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Abstract In this paper, a joint study of the behavior of solutions of the Heavy Ball ODE
and Heavy Ball type algorithms is given. Since the pioneering work of B.T. Polyak [38], it is
well known that such a scheme is very efficient for C2 strongly convex functions with Lipschitz
gradient. But much less is known when only growth conditions are considered. Depending
on the geometry of the function to minimize, convergence rates for convex functions, with some
additional regularity such as quasi-strong convexity, or strong convexity, were recently obtained in
[12]. Convergence results with much weaker assumptions are given in the present paper: namely,
linear convergence rates when assuming a growth condition (which amounts to a  Lojasiewicz
property in the convex case). This analysis is firstly performed in continuous time for the ODE,
and then transposed for discrete optimization schemes. In particular, a variant of the Heavy Ball
algorithm is proposed, which converges geometrically whatever the parameters choice, and which
has the best state of the art convergence rate for first order methods to minimize composite non
smooth convex functions satisfying a  Lojasiewicz property.

Key-words Lyapunov function, rate of convergence, ODEs, optimization,  Lojasiewicz prop-
erty, Heavy Ball method.

1 Introduction

Let us consider the following unconstrained minimization problem

min
x∈Rn

F (x) (1)

where F : Rn → R is a convex function having a non-empty set of minimizers X∗. Depending on
the assumptions on F , there exist plenty of algorithms to solve this problem. The convergence
of these algorithms and their rate of convergence may highly depend on the properties of F . If
F is differentiable with a L-Lipschitz continuous gradient, a classical algorithm is the explicit
Gradient Descent (GD) which ensures the convergence to a minimizer x∗ of F . The convergence
rate of (GD) i.e. the decay of F (xn)−F (x∗), may be quite slow for some convex functions but it
is actually exponential when F is strongly convex. Most algorithms such as inertial algorithms
(Heavy Ball or Nesterov acceleration schemes), ensure a better convergence rate if F is known
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to be strongly convex. Most of the time the parameter µ of strong convexity is a parameter of
the algorithm.

Nevertheless, the strong convexity assumption may not be satisfied in many numerical prob-
lems. Strong convexity is indeed a strong hypothesis. It turns out that many functions are not
strongly convex but still have good properties for optimization. A weaker property ensuring
an exponential convergence of the Gradient Descent is actually the  Lojasiewicz property with
an exponent θ = 1

2 . This property is equivalent for convex functions to a quadratic growth
condition around the set of minimizers. Roughly speaking a function F satisfies the  Lojasiewicz
property with parameter θ ∈ [0, 1) if around its set of minimizers we have:

F (x)− F ∗ > µ

2
d(x,X∗)

1
θ . (2)

that is, if θ = 1
2 , F grows at most quadratically around the set of minimizers. In the present

work we focus on the class of convex functions satisfying a  Lojasiewicz property with a special
interest to the subclass of functions satisfying a  Lojasiewicz property with an exponent 1

2 , which
gathers a large set of functions used in image processing and statistics. A well-known example
of such a function is the LASSO function:

F (x) =
1

2
‖Ax− y‖2 + λ ‖x‖1 (3)

If Ker(A) 6= {0}, the function F is not strongly convex and it may not be quasi-strongly convex
[31, Definition 1] but it belongs to the class of convex functions having the  Lojasiewicz property
with an exponent θ = 1

2 [18].
Following Polyak [38] a joint study of the dynamical system (4)

ẍ(t) + αẋ(t) +∇F (x(t)) = 0 (4)

and of an associated algorithm that is a suitable discretization of the ODE (4), is proposed.
The study of the continuous dynamic to have of a better understanding of algorithms is

actually a cornerstone of many recent works in optimization, see e.g. [42, 6, 11, 2, 3, 41, 21, 10, 12].
The analysis of Polyak [38] rests on a C2 hypothesis on F and most following studies by

Nesterov [34], Ghadimi [24], Siegel [41] or by the authors of the present work [12] necessitate a
strong or at least weak strong convexity assumption. These previous results do not apply under a
sole growth condition. Moreover the value of the parameter α in (4) must be chosen accordingly
to strong convexity parameter of F to ensure the convergence and the rate of the algorithm.

The main contributions of this work can be summarized as follows.

1. Linear convergence rates for the ODE (4) associated to the Heavy ball in the case of a
growth condition and uniqueness of a minimizer (which are the best known rates under
these hypotheses), see Theorems 1 and 2.

2. New convergence rates for an algorithm inspired from ODE (4) in the case of a convex
function with a L-Lipschitz gradient (or in the composite case) in the case when F satisfies
any  Lojasiewicz property, whatever the parameters choice, see Theorems 6 and 8.

3. Linear convergence rates for an algorithm inspired from ODE (4) under the additional
assumption of uniqueness of the minimizer (which are the best known rates under these
hypotheses), see Theorems 7 and 9.

More precisely, we extend the analysis of the first point with a non vanishing perturbation
term and to the associated monotone inclusion. A conclusion of this first study is that the value
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of the friction parameter α in (4) ensuring the best decay rate of F (x(t)) − F (x∗) is different
from the one obtained by Polyak [38] for C2 strongly convex functions and obtained in [12] for
weak strong convex functions.

The second contribution is algorithmic since we propose an inertial algorithm which is different
from the classical Heavy Ball algorithm of Polyak and which convergence is ensured for a large set
of parameters. No lower bounds on the growth parameters are needed to ensure the convergence
of the iterates or a fast decay rate of F (xn)−F (x∗) under  Lojasiewicz properties. This is a main
difference with most previous works in which the parameter α must be chosen small enough with
respect to the strong convexity parameter of F . The given decay rate of F (xn) − F (x∗) are
polynomials and are the one we expect according to the continuous analysis of Bolte et al. [17]
when the  Lojasiewicz parameter θ is smaller than 1

2 and is linear when θ = 1
2 .

To understand the third contribution, the reader must be aware of a key point : all exponential
decay rates of various algorithms are not equivalent. We refer the reader to Definitions 5 and 6
in Section 3 for the exact definition of decay rate in the case of exponential convergence. In
many practical problems, the value of the parameter µ in the growth condition (2) is very small.
When F is continuously differentiable with a L-Lipschitz gradient, the condition number κ = µ

L
may be very small. This number drives the actual rate of many algorithms minimizing F . For
the gradient descent we can expect that F (xn) − F ∗ = O(qn) with q = 1 − κ. This rate is
actually achieved for quadratic functions and we cannot expect a better rate for the gradient
descent in general. If κ is really small, this decay may be really slow and not visible on numerical
experiments. It is one of the reasons why the Forward Backward algorithm that can be seen as
a extension of Gradient descent to composite functions F = f + g, is numerically slow on the
LASSO problem even if the decay is exponential.

The main advantage of inertial methods is that they are able to provide rates such that
1− q ≈ C

√
κ which is much better when κ is close to 0. We will say that the exponential decay

is slow if 1− q ≈ Cκ and is fast if 1− q ≈ C
√
κ.

In Theorems 7 and 9, we achieve a fast exponential decay for a suitable choice of parameters
depending on the growth parameter µ. Hence, these last theorems ensure better decay rates
under stronger assumptions than Theorems 6 and 8 and complete the analysis under growth
conditions.

The paper is structured as follows: in Section 2 , the definitions and the links between all the
classical geometrical hypotheses on functions F are presented. In Section 3, we present the state
of the art and extensive results for the dynamical system (4). These results are extended to the
associated differential inclusion. Section 4 is dedicated to the discrete scheme, and we propose
here a new scheme that has the best convergence rate for minimizing non smooth convex functions
satisfying a  Lojasiewicz property. Section 5 presents some numerical experiments. Most of the
proofs are postponed to Section 6.

2 Preliminaries: local geometry of convex functions

Let us first recall some basic notations and definitions. We assume that Rn is equipped with the
Euclidean scalar product 〈·, ·〉 and the associated norm ‖ · ‖. As usual B(x∗, r) denotes the open
Euclidean ball with center x∗ ∈ Rn and radius r > 0. For any real subset X ⊂ Rn, the Euclidean
distance d is defined as:

∀x ∈ Rn, d(x,X) = inf
y∈X
‖x− y‖.
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If the function F : Rn → R is differentiable, its gradient is denoted by ∇F (x). When F is
assumed only convex, its (convex) subdifferential denoted by ∂F (x), is defined by:

∂F (x) = {s ∈ Rn | ∀y ∈ Rn, F (y) > F (x) + 〈s, y − x〉}.

We remind here that ∂F (x) is a closed convex set at any x ∈ int(dom(F )). If F is additionally
proper lower semicontinuous then for all x ∈ int(dom(F )), its subdifferential ∂F (x) is also non-
empty and bounded.

In this paper we consider the general class of convex functions having a  Lojasiewicz property
[29, 30], a key tool in the mathematical analysis of continuous and discrete dynamical systems.
Initially introduced to prove the convergence of the trajectories for the gradient flow of analytic
functions, an extension to nonsmooth functions has been proposed by Bolte et al. in [16, 17]:

Definition 1 (The  Lojasiewicz property for convex functions). Let F : Rn → R ∪ {+∞} be a
proper lower semicontinuous convex function with X∗ = argminF 6= ∅. The function F has a
 Lojasiewicz property if for any minimizer x∗, there exist θ ∈ [0, 1), c > 0, ε > 0 such that:

∀x ∈ B(x∗, ε), c (F (x)− F (x∗))
θ 6 d(0, ∂F (x)), (5)

or equivalently if F satisfies a local growth condition i.e. if for any minimizer x∗ ∈ X∗, there
exist r > 1 and µ > 0 such that

∃ε > 0,∀x ∈ B(x∗, ε), F (x)− F (x∗) >
µ

2
d(x,X∗)r. (6)

The equivalence between the  Lojasiewicz property (5) and the local growth condition (6) has
been proved in [17, Theorem 5]. More generally, for convex functions, a growth condition on an
arbitrary set Ω ⊂ Rn implies a  Lojasiewicz property on Ω, but the equivalence is guaranteed
only on ∂F -invariant sets, see [23, Proposition 3.2] for more details.

In this paper we consider a slightly stronger growth condition, namely a growth condition
defined in the neighborhood of the set of minimizers as follows:

Definition 2 (Growth condition Grµ). Let F : Rn → R∪{+∞} be a proper lower semicontinuous
convex function such that X∗ = argminF 6= ∅. The function F satisfies the growth condition
Grµ for some exponent r > 1 and some real constant µ > 0 if there exists ε > 0 such that for all
x ∈ Rn, we have:

d(x,X∗) 6 ε ⇒ µ

2
d(x,X∗)r 6 F (x)− F ∗.

The condition Grµ is said to be global if for all x ∈ Rn, we have: F (x)− F ∗ > µ
2 d(x,X∗)r.

The growth condition Grµ can be seen as a sharpness assumption on the function F character-
izing functions behaving at least as ‖ · ‖r in the neighborhood of their minimizers. Note that Grµ
implies the growth condition Gr′µ for all r′ > r > 1. If F admits a unique minimizer, the growth
condition Grµ is nothing more than the local growth condition (6). More generally, when the set
X∗ of the minimizers is a compact set (which is guaranteed assuming for example F coercive),
a straightforward extension of [4, Lemma 1] ensures that the local growth condition (6) and the
condition Grµ are actually equivalent.

More precisely combining [23, Proposition 3.2] and [4, Lemma 1], we have:

Lemma 1. Let F : Rn → R ∪ {+∞} be a proper lower semicontinuous and coercive convex
function satisfying a  Lojasiewicz property, or equivalently some local growth condition. Then
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there exist r > 1 and µ > 0 such that F satisfies the growth condition Grµ for some ε > 0 and has

the  Lojasiewicz property with the exponent θ = 1− 1
r on the set {x ∈ Rn | d(x,X∗) 6 ε} i.e.:

∀x ∈ Rn, d(x,X∗) 6 ε ⇒ c (F (x)− F (x∗))
θ 6 d(0, ∂F (x))

where c = r
(

2
µ

) 1
r

.

Throughout the paper, we have a special interest in the class G2µ of convex functions satisfying
a quadratic growth condition G2µ and the sub-class PLµ of functions satisfying a global version

of G2µ, or equivalently the  Lojasiewicz property with an exponent θ = 1
2 :

Definition 3 (The Polyak- Lojasiewicz property PLµ). Let F : Rn → R ∪ {+∞} be a proper
lower semicontinuous convex function with X∗ = argminF 6= ∅. Let F ∗ = inf F . The function
F has the Polyak- Lojasiewicz property PLµ for some µ > 0 if and only if:

∀x ∈ Rn , d(0, ∂F (x))2 > 2µ (F (x)− F ∗) .

Note that convex functions having a strong minimizer in the sense of [5, Section 3.3], satisfy
the PLµ property.

Let us now recall some state-of-the-art functional classes in the analysis of the Heavy Ball
system: the set Qµ of quadratic functions, the classes Sp,1µ,L for p ∈ {1, 2}, of µ-strongly convex
functions of class Cp having a L-Lipschitz gradient and the class of just µ-strongly convex Sµ.
We will also refer to the class qSµ of µ-quasi-strongly convex functions introduced by I. Necoara
et al. in [31]:

Definition 4 (Quasi-strong convexity [31, Definition 1]). A continuously differentiable function
F : Rn → R is µ-quasi-strongly convex if for any x ∈ Rn:

〈∇F (x), x− x∗〉 > F (x)− F (x∗) +
µ

2
‖x− x∗‖2

where x∗ denotes the projection of x onto the set X∗ = argminF 6= ∅.

The quasi-strong convexity is a relaxation of the strong convexity, but it does not imply
the convexity of F or the uniqueness of the minimizer. However observe that the quasi-strong
convexity of F implies that F satisfies the Polyak- Lojasiewicz property PLµ [31]:

Lemma 2. Let F : Rn → R be a continuously differentiable function with X∗ = argminF 6= ∅.
If F is µ-strongly quasi-convex then F satisfies the Polyak- Lojasiewicz property PLµ.

All these sets of functions are sub-classes of functions satisfying a quadratic growth condition
G2µ. The relations between them are extensively detailed in [31, Section 3] and can be summarized
as follows: if F is a differentiable convex function admitting a unique minimizer then:

Qµ =⇒ S2,1µ,L =⇒ S1,1µ,L =⇒ Sµ =⇒ qSµ =⇒ PLµ =⇒ G2µ. (7)

Note that the quadratic growth condition alone is not equivalent to the quasi-strong convexity.
More information on the geometry of the function F to minimize, such as a global quadratic
growth condition, is needed. For example we can prove that functions satisfying both a “flatness”
assumption and a global quadratic growth condition G2µ (i.e. functions at least as flat as ‖ · ‖γ
with γ > 1, and as sharp as ‖ · ‖2) as in [40], are quasi-strongly convex:
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Lemma 3. Let F : Rn → R be a convex continuously differentiable function with X∗ =
argminF 6= ∅ and F ∗ = inf F . If F satisfies a flatness assumption:

∀x ∈ Rn, F (x)− F ∗ 6 1

γ
〈∇F (x), x− x∗〉 (8)

for some γ > 1 and the Polyak- Lojasiewicz property PLµ for some real constant µ > 0 then
necessarily γ 6 2 and F is (γ − 1)µ-quasi-strongly convex.

Proof. The proof is straightforward. Observe that combining the flatness assumption (8) with
the quadratic growth condition, we get:

∀x ∈ Rn, 〈∇F (x), x− x∗〉 > F (x)− F ∗ + (γ − 1) (F (x)− F ∗)

> F (x)− F ∗ + (γ − 1)
µ

2
d(x,X∗)2.

Finally we introduce the class G2µ,L of functions satisfying the growth condition G2µ and having
a L-Lipschitz continuous gradient that will considered in the analysis of the discrete scheme in
Section 4. Without further assumptions, G2µ,L is not a sub-class of quasi-strongly convex functions
that are extensively considered in [12] for the analysis of the Heavy ball system. However
assuming a little more, namely that F satisfies a global quadratic growth condition, we have:

Lemma 4. [12, Lemma 2] Let F : Rn → R be a convex continuously differentiable function with
X∗ = argminF 6= ∅. If F has a L-Lipschitz continuous gradient for some L > 0 and has the

Polyak- Lojasiewicz property PLµ for some µ > 0 then F is µ2

L -quasi-strongly convex.

3 The Heavy Ball dynamical system

In his seminal work [38] B.T. Polyak studies the Heavy Ball dynamical system (4), the properties
of its solutions and the rates of convergence of F (x(t))− F ∗ for functions belonging to the class
S2,1µ,L of µ-strongly convex functions of class C2 having a L-Lipschitz gradient. This first analysis is
the key to analyze the convergence of the optimization scheme described in the same paper. More
recently Su et al. [42] show that the Nesterov acceleration scheme can be seen as a discretization
of another ODE:

ẍ(t) +
α

t
ẋ(t) +∇F (x(t)) = 0. (9)

Following this approach a large amount of papers have proposed to study ODEs in different
settings to provide some new properties or convergence rates of the existing algorithms, or even
to provide new algorithms. An important point to keep in mind is that it is easy to find an ODE
ensuring a fast decay of F (x(t))−F ∗ for any set of functions using time scaling for example. The
difficulty in this joint study of ODE and algorithm is to be able to find a discrete and explicit
scheme ensuring the same decay rate that the one reached in the continuous setting. To set some
definitions we would say that:

Definition 5. A dynamical system provides a fast exponential decay on a functional set Fµ if
there exists δ > 0 such that for any F ∈ Fµ and any solution x of the associated ODE

F (x(t))− F ∗ = O(e−δ
√
µt).
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Set Fµ References Optimal values Exponential rate
of α of F (x(t))− F ∗

S2,1µ Polyak [38] 2
√
µ 2

√
µ

S1,1µ Siegel [41] 2
√
µ

√
µ

qSµ and uniqueness of minimizer ADR[12] 3
√

µ
2

√
2µ

C2 and G2µ Bégout et al. [15] − µ

Table 1: Rate of convergence for the Heavy Ball ODE

Definition 6. A numerical scheme provides a low exponential decay on a functional set Fµ if
there exists δ > 0 such that for any F ∈ Fµ and any solution x of the associated ODE

F (x(t))− F ∗ = O(e−δµt).

It turns out that a good discretization of a dynamical system with a fast decay may provide
a fast optimization algorithm. Table 1 summarizes the decays that are achieved for the Heavy
ball system on various sets of functions. We can observe that on the classes S2,1µ , S1,1µ and qSµ
with uniqueness of the minimizer, the given decays are fast exponential decays. In Polyak [38]
and ADR [12] the exponential decays are also given for any α respectively on the classes S2,1µ
and S1,1µ and the decays are proved to be optimal: [12] exhibits some functions for which these
rates are reached.

Let us now consider the class of convex functions having a  Lojasiewicz property. We first
recall that the exponential decay of solutions of the Gradient Descend flow:

ẋ(t) +∇F (x(t)) = 0 (10)

for convex functions in PLµ (i.e. having the Polyak- Lojasiewicz property) is straightforward.

Indeed defining E(t) = F (x(t)) − F ∗, we get E ′(t) = −‖∇F (x(t))‖2 6 −2µ(F (x(t)) − F ∗)
ensuring that:

F (x(t))− F ∗ 6 (F (x(t0))− F ∗) e−2µ(t−t0)

which is a slow exponential decay rate. These rates are actually exact for quadratic functions.
In Section 4 we will see that the associated discrete algorithms inherit of these fast or low rates
and this difference partially explains the good behavior of inertial algorithms with respect to the
steepest descent in large dimension problems for which µ is really small.

For the Nesterov ODE (9), in [11] the authors prove that the decay rate for convex functions
admitting a unique minimizer and satisfying a growth condition G2µ provides only a polynomial
rate. For the Heavy Ball system, there are few results. For flat geometries i.e. for convex
functions satisfying any local growth condition Grµ with r > 2, Bégout et al. in [15] prove the
convergence of the trajectory to a minimizer x∗ of F at a polynomial rate provided that F is of
class C2:

‖x(t)− x∗‖ = O
(
t−

1
r−2

)
. (11)

Without further information on the local geometry of F around its set of minimizers, applying
[11, Lemma 2.2] to γ = 1 (which corresponds to the sole convexity assumption), this implies the
same polynomial decay on the values F (x(t)) − F ∗. If F behaves like ‖x‖r, with r > 2 around
its set of minimizers, the convergence rate provided by [15] is more accurately in O

(
t−

r
r−2
)
.

For sharp geometries i.e. for convex functions satisfying some quadratic growth condition
G2µ, or equivalently having a  Lojasiewicz property with an exponent 1

2 , Bégout et al. in [15] and
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Polyak et al. [39] respectively prove that the decay is exponential when F is of class C2. In
[39] the exact decay is not given but our computations indicate slow exponential rates in these
two approaches. However note that these two approaches do not assume the uniqueness of the
minimizer of F .

The main contribution of this part is Theorem 1 stating that the Heavy Ball ODE ensures
a fast decay rate on the set of differentiable convex functions satisfying a quadratic growth
condition G2µ and having a unique minimizer. We also prove that these decays are preserved for
the perturbed Heavy Ball ODE assuming sufficient integrability conditions on the perturbation.
Moreover, it should be noticed that the optimal value of α is still different from the previous
ones. One can observe in the Figure 1 that the optimal value of parameter α in the Heavy Ball

Figure 1: Decay rates that can be achieved depending on the geometrical hypotheses made on
F for µ = 1 the parameter of the growth condition. The stronger the regularity assumption, the
better the rate. The optimal value of α depends on the regularity assumption.

ODE (12) depends on the exact hypothesis made of F . The exponential rate is lower under
growth conditions than under strong convexity or quasi-strong convexity assumptions, which is
not surprising since this hypothesis is weaker than the other ones.

3.1 The differentiable case

Let F : Rn → R be a continuously differentiable convex function having a unique minimizer x∗

and F ∗ = inf F . We consider the Heavy Ball dynamical system:

ẍ(t) + αẋ(t) +∇F (x(t)) = 0 (12)

for any t > t0, where t0 > 0. Throughout the paper, we assume that, for any given initial
conditions (x0, v0) ∈ Rn × Rn, the Cauchy problem associated with the ODE (12), admits a
unique global solution satisfying (x(0), ẋ(0)) = (x0, v0). This is guaranteed in particular when
the gradient of F is Lipschitz on bounded subsets of Rn [21].

We can now state the main theorem for the Heavy Ball ODE (12) whose proof is detailed in
Section 6.1. Note that to analyze the asymptotic behavior of F (x(t)) − F ∗, we only need local
geometric assumptions on F since the trajectory x converges to some minimizer of F provided
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that F is a convex function of class C1 admitting at least one minimizer and that the ODE (12)
has a unique global solution, see [1, Theorem 2.1] for more details:

Theorem 1. Let α > 0 and t0 > 0. Let F : Rn → R be a differentiable convex function such
that: X∗ = argminF 6= ∅ and F ∗ = inf F . Let x be the solution of the ODE (12) for given
initial conditions (x(t0), ẋ(t0)) = (x0, v0).

If F satisfies a quadratic growth condition G2µ for some real constant µ > 0 and admits a
unique minimizer then

F (x(t))− F ∗ = O
(
e−δα,µt

)
where δα,µ is the (unique) real root of the polynomial:

Pα,µ(δ) = δ3 − 3αδ2 + (3µ+ 2α2)δ − 2µα

on the interval [0, 2α3 [. In particular: δα,µ 6 (2−
√

2)
√
µ and the best rate δα,µ = (2−

√
2)
√
µ is

achieved for α = (2−
√
2
2 )
√
µ.

Now assuming that the quadratic growth condition is global, we also get non-asymptotic
convergence rates for this class of functions:

Corollary 1. Under the assumptions of Theorem 1, if F satisfies a global quadratic growth
condition G2µ and admits a unique minimizer then for any δ 6 δα,µ, we have:

∀t > t0, F (x(t))− F ∗ 6
4µ+ (2α− δ + 2

√
µ)2

µ(4− αδ + δ2)
M0e

−δ(t−t0)

where: M0 = F (x0)− F ∗ + 1
2‖v0‖

2. If α = (2−
√
2
2 )
√
µ, the best rate is given by:

F (x(t))− F ∗ 6 (
11

2
− 2
√

2)M0e
−(2−

√
2)
√
µ(t−t0). (13)

Remark 1. Using the open-source Python library Sympy for symbolic mathematics, we are able
to provide some explicit equivalents of the real root δα,µ. For a fixed µ > 0, we have:

δα,µ ∼
2α

3
, α→ 0+, δα,µ ∼

µ

α
, α→ +∞.

Moreover studying the variations of the polynomial Pα,µ we deduce a criterion to easily compare
a given exponent δ ∈ [0, 2α3 [ with the best possible rate δα,µ:

δ 6 δα,µ ⇐⇒ Pα,µ(δ) 6 0. (14)

Remark 2. Using the Python library Sympy, we actually have an explicit (but barely readable)
expression of δα,µ. For α large enough (numerically larger than 0.15µ2), we have:

δα,µ = µ− 18
1
3

3

µ2 − 3α

d(α, µ)
− 12

1
3

6
d(α, µ)

where: d(α, µ) =
(

9αµ+
√

3
√

108α3 − 81α2µ2 + 36µ4α− 4µ6
) 1

3

. Otherwise for small values of

α, we have:

δα,µ = α− 18
1
3

3

α2 − 3µ

d(µ, α)
− 12

1
3

6
d(µ, α).
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To our best knowledge the only other result in the literature providing a fast exponential
decay for the values F (x(t))− F ∗ can be found in [40]. Indeed, applying [40, Theorem 3.2] with
K2 = 2µ and γ = 1 (corresponding to the sole convexity assumption), we get an exponential

decay in O
(
e−

µ
2α

)
provided that α >

√
3
2

√
µ, which can be seen as a fast exponential decay

when α is chosen proportional to
√
µ as in Theorem 1. Since Pα,µ( µ2α ) 6 0, we easily show that

this rate is always worse than the one provided by Theorem 1.

Consider now the subclass Grµ with r ∈ (1, 2) of differentiable convex functions being sharper
than quadratic in the neighborhood of its minimizers. Since Grµ is a sub-class of G2µ, Theorem 1
applies and we deduce that the exponent in the exponential decay is at least in δα,µ. A natural
question is then: can this convergence rate be improved for this class of functions ? In [12], the
authors prove that the exponent 2α

3 is optimal on the sub-class Sµ of strongly convex functions

when α < 3
√

µ
2 . In fact, we can prove that the exponential decay is at least in 2α

3 for any α > 0
on the sub-class Grµ with r ∈ (1, 2), providing thus an upper bound for the convergence rate:

Proposition 1. Let F : Rn → R be a continuously differentiable convex function with X∗ =
argminF 6= ∅ and F ∗ = inf F . Let α > 0 and t0 > 0. Let x be the solution of the ODE (12) for
given initial conditions (x(t0), ẋ(t0)) = (x0, v0).

Let r ∈ (1, 2). If F admits a unique minimizer and satisfies a local growth condition Grµ for
some µ > 0 then:

∀λ < 2α

3
, F (x(t))− F ∗ = O

(
e−λt

)
.

Proof. Let us consider the Lyapunov energy:

E(t) = (F (x(t))− F ∗) +
1

2
‖λ(x(t)− x∗) + ẋ(t)‖2 +

ξ

2
‖x(t)− x∗‖2 . (15)

Differentiating the energy (15) and using the ODE (12), we have:

E ′(t) = 〈∇F (x(t)) + ẍ(t), ẋ(t)〉+ (λ2 + ξ)〈x(t)− x∗, ẋ(t)〉+ λ〈x(t)− x∗, ẍ(t)〉+ λ‖ẋ(t)‖2

= −λ〈∇F (x(t)), x(t)− x∗〉+ (λ− α)‖ẋ(t)‖2 + (ξ + λ(λ− α))〈ẋ(t), x(t)− x∗〉

Using the parameters λ = 2α
3 and ξ = − 2α2

9 we have the following equality (the careful reader
will have noticed that the parameters of the Lyapunov function are not the same as the ones
used in Theorem 1):

∀t > t0, E ′(t) +
2α

3
E(t) =

2α3

27
‖x(t)− x∗‖2 +

2α

3
[F (x(t))− F ∗ − 〈∇F (x(t)), x(t)− x∗〉] (16)

It follows that if F is convex we get

∀t > t0, E ′(t) +
2α

3
E(t) 6

2α3

27
‖x(t)− x∗‖2.

Observe that using the growth condition Grµ with r ∈ (1, 2), there exists t1 > t0 such that:

∀t > t1, E(t) > F (x(t))− F ∗ +
ξ

2
‖x(t)− x∗‖2 >

µ

2
‖x(t)− x∗‖r − α2

9
‖x(t)− x∗‖2.

Let ε ∈ (0, 2α3 ). Then:

∀t > t1, E ′(t) + (
2α

3
− ε)E(t) 6

(
2α3

27
+ ε

α2

9

)
‖x(t)− x∗‖2 − εµ

2
‖x(t)− x∗‖r

6

(
(
2α3

27
+ ε

α2

9
)‖x(t)− x∗‖2−r − εµ

2

)
‖x(t)− x∗‖r.

10



We can then conclude that there exists t2 > t1 such that for all t > t2, we have:

∀ε ∈ (0,
2α

3
), E ′(t) + (

2α

3
− ε)E(t) 6 0,

hence: ∀λ < 2α
3 , E(t) = O

(
e−λt

)
. To deduce the control on the values F (x(t))− F ∗ we use the

growth condition Grµ:

∀t > t2, E(t) > F (x(t))− F ∗ +
ξ

2
‖x(t)− x∗‖2 = F (x(t))− F ∗ − 2α2

9
‖x(t)− x∗‖2

>

(
1− 4α2

9µ
‖x(t)− x∗‖2−r

)
(F (x(t))− F ∗) > 1

2
(F (x(t))− F ∗) (17)

for t large enough, and we finally obtain the expected convergence rate.

Remark 3. Consider the particular case of convex functions behaving like F (x) = µ
2 ‖x‖

r with
r ∈ (1, 2) in the neighborhood of their minimizers. Then F naturally satisfies the growth condition
Grµ, or equivalently a  Lojasiewicz property with an exponent θ = 1 − 1

r . By a strategy similar
to the one used in Proposition 1 with the set of parameters of Theorem 1, and replacing the
convexity inequality by the equality: 〈∇F (x), x−x∗〉 = r(F (x)−F ∗), we can prove that the decay
is even better than 2α

3 , namely:

∀λ < 2rα

r + 2
, F (x(t))− F ∗ = O

(
e−λt

)
. (18)

Let us conclude this section by a stability study of the Heavy Ball dynamical system. We
consider the perturbed version of the Heavy Ball ODE:

∀t > t0, ẍ(t) + αẋ(t) +∇F (x(t)) = g(t) (19)

where t0 > 0 and g : [t0,+∞[ is an integrable source term that can be interpreted as an external
perturbation exerted on the system. We assume that the Cauchy problem associated with the
ODE (19), admits a unique global solution satisfying (x(0), ẋ(0)) = (x0, v0) for any given initial
conditions (x0, v0) ∈ Rn×Rn. This is guaranteed in particular when the gradient of F is Lipschitz
on bounded subsets of Rn [25, 28].

Theorem 2 provides sufficient integrability conditions on the perturbation g in order to guar-
antee that the convergence rate established in Theorem 1 is preserved. Note that as in the
unperturbed case, the trajectory x(t) solution of the perturbed ODE (19) converges (weakly in
a Hilbert space) to a minimizer of F , see [25, Theorem 3.3], so that we only need local geometric
assumptions on F to analyze the asymptotic behavior of F (x(t))− F ∗:

Theorem 2. Let F : Rn → R be a continuously differentiable convex function with X∗ =
argminF 6= ∅ and F ∗ = inf F . Let α > 0 and t0 > 0. Let x be the solution of the ODE (19) for
given initial conditions (x(t0), ẋ(t0)) = (x0, v0).

Assume that F satisfies a quadratic growth condition G2µ for some real constant µ > 0 and
admits a unique minimizer. Let δα,µ be defined as in Theorem 1 and δ 6 δα,µ. If:

J0 =

∫ +∞

t0

eδt‖g(t)‖dt < +∞,

then:
F (x(t))− F ∗ = O

(
e−δ(t−t0)

)
.
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As in the unperturbed case, assuming that F additionally satisfies a global quadratic condition
G2µ, we can provide non-asymptotic bounds on the values F (x(t))− F ∗:

Corollary 2. Under the hypotheses of Theorem 2, if F additionally satisfies a global quadratic
condition G2µ then for any δ 6 δα,µ, we have:

∀t > t0, F (x(t))− F ∗ 6
4
(
E0(δ) + (

√
2E0(δ) + I0)J0e

−δt0
)

4− αδ + δ2
M0e

−δ(t−t0)

where:

M0 = F (x0)− F ∗ + 1
2‖v0‖

2, I0 =
∫ +∞
t0
‖g(s)‖ds,

E0(δ) = M0 + (
√

2M0 + I0)I0 +
(√

M0 + I0√
2

+ 2α−δ
2
√
µ

√
M0 + (

√
2M0 + I0)I0

)2
.

3.2 The non-differentiable case

Assume now that F is a convex but non differentiable function. In that case, the Heavy Ball
ODE (12) has no meaning anymore but we can consider the following differential inclusion:

0 ∈ ẍ(t) + αẋ(t) + ∂F (x(t)). (20)

To study some optimization algorithms dedicated to non smooth functions, it may be useful
to understand the behavior of solutions of (20). This is the case for instance for the LASSO
problem (3), for which proximal algorithms such as the Forward Backward (or its accelerated
version FISTA) can be used. It was shown in [3] that the behavior of FISTA is linked with the
behavior of solutions of

0 ∈ ẍ(t) +
α

t
ẋ(t) + ∂F (x(t)). (21)

It turns out that FISTA is not the only inertial algorithm that can be used to minimize the
LASSO problem or any non smooth optimization problem. It is shown in [12] that a variant of
the Heavy Ball algorithm can be used in the case when F is strongly convex or quasi-strongly
convex, and the optimal value of the friction parameter α is given.

If F is less regular, but if it still satisfies a growth condition (i.e. if F is in G2µ), it may be
interesting to understand how the Heavy Ball algorithm can be used, and how to choose the
parameter α. Actually, we will see in the part dedicated to the optimization scheme that the
previous analysis applies to this case.

3.2.1 Solutions of the differential inclusion

The differential inclusion problem (20) admits a shock solution [37, 3] and it is known [7, 22] that
for any solution x of (20), F (x(t))−F ∗ converges to 0 for any α > 0. Most of known convergence
rates of F (x(t))− F ∗ are consequences of a Lyapunov analysis. An energy E is defined and it is
shown to be a non increasing function of t. To prove that E is non increasing, the simplest way
is to compute the derivative E ′ of E . To study solutions of (20), we use exactly the same energy
defined to study the Heavy Ball ODE:

Eλ,ξ(t) = F (x(t))− F ∗ +
1

2
‖λ(x(t)− x∗) + ẋ(t)‖2 +

ξ2

2
‖x(t)− x∗‖2. (22)
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This time these Lyapunov energies may not be differentiable. Fortunately, the shock solutions [37,
3] of the differential inclusion (20) are obtained as limit of C2 functions, where the subdifferential
∂F is replaced by its Moreau Yosida approximation [3].

Let us recall the definition of shock solution for the differential inclusion (20):

Definition 7 (Shock solution [37, 3]). A function x : [t0,+∞) −→ Rn is an energy-conserving
shock solution of the differential inclusion (20) if:

1. x ∈ C0,1([t0, T ];Rn) for all T > t0, i.e. x is a Lipschitz continuous function.

2. ẋ ∈ BV ([t0, T ];Rn) for all T > t0.

3. x(t) ∈ dom(F ) for all t ≥ t0.

4. For all φ ∈ C1c ([t0,+∞),R+) and v ∈ C([t0,+∞), dom(F )), it holds:∫ T

t0

(F (x(t))− F (v(t)))φ(t)dt ≤ 〈ẍ+ αẋ, (v − x)φ〉M×C .

5. x satisfies the following energy equation for a.e. t ≥ t0

F (x(t))− F (x0) +
1

2
‖ẋ(t)‖2 − 1

2
‖v0‖2 +

∫ t

t0

α ‖ẋ(s)‖2 ds = 0.

We then consider the Moreau-Yosida approximations {Fγ}γ>0 of F defined by:

Fγ(x) = min
y

(
F (y) +

1

2γ
‖x− y‖2

)
(23)

and the following approximating ODE:

ẍγ(t) + αẋγ(t) +∇Fγ(xγ(t)) = 0

xγ(t0) = x0 ẋγ(t0) = v0.
(24)

The differential equation (24) falls into the classical theory of differential equations and admits
a unique solution xγ of class C2 on [t0,+∞) for all γ > 0. More precisely, using [3, Theorems
3.2 and 3.3], we have the following result:

Theorem 3. Assume F to be a lower semi continuous convex function. Let {Fγ}γ>0 the Moreau-
Yosida approximations of F . There exists a subsequence {xγ}γ>0 of solutions of (24) that con-
verges to a shock solution of (20) according to the following scheme:

• xγ −→
γ→0

x uniformly on [t0, T ] for all T > t0.

• ẋγ −→
γ→0

ẋ in Lp([t0, T ];Rn) , for all p ∈ [1,+∞) and T > t0.

• Fγ(xγ) −→
γ→0

F (x) in Lp([t0, T ];Rn), for all ∀p ∈ [1,+∞) and T > t0.

(25)

From Corollary 3.6 of [3], we also have:

Corollary 3. If dom(F ) = Rn, then the differential inclusion (20) admits a shock solution x ,
such that:
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x ∈W 2,∞((t0, T );Rn) ∩ C1([t0,+∞);Rn), for all T > t0.

It turns out that all the results shown for the Heavy ball ODE remain valid for the differential
inclusion (20). Indeed, the approximated solutions xγ of Theorem 3 are solutions of the Heavy
ball ODE and they thus satisfy all the previous properties. By passing to the limit γ → 0+, the
shock solutions of (20) also satisfies these properties (see e.g. [3] for more details).

We do not restate all the Theorems of the previous section for the differential inclusion case.
However, we state a result for a particular case of interest, the LASSO problem recalled here:

min
x∈Rn

1

2
‖Ax− b‖2 + β‖x‖1 (26)

Let F (x) = 1
2‖Ax − b‖2 + β‖x‖1. As shown in [19, Lemma 10], the function F satisfies

a quadratic growth condition, or equivalently has the  Lojasiewicz property with an exponent
θ = 1

2 , on some `1 ball.

Corollary 4. If the LASSO problem (26) admits a unique minimizer, even if Ker(A) 6= {0},
there is a solution of the differential inclusion (20) such that the conclusions of Theorem 1 hold.

3.2.2 Optimality of the decays

In Proposition 1, we have shown that if F is at least as sharp as ‖ · ‖r for some r ∈ (1, 2), then

∀λ < 2α

3
, F (x(t))− F ∗ = O

(
e−λt

)
.

In Theorem 4 whose proof is detailed in Subsection 6.3, it is proven that a better exponential
decay than 2α

3 is unreachable for the solution of (20) under the quadratic growth condition G2µ,
proving that in some sense this decay is reached for the function F (x) = |x| for any α > 0.

Theorem 4. If F (x) = |x| then for all α > 0 then all solutions of (20) satisfy:

F (x(t))− F ∗ = O
(
e−

2α
3 t
)

and this decay is optimal:
lim sup
t>t0

e
2α
3 t(F (x(t))− F ∗) > 0.

4 Optimization scheme

In this section we introduce an inertial scheme to minimize a convex differentiable function F
whose gradient is L-Lipschitz continuous, and satisfying any  Lojasiewicz property. In a second
time, this scheme is extended to a sum of two convex functions F = f + h using an inertial
proximal gradient algorithm. Both schemes can be seen as discretizations of the Heavy Ball
ODE and they are variations of the schemes proposed by B.T. Polyak [38], Y. Nesterov [32] and
J.W. Siegel [41].

If F is a convex differentiable function satisfying G2µ and whose gradient is L-Lipschitz, then
the steepest descent algorithm defined by

xn+1 = xn −
β

L
∇F (xn), with β ∈ (1, 2) (27)

ensures an exponential decay:
F (xn)− F (x∗) = O(qn) (28)
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Hyp. on F References Values of q Remarks

S2,1µ,L Polyak [38]
(

1−
√
κ

1+
√
k

)2
Local convergence and optimal rate

on S2,1µ,L, may diverge on S1,1µ,L
S1,1µ,L Nesterov [32] 1−

√
κ+O(κ) Global convergence

S1,1µ,L GFJ [24] 1− κ Global convergence

S2,1µ,L SFL [44] 1− 2
√
κ+O(κ) Global convergence,

three points method

S1,1µ,L Siegel [41] 1−
√
κ Global convergence, can be extended

to non differentiable functions

qS1,1µ,L ADR[12] 1−
√

(2− ε)κ+O(κ) Global convergence, can be extended

Th. 7 to non differentiable functions

G2µ and uniqueness Th. 7 and 9 1− (2−
√

2)
√
κ Global convergence, can be extended

of the minimizer +O(
√
κ) to non differentiable functions

G2µ Th. 6 and 8 1− κ+ ε+O(κ) Global convergence, can be extended
to non differentiable functions

Table 2: Rates of convergence of inertial algorithms depending on the regularity of the function
to minimize

where q = 1− κ and κ := µ
L the conditioning number.

If F = f + h, where f is a convex differentiable function whose gradient is L-Lipschitz, and
h is convex, the Forward-Backward algorithm uses the proximal operator of h

proxsh(z) = argmin
x∈Rn

h(x) +
1

2s
‖x− z‖2 (29)

and it is defined by the following operator T

T (x) := prox 1
Lh

(x− 1

L
∇f(x)), xn+1 = Txn. (30)

If F satisfies G2µ, the sequence generated by the Forward Backward algorithm ensures an expo-
nential decay with 1− q = κ. If κ << 1 this exponential decay may be slow. In [19] Bolte et al.
proved that for the LASSO problem (26) the function F satisfies the PLµ property and thus the
growth condition G2µ. It turns out that the decay is so slow that FISTA [14] which only ensures

a O( 1
n2 ) decay, is better in practice for many large scale problems.

The question arising is then: can we provide a fast exponential decay that is F (xn)− F ∗ =
O(qn) with 1 − q ≈ C

√
κ for such functions ? Namely, for a single differentiable function F

belonging to G2µ or a composite function F = f + h where only f is differentiable ?
If F is µ-strongly convex, it has been proved that such rates can be achieved as summarized

in Table 2. But all these results do not apply directly to the set G2µ since we do not have the
strong convexity assumption. Nevertheless observe that from Lemma 4, if F ∈ G2µ is differentiable

with L-Lipschitz gradient, then F is also µ2

L -quasi strongly convex. Hence applying the rates
from the Table 2, we do not reach any fast exponential decay that is with 1 − q = C

√
κ where

κ = µ
L with µ the parameter of growth. Moreover, only Siegel [41] and ADR [12] proposed an

extension to the non differentiable case and both approaches necessitate the strong convexity
of the differentiable part which is a real bottleneck. Indeed the strong convexity hypothesis of
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the differentiable part is a really strong hypothesis, much more than the G2µ property and the
uniqueness of the minimizer.

Consider now the LASSO problem (26). The strong convexity of the differentiable part
implies that Ker(A) = {0}. If Ker(A) 6= {0} the LASSO problem may have an infinite set
of solutions but it is not the generic case. Indeed for a generic linear operator A, the LASSO
problem (26) admits a unique minimizer (see for example Lemma 3 in [43] for the exact definition
of genericity and more detailed results). This means that except for a very specific choice of A,
the LASSO problem (26) admits a unique minimizer.

To summarize, none of the previous analysis applies to the LASSO problem (26) for a generic
matrix A and none of them ensures an exponential decay such that q = 1−C

√
µ
L where µ is the

growth parameter for any function F ∈ G2µ.
In [36], the authors observe that a restarted FISTA algorithm provides a fast exponential

decay if S1,1µ,L. Actually this result is also available for functions satisfying a growth condition,
as remarked in [31]:

Theorem 5. If F is a convex differentiable function whose gradient is L-Lipschitz and if F ∈ G2µ
then the sequence (xn)n∈N generated by FISTA with a restart each k∗ = E

[
2e√
κ

]
satisfies

F (xn)− F ∗ = O
((

1−
√
κ

e

)n)
. (31)

One can notice that FISTA applies to composite functions and that there is no need of
uniqueness of the minimizer of F to get this fast rate. Restarted FISTA is thus a relevant
algorithm to minimize such functions. One can also notice that even if the inertial parameter
does not depend on µ, the starting rule depends on κ. If µ is overestimated, then the proof of
convergence does not hold any more.

Another natural question with respect to the Table 2 is the behavior of each algorithm when
the growth constant µ is not known. Indeed, the rates given in Table 2 are related to the choice
of parameters in the algorithm that depends on µ. It is always possible to underestimate µ but
at the cost of a loss of speed (the more µ is underestimated, the slower the algorithm). With
non adequate parameters, some of the algorithms mentioned in Table 2 may even diverge.

In this section we propose a new algorithm (41) with a better exponential decay based on
the previous analysis of the Heavy Ball ODE (4). Firstly on differentiable functions and in a
second time on composite functions, see Theorems 7 and 9. This last algorithm allows to solve
the LASSO problem with a fast exponential rate for generic matrix A.

It turns out that the algorithm (41) can be seen as a specific case of a more general algorithm
(38) whose parameters do not depend on µ. We can show (see Theorems 6 and 8) that in fact
such a scheme converges under very weak assumptions: it suffices that the function F to minimize
belongs to Grµ and has a L-Lipschitz gradient. And a (slow) geometrical decay is reached as soon
as F satisfies any  Lojasiewicz property.

4.1 The Differentiable case

Several algorithms to minimize strongly convex functions of S1,1µ,L or S2,1µ,L are inspired by the
Heavy Ball ODE in the unperturbed continuous case:

ẍ(t) + αẋ(t) +∇F (x(t)) = 0. (32)

rewritten as the following first order differential system:{
ẋ(t) = v(t)
v̇(t) = −αv(t)−∇F (x(t)).

(33)
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The first one was proposed by Polyak in [38] for functions in S2,1µ,L: xn+ 1
2

= xn +

(
1−
√
κ

1 +
√
κ

)2

(xn − xn−1)

xn+1 = xn+ 1
2
− s2∇F (xn)

(34)

with s = 2√
L+
√
µ

, which can be seen as a discretization of the Heavy Ball ODE for α = 2
√
µ.

This algorithm is efficient for functions in S2,1µ,L but it may diverge for some functions in S1,1µ,L,
see Ghadimi et al. [24] for example. It is worth mentioning that Ghadimi et al. in [24, Theorem
4] proved the linear convergence of such a scheme for functions F in S1,1µ,L changing the step and
the inertia, but the rate in this case is

F (xn)− F ∗ = O((1− κ)n) (35)

that is the best rate that can be achieved of the gradient descent on S1,1µ,L. As we will see further,
this decay is much worse than the ones that can be achieved using other schemes for small κ
since for small κ, κ <<

√
κ.

In his book [35], Nesterov proposes a scheme which is quite similar:xn+ 1
2

= xn +

(
1−
√
κ

1 +
√
κ

)
(xn − xn−1)

xn+1 = xn+ 1
2
− s2∇F (xn+ 1

2
)

(36)

with s = 1√
L

. This scheme can also be seen as a discretization of the Heavy Ball ODE with

α = 2
√
µ, but the descent step s2 is about four times lower. Nesterov proves the convergence of

the scheme (36) for functions in S1,1µ,L and he gives a convergence rate:

F (xn)− F ∗ = O((1−
√
κ)n). (37)

Notice that another variant of this algorithm with the same asymptotic decrease rate was
also introduced by Y. Nesterov in [33] with an extension to non differentiable functions (but still
strongly convex). An application of this last scheme to image processing can be found in [9].

4.1.1 Convergence of the scheme

In this paper, we consider the following general scheme:
xn+ 1

2
= xn + svn

vn+ 1
2

= (1 + γλs)−1(vn − s∇F (xn+ 1
2
))

xn+1 = xn+ 1
2
− s2∇F (xn+ 1

2
)

vn+1 = vn+ 1
2

+ (1 + λs)−1λs2∇F (xn+ 1
2
)

(38)

with γ > 0 and s = 1√
L

.

Theorem 6. Let F be a convex differentiable function having a L-Lipschitz gradient. Let s =
1√
L

. If γλ2 < L then the following assertions hold:

1. The sequences (∇F (xn))n∈N and (vn)n∈N generated by the scheme (38), converge to 0 when
n→ +∞.
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2. If F is coercive then the sequences (F (xn)− F ∗)n∈N and (d(xn, X
∗))n∈N converge to 0.

3. Assume that F is coercive and has some  Lojasiewicz property with an exponent θ ∈ (0, 1).

(a) If θ = 1
2 i.e if F satisfies some local quadratic growth condition G2µ, then the values

(F (xn) − F ∗)n∈N decay exponentially to 0 and the iterates (xn)n∈N converge to a

minimizer x∗ of F . More precisely for any ε ∈ (0, 1), if γ = (1 − ε)L
2

λ2 , there exists
λε > 0 such that for all λ ∈ (0, λε) then:

F (xn)− F ∗ = O

((
1 +

µ

L
− ε µ

L+ λ
√
L

)−n)
. (39)

(b) If θ ∈ ( 1
2 , 1) then

F (xn)− F (x∗) = O
(

1

n
1

2θ−1

)
. (40)

Moreover, if θ < 3
4 , then the sequence (xn)n∈N converges to a minimizer x∗ of F and

the length of the trajectory is finite.

The proof of the Theorem is detailed in Subsection 6.4.

4.1.2 Improved rates of convergence

In this paper, we promote the use of the following particular scheme (where the product γλ is
now fixed to be the friction parameter α):

xn+ 1
2

= xn + svn
vn+ 1

2
= (1 + αs)−1(vn − s∇F (xn+ 1

2
))

xn+1 = xn+ 1
2
− s2∇F (xn+ 1

2
)

vn+1 = vn+ 1
2

+ (1 + λs)−1λs2∇F (xn+ 1
2
)

(41)

with s = 1√
L

. Notice that it has the same general form as the one that we introduced in [12].

The difference with respect to the scheme of [12] will be in the choice of the parameters α and
λ of the scheme. This comes from the fact that the analysis in the continuous setting has led us
to different parameters in the Lyapunov function, and we now use these values in the discrete
scheme. Since the parameters are different, the proof of of convergence of the new scheme here
is different from the one of [12]. In [12], we used α = 2λ

3 to get a new optimal scheme for
strongly convex functions. In this paper, inspired by the analysis in the continuous case detailed
in Section 3, we use:

α =

(
2−
√

2

2

)
√
µ, λ =

√
µ and ξ =

(√
2

2
− 1

)
µ. (42)

Let β = 2−
√
2
2 . We will use the following discrete Lyapunov function:

L(xn, vn) := F (xn)− F ∗ +
1

2
‖λ(xn − x∗) + (1 + λs)vn‖2 − (β − 1)

λ2

2
‖xn − x∗‖2. (43)

The careful reader can check that the sequence (vn)n∈N is a discretization of the variable v = ẋ
in (33). Indeed, if using explicit Euler schemes to discretize (33), one gets the two first lines of
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(41). The third line corresponds to a classical contraction step on xn that makes the objective
function F decrease by a factor 1

2L‖∇F (xn+ 1
2
)‖2 (this is the same argument that is used to prove

the convergence of the explicit gradient descent scheme to minimize a differentiable function with
L-Lipschitz gradient), and the fourth line keeps the middle term of the Lyapunov function (43)
constant.

From (41), we can write vn+1 as a function of vn:

vn+1 − vn
s

= − α

1 + αs
vn −

1− αλs2

(1 + αs)(1 + λs)
∇F (xn+ 1

2
). (44)

We then see that (41) is indeed a discretization of (33).
The interest of the new scheme (41) is that it allows to provide a better decay rate of F (xn)−

F ∗ that is asymptotically better than the previous ones under similar assumptions:

Theorem 7. Assume that F is convex differentiable function with a L-Lipschitz gradient, ad-
mitting a unique minimizer and satisfying some quadratic growth condition G2µ. If we choose

α =
(

2− 2√
2

)√
µ and λ =

√
µ in (41), then there exist t > 0 and K > 0 such that if µ

L ∈ [0, t],

then the sequence (xn)n∈N provided by (41) with s = 1√
L

satisfies:

F (xn)− F ∗ 6 K0

(
1 +

(
2−
√

2
)√µ

L
−K µ

L

)−n
.

More precisely, remembering that κ =
√

µ
L , the new scheme (41) allows to get the following

rate:
F (xn)− F ∗ = O

(
(1 + (2−

√
2)
√
κ−Kκ)−n

)
. (45)

Notice that we have

(1 + (2−
√

2)
√
κ−Kκ)−1 = 1− (2−

√
2)
√
κ+ o(

√
κ). (46)

The only other result under similar assumptions (quadratic growth) is the Nesterov restart
algorithm of [31] (see Theorem 5), but we can see that we have a better convergence rate with
Theorem 7 since 2−

√
2 > 1

e . As far as we know, Theorem 7 gives the best convergence rate in
the literature when the function F to minimize satisfies G2µ, has a L-Lipschitz gradient, and has
a unique minimizer.

4.2 Discrete scheme in the non differentiable case

In many practical problems especially coming from statistics or image processing the function F
to minimize is not differentiable. A classical case is the LASSO problem

F (x) =
1

2
‖Ax− y‖2 + λ‖x‖1 (47)

where A is a linear operator. To study the minimisation of such functions, convex but not dif-
ferentiable, we cannot consider a differential equation involving F . Nevertheless we can consider
the following monotone inclusion:

0 ∈ ẍ(t) + αẋ(t) + ∂F (x(t)). (48)

This inclusion problem admits a shock solution (see [3] and [37]) and F (x(t))− F ∗ tends to 0.
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When F = f + h, with f differentiable, ∇f is L-Lipschitz and h is convex proper and lower
semi continuous, Siegel in [41] proposed an extension of the discrete scheme built for differen-
tiable functions. In the same spirit we can prove that our scheme can be directly extended to
such composite functions using the Forward-Backward algorithm, also called Proximal Gradient
Operator.

Let us first recall the definition of the proximal operator for the convex semicontinuous
function h:

prox h(x) = argmin y∈Rn

(
h(y) +

1

2
‖y − x‖2

)
. (49)

Using the optimality condition, we have the equivalence:

y = prox h(x) ⇔ x ∈ ∂h(y) + y ⇔ y = (Id+ ∂h)
−1

(x). (50)

The proximal operator is widely used in convex and non differentiable optimization. It is a
generalization of the implicit gradient descent to convex and non differentiable function.

Let F = f + h, where f is convex differentiable function having a L-Lipschitz gradient and h
is convex proper and lower semi continuous. A classical algorithm to minimize F is the Forward-
Backward algorithm defined in the following way:

xn+1 = T (xn), where T (x) := prox s2h
(
x− s2∇f(x)

)
(51)

If s2 6 1
L , it can be shown that (F (xn) − F ∗)n∈N tends to 0 and (xn)n∈N converges (weakly in

an infinite dimension Hilbert space) to a minimizer of F .
The operator T shares many properties with the gradient descent. The algorithm FISTA of

Beck and Teboulle can be seen as a Nesterov acceleration to this operator T . Following Siegel
[41] we modify the previous scheme (41) so that it can be used with F = f +h that is a possibly
non smooth convex function: we replace the vector ∇F (xn+ 1

2
) in (41) by

gn+ 1
2

=
1

s2

(
xn+ 1

2
− prox s2h(xn+ 1

2
− s2∇f(xn+ 1

2
))
)

(52)

Note that: gn+ 1
2
/∈ ∂F (xn+ 1

2
) as we might expect. The vector gn+ 1

2
as defined by (52) has been

chosen such that the following decrease condition is satisfied:

∀y ∈ Rn, F (xn+1)− F (y) ≤ 〈gn+ 1
2
, xn+ 1

2
− y〉 − s2

2
‖gn+ 1

2
‖2 (53)

which is the only property of gn+ 1
2

we need to establish our convergence results. With that
choice the new scheme can be written in the nonsmooth case as:

xn+ 1
2

= xn + svn
v := vn+ 1

2
= (1 + γλs)−1(vn − sgn+ 1

2
)

xn+1 = xn+ 1
2
− s2gn+ 1

2

vn+1 = v + (1 + λs)−1λs2gn+ 1
2

(54)

that is exactly the original scheme (41) replacing ∇F (xn+ 1
2
) by gn+ 1

2
. Notice that the same

strategy is used in [41] and [12] to extend the convergence results of the numerical scheme in
the differential case to the composite case. This new scheme shares the same properties as the
previous one:

Theorem 8. Let F = f + h where f is a convex differentiable function having a L-Lipschitz
gradient and h a convex proper lower semicontinuous function. Let s = 1√

L
, γ > 0 and λ > 0.

If γλ2 < L then the following assertions hold:
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1. The sequences (d(0, ∂F (xn))n∈N and (vn)n∈N converge to 0 when n→ +∞.

2. If F is coercive then the sequences (F (xn)− F ∗)n∈N and (d(xn, X
∗))n∈ converge to 0.

3. Assume that F is coercive and satisfies a  Lojasiewicz property with an exponent θ ∈ (0, 1).

(a) If θ = 1
2 i.e if F satisfies some local quadratic growth condition G2µ, then the values

(F (xn) − F ∗)n∈N decay exponentially to 0 and the iterates (xn)n∈N converge to a

minimizer x∗ of F . More precisely for any ε ∈ (0, 1), if γ = (1 − ε)L
2

λ2 , there exists
λε > 0 such that for all λ ∈ (0, λε) then:

F (xn)− F ∗ = O

((
1 +

µ

L
− ε µ

L+ λ
√
L

)−n)
. (55)

(b) If θ ∈ ( 1
2 , 1) then

F (xn)− F (x∗) = O
(

1

n
1

2θ−1

)
. (56)

Moreover, if θ < 3
4 , then the sequence (xn)n∈N converges to a minimizer x∗ of F and

the length of the trajectory is finite.

As in the differentiable case these rates of convergence can be improved assuming that α = γλ
and that the objective function has a unique minimizer.

Theorem 9. Let F = f + h where f is a convex differentiable function having a L-Lipschitz
gradient and h a convex proper lower semicontinuous function. Assume that F satisfies the

growth condition G2µ with parameter µ and has a unique minimizer. If γ = α
λ , α =

(
2− 2√

2

)√
µ

and λ =
√
µ in (54), then there exist t > 0 and K > 0 such that if µ

L ∈ [0, t], then the sequence
(xn)n∈N provided by (54) with s = 1√

L
satisfies:

F (xn)− F ∗ 6 K0

(
1 +

(
2−
√

2
)√µ

L
−K3

µ

L

)−n
.

This Theorem applies then to the LASSO problem (26) when it admits a unique solution: it

ensures that in this setting we can expect an exponential decay O

((
1 +

√
(2−

√
2)κ

)−n)
for

κ sufficiently small. As far as we know, this is the best rate that can be found in the literature.

5 Numerical experiments

In the previous sections several convergence properties of the Heavy ball discrete scheme are
proved, they are illustrated here.

More precisely the exponential convergence is ensured for most parameters λ and α. The key
to get a fast exponential decay is the knowledge of the best parameter µ defining the growth
condition of F . In many practical problems, µ is not known. In many theoretical results, see
e.g. [38], [32] or [41], it is crucial to have a lower bound of µ to get a value of α ensuring an
exponential decay. The actual decay of the algorithm depends on this lower bound estimation.
The tuning of the parameter α is a problem of most Heavy Ball methods. An advantage of the
proposed scheme is that even if µ is overestimated, an exponential decay is ensured: however,
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this decay can be quite slow. The optimal choice of α is an open and tough problem. Indeed,
the estimation of the optimal α on a given problem is an ill-posed problem that may depend on
the starting point of the algorithm. The relevant growth parameter is actually the one available
between x and x∗ ∈ X∗ for any x on the trajectory of the algorithm. In many practical problems
with sparsity constraints, the points (xn)n∈N are nearly sparse on the trajectory of the algorithm:
thus the relevant growth parameter µ̃, that is the highest parameter such that for all n ∈ N

µ̃

2
d(xn, X

∗)2 6 F (xn)− F (x∗)

may highly depend on x0.
Notice that choosing α and λ in our algorithm depending on the real global µ parameter may

be irrelevant in some situations since the real µ may be much lower than µ̃.
Liang et al [27] proved that, on a large family of optimisation problems with sparsity con-

straints, the trajectory of the Forward-Backward algorithm after a finite number of iterations
belongs to a subspace of small dimension G depending on the set X∗ of solutions. Moreover, the
asymptotic exponential decay of the Forward-Backward algorithm depends on the geometrical
properties of the function F to minimize on this subspace G, and not on the whole space. Even
if the convergence of the trajectory of Heavy Ball schemes on such a subspace is unclear due to
the inertia, numerical experiments show that the iterates are really close to sparse vectors. In
the inpainting experiment, most iterates have a small number of non zero wavelet coefficients.

For all these reasons, it is today an open problem to choose the parameter of these inertial
algorithms. Moreover, a choice of parameter providing a fast asymptotically decay may not
be the best for a given precision and numerical experiments will show that depending on the
precision, the best set of parameters may not be the same, see Figure 3.

To test these new schemes we consider two classical image processing problems. The first one
is the inpainting problem and the second one is the Total Variation (TV) denoising.

5.1 Inpainting

Let x0 be a numerical image and M a masking operator setting randomly half of the pixel to 0.
We want to estimate x from y0 = Mx0. Using the assumption that natural images are sparse in
a suitable wavelet basis we estimate x solving the following optimization problem.

min
x∈Rn

F (x) :=
1

2
‖Mx− y‖2 + λ ‖Tx‖1 (57)

where T is the orthogonal Daubechies (db2) wavelet transform. A numerical example of image
inpainting with this model is shown in Figure 2.

Figure 3 compares the decay of log(F (xn) − F (x∗)) for various choices of parameters. We
can observe that these new schemes can be compared to FISTA [14] for various precisions on
this specific problem.

5.2 TV denoising

Let x0 be a numerical image and n a realisation of a white Gaussian noise. We consider y = x+n
a noisy image and we want to estimate x from y. Using the assumption that the Total Variation
of x, that is the `1 norm of the discrete gradient of x is small, we can estimate x by solving

min
x∈Rn

F (x) :=
1

2
‖x− y‖2 + λ ‖∇x‖1 (58)

22



Figure 2: Example of image inpainting with model (57)

Figure 3: Comparison of several inertial algorithms for the inpainting problem (57)
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Actually this problem cannot be solved directly with the Forward-Backward algorithm or its
inertial versions since the proximity operator of x 7→ ‖∇x‖1 is not explicit. A classical way to
face this problem is to consider the following dual problem

min
p∈Rn

G(p) :=
1

2
‖div(p) + y‖2 + ιB∞(λ)(p). (59)

where ιB∞(λ) denotes the indicator function of the `∞ ball of radius λ. It can be shown that if
p∗ is a solution of the second problem, x∗ = y + div(p∗) is a solution of the first one.

This second problem (59) can be easily solved using any composite inertial algorithm. An
example of image denoising with this approach is shown in Figure 4.

Figure 4: Example of TV Denoising with model (58)

Figure 5: Comparison of several inertial algorithms for the TV denoising (59)

Figure 5 compares the decay of log(F (xn) − F (x∗)) for various choices of parameters. We
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can observe that these new schemes can be compared to FISTA [14] for various precisions on
this specific problem.

6 Proofs

6.1 Proofs of Theorem 1 and Corollary 1

The proof of Theorem 1 and Corollary 1 relies on the following Lyapunov energy:

E(t) = F (x(t))− F ∗ +
1

2
‖λ(x(t)− x∗) + ẋ(t)‖2 +

ξ

2
‖x(t)− x∗‖2 (60)

and is build in two steps: the first step consists in choosing the parameters λ and ξ such that
the energy E satisfies some differential equation:

E ′(t) + δE(t) 6 0

for some suitable parameter δ > 0, which implies that: E(t) = O(e−δt). The second step will
be to get the control on the values F (x(t))− F ∗ from the energy E(t). In the third step we will
prove the Corollary 1: assuming that the quadratic growth condition is global, we provide an
uniform bound on the energy E and thus non-asymptotic decay rates for the values F (x(t))−F ∗.

Step 1. Differentiating the energy E and using the ODE (12), we have:

E ′(t) = −λ〈∇F (x(t)), x(t)− x∗〉+ (λ− α) ‖ẋ(t)‖2 + (ξ + λ(λ− α))〈x(t)− x∗, ẋ(t)〉
6 −λ(F (x(t))− F ∗) + (λ− α) ‖ẋ(t)‖2 + (ξ + λ(λ− α))〈x(t)− x∗, ẋ(t)〉

using the convexity of F . Let us set δ < λ:

E ′(t) + δE(t) 6 (δ − λ)(F (x(t)− F ∗) +
δ

2
(ξ + λ2) ‖x(t)− x∗‖2 + (λ− α+

δ

2
) ‖ẋ(t)‖2

+(ξ + λ(λ− α) + δλ)〈x(t)− x∗, ẋ(t)〉

We now choose ξ := −λ(λ− α)− δλ = λ(α− λ− δ) so that the inner product term disappears.

E ′(t) + δE(t) 6 (δ − λ)(F (x(t)− F ∗) +
δ

2
λ(α− δ) ‖x(t)− x∗‖2 + (λ− α+

δ

2
) ‖ẋ(t)‖2 (61)

Using the quadratic growth assumption G2µ on F and assuming that δ < λ, there exists t1 > t0
such that:

∀t > t1, E ′(t) + δE(t) 6 (
δ

2
λ(α− δ) + (δ − λ)

µ

2
) ‖x(t)− x∗‖2 + (λ− α+

δ

2
) ‖ẋ(t)‖2 . (62)

Note that we can choose t1 = t0 if the quadratic growth condition is assumed to be global. Let
us fix µ > 0. Since we want E ′(t) + δE(t) 6 0, we need to choose λ and δ such that:

δ

2
λ(α− δ) + (δ − λ)

µ

2
6 0, λ− α+

δ

2
6 0, δ < λ. (63)

Let us choose λ := α− δ
2 . We then have two constraints left:

α2 −
(

3δ

2
+
µ

δ

)
α+

3µ

2
+
δ2

2
6 0 (64)

δ <
2α

3
(65)
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The constraint (64) can be seen as a polynomial of degree 3 in δ or as a polynomial of degree 2
en α. Let us first consider (64) as a polynomial inequality of degree 3 in δ. Let α > 0 and:

Pα(δ) = δ3 − 3αδ2 + (3µ+ 2α2)δ − 2µα.

Noticing that: P ′′α (δ) = 6(δ−α) < 0 for all δ < 2α
3 , we easily check that P ′α is non-increasing on

the interval [0, 2α3 [.

First case: α < 3
√

µ
2 . In that case, a straightforward computation shows that: P ′α( 2α

3 ) > 0.
We thus deduce that Pα is non-decreasing on the interval [0, 2α3 [.

Second case: α > 3
√

µ
2 . In that case, a straightforward computation shows that: P ′α( 2α

3 ) < 0.
We thus deduce that Pα is first non-decreasing and then non-increasing on [0, 2α3 [.

Observe now that:

Pα(0) = −2αµ < 0, Pα(
2α

3
) =

α3

27
> 0.

This implies that in any case there exists a unique δα,µ ∈ [0, 2α3 [ such that Pα(δα,µ) = 0 and:

∀δ 6 δα,µ, Pα(δ) 6 0. (66)

Let us now consider the polynomial inequality (64) as a polynomial of degree 2 in α to obtain
more information on the admissible values for δα,µ. If δ is fixed then the polynomial inequality
(64) admits a solution in α if and only if its discriminant is positive i.e. if:

∆ =

(
3δ

2
+
µ

δ

)2

− 4

(
3µ

2
+
δ2

2

)
> 0,

or equivalently if: δ4 − 12δ2µ+ 4µ2 > 0, i.e. if and only if:

δ 6 (2−
√

2)
√
µ or δ > (2 +

√
2)
√
µ. (67)

Coming back to the definition (66) of δα,µ, remember that the constraint Pα(δ) 6 0 has to be
satisfied by any δ ∈ [0, δα,µ] which excludes (2+

√
2)
√
µ (or any larger value) from the admissible

values of δα,µ. We can thus conclude that for a given α > 0:

δα,µ 6 (2−
√

2)
√
µ.

Finally, observe that for the critical value (2−
√

2)
√
µ, the discriminant ∆ is equal to 0 so that

the polynomial Pα((2−
√

2)
√
µ) admits a double root in α given by:

α =

(
2−
√

2

2

)
√
µ. (68)

For this particular value of α, we have:

δα,µ = (2−
√

2)
√
µ, λ =

√
µ, and ξ =

(√
2

2
− 1

)
µ. (69)

In any case, we have proved that with our choice of parameters, for all δ 6 δα,µ, we have:
∀t > t1, E ′(t) + δE(t) 6 0, hence for δ 6 δα,µ:

∀t > t1, E(t) 6 E(t1)e−δ(t−t1). (70)

26



Step 2. The point now is to get the control on the values F (x(t)) − F ∗ from the inequality
(70). To do this, remember the definition of the energy with ξ = − δλ2 = − δ4 (2α− δ) < 0:

E(t) = F (x(t))− F ∗ +
1

2
‖λ(x(t)− x∗) + ẋ(t)‖2 − δ

4
(2α− δ)‖x(t)− x∗‖2

> F (x(t))− F ∗ − δ

4
(2α− δ)‖x(t)− x∗‖2

Using the quadratic growth condition satisfied by F , we then get the control:

∀t > t1, E(t) >
1

4

(
δ2 − 2αδ + 4µ

)
(F (x(t))− F ∗). (71)

Moreover we can easily check that:

∀δ 6 δα,µ, δ
2 − 2αδ + 4µ > 0. (72)

Indeed, observe that if α < 2
√
µ then the discriminant of the polynomial Qα(δ) = δ2−2αδ+4µ is

non positive so that the inequality (72) is satisfied for any δ 6 δα,µ. If α > 2
√
µ, the polynomial

Qα has two real roots given by δ± = α±
√
α2 − 4µ. Noticing that Pα(α−

√
α2 − 4µ) = µ(α+√

α2 − 4µ) > 0, the variations of the polynomial Pα imply that necessarily: δα,µ < α−
√
α2 − 4µ.

Combining the control (70) with the inequality (71), we get:

F (x(t))− F ∗ 6 4

δ2 − 2αδ + 4µ
E(t1)e−δ(t−t1)

which concludes the proof of Theorem 1.

Step 3. Assume now that the quadratic growth condition is global. In that case, we have:
t1 = t0 and:

∀t > t0, F (x(t))− F ∗ 6 4

δ2 − 2αδ + 4µ
E(t0)e−δ(t−t0).

Let M0 = F (x0) − F ∗ + 1
2‖v0‖

2. Applying [12, Lemma 3] with our choice of parameters (for
which ξ < 0), we have an uniform bound on the energy E for the class of differentiable convex
functions satisfying a quadratic growth condition for some constant µ > 0, given by:

∀t > t0, E(t) 6
µ+

(
λ+
√
µ
)2

µ
M0 =

4µ+
(
2α− δ + 2

√
µ
)2

4µ
M0

which concludes the proof of Corollary 1.

6.2 Proofs of Theorem 2 and Corollary 2

The proof of Theorem 2 is quite standard, see [8, 13, 10, 40, 12] and the references therein.
Let T > 0. We consider the same Lyapunov energy as in the unperturbed case:

E(t) = F (x(t))− F ∗ +
1

2
‖λ(x(t)− x∗) + ẋ(t)‖2 +

ξ

2
‖x(t)− x∗‖2.

To deal with the perturbation term, the idea is to add an integral term to the energy E by
considering the energy:

G(t) = E(t) +

∫ T

t

〈λ(x(s)− x∗) + ẋ(s)), g(s)〉ds (73)
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in order to cancel all the terms depending on the perturbation g after derivation. Indeed differ-
entiating the energy G and using the convexity of F as in Theorem 1, we get:

G′(t) = E ′(t)− 〈λ(x(t)− x∗) + ẋ(t), g(t)〉
= −λ〈∇F (x(t)), x(t)− x∗〉+ (λ− α) ‖ẋ(t)‖2 + (ξ + λ(λ− α))〈x(t)− x∗, ẋ(t)〉
6 −λ(F (x(t))− F ∗) + (λ− α) ‖ẋ(t)‖2 + (ξ + λ(λ− α))〈x(t)− x∗, ẋ(t)〉

Choosing now the same parameters λ, ξ and δ as in the unperturbed case, we obtain:

∀t > t0, G′(t) + δE(t) 6 0. (74)

Moreover observe that even if the energy E is not a sum of non-negative terms, according to (71)
and (72), we have the following control:

E(t) = F (x(t))− F ∗ +
1

2
‖λ(x(t)− x∗) + ẋ(t)‖2 +

ξ

2
‖x(t)− x∗‖2 (75)

>
1

2
‖λ(x(t)− x∗) + ẋ(t)‖2 (76)

so that: ∀t > t0, G′(t) 6 −λE(t) 6 0. The energy G is so non-increasing, and: ∀t > t0, G(t) ≤
G(t0), i.e.:

∀t > t0, E(t) 6 E(t0) +

∫ t

t0

〈g(s), ẋ(s) + λ(x(s)− x∗)〉ds

6 E(t0) +

∫ t

t0

‖g(s)‖‖(1 + β)ẋ(s) + λ(x(s)− x∗)‖ds

Combining the last inequality with (76), we get:

∀t > t0,
1

2
‖λ(x(t)− x∗) + ẋ(t)‖2 6 E(t0) +

∫ t

t0

‖g(s)‖‖λ(x(s)− x∗) + ẋ(s)‖ds

Applying the Grönwall-Bellman Lemma [20, Lemma A.5], we obtain:

∀t > t0, ‖λ(x(t)− x∗) + ẋ(t)‖ 6
√

2E(t0) +

∫ t

t0

‖g(s)‖ds.

Assuming
∫ +∞
t0
‖g(s)‖ds < +∞, we can conclude that:

sup
t>t0
‖λ(x(t)− x∗) + ẋ(t)‖ 6

√
2E(t0) +

∫ +∞

t0

‖g(s)‖ds < +∞.

We set: A =
√

2E(t0)+I0 where I0 =
∫ +∞
t0
‖g(s)‖ds. The differential inequality ∀t > t0, G′(t) 6

−δE(t) 6 0 can be rewritten as:

∀t > t0, E ′(t) 6 −δE(t) + 〈λ(x(t)− x∗) + (1 + β)ẋ(t), g(t)〉.
6 −δE(t) +A‖g(t)‖.

Integrating between t0 and t, we finally obtain:

∀t > t0, e
δtE(t) 6 eδt0E(t0) +A

∫ t

t0

eδs‖g(s)‖ds,

6 eδt0E(t0) +A

∫ +∞

t0

eδs‖g(s)‖ds < +∞.
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Hence:
∀t > t0, E(t) 6

[
E(t0) + (

√
2E(t0) + I0)J0e

−δt0
]
e−δ(t−t0).

Let us define:

M0 = F (x0)− F ∗ + 1
2‖v0‖

2, I0 =
∫ +∞
t0
‖g(s)‖ds,

E0(λ) = M0 + (
√

2M0 + I0)I0 +
(√

M0 + I0√
2

+ λ√
µ

√
M0 + (

√
2M0 + I0)I0

)2
.

Applying [12, Lemma 4] with our choice of parameters (for which ξ < 0), we have again an uni-
form bound on the energy E for the class of differentiable convex functions satisfying a quadratic
growth condition for some constant µ > 0, given by:

∀t > t0, E(t) 6M0 + (
√

2M0 + I0)I0 +

(√
M0 +

I0√
2

+
2α− δ
2
√
µ

√
M0 + (

√
2M0 + I0)I0

)2

which concludes the proof.

6.3 Proof of Theorem 4

Using the definition of the Lyapunov function E and the convexity of F , a standard computation
(as in the beginning of step 1 of the proof of Theorem 1) leads to

E ′(t) + λE(t) 6
λ

2
(ξ + λ2)‖x(t)− x∗‖2 +

(
3

2
λ− α

)
‖ẋ(t)‖2 + (ξ + λ(2λ− α))〈ẋ(t), x(t)− x∗〉.

Observe that if F (x) = |x|, this inequality is actually an equality:

E ′(t)+λE(t) =
λ

2
(ξ+λ2)‖x(t)−x∗‖2 +

(
3

2
λ− α

)
‖ẋ(t)‖2 +(ξ+λ(2λ−α))〈ẋ(t), x(t)−x∗〉 (77)

since for this function, we actually have for all u ∈ ∂F (x), 〈u, x−x∗〉 = F (x)−F ∗. If we choose
λ = 2α

3 and ξ = −λ2 we get

E ′(t) + λE(t) =
λ3

4
|x(t)|2. (78)

Hence for any δ > 0:

E ′(t) + δE(t) =
λ3

4
|x(t)|2 + (δ − λ)E(t). (79)

Since x(t) → 0 when t → +∞, it follows that for δ = 2λ
3 < λ, it exists t1 > t0 such that

E(x(t1)) > 0 and such that for any t > t1, E ′(t) + 2λ
3 E(t) 6 0. We deduce that for any t > t1,

E(t) 6 E(t1)e−
2λ(t−t1)

3

with E(t1) > 0. It follows that it exists A1 > 0 such that

|x(t)| − λ2

4
|x(t)|2 6 E(t) 6 A1e

− 2λt
3

and thus it exists t3 and A2 such that for all t > t3

|x(t)| 6 A2e
− 2λt

3 . (80)
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Moreover from (78) and (80) we deduce that it exists t3 and A3 such that for any t > t3,

E ′(t) + δE(t) 6 A3e
− 4λt

3

and thus if we define: H1(t) := e
2αt
3 E(t) we get for all t > t3, H′1(t) 6 A3e

−λt3 . It follows that it
exists B such that for all t > t0, H(t) 6 B and thus

|x(t)| − λ2

4
|x(t)|2 6 E(t) 6 Be−

2αt
3

which implies that it exists B1 > 0 such that: |x(t)| 6 B1e
− 2αt

3 .
To prove the second point of the Theorem, we observe that (78) implies that H1 is a non

decreasing function. If H(t0) > 0, it follows that for all t > t0, H(t) > H(t0). Hence, ∀t > t0

e
2αt
3

(
|x(t)|+ 1

2
|λx(t) + ẋ(t)|

)
> H(t0) > 0.

Defining y(t) = e
2αt
3 x(t) we have for all t > t0

|y(t)|+ 1

2
|ẏ(t)|2e− 2αt

3 > H(t0) > 0.

Hence, if it exists t4 such that for all t > t4, |y(t)| 6 1
2H(t0), then ∀t > t4, |ẏ(t)|2 > H(t0)e

2αt
3 .

Since y ∈ C1 (thanks to Corollary 3), y is a continuous function of time. It follows that the sign
of ẏ(t) is constant on [t4,+∞[. If ẏ(t4) > 0 then:

∀t > t4, y(t) > yt4 +

∫ t

t4

√
H(t0)e

αu
3 du

which is impossible. If ẏ(t4) < 0 then for all t > t4, y(t) 6 yt4 −
∫ t
t4

√
H(t0)e

αu
3 du, which is also

impossible. It follows that y(t) cannot tend to 0 when t→∞ which concludes the proof.

6.4 Proofs of Theorems 6 and 8

In this section we propose a detailed proof of the convergence of the iterates generated by the
discrete scheme (38) in the differentiable case, and by the scheme (54) in the nonsmooth case.
These two proofs being very similar we will present each results of the two theorems, detailing
all the calculations in the differentiable case and then explaining how to adapt them in the
non-differentiable case.

Let us remind here the general scheme in the differentiable case: let γ > 0.
λxn+ 1

2
= λxn + tvn

v := vn+ 1
2

= (1 + γt)−1(vn − tg)

λxn+1 = λxn+ 1
2
− t2g

vn+1 = v + (1 + t)−1t2g.

(81)

using the reduced notations:

t = λs, v = vn+ 1
2

and g =
1

λ
∇F (xn+ 1

2
). (82)
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The scheme in the nonsmooth case is obtained from (81) by replacing g by the vector g̃ defined
by:

g̃ =
λ

t2

(
xn+ 1

2
− prox t2

λ2
h
(xn+ 1

2
− t2

λ2
∇f(xn+ 1

2
))

)
. (83)

Keep in mind that to adapt the proof from the differentiable to the non-differentiable case, a
key element will be to be able to compute a subgradient of F at some iterate. More precisely,
exploiting the definition of g̃, we easily prove that:

λg̃ +∇f(xn+1)−∇f(xn+ 1
2
) ∈ ∂F (xn+1) (84)

Moreover using the L-Lipschitz continuity and the co-coercivity of ∇f , observe that:

λ〈g̃,∇f(xn+1)−∇f(xn+ 1
2
)〉 6 −λ

2

t2
〈∇f(xn+1)−∇f(xn+ 1

2
), xn+1 − xn+ 1

2
〉

6 − λ2

Lt2
‖∇f(xn+1)−∇f(xn+ 1

2
)‖2

6 −‖∇f(xn+1)−∇f(xn+ 1
2
)‖2

since: t = λs and s = 1√
L

. It follows that:

‖λg̃ +∇f(xn+1)−∇f(xn+ 1
2
)‖2 = λ2‖g̃‖2 + ‖∇f(xn+1)−∇f(xn+ 1

2
)‖2

+2λ〈g̃,∇f(xn+1)−∇f(xn+ 1
2
)〉

6 λ2‖g̃‖2 − ‖∇f(xn+1)−∇f(xn+ 1
2
)‖2.

Hence:
‖λg̃ +∇f(xn+1)−∇f(xn+ 1

2
)‖ 6 λ‖g̃‖. (85)

6.4.1 Proof of Point 1. Global convergence of the discrete scheme

Following the line of Alvarez in [1], we introduce the following Lyapunov energy:

Ln = F (xn)− F (x∗) +
ρ

2
‖vn‖2 (86)

where ρ > 0 will be defined later.

The differentiable case. Remembering that vn+1 = v + t2

1+tg, note that:

vn = (1 + γt)v + tg = (1 + γt)vn+1 + t(1− (1 + γt)t

1 + t
)g

= (1 + γt)vn+1 + tAg

where:

A = 1− (1 + γt)t

1 + t
(87)

Observe that the quantity A always satisfies A < 1 for any t > 0 and that A > 0 if and only if:

γt2 < 1.
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Let us now prove that for a suitable choice of ρ, the sequence Ln is non increasing. A key
element to prove this result is the following decrease inequality:

F (xn+1)− F (xn)− t〈g, vn〉 6 −
t2

2
‖g‖2 (88)

whose proof is detailed at (134). This inequality is a combination of the convexity and the
Lipschitz continuity of F . We thus have:

Ln+1 − Ln = F (xn+1)− F (xn) +
ρ

2

(
‖vn+1‖2 − ‖(1 + γt)vn+1 + tAg‖2

)
6 − t

2

2
‖g‖2 + t〈g, (1 + γt)vn+1 + tAg〉+

ρ

2

(
‖vn+1‖2 − ‖(1 + γt)vn+1 + tAg‖2

)
6 (−1

2
+A)t2 ‖g‖2 + t(1 + γt)〈g, vn+1〉+

ρ

2

(
‖vn+1‖2 − ‖(1 + γt)vn+1 + tAg‖2

)
Let us focus on the last part of the right member of the above inequality:

‖vn+1‖2 − ‖(1 + γt)vn+1 + tAg‖2 = (−2γt− γ2t2) ‖vn+1‖2 − 2(1 + γt)At〈vn+1, g〉 − t2A2 ‖g‖2 .

It follows that

Ln+1−Ln 6

(
−1

2
+A− ρA2

2

)
t2 ‖g‖2+(t(1 + γt)− ρ(1 + γt)At) 〈g, vn+1〉−

ρ

2
(2γt+γ2t2) ‖vn+1‖2 .

Choosing ρ = A−1 where A is given by (87), the scalar product term vanishes and we get

Ln+1 − Ln 6 − t
3

2

(
1 + γt

1 + t

)
‖g‖2 − ρ

2
(2γt+ γ2t2) ‖vn+1‖2 . (89)

If follows that (Ln)n∈N is non increasing, and thus it converges in R+. Let us now rewrite
inequality (89) as:

Ln+1 − Ln 6 −a ‖g‖2 − b ‖vn+1‖2 (90)

where a and b are two positive constants. Hence:

∀N > 1, a
N∑
n=0

‖g‖2 + b
N∑
n=0

‖vn+1‖2 6 L0 − LN+1 6 L0.

Since Ln is a positive sequence, we deduce that
∑
‖g‖2 and

∑
‖vn+1‖2 are converging sums.

Hence both sequences (‖g‖2)n∈N and (‖vn+1‖2)n∈N tend to 0. Using the L-Lipschitz continuity
of the gradient, we also deduce the convergence of the sequence (∇F (xn))n∈N to 0.

The non differentiable case Consider now the non differentiable case. The calculations of
this first step are unchanged replacing the vector g = 1

λ∇F (xn+ 1
2
) by g̃ since we only need the

decrease condition:

F (xn+1)− F (xn) ≤ λ〈g̃, xn+ 1
2
− xn〉 −

t2

2
‖g̃‖2. (91)

which is actually satisfied by g̃ applying Lemma 8 to x = xn+1 and y = xn. We thus have:

Ln+1 − Ln 6 − t
3

2

(
1 + γt

1 + t

)
‖g̃‖2 − ρ

2
(2γt+ γ2t2) ‖vn+1‖2 (92)
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and it follows that the sequence (Ln)n∈N is still non increasing, and converges in R+. Hence∑
‖g̃‖2 and

∑
‖vn+1‖2 are converging sums, and (‖g̃‖2)n∈N and (‖vn+1‖2)n∈N tend to 0.

To prove the global convergence of our discrete scheme (i.e. that d(0, ∂F (xn)) converges to
0), remember that:

λg̃ +∇f(xn+1)−∇f(xn+ 1
2
) ∈ ∂F (xn+1). (93)

Thus using (85) we have:

d(0, ∂F (xn+1)) 6 ‖λg̃ +∇f(xn+1)−∇f(xn+ 1
2
)‖ 6 λ‖g̃‖.

Since ‖g̃‖ converges to 0, d(0, ∂F (xn+1)) also converges to 0.

6.4.2 Proof of Point 2. Convergence of F (xn)− F ∗ and d(xn, X
∗) to 0.

Observe first that in the differentiable and non-differentiable cases we have:

∀n ∈ N, F (xn)− F ∗ = Ln −
ρ

2
‖vn‖2.

We prove in Step 1 that the sequence (Ln)n∈N converges in R+ and that (vn)n∈N converges to
0, hence (F (xn)− F ∗)n∈N also converges in R+ and is thus bounded.

Assume now that F is additionally coercive. Using the coercivity assumption combined with
the boundedness of (F (xn)− F ∗)n∈N, we deduce that the sequence (xn)n∈N is bounded (as well
as the sequence (xn+ 1

2
)n∈N). Thus there exists a compact set C containing X∗ and such that:

{xn ; n ∈ N} ∪ {xn+ 1
2

; n ∈ N} ⊂ C. (94)

Convergence of F (xn)−F ∗ to 0 in the differentiable case. Since the sequence (∇F (xn))n∈N
converges to 0 as shown in Step 1, we deduce that any accumulation point of the sequence (xn)n∈N
of iterates is a critical point, and thus a minimizer of F . By continuity of F and remembering
that (F (xn)− F ∗)n∈N converges, necessarily (F (xn)− F ∗)n∈N converges to 0.

Convergence of F (xn) − F ∗ to 0 in the non-differentiable case. Since F is assumed
convex and lower semicontinuous, its sub-differential is a non empty compact convex set and:

∀n ∈ N, ∃sn ∈ ∂F (xn), d(0, ∂F (xn)) = ‖sn‖. (95)

Since d(0, ∂F (xn)) converges to 0 according to Step 1, the sequence (sn)n∈N also converges to 0.
Let us now introduce the set:

C̃ = {(x, s) ∈ Rn × Rn;x ∈ C, s ∈ ∂F (x)} ⊂ C × ∂F (C) (96)

where C is the compact set defined by (94). Since F is a proper lower semicontinuous convex
function, C̃ is a compact subset of Rn × Rn, see [26, Propositions 6.2.1 and 6.2.2]. Observe
now that by construction, (xn, sn) ∈ C̃ for all n ∈ N. There so exist a non-decreasing function
ϕ : N → N and (x̄, s̄) ∈ C̃ such that the sub-sequence (xϕ(n), sϕ(n)) converges to (x̄, s̄) when n

tends to +∞. Remember now that (sn)n∈N converges to 0 and (x̄, s̄) ∈ C̃, hence necessarily:
s̄ = 0 and:

0 ∈ ∂F (x̄). (97)

We so proved that the sub-sequence (xϕ(n))n∈N converges to a minimizer of F . By local Lipschitz
continuity of F on the relative interior of its domain, we then deduce that (F (xϕ(n)))n∈N converges
to F (x̄) = F ∗. Since the sequence (F (xn)−F ∗)n∈N converges, we deduce that (F (xn)−F ∗)n∈N
converges to 0 when n→ 0.
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Convergence of d(xn, X
∗) to 0 in the differentiable and non-differentiable cases. As-

sume on the contrary that the sequence d(xn, X
∗) does not converge to 0: there thus exist ε > 0

and a non-increasing function ϕ : N→ N such that the sub-sequence (xϕ(n))n∈N satisfies:

∀n ∈ N, d(xϕ(n), X
∗) > ε. (98)

Let Kε = C ∩ {x ∈ Rn; d(x,X∗) > ε}. By construction, Kε is a compact subset of Rn and
Kε ∩ X∗ = ∅. Moreover for all n ∈ N, we have: xϕ(n) ∈ Kε so that there exists a convergent
subsequence (xψ◦ϕ(n))n∈N whose limit denoted by x̄ belongs to Kε, and thus: x̄ /∈ X∗.

To conclude, note that in the differentiable case as in the non-differentiable case, we can
deduce that F (xψ◦ϕ(n))− F ∗ then converges to F (x̄)− F ∗. Since the whole sequence (F (xn)−
F ∗)n∈N converges to 0 when n→ 0, necessarily: F (x̄)−F ∗ = 0 which is impossible since x̄ /∈ X∗.

6.4.3 Proof of Point 3. Convergence of the iterates to a minimizer of F .

Assume now that F is coercive and additionally satisfies any  Lojasiewicz property with an
exponent θ ∈ [0, 1). Under these assumptions, the set X∗ of the minimizers is compact and
according to Lemma 1 there exists µ > 0 and ε > 0 such that:

d(x,X∗) 6 ε⇒ 2µ (F (x)− F ∗)θ 6 d(0, ∂F (x)). (99)

Proof of Point 3(a). Assume that θ = 1
2 i.e. that F satisfies the PLµ property. We now prove

that the values F (xn)− F ∗ converge exponentially to 0.

Consider first the differentiable case. Observe that: xn+1 = xn+ 1
2
− t2

λ g and:

λg +∇F (xn+1)−∇F (xn+ 1
2
) = ∇F (xn+1).

Following exactly the same steps as those which led to inequality (85), we can prove that:

‖∇F (xn+1)‖2 6 λ2‖g‖2 − ‖∇F (xn+1)−∇F (xn+ 1
2
)‖2 6 λ2‖g‖2

Since d(xn+ 1
2
, X∗) tends to 0 when n→ +∞, we now write the PLµ property satisfied by F at

xn+1 i.e. there exists n0 ∈ N such that:

∀n > n0, 2µ (F (xn+1)− F (x∗)) 6 ‖∇F (xn+1)‖2 6 λ2‖g‖2. (100)

that is:

−‖g‖2 6 −2µ

λ2
(F (xn+1)− F (x∗)) . (101)

Combined with (89), this inequality ensures that

Ln+1 − Ln 6 −t3
(

1 + γt

1 + t

)
µ

λ2
(F (xn+1)− F (x∗))− ρ

2
(2γt+ γ2t2) ‖vn+1‖2

6 −t
[(

1 + γt

1 + t

)
µ

L
(F (xn+1)− F (x∗)) +

ρ

2
(2γ + γ2t) ‖vn+1‖2

]
Let us define:

K = min

(
µ(1 + γt)

L(1 + t)
, γ(2 + γt)

)
(102)

We can remark that we have K > 0 for any t > 0 so that:

Ln+1 − Ln 6 −tKLn+1. (103)

34



This ensures that for any n > n0

Ln+1 6 (1 + tK)−1Ln. (104)

Note that in the non differentiable case, the very last inequality on the energy Ln is unchanged:
the proof is exactly the same by replacing g by g̃ and ∇F (xn+1) by λg̃+∇f(xn+1)−∇f(xn+ 1

2
).

In both cases, the inequality (104) ensures that (Ln)n∈N and thus (F (xn) − F (x∗))n∈N and
(vn)n∈N decay exponentially. It follows in particular that the series

∑
n vn converges. Moreover,

combining the second and the fourth lines of (81) in the differentiable case, we get:

t

(
γt2 − 1

1 + t

)
g = (1 + γt)vn+1 − vn.

Since
∑
vn converges, the series

∑
n g also converges. Noticing that λ(xn+1 − xn) = tvn − t2g,

we finally deduce the convergence of the sequence (xn)n∈N. Since X∗ is a closed convex set and
since d(xn, X

∗) tends to 0 when n→ +∞, necessarily (xn)n∈N converges to a minimizer of F .
In the non-differentiable case, the conclusions are the same since we similarly have:

t

(
γt2 − 1

1 + t

)
g̃ = (1 + γt)vn+1 − vn, λ(xn+1 − xn) = tvn − t2g̃

and thus the convergence of the series
∑
g̃, and the convergence of (xn)n∈N to a minimizer of F .

Optimizing the constant tK. We now focus on optimizing the constant tK, where K is given
by (102). We can see that the two functions inside the minimum of the definition of K are
increasing functions of γ. Hence the larger γ, then the larger K.

Remembering the constraint γt2 < 1, i.e.: γ < 1
t2 , the best choice is γ = 1−ε

t2 (with ε→ 0+).
For this choice of γ, we have:

tK = min

(
µ

L

(
1− ε

1 + t

)
, (1− ε)

(
1 + 2t− ε

t2

))
. (105)

Since t 7→ (1 − ε)
(
1+2t
t2 − ε

)
is a decreasing function on R∗+ and goes to +∞ when t → 0+, we

see that the best possible constant tK is thus µ
L

(
1− ε

1+t

)
. Thus for a given ε > 0, there exists

tε > 0 such that:

tK =
µ

L

(
1− ε

1 + t

)
.

Proof of Point 3(b). Assume now that F satisfies a  Lojasiewicz property with an exponent
θ ∈ ( 1

2 , 1) i.e. that there exists µ > 0 and ε > 0 such that:

d(x,X∗) 6 ε⇒ 2µ (F (x)− F ∗)θ 6 d(0, ∂F (x)). (106)

We eventually prove that the decay of the values F (xn) − F ∗ is now polynomial both in the
differentiable and non-differentiable cases.

The differentiable case. To lighten the notations, let us rewrite the inequality (89) as:

Ln+1 − Ln 6 −A1 ‖g‖2 −A2
ρ

2
‖vn+1‖2 . (107)
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where A1 and A2 are two positive constants. Using the  Lojasiewicz property applied at xn+ 1
2

with g = 1
λ∇F (xn+ 1

2
):

2µ

λ
(F (xn+ 1

2
)− F ∗)θ 6 ‖g‖.

and the decrease inequality (88) that implies: F (xn+1)− F ∗ 6 F (xn+ 1
2
)− F ∗, we get:

Ln+1 − Ln 6 −A1
4µ2

λ2
(F (xn+1)− F (x∗))2θ −A2

ρ

2
‖vn+1‖2−4θ+4θ

. (108)

In the first step of the proof we prove that ‖vn+1‖ tends to 0. It follows that ‖vn+1‖ is bounded.
Since 2− 4θ < 0 we can then find A3 > 0 such that for any n ∈ N,

Ln+1 − Ln 6 −A3

(
1

2
(F (xn+1)− F (x∗))2θ +

1

2

(ρ
2

)2θ
‖vn+1‖4θ

)
. (109)

Using the convexity of the function x 7→ x2θ observe that:(
1

2
(F (xn+1)− F (x∗)) +

1

2

(ρ
2

)
‖vn+1‖2

)2θ

6
1

2
(F (xn+1)−F (x∗))2θ+

1

2

(ρ
2

)2θ
‖vn+1‖4θ (110)

It follows that

Ln+1 − Ln 6 −A3

4θ
L2θ
n+1. (111)

We now apply Lemma 5 to the sequence (Ln)n∈N to deduce that there exists K > 0 such that
for all n ∈ N, F (xn)− F (x∗) 6 Ln 6 K

n
1

2θ−1
. Moreover we have

‖vn‖2 6
2K

ρn
1

2θ−1

. (112)

If 1
2θ−1 > 2, i.e. if θ < 3

4 , it follows that the sequence
∑
n>1 ‖vn‖ is finite. Using the fact that

xn+1 − xn = tvn − t2g (113)

and

g =

(
t

(
1− (1 + γt)t

1 + t

))−1
(vn − (1 + γt)vn+1) (114)

we deduce that the sequence
∑
n>1 ‖xn+1 − xn‖ is finite and thus that the sequence (xn)n∈N

converges to a minimizer x∗ of F .

The non-differentiable case. In the non-differentiable case, the proof remains unchanged by
replacing one more time g by g̃. The only difference is the way to obtain the inequality (108).
Let us prove that the inequality (108) is still valid by replacing g by g̃ in the nonsmooth case.

First we apply the  Lojasiewicz property at xn+1 choosing λg̃ +∇f(xn+1) −∇f(xn+ 1
2
) as a

subgradient of F at xn+1: for n large enough, we have:

2µ(F (xn+1)− F ∗)θ 6 ‖λg̃ +∇f(xn+1)−∇f(xn+ 1
2
)‖.

Using now the inequality (85): ‖λg̃ +∇f(xn+1)−∇f(xn+ 1
2
)‖ 6 λ‖g̃‖, we then obtain:

2µ

λ
(F (xn+1)− F (x∗))θ 6 ‖g̃‖

as expected.
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6.4.4 Technical result

To derive the polynomial rates stated in the point 3(b) of Theorems 6 and 8, we have used the
following technical result:

Lemma 5. Let (un)n∈N be a non negative sequence. Assume that there exist θ > 1
2 and a > 0

such that:
∀n ∈ N, un+1 + au2θn+1 6 un. (115)

Then it exists K > 0 such that

∀n > 1, un 6
K

n
1

2θ−1

. (116)

Proof. Let us define wn :=

(
1

n
1

2θ−1
− 1

(n+1)
1

2θ−1

)
(n + 1)

2θ
2θ−1 . This sequence converges to 1

2θ−1

and it is thus bounded i.e. it exists A > 0 such that for all n ∈ N, wn 6 A and we can observe
that

wn 6 A⇐⇒ 1

n
1

2θ−1

6
A

(n+ 1)
2θ

2θ−1

+
1

(n+ 1)
1

2θ−1

. (117)

Let us define f(x) = x + ax2θ. This function is non decreasing on (0,+∞). Moreover for any
K > 0 we have:

f

(
K

(n+ 1)
1

2θ−1

)
= K

(
1

(n+ 1)
1

2θ−1

+
aK2θ−1

(n+ 1)
2θ

2θ−1

)
. (118)

It turns out that for K >
(
A
a

) 1
2θ−1 we get using (117):

K

n
1

2θ−1

6 K

(
1

(n+ 1)
1

2θ−1

+
A

(n+ 1)
2θ

2θ−1

)
6 K

(
1

(n+ 1)
1

2θ−1

+
aK2θ−1

(n+ 1)
2θ

2θ−1

)
= f

(
K

(n+ 1)
1

2θ−1

)
(119)

It follows that if un 6 K

n
1

2θ−1
we get using (115):

f(un+1) 6 un 6
K

n
1

2θ−1

6 f

(
K

(n+ 1)
1

2θ−1

)
. (120)

since f is non increasing it follows that un+1 6 K

(n+1)
1

2θ−1
.

Choosing K = max
(
u1,
(
A
a

) 1
2θ−1

)
, we conclude by induction on n.

6.5 Proof of Theorem 7

The proof of Theorem 7 is based on a Lyapunov analysis inspired by the one proposed for the
ODE. To study the ODE we used to following Lyapunov energy:

E(t) = F (x(t))− F ∗ +
1

2
‖λ(x(t)− x∗) + ẋ(t)‖2 +

ξ

2
‖x(t)− x∗‖2 (121)

with
λ =
√
µ , α = β

√
µ = βλ , ξ = (1− β)µ = (1− β)λ2 (122)

where β = 2−
√
2
2 . Moreover, we have

δ = (2−
√

2)
√
µ = 2(β − 1)λ. (123)
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Let us recall the discrete scheme we consider:
xn+ 1

2
= xn + svn

vn+ 1
2

= (1 + αs)−1(vn − s∇F (xn+ 1
2
))

xn+1 = xn+ 1
2
− s2∇F (xn+ 1

2
)

vn+1 = vn+ 1
2

+ (1 + λs)−1λs2∇F (xn+ 1
2
)

(124)

To simplify the writing of the proof, we introduce the following reduced notations:

t = λs, u = λ(xn+ 1
2
− x∗), v = vn+ 1

2
and g =

1

λ
∇F (xn+ 1

2
). (125)

With these reduced notations, the scheme may be rewritten as:
λxn+ 1

2
= λxn + tvn

v := vn+ 1
2

= (1 + βt)−1(vn − tg)

λxn+1 = λxn+ 1
2
− t2g

vn+1 = v + (1 + t)−1t2g.

(126)

Remember that the value of vn+1 is actually chosen such that

‖λ(xn+1 − x∗) + (1 + t)vn+1‖2 = ‖u+ (1 + t)v‖2. (127)

To study the properties of the scheme (124), we define the sequence Ln:

Ln := L(xn, vn) := F (xn)− F ∗ +
1

2
‖λ(xn − x∗) + (1 + λs)vn‖2 − (β − 1)

λ2

2
‖xn − x∗‖2

which can be seen as particular discretization of the energy E . Let us first compute Ln+ 1
2

and
Ln using the reduced notations:

Ln+ 1
2

:= L(xn+ 1
2
, vn+ 1

2
) := F (xn+ 1

2
)− F ∗ +

1

2
‖u+ (1 + t)v‖2 − β − 1

2
‖u‖2 (128)

and Ln can be written in the following way as:

Ln = F (xn)− F ∗ +
1

2
‖u+ λ(xn − xn+ 1

2
) + (1 + t)vn‖2 −

β − 1

2
‖u+ λ(xn − xn+ 1

2
)‖2

= F (xn)− F ∗ +
1

2
‖u+ vn‖2 −

β − 1

2
‖u− tvn‖2 .

Now, noticing that:

−(β − 1)λ2

2
‖xn+1 − x∗‖2 =

−(β − 1)λ2

2
‖xn+1 − xn+ 1

2
+ xn+ 1

2
− x∗‖2

= −β − 1

2
‖u‖2 − (β − 1)t4

2
‖g‖2 + (β − 1)t2〈u, g〉

the energy Ln+1 can be expressed as a variation of Ln+ 1
2
:

Ln+1 = Ln+ 1
2

+ F (xn+1)− F (xn+ 1
2
)− (β − 1)

t4

2
‖g‖2 + (β − 1)t2〈u, g〉. (129)

To prove Theorem 1 we demonstrated that the Lyapunov Energy defined by (121) satisfies

E ′(t) + δE(t) 6 0. (130)

To prove Theorem 7 we will use the following Lemma whose proof is left to Subsection 6.5.1:
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Lemma 6. There exist t1 > 0 and K3 > 0 such that for any t ∈ [0, t1], it holds:

∀n ∈ N,
(

1 +
δ

λ
t− t2K3

)
Ln+1 − Ln 6 0. (131)

Moreover, we then have for any t ∈ [0, t1],

∀n ∈ N, Ln 6

(
1 +

δ

λ
t−K3t

2

)−n
L0. (132)

To get the control on the values F (xn)− F ∗ from the control on the energy Ln provided by
Lemma 6, note that:

Ln = F (xn)− F ∗ +
1

2
‖λ(xn − x∗) + (1 + λs)vn‖2 − (β − 1)

λ2

2
‖xn − x∗‖2

> F (xn)− F ∗ − (β − 1)
µ

2
‖xn − x∗‖2. (133)

since λ =
√
µ. Observe now that assuming the uniqueness of the minimizer x∗ of F , Theorem 6

ensures that the sequence of iterates (xn)n∈N converges to x∗. Thus using the quadratic growth
condition G2µ satisfied by F , there exists N ∈ N such that:

∀n > N,
µ

2
‖xn − x∗‖2 6 F (xn)− F ∗.

Combining this last inequality with (133), we finally get: (2− β) (F (xn) − F ∗) 6 Ln for any
n > N , and thus the expected control on F (xn)− F ∗.

6.5.1 Proof of Lemma 6

Sketch of proof: The proof of Lemma 6 is technical. This is the reason why we first give a
structure of it:

1. A key descent inequality (134) used previously by Siegel is proven.

2. We give an upper bound of Ln+ 1
2
− Ln.

3. From this bound and (134) we give an upper bound of Ln+1 − Ln.

4. We deduce a bound on (1 + tδ/λ)Ln+1−Ln as a polynomial in t whose coefficients depend
on u and v.

5. We conclude by bounding this polynomial by Ln+1.

Proof of Lemma 6: Step 1. We first prove the inequality (134)

F (xn+1)− F (y) ≤ λ〈g, xn+ 1
2
− y〉 − t2

2
‖g‖2 (134)

which is a key inequality used by Siegel in [41]. Since ∇F is L = 1
s2 - Lipschitz and g :=

1
λ∇F (xn+ 1

2
) := λ

t2 (xn+1 − xn+ 1
2
) we get

F (xn+1)− F (xn+ 1
2
) 6 − t

2

2
‖g‖2. (135)
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Since F is convex, for any y ∈ Rn we have

F (xn+ 1
2
)− F (y) 6 λ〈g, xn+ 1

2
− y〉. (136)

Inequality (134) holds summing the two previous inequalities.
Step 2.

Ln+ 1
2
− Ln = F (xn+ 1

2
)− F (xn) +

1

2
‖u+ (1 + t)v‖2 − 1

2
‖u+ vn‖2 −

β − 1

2

(
‖u‖2 − ‖u− tvn‖2

)
We use the identity (with the condition A−B = a+ b):

1

2
‖A‖2 − 1

2
‖B‖2 = 〈a,B〉+ 〈b, A〉+

1

2
‖a‖2 − 1

2
‖b‖2 (137)

with A = u+ (1 + t)v, B = u+ vn, a = −tg, b = −(β − 1)tv. We thus get with this identity:

1

2
‖u+ (1 + t)v‖2 − 1

2
‖u+ vn‖2 = −t〈g, u+ vn〉 − (β − 1)t〈v, u+ (1 + t)v〉+

t2

2
‖g‖2

− (β − 1)2t2

2
‖v‖2

= −t〈g, vn〉 − t〈g, u〉+
t2

2
‖g‖2 − (β − 1)t〈v, u〉

− (β − 1)t

2
(2 + (β + 1)t)‖v‖2

Moreover observe that:

−β − 1

2
‖u‖2 +

β − 1

2
‖u− tvn‖2 = −(β − 1)t〈vn, u〉+ (β − 1)

t2

2
‖vn‖2 (138)

Hence:

Ln+ 1
2
− Ln = F (xn+ 1

2
)− F (xn)− 〈tg, vn〉 − t〈g, u〉+

t2

2
‖g‖2 − (β − 1)t〈v, u〉

− (β − 1)t

2
(2 + (β + 1)t)‖v‖2 − t(β − 1)〈vn, u〉+

β − 1

2
t2‖vn‖2.

Using the expression of vn = (1 + βt)v + tg , we get:

Ln+ 1
2
− Ln = F (xn+ 1

2
)− F (xn)− 〈tg, vn〉+

t2

2
‖g‖2 − t〈g, u〉 − t(β − 1)〈u, v〉

− (β − 1)t

2
(2 + (β + 1)t)‖v‖2 − t(β − 1)〈(1 + βt)v + tg, u〉

+(β − 1)
t2

2
‖(1 + βt)v + tg‖2

= F (xn+ 1
2
)− F (xn)− 〈tg, vn〉+

t2

2
‖g‖2 − t (1 + (β − 1)t) 〈g, u〉+

β − 1

2
t4‖g‖2

−t(β − 1) (2 + βt) 〈v, u〉 − β − 1

2
t
(
2 + (β + 1)t− t(1 + βt)2

)
‖v‖2

+(β − 1)(1 + βt)t3〈v, g〉.
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Step 3. Using (129), we get:

Ln+1 − Ln = Ln+1 − Ln+ 1
2

+ Ln+ 1
2
− Ln

= F (xn+1)− F (xn)− t〈g, vn〉+
t2

2
‖g‖2 − t〈g, u〉

−t(β − 1) (2 + βt) 〈v, u〉 − β − 1

2
t
(
2 + (β + 1)t− t(1 + βt)2

)
‖v‖2

+(β − 1)(1 + βt)t3〈v, g〉 (139)

Then, we apply (134) with y = xn and tvn = λ(xn+ 1
2
− xn) to get:

F (xn+1)− F (xn)− t〈g, vn〉 ≤ −
t2

2
‖g‖2 (140)

and (134) with y = x∗ to get:

〈g, u〉 ≥ F (xn+1)− F ∗ +
t2

2
‖g‖2. (141)

Combining (139), (140) and (141) we deduce:

Ln+1 − Ln ≤ −t(F (xn+1)− F ∗)− t(β − 1) (2 + βt) 〈v, u〉+ (β − 1)(1 + βt)t3〈v, g〉

− t
3

2
‖g‖2 − β − 1

2
t
(
2 + (β + 1)t− t(1 + βt)2

)
‖v‖2.

Step 4. Using the following expression of F (xn+1)− F ∗:

F (xn+1)− F ∗ = Ln+1 −
1

2
‖λ(xn+1 − x∗) + (1 + t)vn+1‖2 +

(β − 1)λ2

2
‖xn+1 − x∗‖2

= Ln+1 −
1

2
‖u+ (1 + t)v‖2 +

β − 1

2
‖u− t2g‖2

= Ln+1 −
1

2
‖u+ (1 + t)v‖2 +

β − 1

2

(
t4‖g‖2 + ‖u‖2 − 2t2〈u, g〉

)
= Ln+1 −

2− β
2
‖u‖2 − (1 + t)2

2
‖v‖2 +

(β − 1)t4

2
‖g‖2 − (1 + t)〈u, v〉 − (β − 1)t2〈u, g〉

we eventually get, remembering that δ
λ = 2(β − 1) and thus 1 − δ

λ = 3 − 2β, so that t =
2(β − 1)t+ (3− 2β)t:(

1 +
δ

λ
t

)
Ln+1 − Ln ≤ −(3− 2β)t(F (xn+1)− F ∗)− t3

2
‖g‖2 − t(β − 1) (2 + βt) 〈v, u〉

−β − 1

2
t
(
2 + (β + 1)t− t(1 + βt)2

)
‖v‖2 + (β − 1)(1 + βt)t3〈v, g〉

−2(β − 1)t

(
− (2− β)t

2
‖u‖2 − (1 + t)2

2
‖v‖2

+
(β − 1)t4

2
‖g‖2 − (1 + t)〈u, v〉 − (β − 1)t2〈u, g〉

)
≤ −(3− 2β)t(F (xn+1)− F ∗)− t3

2
‖g‖2 − t(β − 1) (2 + βt) 〈v, u〉

−β − 1

2
t
(
2 + (β + 1)t− t(1 + βt)2

)
‖v‖2 + (β − 1)(1 + βt)t3〈v, g〉

+(β − 1)2(2− β)t‖u‖2 + (β − 1)t(1 + t)2‖v‖2 − (β − 1)2t5‖g‖2

−2(β − 1)t(1 + t)〈u, v〉+ 2(β − 1)2t3〈u, g〉
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So that:(
1 +

δ

λ
t

)
Ln+1 − Ln ≤ −(3− 2β)t(F (xn+1)− F ∗) + (β − 1)(2− β)t‖u‖2

+(β − 1)(2− β)t2〈v, u〉+
β − 1

2
t2
(
4− β + 2(β + 1)t+ β2t2

)
‖v‖2

+(β − 1)(1 + βt)t3〈v, g〉+ 2(β − 1)2t3〈u, g〉 − t3

2
(1 + 2(β − 1)2t2)‖g‖2.

Using the growth condition and remembering that λ2 = µ:

F (xn+1)− F (x∗) ≥ µ

2
‖xn+1 − x‖2 =

µ

2λ2
‖u− t2g‖2 =

1

2
‖u− t2g‖2 (142)

we get:(
1 +

δ

λ
t

)
Ln+1 − Ln ≤ −3− 2β

2
t‖u− t2g‖2 + (β − 1)(2− β)t‖u‖2

+(β − 1)(2− β)t2〈v, u〉+
β − 1

2
t2
(
4− β + 2(β + 1)t+ β2t2

)
‖v‖2

+(β − 1)(1 + βt)t3〈v, g〉+ 2(β − 1)2t3〈u, g〉 − t3

2
(1 + 2(β − 1)2t2)‖g‖2.

≤ −3− 2β

2
t‖u− t2g‖2 + (β − 1)(2− β)t‖u− t2g‖2

+(β − 1)(2− β)t2〈v, u〉+
β − 1

2
t2
(
4− β + 2(β + 1)t+ β2t2

)
‖v‖2

+(β − 1)(1 + βt)t3〈v, g〉+ 2(β − 1)t3〈u, g〉 − t3

2
(1 + 2(β − 1)t2)‖g‖2.

We thus have:(
1 +

δ

λ
t

)
Ln+1 − Ln ≤ (β − 1)(2− β)t2〈v, u〉+

β − 1

2
t2
(
4− β + 2(β + 1)t+ β2t2

)
‖v‖2(143)

+(β − 1)(1 + βt)t3〈v, g〉+ 2(β − 1)t3〈u, g〉 − t3

2
(1 + 2(β − 1)t2)‖g‖2.

We now use the inequality:

|〈tg, v〉| ≤ t2

2
‖g‖2 +

1

2
‖v‖2 (144)

so that: t3|〈v, g〉| ≤ 1
2 t

4 ‖g‖2 + 1
2 t

2 ‖v‖2 and:(
1 +

δ

λ
t

)
Ln+1 − Ln ≤ (β − 1)(2− β)t2〈v, u〉+

β − 1

2
t2
(
5− β + (3β + 2)t+ β2t2

)
‖v‖2

+2(β − 1)t3〈u, g〉 − t3

2
(1− (β − 1)t− (2− 3β + β2)t2)‖g‖2.

From the previous inequality, we therefore know that there exists two positive real numbers
K1 and K2 and two polynomials P1 and P2 such that(

1 +
δ

λ
t

)
Ln+1 − Ln 6 t2

(
K1〈u, v〉+ P1(t) ‖v‖2 +K2t〈u, g〉+ tP2(t) ‖g‖2

)
(145)
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More precisely, we have:

K1 = (β − 1)(2− β) , K2 = 2(β − 1) , P1(t) =
β − 1

2

(
5− β + (3β + 2)t+ β2t2

)
(146)

and

P2(t) = −1

2
(1− (β − 1)t− (2− 3β + β2)t2). (147)

Step 5. This last step relies on the following technical lemma whose proof is straightforward:

Lemma 7. If A ≥ 1
4 , we have:

A ‖x‖2 + 〈x, y〉 6 2A(‖x+ y‖2 + ‖y‖2).

Applying Lemma 8 or 11 with x =
√

1 + tv and y = u√
1+t

and using the fact that for all

t > 0, P1(t)
K1(1+t)

> 1
4 we deduce

K1〈u, v〉+ P1(t) ‖v‖2 6
2K1P1(t)

(1 + t)
‖u+ (1 + t)v‖2 +

2K1P1(t)

(1 + t)
‖u‖2 . (148)

Defining P3(t) := 2K1P1(t)
(1+t) , we get for all t > 0:(

1 +
δ

λ
t

)
Ln+1 − Ln 6 t2

(
P3(t) ‖u+ (1 + t)v‖2 + P3(t) ‖u‖2 +K2t〈u, g〉+ tP2(t) ‖g‖2

)
(149)

Moreover

P3(t) ‖u‖2 +K2t〈u, g〉+ tP2(t) ‖g‖2 = P3(t)
∥∥u− t2g∥∥2 + (2tP3(t) +K2) 〈u− t2g, tg〉

+
(
tP2(t)− t4P3(t) +K2t

2
)
‖g‖2

6

(
P3(t) +

1

2
|2tP3(t) +K2|

)∥∥u− t2g∥∥2
+

(
tP2(t)− t4P3(t) +K2t

2 +
t2

2
|2tP3(t) +K2|

)
‖g‖2

where we have used the inequality 〈a, b〉 ≤ 1
2‖a‖

2 + 1
2‖b‖

2.

We can remark now that P2(0) < 0 which implies that it exists t1 > 0 such that for any
t ∈ [0, t1],

P3(t) ‖u‖2 +K2t〈u, g〉+ tP2(t) ‖g‖2 6

(
P3(t) +

1

2
|2tP3(t) +K2|

)∥∥u− t2g∥∥2 (150)

We deduce that for all t ∈ [0, t1],(
1 +

δ

λ
t

)
Ln+1 − Ln 6 t2

(
P3(t) ‖u+ (1 + t)v‖2 +

(
P3(t) +

1

2
|2tP3(t) +K2|

)∥∥u− t2g∥∥2)
(151)

Using the growth condition we get∥∥u− t2g∥∥2 6
2

2− β

(
F (xn+1)− F ∗ − β − 1

2

∥∥u− t2g∥∥2) . (152)
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We deduce that for all t ∈ [0, t1],(
1 +

δ

λ
t

)
Ln+1 − Ln 6 t2K3Ln+1 (153)

with K3 = max
t∈[0,t1]

max
(

2P3(t), 2
2−β

(
P3(t) + 1

2 |2tP3(t) +K2|
))

. We can conclude that for any

t ∈ [0, t1] and any n > 0,

Ln 6

(
1 +

δ

λ
t−K3t

2

)−n
L0. (154)

6.6 Proof of Theorem 9

The proof is essentially similar to the one of Theorem 7. The careful reader may have remarked
that the only property of g that is used in the proof of Theorem 7 is the inequality (134) we
recall here

∀y ∈ Rn, F (xn+1)− F (y) ≤ λ〈g, xn+ 1
2
− y〉 − t2

2
‖g‖2.

It is used twice, once with y = xn and once with y = x∗. Actually, any vector g satisfying this
descent property will ensure the decay described in both theorems. It turns out that the vector
g̃ defined in (52) satisfies this inequality under the hypothesis of the Theorem 9, see also [41,
Lemma 4.2]:

Lemma 8. If F = f + h is convex, if f is convex differentiable with L-Lipschitz gradient, if h
is convex, proper and lower semicontinuous and s = 1√

L
then for all (x, y) ∈ Rn × Rn:

F (Tx)− F (y) ≤ 1

s2
〈x− Tx, x− y〉 − 1

2s2
‖Tx− x‖2. (155)

Proof. Since Tx = prox s2h
(
x− s2∇f(x)

)
, we have x − s2∇f(x) − Tx ∈ s2∂h(Tx) that is for

any y ∈ Rn:

h(Tx)− h(y) 6 〈x− Tx
s2

−∇f(x), Tx− y〉 (156)

Since ∇f is 1
s2 -Lipschitz

f(Tx)− f(x) 6 〈∇f(x), Tx− x〉+
1

2s2
‖Tx− x‖2. (157)

Since f is convex, for all y ∈ Rn

f(x)− f(y) 6 〈∇f(x), x− y〉. (158)

Adding the three last inequalities we get:

F (Tx)− F (y) 6
1

s2
〈x− Tx, Tx− y〉+

1

2s2
‖Tx− x‖2. (159)

Using Tx− y = Tx− x+ x− y we get

F (Tx)− F (y) 6
1

s2
〈x− Tx, x− y〉 − 1

2s2
‖Tx− x‖2. (160)

Applying this Lemma to x = xn+ 1
2

we have Tx = xn+1 and using g̃ := λ
t2 (x − Tx) we get

exactly the inequality needed to complete the proof of Theorem 9:

∀y ∈ Rn, F (xn+1)− F (y) ≤ λ〈g̃, xn+ 1
2
− y〉 − t2

2
‖g̃‖2. (161)
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