) is a well‐known maritime observation site sampling
Southern Ocean air under so‐called ‘baseline conditions’.
Baseline or background conditions occur when the sampled
air mass contains integrated signals of large‐scale flux
variation from distant regions and little or no influence from
local flux variation. At Cape Grim, such conditions typically
occur during an established southwesterly airstream origi-
nating from the Southern Ocean [Pak et al., 1996; Pak,
2000; Steele et al., 2003; Francey, 2005]. Most profiles
were flown 2–3 days after the passage of a cold front [Pak,
2000], ensuring the presence of a southwesterly airstream.
This potentially introduces a weather sampling bias and
points to the need for ‘real winds’ (or analyzed winds
not consisting of a climatology) within the model forward
simulation and synchronized sampling for reliable compar-
isons with observations.
[11] The Carr profile site is a relatively high‐altitude

(∼1700 m) continental observation site. While some profiles
at Carr may be influenced by local emissions and/or atmo-
spheric conditions inconsistent with a well‐mixed atmo-
sphere, particularly in the lower troposphere; most profiles
indicate that air sampled at the Carr site is not much dif-
ferent from observations at Mona Loa (Sweeney et al.,
manuscript in preparation, 2011). Profiles made over Carr,
CO are generally free from continental processes observed
at other sites because it is a relatively high altitude site
removed from large urban centers. Most of the air masses
traveling to Carr, CO travel over the semiarid southwest
region of U.S. where local ecosystem CO2 fluxes are rela-
tively small. It should be noted that this site lies in close
proximity to the Rocky Mountains which are distinguished
by topographic features at the kilometer scale. Such com-
plex terrain can pose difficulties for global transport models.
[12] Results from other profile sites are briefly presented for

a comparative analysis to Cape Grim and Carr. These NOAA/
ESRL‐GMD sites include Harvard Forest, Massachusetts
(HFM), Park Falls, Wisconsin (LEF), Poker Flat, Alaska
(PFA), Molokai Island, Hawaii (HAA) and Rarotonga, Cook
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Islands (RTA). The sparser and shorter time series (3–5 years)
afforded by these sites in comparison to the flux inversion
time period (1988–2004) inhibits a more detailed study.

2.2. Atmospheric CO2 Inversion Systems

[13] We use four independent inversion models: (1) CCAM
inversion model, CSIRO Marine and Atmospheric Research
(Australia); (2) LMDz inversion model, Laboratoire des
Sciences du Climat et de l’Environnement, CEA/CNRS/
UVSQ (France); (3) FRCGC inversion model, FRCGC/
JAMSTEC (Japan); and (4) the Jena Inversion (version
s96_v3.0) using the TM3 atmospheric transport model, Max
Plank Institute for Biogeochemistry (Germany).
[14] Figure 1 provides a schematic diagram of the atmo-

spheric CO2 inversion model (and subsequent forward
simulation). Inversion models are useful where a relation
exists (in this context, defined by atmospheric transport)
between a state of unknown parameters (flux estimates) and
observations (of atmospheric concentration). This relation,
or forward model, must be inverted to determine the state of
parameters that best fit the observed quantities. The four
inversion models are based on the classical Bayesian for-
mulation [Rodgers, 2000; Enting, 2002]. We minimize the
cost function in equation (1). This jointly minimizes the
mismatch between simulated and observed CO2 concentra-
tions and the match to prior flux estimates. The optimized
flux estimates are obtained using equation (2).

F xð Þ ¼ � 1

2
y� Kxð ÞTS�1

e y� Kxð Þ þ x� x0ð ÞTS�1
0 x� x0ð Þ

h i
ð1Þ

x̂ ¼ x0 þ S0 � KT KS0K
T þ Se

� ��1� y� Kx0ð Þ ð2Þ

x̂ a posteriori parameter estimates;
x0 a priori parameter estimates;
S0 a priori parameter covariance matrix;

K transport (Jacobian) matrix;
y vector of observations;
Se observation error covariance matrix.

[15] Technical settings of each inversion are however,
substantially different (auxiliary material Text S1).1 Two
important differences are discussed in later sections of the
paper. First, the CCAM response functions (concentrations
arising from a unit flux) are calculated using only one year
of winds (1999) used repeatedly whereas the other model
response functions use interannually varying winds. Second,
the TM3 response functions are matched to the time
of individual observations where the other inversions use
responses calculated from the monthly mean. Other notable
differences are as follows.
[16] 1. Variation in the spatial resolution of the flux esti-

mates (either region‐defined or grid‐based).
[17] 2. Method of generating response functions, either

using a forward simulation (FRCGC, CCAM) or Eulerian
retrotransport (LMDz) [Hourdin and Talagrand, 2006].
TM3 uses forward and adjoint model runs in an iterative
cost function minimization technique [Rödenbeck, 2005]
(see auxiliary material Text S1) similar to current 4D‐
variational data assimilation models.
[18] 2. Variation in the surface network used in the

inversion and the extent to which processed data from the
GLOBALVIEW‐CO2 product (Co‐operative Atmospheric
Data Integration Project‐Carbon Dioxide, 2005, ftp.cmdl.noaa.
gov/ccg/co2/globalview/) was used (e.g., data smoothing,
interpolation and extrapolation, use of raw measurements).
[19] 3. In addition to the surface network, TM3 also

makes use of aircraft data from the EOMCA data set that
consists of high‐altitude (10–12 km) measurements of CO2

Table 1. Summary of the Profile Measurement Sites at Cape Grim (AIA) and Carr (CAR)a

Cape Grim (AIA) Carr (CAR)

Number of profiles 94 286
Archive period 1991–2000 1992–2002
Profile base 100 m 2100 m
Profile top ∼8000 m ∼8000 m
Frequency approx. monthly weekly
Location −40° 33′, 144° 18′ 40° 54′, −104° 48′

NW Tasmania, AUS NE Colorado, USA
Measurement technique flask meas., sample pairs flask meas., sample pairs
Autonomous measurement NO YES

GASLAB Global Monitoring Division (GMD)
Lab responsible for analyses CSIRO‐Marine and Atmospheric Research NOAA/ESRL
Time of day midday midday
Contact person Paul Steele Colm Sweeney, Pieter Tans

paul.steele@cmar.csiro.au pieter.tans@noaa.gov
Data availability CSIRO ‐ MAR (Paul Steele) http://www.esrl.noaa.gov/gmd/

http://geomon‐wg.ipsl.jussieu.fr/ ftp://ftp.cmdl.noaa.gov/ccg/vp/
World Data Centre for Greenhouse Gases http://geomon‐wg.ipsl.jussieu.fr/

Relevant citations Pak et al. [1996], Pak [2000], Stephens et al. [2007]
Langenfelds et al. [1996a, 1996b, 1999]

Altitude layer
Lower Troposphere 0 m (surface) to 1500 m 1600 m (surface) to 4000 m
Mid Troposphere 1500–4000 m 4000–6000 m
Upper Troposphere 4000–8000 m 6000–8000 m

aThe altitude bins which the aircraft data were separated into at each profile site are also listed.

1Auxiliary materials are available in the HTML. doi:10.1029/
2010JD014887.

PICKETT‐HEAPS ET AL.: ATMOSPHERIC INVERSION VALIDATION D12305D12305

3 of 17



on passenger flights between Tokyo and Sydney [Matsueda
et al., 2002]. The other three models only use surface data.
[20] 4. Variation in the data weights applied to sur-

face measurements.
[21] 5. Variation in the a priori flux PDFs (equation (1))

and in particular, the use of a priori spatial and temporal
error correlations.
[22] None of the four inversion models invert the vertical

profile data (or any other nonsurface data) so the aircraft
data remain independent of all inversion models. In regards
to the TM3 inversion, the inclusion or exclusion of the
EOMCA aircraft data had a negligible effect on the vali-
dation results presented in this study.

2.3. Forward Simulations

[23] For each inversion model, a corresponding forward
simulation using the same transport model was run to calculate
an optimized CO2 concentration field, driven by the optimized
flux estimates from the inversion model. This optimized con-
centration field is then compared to the observed profiles
(Figure 1). Forward transport model simulations were run for
the entire duration of the flux inversions and ‘nudged’ or
‘driven’ (depending on whether the model is a global circula-
tion model or atmospheric transport model) using analyzed
meteorology. Details of the forward simulations are summa-
rized in auxiliary material Text S2. While the same transport
model was used for each inversion model/forward simulation
combination, the actual ‘transport’ used in the inversionmay be
different. All forward simulationsmodel the actual atmospheric
transport (or atmospheric forcing) at a given location in time
and space. However, the transport used in the inversion mod-
els may instead represent monthly averaged transport fields.
This difference in ‘transport’ is discussed later in the paper.

2.4. Comparison of the Model and Observed
Concentration Fields

[24] An accurate model comparison requires appropriate
sampling of the optimized CO2 concentration field coin-
cident in time and space with the observed profiles. The
LMDz, FRCGC and TM3 optimized concentration fields

were sampled using spatiotemporal interpolation between
adjacent model grid points and time steps. For every indi-
vidual profile flask measurement, a corresponding model
data value at the same spatiotemporal location was obtained.
The CCAM model was sampled using a different technique.
A spatiotemporal domain defined by a 4 h time window
(approximately the flight duration) and 4 surrounding grid
points was used to generate a vertical CO2 model profile.
This model profile was then compared to the observed profile
obtained during the same 4 h time window. Tests showed
comparable results to the simpler sampling method used with
the other models. In all models, interpolated surface pressure
values were used to convert from sigma coordinates to pres-
sure level coordinates. The coincident model temperature
profile allowed for the calculation of the corresponding geo-
potential height of each model level. Linear vertical interpo-
lation (between model levels above and below a profile
observation) was then used to estimate the model CO2 con-
centration at the altitude of the profile observations. Neither
profile data set included the pressure level corresponding to
the reported altitude of each measurement, thus necessitating
the calculation of geopotential height of each model level at
the time and location of each profile observation.
[25] The differences between observed and modeled CO2

concentrations define the mismatch between the observed
and model profiles. For each profile, two error estimates
were obtained: the root mean square (RMS) error and the
mean model bias. The RMS error is the square root of the
sum of the squares of the model‐observation residuals
divided by the number of observations and is always posi-
tive (equation (3)). The mean bias is the mean of the
residuals and can be positive or negative (equation (4)).

RMS error

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
i¼1

mi�oið Þ2

M

s ð3Þ

m model concentration estimate;
o observed concentration;

Figure 1. A schematic diagram illustrating the relationship between flux exchange and observed atmo-
spheric CO2 concentration that is determined by atmospheric transport. Also depicted is the inverse model
of this relationship as well as the forward model (forward simulation). In both cases, a common transport
model is used to model atmospheric transport.
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M number of obs. in each profile;
i i thobservation of each profile.

RMS error calculated for each profile

Mean Bias

MB ¼
PM
i¼1

mi�oið Þ
M

ð4Þ

[26] Mean Bias is calculated for each profile.
[27] For each profile site, we calculated summary statistics

of the RMS error (RMS) and model bias (MB) estimate, i.e.,
the sample mean (xRMS, xMB), sample standard deviation
(sRMS, sMB) and standard error (seRMS, seMB).

Sample mean and standard deviation

x ¼ 1
N �PN

i¼0
xi

ð5Þ

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1
�
XN�1

i¼1

xi � xð Þ2
vuut ð6Þ

where N is sample size (number of profiles).

Standard error of x

se ¼ sffiffiffiffi
N

p ð7Þ

95% Confidence interval CIð Þof �

x� 2 � se < � < xþ 2 � se
ð8Þ

Note that m represents the unknown mean value of the
population distribution and is estimated by x. The confi-
dence interval represents the uncertainty in the estimate x
(or the likelihood that m lies within the CI of x).
[28] Summary statistics, also calculated depending on

season and/or altitude, were used to estimate 95% (∼2.se)
confidence intervals (CIs) of mean RMS and model bias
estimates. We use these statistics, and particularly the CIs of
the estimated parameters (mean model bias or mean RMS
error, equation (7)) to assess the significance of model bias
and significant differences between two error estimates from
two different sample populations (e.g., two different inver-
sion models, seasons or altitude layers). For example, we
use the estimated CIs of model bias between different
atmospheric layers or seasons to determine the significance
of vertical or seasonal changes in model bias and to deter-
mine whether model bias is significantly different from zero.
[29] Such statistical analysis identifies patterns in model

error that may be hidden due to model scatter and is
advantageous as the number of the degree of freedom (DoF)
is small. A major theme of the analysis presented is the
determination of the significance of various error estimates
(either RMS or mean bias). There will always be a differ-
ence between an observed and model profile. The real
question relates to whether these differences are significant
(i.e., large compared to the uncertainty represented by the
confidence interval) and whether they significantly change
depending on season, altitude or between inversion models.

[30] Error estimates were calculated for three different
altitude layers (or bins) of the atmosphere at each profile
location. Three altitude bins were defined at both profile
sites (Table 1) primarily due to the data density of the
observed profiles that consisted of flask measurements.
Take note that there exist variations in the maximum altitude
to which the profile measurements were obtained at both
profile sites. For example, there are a different number of
profiles (i.e., sample size) that contain measurements from
4000 to 6000 m and 6000 to 8000 m at Carr. Such changes
are taken into account when calculating summary statistics
and in the overall analysis of the model profile fit at both
profile sites.

2.5. Estimating the Uncertainty in the Observed
Concentration Field

[31] Even if the inversion model and subsequent forward
simulation were free of any error, there would still be a
model versus observation mismatch owing to uncertainty in
the profile measurements arising from instrument error
(usually small). Estimates of measurement uncertainty were
obtained from personnel responsible for the measurement
analyses. In addition, data uncertainty usually takes into
account high‐frequency variability in observed CO2 that is
not resolved in the model [Gerbig et al., 2003]. The true
concentration field is continuous and is sampled by a finite
set of observations. The models represent the field by a
series of grid box values. We must incorporate this inherent
mismatch, often referred to as representation error, when
judging a model‐observation comparison. However, repre-
sentation error may also produce systematic biases and
therefore cannot be considered as influencing model error
that is solely random in nature. The quantity we want to
measure is the random variation in the profile observations
(observation scatter) that we assume the model cannot rep-
resent. We then compare estimates of observation scatter
with errors from the model fit to the observed profile.
[32] Estimates of observation scatter error were obtained

by fitting low‐degree polynomials to each observed profile
from Cape Grim and Carr. Statistical tests between poly-
nomials of different degrees (up to a maximum degree of 4)
were used in selecting a suitable polynomial that captured
the large‐scale vertical trend of the observed profile without
overfitting. Most vertical profiles were modeled with poly-
nomials of degrees 1–2 and are thus unlikely to have been
overfitted. Such vertical structure was considered resolvable
by the inversion models. Scatter around each polynomial fit
was used to define the level of observed profile scatter and
was subsequently compared to the model‐observation RMS
error estimates. Similar orders of magnitude between RMS
errors and profile random scatter suggest an adequate model
fit to the observed profile, particularly in the presence of a
small model bias.

3. Results

3.1. Model Surface Fit

[33] Assessment of the inversion surface fit, preferably at
surface stations in close proximity to the profile site, should
precede analysis of the model profile fit. The Cape Grim
observation station (CGO) is an obvious choice for the Cape
Grim profile data. However, with no surface station located
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at Carr, Niwot Ridge (NWR, located 115 km SW of Carr) is
used. Both CGO and NWR are included in the observation
network of all four inversion models.
[34] Table 2 provides the RMS error of the surface fit of

all four models at CGO and NWR. At both surface sites, the
fit from all four inversion models lies within the respective
data uncertainties prescribed in each inversion for these
sites. Both CCAM and LMDz show a very close surface
fit that ordinarily suggests the data uncertainties could be
reduced, allowing for greater parameter constraint. TM3
shows more consistency between the surface data uncer-
tainties and the inversion fit. At both sites for all models, the
surface fits show negligible model bias.

3.2. Model Profile Fit: Cape Grim

[35] Summary statistics of the model profile comparisons
at Cape Grim are shown in Table 3. For three of the four
models, the profile fit is significantly worse than the fit at
the surface (CGO), indicated overall by larger profile‐fit
RMS errors compared to the surface (Table 2). The RMS
errors from the profile fit are also larger than the data un-
certainties of the surface site. Comparisons for each season
(not tabulated) indicated that TM3 shows consistency
between the surface and profile fit from December‐May. At
other times, the difference in RMS error between the TM3
profile fit and surface fit is small (∼0.2 ppm).
[36] Figures 2 and 3 present seasonal climatologies of

RMS error and model bias at Cape Grim. All models display
little variation in RMS error with season (or altitude, not
shown). In statistical terms, RMS error effectively remains
constant throughout the atmosphere for the entire year. This

uniformity suggests that large, integrated flux signals are
influencing the Cape Grim observed profiles, a result con-
sistent with most profile flights taking place during baseline
conditions. The models clearly fail to adequately capture
these flux signals. Model error of a large‐scale nature may
also be playing a part.
[37] Systematic error significantly contributes to the RMS

error at Cape Grim for all models (compare model bias and
RMS estimates in Table 3), with CCAM showing significant
seasonality in model bias (Figure 3, seasonal climatology).
This seasonality extends throughout the atmosphere and is
therefore not a result of errors in modeling the vertical
gradient within the atmospheric profile. The flux seasonality
that has been optimized to match the surface data at the
CGO surface station is inconsistent with the observed sea-
sonality in the Cape Grim profiles.
[38] Errors in inverse transport are perhaps a more likely

source of bias at the vertical profile sites than transport
errors in the forward simulation. Response functions from
CCAM, FRCGC and LMDz consist of monthly mean
response estimates (auxiliary material Text S1). By calcu-
lating mean estimates, the influence of model scatter may be
averaged out relative to the forward simulation but any
systematic errors in transport will remain. It is unlikely
that the surface data themselves are in error, although a
mismatch between data‐selected surface observations with
non‐data‐selected response functions has the potential to
introduce systematic errors within the flux estimates. In
addition, fixed response functions from a single year (1999)
used in the CCAM inversion model could result in the
repeated appearance of any seasonal errors and/or transport
anomalies unique to 1999 in consecutive years of the inver-
sion model. FRCGC and LMDz use the relevant analyzed
winds for each year when generating monthly response
functions. However, given similar profile fits near the surface
at Cape Grim overall between CCAM, FRCGC and LMDz,
the use of fixed response functions from a single year does
not appear detrimental at least at Cape Grim.
[39] TM3 fits the Cape Grim profiles better than the other

models (Figure 2). It has a small but significant negative
bias that does not vary with season or altitude. TM3 uses the
modeled concentration relevant for each observation (rather
than the monthly mean) to generate inversion response
functions and consequently may better represent the baseline
observations used in the inversion. The TM3 inversion model
does include high‐altitude aircraft data from the EOMCA
data set [Matsueda et al., 2002]. However, excluding these
high‐altitude data from the TM3 inversion has a negligible
effect on the TM3 model profile fit at Cape Grim.

Table 2. Comparison of the Inversion Surface Fit and Profile Fit for Each Inversion Modela

Model Fit (RMS Error, ppm)

NWR Surface CAR ProfileCGO Surface AIA Profile

Inversion Fit Sfc. Uncert. Inversion Fit Inversion Fit Sfc. Uncert. Inversion Fit

CCAM 0.03 0.3–0.4 0.62 0.30 0.90 1.29
LMDz 0.04 0.40 0.63 0.90 0.90 1.35
FRCGC 0.25 0.35 0.54 0.80 1.12 1.29
TM3 0.29 0.66–0.92 0.39 0.74 0.85–1.34 1.32

aThe Cape Grim profile site overlies the Cape Grim (CGO) surface station. The Carr profile site is located near the Niwot Ridge (NWR) surface station.
Similar RMS error estimates indicate consistency between the surface and profile model fit. The surface data uncertainties (Sfc. Uncert.) used in the
respective inversion models are also included.

Table 3. Summary Statistics of the Model Fit to the Cape Grim
Profiles for All Four Modelsa

Mean RMS Error Mean Model Bias

xRMS sRMS seRMS xMB sMB seMB

CCAM 0.62 0.21 0.02 −0.29 0.39 0.04
LMDz 0.63 0.39 0.04 −0.31 0.56 0.06
FRCGC 0.54 0.23 0.02 −0.12 0.43 0.04
TM3 0.39 0.20 0.02 −0.22 0.19 0.02

aThe calculated mean estimate (xRMS) of the model RMS error from each
individual profile (and corresponding standard deviation (sRMS) and
standard error (seRMS) of this estimate) is provided. Similar estimates for
the mean model bias (xMB, sMB and seMB) are provided. These calculated
statistics of the model error parameters (RMS error and model bias) are
essential in determining if significant differences in model error parameters
between different models exist. Data from the full altitude range of the
Cape Grim profiles (Table 1) have been used in the generation of these
error estimates.
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3.3. Model Profile Fit: Carr

[40] Summary statistics of the model profile comparisons
at Carr are shown in Table 4. The profile fit at Carr for three
of the four models is significantly worse than their respec-
tive surface fit at Niwot Ridge (compare the profile‐fit RMS
error with the surface‐fit RMS error and surface uncer-

tainties at NWR, Table 2). FRCGC approaches consistency
from December to February in the free troposphere and
TM3 appears consistent throughout most of the year except
in the lower troposphere from June to August (not tabu-
lated). The RMS error of the TM3 profile fit lies within the
surface data uncertainties at NWR, despite the difference
in RMS error between the surface and profile fits.

Figure 2. The mean monthly RMS error estimated from the model profile fit to the Cape Grim observed
profiles throughout the Cape Grim time series. RMS error estimates are calculated from the model fit of
the entire atmospheric column.

Figure 3. The mean monthly model bias estimated from the model profile fit to the Cape Grim observed
profiles throughout the Cape Grim time series. Model bias estimates are calculated from the model fit of
the entire atmospheric column. Also depicted is the estimated standard deviation of the monthly model
bias (vertical bars). Each model is offset horizontally to improve clarity.
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[41] For all models, the RMS error from the profile fit is
much larger at Carr than Cape Grim. Magnitudes of the mean
model bias estimates are similar to those at Cape Grim,
suggesting random error is more prominent at Carr. There are
large seasonal differences in RMS errors for all models
(Figure 4), with lower values in winter (DJF, ∼1ppm) and
higher values in summer (JJA, ∼2 ppm). Table 5 provides
RMS error estimates for each season averaged throughout
the atmosphere.
[42] Stratifying by altitude also produces large differences

in RMS errors between adjacent altitude layers (not shown).
Annually averaged RMS errors in the lower troposphere
approach 2 ppm whereas above 4000 m they are less than
1ppm. The largest differences in RMS error occur from
June to August, with RMS errors in the lower troposphere
approaching ∼2.5 ppm. From December to February, the
difference in RMS error between altitude levels is reduced,
with RMS errors in the free troposphere approaching those

at Cape Grim. Large differences in RMS error between
altitude layers may indicate errors in modeling the vertical
gradient but they may also simply reflect increased observed
concentration variability occurring in the lower troposphere
that is not being captured by the transport model.
[43] Seasonality in model bias at Carr is evident in all

models (Figure 5). When stratifying by season, all models
were found to have significantly negative biases from June
to August (Table 5). Stratifying by altitude (Figure 6)
reveals this bias as centered in the lower troposphere from
June to August, pointing to systematic errors in modeling
the vertical gradient (see detailed discussion in section 3.5).
In addition to errors in the vertical gradient, LMDz, FRCGC
and TM3 show significant seasonality in bias extending
throughout the atmospheric column. TM3 shows signifi-
cantly positive and negative bias between December and
February and between June and August, respectively. CCAM
does not show this seasonality, suggesting an improved
consistency with the observed seasonal cycle above 4000 m.
[44] Given the large RMS errors relative to model biases

in Table 4 (and the vertical and seasonal variations therein),
sources contributing to random error are likely to dominate
at Carr. Representation error is one candidate and results
from the inability to resolve small‐scale flux and transport
variability that give rise to observed high‐frequency CO2

variability. Thus, increased representation errors occur in
the presence of increased concentration variability [Gerbig
et al., 2003]. However, representation error can also con-
tribute to systematic errors (i.e., model bias). Local flux
variability is likely to increase during the growing season at
Carr (principally between June and August) and reduce
during other times of the year due to the high‐altitude, cold
winter climate. Likewise, small‐scale transport is usually
centered in the lower troposphere and increased vertical

Table 4. Summary Statistics of the Model Fit To the Carr Profiles
for All Four Modelsa

Mean RMS Error Mean Model Bias

xRMS sRMS seRMS xMB sMB seMB

CCAM 1.29 0.78 0.05 −0.25 0.98 0.06
LMDz 1.35 0.90 0.05 0.10 1.17 0.07
FRCGC 1.29 0.78 0.05 −0.26 1.06 0.06
TM3 1.32 0.76 0.04 0.20 1.12 0.06

aThe calculated mean estimate (xRMS) of the model RMS error from each
individual profile (and corresponding standard deviation (sRMS) and
standard error (seRMS) of this estimate) is provided. Similar estimates for
the mean model bias (xMB, sMB and seMB) are provided. Data from the
full altitude range of the Carr profiles (Table 1) have been used in the
generation of these error estimates.

Figure 4. The mean monthly RMS error estimated from the model profile fit to the Carr observed pro-
files throughout the Carr time series. RMS error estimates are calculated from the model fit of the entire
atmospheric column.
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mixing, including increased convective activity, usually
occurs in summer (JJA).

3.4. Internal Consistency: Comparison of the Inversion
Profile Fit and Surface Fit, Instrument Error,
and Observed Profile Scatter

[45] An inconsistency between the inversion surface fit
and profile fit is problematic, highlighting the inability of
the model to reconcile both data sets despite flux estimates
optimized to match the surface data.
[46] The surface fit of all models was found to be

acceptable. However, the profile fit from three of the four
models was substantially worse than the fit at the surface at
both profile sites (in terms of RMS error). This inconsis-
tency casts doubt on the resulting flux estimates due to
either a flux that influences the profile data but not the data
within the surface network (Table 2), or to errors in model

transport. This inconsistency remains when comparing the
profile RMS errors to surface data uncertainties. Only TM3
shows consistency between the surface and profile errors.
TM3 uses the raw flask observations at Cape Grim and the
associated data weights are therefore larger because of the
increased difficulty for the model to match these observa-
tions. All models show negligible model bias (or systematic
variations therein) in the surface fit. In contrast, model bias
from the profile fit is significant, including substantial sea-
sonal and interannual components. Therefore, the profile fit
from all models appears inconsistent with the surface fit at
both profile sites in terms of model bias.
[47] Instrumental error of the Cape Grim profiles (0.1 ppm,

L. P. Steele, personal communication, 2004) is significantly
less than that of model error for all models. The low‐order
polynomial fit to observed profiles produces a mean scatter
estimate of 0.2 ppm ± 0.1 ppm (SD), occasionally reaching
0.5 ppm. For about 80% of the Cape Grim profiles, RMS
error from all models is significantly larger than, and con-
sequently inconsistent with, estimated observation scatter
(Table 3). Only TM3 shows some consistency during certain
times of the year. The analytical accuracy and precision of
measurements at CAR are reported to be 0.03 ppm but short‐
term storage and gas handling tests with a 12 flask sampling
system suggest potential biases on the order of −0.09 ppm
(see http://www.esrl.noaa.gov/gmd/ccgg/aircraft/pc.html). Low‐
order polynomial fits result in a mean scatter of ∼0.5 ppm.
While the level of scatter inmany profiles approaches 1.0 ppm,
model error is significantly larger than the estimated scatter
for ∼80% of the profiles (Table 4).

3.5. Modeling the Vertical Gradient

[48] The vertical gradient in CO2 is an important indi-
cator of the coupling between flux and transport processes

Figure 5. The mean monthly model bias estimated from the model profile fit to the Carr observed pro-
files throughout the Carr time series. Model bias estimates are calculated from the model fit of the entire
atmospheric column. Also depicted is the estimated standard deviation of the monthly model bias (vertical
bars). Each model is offset horizontally to improve clarity.

Table 5. Seasonal Statistics of the Model Fit to the Carr Profiles
for Each Inversion Modela

DJF MAM JJA SON

CCAM
RMS Error 0.89 1.11 1.85 1.22
Model Bias −0.12 0.15 −0.70 −0.25

LMDz
RMS Error 0.84 1.03 2.00 1.42
Model Bias 0.24 0.19 −0.79 0.80

FRCGC
RMS Error 1.02 1.13 1.79 1.17
Model Bias 0.06 −0.46 −0.62 0.00

TM3
RMS Error 1.21 1.03 1.78 1.19
Model Bias 0.87 0.42 −0.89 0.52

aMean estimates of seasonal RMS error (xRMS) and model bias (xMB)
are shown.
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influencing the CO2 concentration field. Errors in matching
the observed CO2 vertical gradient point to a seasonal bias
in model transport and cast doubt on subsequent flux esti-
mates [Stephens et al., 2007]. At individual profile sites, a
close model fit to the surface and a poor fit to the observed
CO2 gradient suggests errors in vertical mixing.
[49] Analyzing the consistency of the modeled vertical

gradient with the observed vertical gradient involves first
dividing the observed and modeled vertical profiles into
separate altitude bins. The calculated mean concentration
estimates between the adjacent altitude bins from the observa-
tions and models can then be compared. Due to limits in the
number of measurements in any given vertical profile, we
limited the number of altitude bins to three at both Cape
Grim and Carr (Table 1). Figure 6 provides seasonal plots
of mean residual profiles from all four models at both pro-
file sites.

[50] Significant differences in model bias between adja-
cent altitude bins hint at errors in the vertical gradient.
However, to determine more exactly errors in these model
gradients, we calculated both the observed and modeled
vertical gradients between the adjacent altitude bins and
compared them directly. Estimates of the vertical gradient
within two different regions of the atmosphere were calcu-
lated: one between the first and second altitude bin (lower
troposphere) and one between the second and third bin
(upper troposphere).
[51] Annual and seasonal mean observed and modeled

vertical gradients were estimated along with corresponding
standard errors. We then calculated the difference between
the observed and model vertical gradients and the corre-
sponding uncertainty in this difference through the propa-
gation of variance. This uncertainty in the gradient error
was used to determine whether the gradient errors were

Figure 6. The mean seasonal model profile bias estimated from the model fit to the Cape Grim and Carr
observed profiles respectively within three different atmospheric altitude bins (i.e., seasonal profiles of
model bias). (top) Results from the model fit to the Cape Grim profiles and (bottom) results from the
model fit to the Carr profiles. The horizontal bars for each inversion within each atmospheric region rep-
resent the confidence interval (CI) of the estimated seasonal mean model bias. Overlapping CIs indicate
the model biases between different inversion models are insignificantly different from each other. CIs
intercepting the y axis indicate a model bias insignificantly different from zero. Overlapping CIs of model
bias from any single inversion model between different atmospheric regions suggest insignificant changes
in model bias with altitude (i.e., no significant vertical gradient errors). The CIs are calculated from the
estimated standard error of the mean model bias estimate.
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significantly different from zero. This methodology is
similar to that of Stephens et al. [2007] who generated a
climatology of both the observed and modeled vertical
gradients before comparing the two. However, Stephens
et al. [2007] did not present a statistical analysis of the
significance in differences between the observed and mod-
eled vertical gradients.
[52] At Carr, all four models were found to significantly

overestimate the observed positive summertime (June–
August) CO2 vertical gradient in the lower troposphere. This
overestimation also carried over into the next season for two
of the four models (September–November). This result is
consistent with all models exhibiting significantly larger
negative model bias in the lower troposphere from June–
August (Figure 6). An overestimation of the observed pos-
itive vertical gradient at Carr implies either an overestimate
of summertime carbon uptake across all four models or too
little vertical mixing. These effects could be separated if the
surface inversion fit at Carr was known but no such data
exists to verify the surface fit.
[53] However, summertime undermixing at Carr is

inconsistent with the results of Stephens et al. [2007]. They
found that the 12 TRANSCOM models from Gurney et al.
[2004] tended to overestimate summertime vertical mixing
in the northern hemisphere and we would therefore expect
a reduced model gradient compared to the observed gradi-
ent. It would be surprising that the models presented here
should all contradict the result from Stephens et al. [2007].
NWR is approximately 115 km SW of Carr. If the surface fit
from each inversion model at NWR (known to be accept-
able) is representative of the surface fit at Carr, the models
are indeed underestimating vertical mixing. However, the
extent to which the inversion fit at NWR can be used as a
proxy for the fit at Carr is unclear. This is in part because
(1) the model representation of mountain sites such as NWR
can be particularly problematic and (2) the model footprint of
suchmountain sites can be large relative to other surface sites.
Such large footprints are potentially unrealistic given local
affects such as upslope breezes that bring stagnant mountain
valley air up to the surface observation site during the morning
hours (C. Sweeney, personal communication, 2011).
[54] Consideration of additional profile sites indicated that

the inconsistency in vertical gradient errors between our
study and that of Stephens et al. [2007] was only apparent at
the Carr profile site. This finding is discussed in more detail
in section 3.7.
[55] All models show reduced and statistically insignifi-

cant vertical gradient errors at other times of the year. This is
particularly true from December–February where only TM3
indicated significant errors in the vertical gradient within the
lower troposphere. Stephens et al. [2007] instead identified
significant errors in the northern hemispheric climatological
gradient among the TRANSCOM models from December–
February. Consistent and systematic trends in modeling the
vertical gradient higher up in the atmosphere across all four
models were not identified. Significant differences in the
vertical gradient in the upper atmosphere were only evident
for TM3.
[56] Inferring significant errors in the vertical gradient

from analysis of the differences in model bias between
adjacent altitude layers is generally consistent with the
results from the analysis of the vertical gradient estimates

themselves. That is, significantly larger negative model bias
in the lower troposphere relative to the free troposphere
predominantly occurs from June to August only at Carr
(Figure 6). However, the analysis of model bias within
different altitude bins also reveals seasonal errors extending
throughout the atmospheric column that are not associated
with errors in modeling the vertical gradient. Three of the
four models (LMDZ, FRCGC and TM3 but not CCAM)
exhibit this seasonality in model bias which suggests a
general model inconsistency with the observed seasonality in
CO2 over Colorado/western USA despite matching the
observed seasonality at the surface. Therefore, two types
of model inconsistency with the observed profiles are appar-
ent: (1) inconsistencies between the model and observed
vertical gradients calculated directly and (2) an inconsis-
tency with the seasonal cycle in the column averages, a result
also identified by Yang et al. [2007].
[57] The implications of errors in modeling the vertical

gradient at Cape Grim are different to those at Carr. Unlike
Carr, Cape Grim is predominantly a marine site and is far
removed from any large‐scale (continental) flux variations.
Furthermore, the significance of errors in the modeled ver-
tical gradients is somewhat dependant on the exact speci-
fication of the altitude bins. Three of the four models
show consistent errors in modeling the vertical gradient for
both levels.
[58] FRCGC shows vertical gradient errors extending

throughout the atmosphere from June to November. These
errors are likely related to large‐scale horizontal/vertical
transport errors. TM3 shows consistent errors in the lower
tropospheric vertical gradient from March to May, despite
showing better consistency with the Cape Grim profiles
overall (Figure 3). CCAM also consistently shows errors in
the lower troposphere from December to February (southern
hemispheric summer). This seasonal error is separate from
the more large‐scale seasonal error in model bias that
extends throughout the atmospheric column (evident in
Figures 2, 3 and 6). As with the other three models at Carr,
two types of model error influence inconsistencies in the
CCAM profile fit at Cape Grim: (1) errors in the low‐
tropospheric vertical gradient (occurring from December to
February) and (2) a general inconsistency with the observed
seasonal variation at Cape Grim (reaching a maximum from
March to August).
[59] An explanation for the summertime low‐tropospheric

vertical gradient errors within CCAM may be similar to that
at CAR, namely vertical mixing errors. However, given that
Cape Grim is an important baseline observation station, a
mismatch between data‐selected surface observations with
non‐data‐selected response functions may introduce sys-
tematic changes in flux estimates that are revealed as
inconsistent with nearby profile measurements. Recall from
section 3.2 that CCAM closely matches the Cape Grim
surface data used in the inversion model.

3.6. Interannual Variations in Model Bias

3.6.1. Cape Grim
[60] Figure 7 displays the annual mean model profile bias

for each year of the Cape Grim profile time series. Error bars
indicate an estimated ±2.s range of model bias (s is the
estimated standard deviation of individual model bias esti-
mates and not the standard error). Given the similarity in
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model error statistics between CCAM, LMDz and FRCGC,
it is surprising to find large differences in the time series of
model bias for these models at Cape Grim. There appear to
be systematic shifts in model bias for the CCAM model
from 1991 to ∼1994 (revealing negative‐positive‐negative
trend). From 1994 to 1997, the model bias remains negative
(∼−0.5 ppm) and after 1998, there is a positive trend.
FRCGC also shows a significant negative trend in model
bias up to 1994. The trend then becomes positive until
reaching a maximum bias in 1999 before decreasing again.
[61] LMDz shows a considerable positive trend in model

bias throughout the entire time series (Figure 7). Such an
increasing trend might indicate a problem within the
inversion system (e.g., conservation of mass) if it was not a
regional occurrence. However, Carr does not show similar
characteristics. The forward simulation is therefore not
likely to be in error. This leaves two further possibilities.
Either there is an inconsistency in the interannual variability
required of fluxes to fit both the surface and profile data or
the bias in the upper air simulation arises from fluxes
unconstrained by the surface network. To explore this pos-
sibility we analyzed flux trends in large regions that may
impact the atmosphere above Cape Grim. The southern
oceanic regions surrounding Cape Grim were found not to
contain any significant CO2 flux trends for the duration of
the Cape Grim profiles. However, Australia, Tropical Asia
and South America (using the standard TRANSCOM region
definitions) were identified as having a positive trend in
CO2 emissions to the atmosphere. While none of these three
regions individually produce a trend likely to be responsible
for the ∼+0.15 ppm yr−1 change in bias of LMDz, together
the three regions emit approximately 0.25–0.3 GtC yr−1. An
integrated total emission over 10 years of 2.5–3 GtC is
consistent with an integrated change in bias of +1.5 ppm at

Cape Grim. The trend in emissions within these three
regions appears to diminish post 2000 and we might
therefore expect a decrease in the positive LMDz trend at
Cape Grim. However, no profile data after 2000 is available
to test this hypothesis. Of the three land regions mentioned
above, Tropical Asia (lying predominantly north of the
equator) appears to be the least likely to have any influence
on the Cape Grim profiles. However, there is evidence of
interhemispheric mixing and biomass burning influencing
the Cape Grim profiles [Pak, 2000].
[62] All of the above mentioned flux regions are particu-

larly poorly constrained by the surface network. These
positive trends in emissions may also be a result of a cou-
pling with other regions containing negative trends in
emissions that are not detected at Cape Grim. However, only
the southern Atlantic Ocean was found to have a signifi-
cantly negative trend in CO2 fluxes, the magnitude of which
was not large enough to fully counteract the increasing trend
of the other three land regions. It is also worth noting that
CCAM and FRCGC also contain positive and negative
trends of similar magnitude to that of LMDz, but for shorter
durations within the period of the Cape Grim profiles. While
the consistency of the LMDz trend throughout the Cape
Grim profile archive points to a systematic trend in the LMDz
flux field, the trend of 0.15ppm yr−1 is still small enough that
it may well lie within the concentration space spanned by
uncertainties in the LMDz flux estimates. The LMDz inver-
sionmodel has subsequently been improved, and the trends in
flux estimates discussed above have been reduced.
[63] The model bias from TM3 is relatively constant

throughout the whole period, again reflecting the overall
improved fit to the Cape Grim profiles provided by TM3. It
is also worth noting the differences in the model data bias
ranges (error bars) between successive years for individual

Figure 7. The mean annual model bias estimated from the model profile fit to the Cape Grim observed
profiles throughout the Cape Grim time series. Model bias estimates are for the entire atmospheric
column. Also depicted is the estimated standard deviation of the annual model bias (vertical bars). Each
model is offset horizontally to improve clarity.
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models as well as between models in individual years. These
differences in error bars could be related to different levels
of model scatter between the different models.
3.6.2. Carr
[64] Figure 8 displays the annual mean model profile bias

for each year of the Carr profile time series. Interannual
variation in model bias for all models is evident. All models
show similar characteristics in the beginning of the study
period, with an increasing and then decreasing model bias
from 1993 to 1996 and a particularly marked negative shift
in 1995. The CCAM model then shows relatively constant
negative model bias through to the end of the time series.
The other models show interannual variations that at times
appear to be following a similar trend (three of the four
models show an increasing trend between 1996 and 2000).
FRCGC diverges from the other models at the end of the
study period with a sharp change in trend in 1999.
[65] Such systematic changes in model bias with time are

likely to arise from errors in interannual flux variation or
model transport. The cause of such systematic variations is
difficult to identify in any single model. However, common
variations in model bias highlight flux interannual vari-
ability evident in airborne data but not at the surface. The
fact that all inversions exhibit similar behavior at Carr from
1993 to 1996, including a marked shift in model bias in
1995 strengthens the case for hitherto unobserved flux
variations at the surface but impacting the observed profiles.
A similar common shift over a much larger sample of
models (12) was also identified by Baker et al. [2006]. This
early period in the time series was an anomalous period
in the global carbon cycle usually linked to the Mount
Pinatubo eruption in 1991 [Peylin et al., 2005; Rödenbeck
et al., 2003; Lucht et al., 2002]. Correlated trends in flux
estimates with interannual variability in model bias do not

necessarily occur in every instance. Such correlations indi-
cate that the flux estimates are indeed unreliable as they
are not consistent with the aircraft observations (or else
there should be no significant model bias or variations
therein). Errors in transport notwithstanding, a lack of cor-
relation between flux estimates and model bias variability
suggests the potential for flux variation that is not evident in
the surface observation record and therefore absent in the
flux estimates.
[66] Note that changes in the sampling protocol exist at

both profile sites. The sampling altitude at Carr was extended
to ∼8000 m from ∼6000 m in the second half of 1995.
However, no obvious change in the model fit at Carr is
coincident with the change in sampling protocol. The model
profile fit was also analyzed (in time) within different layers
of the atmosphere (4000–6000 m, 6000–8000 m, 4000–
8000 m and the entire profile column) and all show similar
features during periods in which there are measurements. It is
instead the lower troposphere (2000–4000 m) that is different
from the free troposphere, reflecting errors in the vertical
gradient in the northern hemispheric summer. Similarly,
no association between minor changes in the Cape Grim
sampling protocol and significant changes in model fit
were found.

3.7. Consideration of Other Profile Sites

[67] The CCAM model results at several other sites
(NOAA/ESRL‐GMD network: HAA, HFM, LEF, PFA and
RTA) have been examined to test the robustness of the
findings of this study. The available records are shorter at
these sites so we have used them mainly to test the gener-
ality of results at Cape Grim and Carr.
[68] Figure 9 and Table 6 provide a general summary of

the results from these model comparisons. It is immediately

Figure 8. The mean annual model bias estimated from the model profile fit to the Carr observed profiles
throughout the Carr time series. Model bias estimates are for the entire atmospheric column. Also depicted
is the estimated standard deviation of the annual model bias (vertical bars). Each model is offset horizon-
tally to improve clarity.
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obvious that both Cape Grim and Carr are not sites that are
particularly difficult to model relative to other sites. In
addition, the following observations can be made.
[69] 1. Both LEF and HFM show significantly larger

errors relative to Carr. Carr instead shows similar results to
PFA, including seasonal variation in RMS errors.
[70] 2. PFA, LEF and HFM all show large seasonality in

model error that is in part a result of errors in modeling the
vertical gradient in June–August.
[71] 3. The results from PFA, LEF and HFM all hint at

positive gradient errors in summer (implying overmixing)
whereas Carr shows negative biases (implying undermixing).
However, due to limited data availability at the time of
this study, these gradient errors were not identified as sta-
tistically significant.
[72] 4. Cape Grim remains the easiest site to model,

although there is little difference between Cape Grim and
RTA. The improved model performance at both these sites
may be attributed to their location in the Southern Hemi-
sphere where there exists smaller seasonal variation in
observed CO2 relative to the Northern Hemisphere.
[73] 5. RTA also shows significant seasonality in model

bias, although the nature of this seasonality (magnitude and
phase) is different to that of Cape Grim and therefore, so is
the likely cause(s).

[74] 6. Among the four profile sites running along the
Pacific (from PFA, HAA, RTA and Cape Grim), there is a
general increasing trend in model skill from north to south.
[75] 7. At HAA, CCAM shows increased error in the

upper troposphere relative to the lower troposphere.
[76] The apparent contradiction between the summertime

vertical gradient errors observed at Carr (implying under-
mixing) and those observed for the northern hemisphere
[Stephens et al., 2007] does not appear to be significant.
Because results from other sites such as LEF, HFM and PFA
do not imply undermixing, the results at Carr appear to be
relatively local. We suspect that aggregation error of some
form provides an explanation for why the vertical gradient
errors at Carr are different. Flux emissions influencing the
Carr profile site may in turn be influenced by observations at
surface stations other than NWR, resulting in locally
increased CO2 uptake causing the Carr model profile gra-
dients to be in error. Alternatively, there may be a coupling
between adjacent flux regions that are both constrained by
the surface network, but only one of which significantly
influences the model profile at Carr.
[77] It might also be possible to classify Carr as a conti-

nental background site: modeling results are significantly
better than at other continental profile sites but are none-
theless not comparable to marine background sites. Fur-
thermore, modeling complexities related to the complex

Figure 9. Full column seasonal RMS error and mean bias estimates for additional NOAA profile sites.
Profile sites depicted in red are primarily continental observation sites. Profile sites depicted in blue are
primarily marine observational sites. The marine profile sites and in addition, PFA, lie along an approx-
imate longitudinal transect of the Pacific Ocean.

Table 6. Comparison of the CCAM Model Profile Fit to Other NOAA Profile Sitesa

Profile Site Annual RMS Error Annual Mean Bias Longitude Latitude Sfc. Alt (m) Profile Altitude Range (km)

CAR 1.29 −0.25 −104.30 40.37 1740 2.1–8.0
HFM 2.84 −0.52 −72.17 42.54 340 0.6–8.1
LEF 2.83 −0.08 −90.27 45.95 472 0.5–5.0

PFA 1.67 −0.67 −147.29 65.07 210 0.2–7.6
HAA 0.94 0.10 −158.95 21.23 3 0.0–8.1
RTA 0.70 −0.31 −159.83 −21.25 3 0.1–6.5
AIA 0.62 −0.29 144.69 −40.68 0 0.1–8.0

aAnnual estimates of the mean RMS error (xRMS) and mean model bias (xMB) are shown. The seasonal variation of these error estimates is depicted in
Figure 9. The profile site location and surface altitude (Sfc. Alt) are also indicated as well as the altitude range of the aircraft profiles.
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terrain in the vicinity of Carr (i.e., the Rocky Mountains)
appear not to be as important relative to resolving substan-
tial concentration variations evident at other profile sites
(HFM, LEF) where model error is more significant. HFM
and LEF lie in relatively flat terrain but observe large con-
centration variations that are likely due to significant flux
variation. The mixed landscape surrounding LEF includes
wetlands and upland forests. HFM lies within a mixed‐
deciduous forest. These biomes/ecosystems are significantly
different to those at Carr, a site located in a relatively arid
climate where reduced concentration variability due to
reduced flux exchange relative to LEF/HFM is likely to exist.

4. Discussion

[78] While validation of inversion models is useful in
testing the reliability of inversion flux estimates, the tech-
nique does not itself establish that an improved set of flux
estimates has been obtained through the application of a
particular inverse model. Validation only serves to demon-
strate consistency of an inversion model. Significant differ-
ences in model consistency can be useful in the differentiation
between a collection of inverse models based on an assess-
ment of greater reliability. However, similarity in model
consistency does not suggest the two inverse models are
the same.
[79] Validation tests also require the coupling of the

inversion model with a forward simulation of optimized
fluxes. The resulting model consistency relates to the cou-
pled inverse system as a whole and not the individual
components. Two main factors can cause inconsistencies
with the validation data: (1) The inversion model, including
transport modeling in the form of response functions and the
inversion setup (prior flux estimate, surface network, surface
data uncertainties, flux region resolution and distribution)
and (2) the forward simulation.
[80] Analysis presented here does not yet provide a

definitive way to separate errors in flux estimates from
transport errors in the forward simulation. Furthermore,
inversion flux estimates are fundamentally a function of
model transport and observation constraints. In both cases,
the same transport model is used. While transport errors in
the forward simulation and adjoint mode (if it exists) should
be exactly the same, in reality the transport used in the
inversion model and forward simulation are not always the
same. This is dependant on the inversion setup. In the case
of TM3, the errors should theoretically be the same because
the exact same atmospheric forcing used in the forward
simulation is also used in reverse within the inversion. In
contrast, both LMDz and FRGCG use monthly averaged
atmospheric forcing within their respective inversion mod-
els. CCAM uses monthly averaged atmospheric forcing
from only one year but all three models use the correct
atmospheric forcing (or transport) in their respective for-
ward simulations.
[81] However, analysis of error from the model profile fit

can indicate possible sources of this error (transport error or
otherwise). The systematic errors at Cape Grim are domi-
nant, affecting the entire model profile fit, and suggest
model inconsistency with large‐scale fluxes and/or trans-
port. In contrast, random model error (including the effects
of representation error) has a more dominant influence at

Carr. Multimodel validation experiments help identify inter-
annual flux variation absent in the surface observation
network (Figure 7 and Figure 8). Finally, the consistency of
the model profile fit against different criteria can help
determine the reliability of flux estimates. Demonstrating
model consistency (either internal consistency or improved
consistency relative to other models) is an important objec-
tive of this study.
[82] In consideration of the model profile fit alone, no one

model is routinely more consistent with the profile data
at both profile sites (i.e., provides a better profile fit). This
is despite significant differences between the inversion
model setup and model transport (auxiliary material Texts
S1 and S2). Such differences include the spatial resolution
of the flux estimates (region‐based flux estimates versus
model‐grid flux estimates), consideration of interannual
variation in winds, transport model resolution and use of a
priori flux spatial correlations in the inversion setup.
[83] TM3 appears both significantly more consistent at

Cape Grim and significantly less consistent at Carr com-
pared to the other three models. The opposite is true for
CCAM, showing relatively good consistency with the Carr
profiles in the free troposphere. The reasons for this are not
clear. Given the relatively small difference in RMS error
between CCAM and the other models at Carr, decreased
random error (or model scatter) possibly from the improved
ability to resolve flux or transport variation is unlikely to be
the reason. Instead, CCAM appears consistent with the
observed seasonal variation in CO2 above 4000 m over Carr
(i.e., within the free troposphere), implying consistency with
optimized seasonal flux variations influencing the free tro-
posphere over Carr. The comparison with profile data across
the four models thus allows for the differentiation between
the different models in terms of consistency and some
explanation for the differences. A similar argument can be
applied to TM3 at Cape Grim. The TM3 model shows
a small and constant model bias and the RMS errors are
(1) less than those of the other models and (2) similar to that
of the TM3 surface fit at Cape Grim.
[84] The assessment of model consistency described

above relies on analysis of the model profile fit alone (and
significant differences between the models such as reduced
seasonal bias). A different conclusion arises if one considers
instead the consistency between the profile and surface fit.
In this case, TM3 appears the most consistent model at both
sites. The surface fit is both statistically consistent with the
surface data uncertainties as well as the profile fit, despite
the significant seasonality in the Carr profile fit described
above. These different assessments of inversion consistency
are not contradictory. Rather, this analysis addresses the
question whether a particular inversion fits the profile data
as well as can be expected given measurement uncertainties
and the difficulty of representing complex vertical structures
in coarse‐resolution models. In the case of TM3, the Carr
profile fit is as good as can be expected because it is sta-
tistically consistent with the surface fit. Statistical consis-
tency between the surface and profile fit therefore indicates
the profile observations may be used as a further data con-
straint. For CCAM, LMDz and FRCGC, the model profile
fits are inconsistent with the surface fit as well as the
uncertainties attached to both the surface data and profile
data (instrument error + representation error). These three
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models cannot reconcile both the surface and aircraft data.
The assessment of model consistency discussed here is how-
ever only based on two profile sites. A more thorough eval-
uation of model consistency either across the globe or even
within large geographical regions requires the use of a much
larger aircraft data set consisting of multiple profile sites.
[85] What is not addressed here is whether the mis-

match with the profiles is consistent with the uncertainties
in simulated concentrations arising from the flux uncer-
tainties estimated by the inversion. This is of particular
importance due to the inadequate constraints provided by
the surface network. Answering this question requires an
analysis of such uncertainties and is the subject of a forth-
coming paper.
[86] Another important consideration is the significance of

intermodel variation on the model profile fit, either in the
context of flux estimation or forward simulations. Previous
studies such as the TRANSCOM‐3 experiments have focused
on the significance of intermodel variation in flux estimates
using surface network data. A logical extension of this would
be to analyze the significance of between‐model variations
in flux estimates on the model profile fit. A similar case can
be made for determining the significance of the forward
simulation on the model profile fit through an intercom-
parison of forward simulations using a common flux field.
Both lines of enquiry are currently being undertaken.
[87] The inclusion of more airborne data would also be

beneficial. There are large amounts of airborne data col-
lected as horizontal and vertical transects during intensive
measurement campaigns. One collection of such data is
available at http://geomon‐wg.ipsl.jussieu.fr/ for CO2 and
CH4 from a number of different measurement campaigns.

5. Conclusion

[88] This study explores the utility of airborne profile
measurements for the validation of atmospheric CO2 inver-
sion models. As well as determining the consistency of an
inversion model against various criteria, validation highlights
errors within the inversion models that are not apparent from
an analysis of the flux estimates or the fit to the surface data
used in the inversion model. Therefore, results from valida-
tion studies help to either support or challenge the description
of carbon cycle dynamics given by an inversion model.
[89] We can summarize the conclusions of the study

as follows.
[90] 1. For three of the four models at both sites, the fit to

the profile data is not statistically consistent with the fit to
the surface data or to reasonable measurement and repre-
sentation errors. However, TM3 demonstrates consistency
between the profile and surface fit at both profile sites.
[91] 2. Errors at Cape Grim are dominated by model bias

while at Carr the model profile fits also include considerable
scatter and errors in fitting vertical gradients.
[92] 3. All models show considerable error in fitting the

observed seasonal cycle throughout the atmospheric column
at one or both profile sites.
[93] 4. There is interannual variability in the mismatch to

the profile data. The consistency of this behavior across
models suggests flux variability not observed by the surface
network is influencing the observed profiles. The most
striking example is the early 1990s at Carr.

[94] 5. Analysis of other sites suggests Cape Grim and
Carr are part of a consistent picture of increasing difficulty
to fit data as one moves north.
[95] 6. All models show errors in modeling the low‐

tropospheric summertime (JJA) vertical gradient at Carr.
[96] 7. The apparent inconsistency in modeling the verti-

cal gradient at Carr with that of the Northern Hemisphere
(as reported by Stephens et al. [2007]) is likely to only exist
at Carr. Modeling results at other profile sites, although not
shown as statistically significant, suggest that no inconsis-
tency exists at these additional profile sites.
[97] TM3 is the most consistent and reliable model of the

four models presented in this manuscript because the TM3
profile fit is consistent with the surface fit at both profile
sites. Any significant errors identified in the TM3 profile
match are to be expected as they remain consistent with the
model fit to surface data included in the inversion. In
addition, TM3 clearly provides a better profile fit at Cape
Grim relative to the other models. TM3 does not provide a
superior profile fit at Carr relative to the other four models
(particularly CCAM) and this highlights errors in the TM3
flux estimates (predominantly the seasonality in flux esti-
mates). Nevertheless, consistency between the TM3 profile
and surface fit at Carr suggest these errors may be reduced
with additional data constraints. However, a more thorough
evaluation of model consistency requires a much larger data
set consisting of several aircraft profiling sites.
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