
HAL Id: hal-02928957
https://hal.science/hal-02928957

Submitted on 26 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Standard Condition Number Based Spectrum Sensing
Under Asynchronous Primary User Activity

Amor Nafkha

To cite this version:
Amor Nafkha. Standard Condition Number Based Spectrum Sensing Under Asynchronous Primary
User Activity. IEEE Access, 2020, 8, pp.159234-159243. �10.1109/ACCESS.2020.3020500�. �hal-
02928957�

https://hal.science/hal-02928957
https://hal.archives-ouvertes.fr


Received August 2, 2020, accepted August 27, 2020, date of publication August 31, 2020, date of current version September 11, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3020500

Standard Condition Number Based Spectrum
Sensing Under Asynchronous Primary
User Activity
AMOR NAFKHA , (Senior Member, IEEE)
SCEE/IETR, CentraleSupélec, 35576 Cesson Sévigné, France

e-mail: amor.nafkha@centralesupelec.fr

This work was supported by internal funding from CentraleSupélec.

ABSTRACT Cognitive radio (CR) is a promising technology which enables the secondary user (SU) to sense
and detect the presence or absence of the primary user (PU) in the frequency band of interest. Therefore, high
detection probability is needed to ensure that primary user is adequately protected, while low false-alarm
probability provides the opportunity of using free channel and a better throughput performance of secondary
user. Most of the studies on spectrum sensing techniques were conducted assuming a perfect synchronization
between the secondary and the primary users. However, in practice, the synchronous assumption is very
hard to satisfy in the context of real cognitive radio networks environment. In this paper, we present a
theoretical formulation of the standard condition number (SCN) based spectrum sensing technique under an
asynchronous cognitive radio networks. We assume the case where the primary users generate asynchronous
slotted traffic. The standard condition number distributions under null and alternative hypotheses are derived
where the secondary user is equipped with two receive antennas. Under asynchronous primary user traffic,
we establish the existence of a lower limit of the false-alarm probability below which we are unable to derive
a decision threshold for the SCN-based detector.

INDEX TERMS Spectrum sensing, Markov process, standard condition number, detection probability,
false-alarm probability, asynchronous/synchronous traffic.

I. INTRODUCTION
Due to the under-utilization problem of frequency spectrum,
the concept of cognitive radio system has been developed
as a reliable and effective solution [1]. The cognitive radio
exploited unoccupied frequency bands owned by primary (i.e
licensed) users. In order to benefit from the unused parts
of the spectrum, a secondary (i.e unlicensed) user needs to
monitor it to determine which portions are being unused by
the primary user. Sensing an unused frequency band is a
difficult task due to noise uncertainty, noise correlation, and
the unknown primary user traffic.

Several spectrum sensing techniques like matched filter
detector, energy detector, cyclostationary feature detector,
high-order statistics based detector, covariance-based detec-
tor, and eigenvalue-based detector have been proposed and
discussed in terms of their complexity-performance trade-
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offs in literature [2]–[4]. The energy detector (ED) is a
non-coherent, blind and optimal detector for independent and
identically distributed signal samples. It gives good detection
performance with low computational complexity. However,
ED is limited by its dependency on noise uncertainty [5].
Multiple antenna techniques currently are used in commu-
nications and their effectiveness has been proven in several
aspects. In the context of cognitive radio, multiple antenna
at the secondary user can effectively enhance signal trans-
mission and spectrum sensing. Multiple antenna spectrum
sensing can improve the primary user detection performance
by exploring the spatial diversity [6], [7].

In most studies in literature, spectrum sensing is carried
out when the behaviour of primary user remains constant
either absent or present during the entire sensing time. This
constraint implies that the secondary user and the primary
user must be perfectly synchronized which may be difficult to
achieve particularly in very low signal to noise ratio regimes.
Recently, there have been several works which address the
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effect of unknown primary user traffic patterns on the spec-
trum sensing [8]–[11]. Due to timing misalignment of the
primary signal, the primary user may arrive or leave the
licensed band at any time during the secondary user sensing
time. In fact, this scenario appears when the primary user
network has a high traffic rate or when a short secondary
frame interval is used. In [10], authors address the sensing
performance of energy detector against the random arrival
and departure of primary user, while [11] study the effect
of a single primary user traffic on secondary user’s sensing
performance as well as on the throughput. In [8] authors
study the effect of multiple primary users traffic on the joint
sensing-throughput performance of secondary user. In [9], the
authors investigate the performance of the largest eigenvalue
based detector under an unknown primary user traffic sce-
nario, and where the secondary user is equipped withmultiple
receive antennas. They show that the performance gain due
the spatial diversity is significantly reduced by the effect of a
high transition probability of the primary user traffic.

To the best of authors’ knowledge, the performance of stan-
dard condition number based spectrum sensingwith unknown
primary user traffic has not been investigated in the liter-
ature, partially due to the difficulty of deriving a simple
closed-form expression of the probability density function
of standard condition number in finite dimension. Our study
is of real interest for two reasons. First, the used standard
condition number detector is an efficient spectrum sensing
technique in multi-dimensional cognitive radio systems since
no a priori knowledge is needed. In fact, in contrast to
energy detector and largest eigenvalue based detector, the
standard condition number based detector is robust against
noise uncertainty. Secondly, the SCN based detector is partic-
ularly cost-effective, which makes it a great tool for embed-
ded cognitive receivers. In this paper, we consider a scenario
where secondary user is equipped with two antennas and
performs spectrum sensing under Rayleigh flat fading chan-
nels. The main contributions of this paper are as follows:
(i) Under asynchronous scenario and unknown primary user
activities, we derive new analytical expressions for the cumu-
lative distribution function and probability density function of
the SCN random variable. Moreover, we give the closed form
expressions of detection and false alarm probabilities. (ii)The
probability density function of the SCN significantly changes
with increasing the mean number of samples received before
transition from null to alternative hypothesis and vice versa
during the sensing interval. (iii)Under asynchronous PU traf-
fic, we establish the existence of the false-alarm probability
wall, PAsy,wallfa , and we derive its analytic expression.
The remainder of this paper is organized as follows: In

Section II, we describe the system model, and we derive
mathematical expressions of SCN probability density func-
tions for null and alternative hypotheses under synchronous
and asynchronous PU traffic. Matlab simulations and perfor-
mances analysis under synchronous and asynchronous pri-
mary user are provided to validate the accuracy of the derived

expressions in Section III. Moreover, we establish the exis-
tence of the false-alarm probability wall under asynchronous
PU traffic scenario. Finally, Section IV concludes the
paper.
Notations: CN (0, σ 2) represents the complex Gaussian

distribution with zero mean and σ 2 variance. Ix means the
identity matrix of order x. Ex [.] denotes the expectation with
respect to the random variable x. 0(.) defines the Gamma
function as referred in [17, eq. 8.310.1], 1F1(.) is the conflu-
ent hypergeometric function as defined in [17, eq. 9.210.1],
and 2F1(.) denotes the Gauss hypergeometric function as
given in [17, eq. 9.14.2]. χ2

2N represents a central chi-square
distribution with 2N degrees of freedom and χ2

2N (c) repre-
sents a non-central chi-square distribution with 2N degrees
of freedom and a non-centrality parameter c.

II. SYSTEM MODEL AND THEORETICAL DERIVATIONS
To theoretically derive the impact of the traffic behavior of
primary user on the SCN-based spectrum sensing detector.
We start by analytically deriving the probability density func-
tions of the SCN of the received covariance matrix when the
time is slotted in both primary and secondary networks and
slots of secondary network are synchronous to the primary
network. Then, we derive the distributions of SCN of the
received covariance matrix when the primary network and
the secondary network are not aligned in their timing (i.e.
asynchronous behavior).

A. SYNCHRONOUS SCN-BASED SPECTRUM SENSING
Let us consider a single secondary user equipped with two
uncorrelated receive antennas which is aiming to detect the
presence/absence of a single primary user during a sensing
time τs. During this sensing interval, each of two antennas in
secondary user receives N samples (i.e. τs = N/Fs, where Fs
is the sampling frequency). We model the spectrum sensing
problem under a synchronous PU traffic, where the PU did
not randomly appear or disappear during the sensing time,
as a binary hypothesis testing problem: Given the received
signal during τs, a decision is to be made between the null
hypothesis H0 (i.e. absence of a PU) and the alternative
hypothesis H1 (i.e. presence of a PU). Then, the received
vector yyy at given instant n ∈ [1, 2, . . . ,N ] can be written,
under both hypothesis, as:{

H0 : yyy(n) = ηηη(n)
H1 : yyy(n) = hhh(n)sss(n)+ ηηη(n).

(1)

where ηηη(n) is a 2× 1 complex circular white Gaussian noise,
hhh(n) is a 2 × 1 complex vector that represents the channel’s
coefficient between the PU and each antenna at the cognitive
radio receiver, modelled like a flat channel as a complex
additive white Gaussian noise (AWGN), and sss(n) stands for
the primary user signal to be detected. After collection N
sample at each antenna, the received signal matrix can be
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written as:

Y =
(
y1(1) y1(2) . . . y1(n)
y2(1) y2(2) . . . y2(n)

)
, (2)

and we define the received samples covariance matrix as:
W =

1
2YY

H , where (.)H denotes the Hermitian complex
conjugate. According to binary hypothesis testing, the covari-
ance matrix W follows the Wishart distribution with two
dimension and N degrees of freedom (i.e.W ∼ CW2(N , 6)).
Under the H0 null hypothesis, the covariance matrix W fol-
lows an uncorrelated central Wishart distribution. However,
under the H1 hypothesis, the covariance matrix W follows
an uncorrelated non-central Wishart distribution.{

H0 : W ∼ CW2(N , I2)
H1 : W ∼ CW2(N , I2, �2).

(3)

where �2 = ZZH is called non-centrality matrix, with
Z = [hhh(1)sss(1), . . . ,hhh(N )sss(N )].

Let’s consider the SCN-based statistic for decision pro-
cess. The SCN-based spectrum sensing technique is a blind
detector that uses the eigenvalues of the covariance matrix
W. Denoting by λ1 ≥ λ2 > 0, the ordered eigenvalues ofW,
the SCN is defined as the ratio of the largest to the smallest
eigenvalue of the covariance matrix as follows: κ = λ1

λ2
.

In order to make decisions about the hypothesis (H0 or H1),
we need to derive the distribution of the statistical metric, κ ,
under null and alternative hypotheses.
Theorem 1: Let κH0

N be the SCN associated to the dual
complex uncorrelated central Wishart matrix
W ∼ CW2(N , I2) with an arbitrary N , then the PDF and
the CDF of κH0

N can be expressed, respectively, as

f
κ
H0
N

(x) =
80(N + 1

2 )(x − 1)2(4x)N−2
√
π0(N − 1)(x + 1)2N

; x ∈ [1,+∞[

(4)

and

F
κ
H0
N

(x) =
N (1− x)+ 2 [2F1(1,−N ,N ,−x)− 1]

(4x)1−N (1+ x)2N−1

×
20(N + 1

2 )
√
π0(N + 1)

− 1; x ∈ [1,+∞[ (5)

Proof: Under null hypothesis H0, the sample covari-
ance matrix WWW follows a dual uncorrelated complex central
Wishart distribution CW2(N , III2). Let’s X = κ

H0
N = λ1/λ2

be the standard condition number of WWW . Then, using the
characteristic polynomial ofWWW , we can express the standard
condition number x as following

x =
1+

√
1− 4D/T 2

1−
√
1− 4D/T 2

(6)

where D and T denote the determinant and the trace of the
received covariance matrixW, respectively. The exact proba-
bility density function of the random variable A = 4D/T 2

can be found in [13]. Making a change of variable A to

U =
√
1− A with Jacobian J = 2u, the probability density

of U reads

fU (u) =
40(N + 1

2 )u
2(1− u2)N−2

√
π0(N − 1)

; u ∈ [0, 1] (7)

Let X be the random variable defined as X = 8(U ) =
1+U
1−U . The function 8 is increasing for all U. Then, we can
find the inverse function 8−1 as follows:

u =
x − 1
x + 1

= 8−1(x), x ∈ [1,+∞[ (8)

We can then find the derivative of8−1 with respect to x as

d8−1(x)
dx

=
2

(x + 1)2
(9)

Finally, the probability density of the standard condition
number X can be expressed as:

fX (x) = fU [8−1(x)] . |
d8−1(x)

dx
|

=
80(N + 1

2 )(x − 1)2(4x)N−2
√
π0(N − 1)(x + 1)2N

, (10)

where x ∈ [1,+∞[. The cumulative distribution function of
the standard condition number under null hypothesisH0 can
be obtained by integrating the PDF of X . Thus, the CDF of X
can be given as

FX (x) =
N (1− x)+ 2 [2F1(1,−N ,N ,−x)− 1]

(4x)1−N (1+ x)2N−1

×
20(N + 1

2 )
√
π0(N + 1)

− 1 (11)

We notice that the distribution density of the SCN under
null hypothesis, κH0

N , only depends on the number of received
samples N . Finally, the theorem 1 is proved.

Likewise, we introduce the following theorem which gives
the exact probability density function of the standard condi-
tion number under the alternative hypothesis H1.
Theorem 2: Let κH1

N ,ω1
be the SCN associated to the dual

complex uncorrelated non-central Wishart matrix W ∼

CW2(N , I2, �2) with an arbitrary N and rank one matrix�2,
then the PDF of κH1

N ,ω1
is expressed as

f
κ
H1
N ,ω1

(x) =
20(2N − 1)(x − 1)xN−2e

−ω1
2

ω10(N − 1)2(x + 1)2N−1

×[1F1(2N − 1,N − 1,
ω1x

2(x + 1)
)

− 1F1(2N − 1,N − 1,
ω1

2(x + 1)
)] (12)

whereω1 = 2ρN is non-zero eigenvalue of the non-centrality
matrix �2. The signal to noise ratio is defined by ρ =
Eh
[
||hhhsss||2

]
/Eη

[
||ηηη||2

]
.

Proof: Let’s denote by x = κH1
W the standard condition

number of the dual complex uncorrelated central Wishart
matrix WWW ∼ CW2(N , III2,���2), with ω1 and ω2 the eigen-
values of the non-centrality matrix ���2. For the rank one
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matrix ���2, they are readily given as ω1 = 2ρN 6= 0, ρ
is the signal-to-noise ratio, while ω2 = 0. The rank one
matrix assumption is justified by the fact that there is at most
one primary user. Using the generalized Bartlett’s decompo-
sition when the non-centrality matrix ���2 has rank one [18,
Th. 10.3.8], Then, let the Cholesky decomposition of WWW be
WWW = QQQQQQH ,where the lower triangular matrix QQQ has real
positive entries qqqii on the diagonal. The entries qqqij ofQQQ are all
statistically independent and their distributions as follows:

qqq211 ∼ χ
2
2N (ω1)

qqq222 ∼ χ
2
2N−2

qqq221 ∼ χ
2
2 .

(13)

SinceWWW = QQQQQQH , we have T = tr(WWW ) = tr(QQQQQQH ) =
∑2

i≤j
qqq2ij

D = det(WWW ) =
∏2

i=1
qqq2ii.

(14)

The first step of the proof is to derive the probability density
function of the random variable A = 4D

T 2 . By applying a
change of variables as follows

A =
4qqq211qqq

2
22

(qqq11 + qqq22 + qqq12)2
(15)

X1 = qqq11 (16)

X2 = qqq22 (17)

we can derive the joint distribution function of random vari-
ables A, X1, and X2 as

fA,X1,X2 (a, x1, x2) =
xN−11 xN−22

√
x1x2
a e−

√
x1x2
a

22N0(N )0(N − 1)a

×e−
ω1
2 0F1(N ,

ω1x1
4

) (18)

where 0F1(µ, x) =
∑
+∞

j=0
0(µ)
0(µ+j)

xj
j! . Since we are interested

in a only, x1 ∈ [0,+∞[ and x2 ∈ [ x1a (1 −
√
1− a)2, x1a (1 +√

1− a)2] are integrated out of the above expression; the fol-
lowing result is then the marginal probability density function
corresponding to a:

fA(a) =
20(2N − 1)aN−2e

−ω1
2

ω10(N − 1)24N−1

×[1F1(2N − 1,N − 1, ω1
1+
√
1− a)
4

)

− 1F1(2N − 1,N − 1, ω1
1−
√
1− a)
4

)]; (19)

where a ∈ [0, 1]. The above equation completes the first step
of the proof. Then, similar to proof of Theorem 1, we now
proceed with the second step of the proof. Making a change
of variable A to X = 1+

√
1−A

1−
√
1−A

with Jacobian J = 4(x−1)
(x+1)3

, the
probability density function of the condition number under
alternative hypothesisH1 reads

f
κ
H1
N ,ω1

(x) =
20(2N − 1)(x − 1)xN−2e

−ω1
2

ω10(N − 1)2(x + 1)2N−1

×[1F1(2N − 1,N − 1,
ω1x

2(x + 1)
)

− 1F1(2N − 1,N − 1,
ω1

2(x + 1)
)]; (20)

where x ∈ [1,+∞[. Finally, we obtain the desired result.

B. ASYNCHRONOUS SCN-BASED SPECTRUM SENSING
We consider here that the gathered samples can follow a
mixture of the null and alternative hypotheses. We will rely
on a model of the primary user traffic proposed in [9]. In the
sequel, the traffic behavior of primary user is modeled by
a two-state Markov process (or binary Markov process) as
shown in Fig. 1. The first state is the busy state when the
primary user is emitting a signal whereas the second state is
the idle state when the primary user is absent. We denote by
α the probability of going from idle to busy state, and β the
probability of going from busy to idle state.

FIGURE 1. Markov chain representing the transitions between idle and
busy states.

Then, we can express the mean length of idle and busy
periods as, respectively, Mi = 1/α and Mb = 1/β. For
simplicity, we assume that there is at most one state transition
during the sensing time τs. This is backed up by the fact
that, for usual mean length of idle and busy state and length
of sensing interval, the probability of observing more than
one transition is very small. Fig. 2 shows that as soon as the
number of received samples N becomes greater than 20, the
probability of having at most one transition becomes close
to one and stable when M = Mi = Mb is greater than N .
Interested readers can refer to [14]–[16] for more details.

FIGURE 2. Probability of having at most one transition during the sensing
time as function of the number of received samples N .

For the asynchronous primary user traffic model,
we change the definitions ofH0 andH1 slightly as presented
in table 1.

Denoting by steady state (SS) the situation when the
received matrix entries come from the same primary user’s
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TABLE 1. Hypothesis definitions under asynchronous PU traffic.

state (i.e idle or busy), and transient state (TS) the situation
where the entries of received matrix are a mix between pri-
mary user’s states.
Theorem 3: The probabilities that all received samples

belong to the same steady state (H0 resp. H1 ) are given by

PSS|H0 =
1

1+ α
∑N

d=1
(1−β)N−d−1

(1−α)N−d

(21)

PSS|H1 =
1

1+ β
∑N

d=1
(1−α)N−d−1

(1−β)N−d

(22)

Proof: Let Pi =
Mi

Mi+Mb
and Pb =

Mb
Mi+Mb

denote the
probability of a sample being from a idle and busy states,
respectively. Then, the joint probability mass of having no
transition event and a idle state is written as:

P(SS,H0) = Pi(1− α)N (23)

Similarly, the joint probability mass of having a transition
from H1 to H0 and the H0 state is given by

P(TS,H0) = Pb
N−1∑
d=1

(1− β)N−d−1β(1− α)d (24)

Consequently, we obtain:

PSS|H0 =
P(SS,H0)

P(SS,H0)+ P(TS,H0)

=
1

1+ α
∑N

d=1(1− β)N−d−1(1− α)d−N
(25)

For PSS|H1 , a similar reasoning yields:

PSS|H1 =
P(SS,H1)

P(SS,H1)+ P(TS,H1)

=
1

1+ β
∑N

d=1(1− α)N−d−1(1− β)d−N
(26)

From the equations (21) and (22), we can note that ifMi and
Mb are equal to a given value M , (i.e α = β), then PSS|H0 =

PSS|H1 =
M

M+N .
In order to study the transient states, we depict the timing

misalignment among PU and SU in Fig. 3. Let us define
two random variables: D0, the number of received samples
belonging the null hypothesis H0 during a transition from
busy state to idle state, and D1, the number of received
samples belonging the alternative hypothesis H1 during a
transition from idle state to busy state.

Theorem 4: The probabilities of receiving d0 (resp. d1)
samples belonging the null hypothesis H0 (resp. the alterna-
tive hypothesisH1) during a transition from busy to idle state
(resp. from idle to busy state) are given respectively by:

PD0 (d0) =
(1− β)N−d0−1(1− α)d0−N∑N−1
d=1 (1− β)

N−d−1(1− α)d−N
(27)

PD1 (d1) =
(1− α)N−d1−1(1− β)d1−N∑N−1
d=1 (1− α)

N−d−1(1− β)d−N
(28)

Proof: During a transient state from a busy to a idle
state, the probability to have d0 samples belonging to a null
hypothesis H0 is given by:

P(TS, d0,H0) = Pb(1− β)N−d0−1β(1− α)d0 (29)

where Pb =
Mb

Mi+Mb
. As a consequence, the probability of

receiving d0 samples belonging the null hypothesisH0 during
a transition from busy to idle state can be expressed as:

PD0 (d0) =
P(TS, d0,H0)∑N−1
d=1 P(TS, d,H0)

=
(1− β)N−d0−1(1− α)d0−N∑N−1
d=1 (1− β)

N−d−1(1− α)d−N
(30)

Similarly, we derive PD1 (d1) as

PD1 (d1) =
P(TS, d1,H1)∑N−1
d=1 P(TS, d,H1)

=
(1− α)N−d1−1(1− β)d1−N∑N−1
d=1 (1− α)

N−d−1(1− β)d−N
(31)

From equations (27) and (28), we can denote that if Mi is
equal to Mb, then the analytical expression of PD0 (d0) and
PD1 (d1) can be reduced to: PD0 (d0) = PD1 (d1) =

1
N−1 , with

1 ≤ d0, d1 < N .

C. SCN DISTRIBUTIONS UNDER AN ASYNCHRONOUS PU
TRAFFIC
Before deriving the distributions of the SCN under an
asynchronous primary user traffic, the notations of several
probability density functions are defined for clarity and
understanding in table 2.

Using the fact that f TSH0,d
= f TSH1,N−d

, we can write the
probability density functions, for a transient state (from busy
to idle state, or vice versa) with unknown number of received
samples coming from a busy state, as:

f TSH0
=

N−1∑
d=1

PD0 (d)f
TS
H1,N−d

(32)

f TSH1
=

N−1∑
d=1

PD1 (d)f
TS
H1,d

(33)

Consequently, we are able to derive the probability density
function of the SCN under the null hypothesisH0 (resp. alter-
native hypothesis H1), given the considered asynchronous
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FIGURE 3. Timing misalignment model for four traffic patterns. The PU is slotted, whereas the SU is asynchronous to the PU. τs is the
sensing time and Fs is the sampling frequency at the secondary user receiver.

TABLE 2. Probability density functions under transient and steady states.

PU traffic, as following:

f Asy
κ
H0
N

= PSS|H0 fκH0
N
+ PTS|H0 f

TS
H0

(34)

f Asy
κ
H1
N

= PSS|H1 fκH1
N ,ω1

+ PTS|H1 f
TS
H1

(35)

If we assume thatMi = Mb = M (i.e. α = β), then Eq.(34)
and Eq.(35) can be written as follows:

f Asy
κ
H0
N

=

Mf
κ
H0
N
+

N
N−1

∑N−1
d=1 fκH1

N ,2ρ(N−d)

N +M
(36)

f Asy
κ
H1
N

=

Mf
κ
H1
N ,2ρN
+

N
N−1

∑N−1
d=1 fκH1

N ,2ρ(N−d)

N +M
(37)

III. PERFORMANCES ANALYSIS UNDER
SYNCHRONOUS/ASYNCHRONOUS TRAFFIC
In this section, we analyzed the gap in term of false alarm
probability, detection probability, and receiver operating
characteristics between the classical synchronous spectrum
sensing schema and the asynchronous spectrum sensing
schema as described in Section II-B. In the sequel of this
paper, for simplicity, we assume that the mean length of
idle PU state Mi and busy PU state Mb are equal to a given
parameter M .

A. FALSE-ALARM PROBABILITY
Let us denote by λsyn the decision threshold under a syn-
chronous PU traffic, then the false alarm probability PSynfa ,
defined as the probability of detecting the presence of primary

user while it does not exist, is given by:

PSynfa = Prob(κH0
N ≥ λ

syn
| H0)

= 1− F
κ
H0
N

(λsyn) (38)

where F
κ
H0
N

(.) is the cumulative distribution function of the

standard condition number as defined in equation (5). Since
the probability density function of the SCN under H0 and
synchronous traffic only depends on number of received
samples N , we can characterize the SCN-based spectrum
sensing detector by its detection performance for a fixed
false-alarm probability. In order to measure the gap in term of
false-alarm probabilities between the classical synchronous
and the asynchronous PU traffic sensing, one must use λsyn

as a threshold to evaluate the false-alarm probability under the
asynchronous scenario. Therefore, we can calculate the false
alarm probability under asynchronous scenario as follows:

PAsynfa =

∫
+∞

λsyn
f Asy
κ
H0
N

(t)dt

=
MPSynfa

N +M
+
N
∑N−1

d=1 4
Asy(d,N , ρ)

(N − 1)(N +M )
(39)

where 4Asy(d,N , ρ) =
∫
+∞

λsyn f
κ
H1
N ,2ρ(N−d)

(t)dt . It is important

to note that the limit of4Asy(d,N , ρ) as ρ approaches zero is
PSynfa .

In Fig. 4, the probability density functions f
κ
H0
N

(x) and

f Asy
κ
H0
N

(x) are depicted for N = 128 and α = β. Under asyn-

chronous PU traffic the probability density function of the
SCN, f Asy

κ
H0
N

(x), is shown for three different values of the SNR

ρ. To quantify the similarity of the distribution of the SCN
under the synchronous null hypothesis and the asynchronous
one, we use the Hellinger distance [19, Definition 2.3] as a
metric to evaluate the difference between the mentioned dis-
tributions. The Hellinger distance ranges from 0 to 1, where
1 means that the probability distributions are completely dif-
ferent, however 0 means that two probability distributions are
identical. TheHellinger distance values obtained are 0.00255,
0.02144 and 0.07606 corresponding to SNR equal to −6 dB,
−3 dB, and 0 dB respectively. Therefore, it is easy to conclude
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FIGURE 4. PDF under H0 of the SCN for different values of the SNR and
N = 128 number of samples.

FIGURE 5. False alarm probabilities under Synchronous and
Asynchronous PU traffic versus SNR.

that as the SNR tends to minus infinity (no signal), the SCN
probability density function f Asy

κ
H0
N

converges to f
κ
H0
N

.

In Fig. 5, we evaluate the effect of themean lengthM on the
false-alarm probabilities of synchronous and asynchronous
scenarios. We can see that the false-alarm probability under
asynchronous PU traffic approaches the false-alarm probabil-
ity under synchronous case as the mean lengthM →∞. This
can be justified by recalling that the PAsynfa , derived in (39),
is a function of M . As a matter of fact, asymptotically when
M →+∞ and a fixed value ofN , the first term tends to PSynfa ,
however the second term vanishes and approaches to zero.

Fig. 6 depicts the variation of false-alarm probability under
asynchronous PU activity as a function of signal-to-noise
ratio in following parameters pairs: (N = 64,M = 128),
(N = 64,M = 256), (N = 128,M = 256), and (N =
128,M = 512). Two main observations can be made. First,
the false-alarm probability under asynchronous PU traffic
converges at low SNR to 0.1, which is the false-alarm proba-
bility under synchronous PU traffic. The convergence at low
SNR can be explained using (39) by noting that at small SNR
value (i.e ρ approaches zero), the function 4Asy(d,N , ρ)
converges to PSynfa . Second, depends from parameters N and
M , the false-alarm probability under asynchronous PU traf-
fic converges to constant values as the signal-to-noise ratio

FIGURE 6. False alarm probabilities under Synchronous and
Asynchronous PU traffic versus SNR.

increases. Those limits can be deduced from (39) as follows:
For high SNR, the function 4Asy(d,N , ρ) converges to the
unity as ρ → +∞. Thus, for the high SNR regime, we have
the following approximation of PAsynfa as:

PAsynfa,wc = lim
ρ→∞

PAsynfa

≈
N +MPSynfa

N +M
, (40)

where PAsynfa,wc denotes the ‘‘worst-case’’ false alarm proba-
bility under an asynchronous PU traffic. We can also note
that, for fixed SNR and mean length M , the false-alarm
probability under asynchronous PU traffic increases as the
number of received samples N increases. Intuitively, this can
be explained by the fact that, if N increases, the probability
that PU is first active at the begin of sensing interval and then
becomes idle by the end of the sensing interval or vice-versa,
increases.

Fig.7 shows the false-alarm probability under asyn-
chronous PU traffic in worst-case condition, PAsynfa,wc, for
different pairs (N,M). The horizontal axis represents the
false-alarm probability under synchronous PU traffic PSynfa .
As can be seen in Fig. 7, for a fixed N , as the mean
length M increases the false-alarm probability PAsynfa,wc is
improved as the part of the distribution under H0 to the
left of the threshold λsyn increases. Fig. 7 is well-known as
probability–probability (P-P) plot tool for the applied statis-
tics. A P-P plot that lies on the first bisector line indicates
that the two studied cumulative distributions are identical,
whereas a P-P plot lying strictly above the first bisector
line, as the case in Fig.7, indicates that PAsynfa,wc stochastically

dominates1 PSynfa .

1Let X1 and X2 two random variables. We say that X1 first-order stochas-
tically dominates X2 if and only if Pr (X1 > c) ≥ Pr (X2 > c), whatever the
value of c.
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FIGURE 7. Worst case of false-alarm probability under asynchronous PU
traffic versus PSyn

fa . The graph compares five different pairs (N,M).

B. DETECTION PROBABILITY
In order to guarantee a high reuse probability of the unused
spectrum by the secondary user, we adopt the constant false
alarm rate (CFAR) based detection criterion. According to
the CFAR principle, the probability of false-alarm is fixed
to a small value while the detection probability should be
maximized. Let us fix the false-alarm probability to a given
value γ . Then, the detection probability my be obtained for
the two different primary user traffic scenarios. In the case of
a synchronous PU traffic, the detection probability is given
by

PSynd =

∫
+∞

λsyn
f
κ
H1
N ,ω1

(x)dx (41)

where λsyn = F−1
κ
H0
N

(1 − γ ). In case of asynchronous PU

traffic, the detection probability can be expressed as

PAsynd =

∫
+∞

λAsyn
f Asy
κ
H1
N

(x)dx (42)

where the decision threshold λAsyn was derived for the
worst-case condition as

λAsyn = F−1
κ
H0
N

(
(1− γ )(1+

N
M

)
)

(43)

From (43), it can be seen that the detection threshold
under asynchronous PU traffic depends on the pair (N,M).
Moreover, given a fixed number of received samples N , λAsyn

converges to λsyn as the mean length M tends to infinity.
Fig. 8 shows the probability density function of the SCN

under synchronous and asynchronous primary user traffic
with fixed SNR equal to 0 dB, number of received samples
N = 128, and different values of the the mean length of
idle/busy stateM . As same as in Fig. 4, the Hellinger distance
is used to quantify the similarity between different probability
distributions. Given fixed SNR and N = 128, the Hellinger
distances between f

κ
H1
N ,2ρN

and f Asy
κ
H1
N

are quite significant, being

0.0751, 0.0405, and 0.0095 forM = 256,M = 512 andM =
2048, respectively. Moreover, analyzing the expression (37),

FIGURE 8. Probability density function of the SCN under H1 as function
of M with N = 128 and SNR = 0dB.

FIGURE 9. Probability density function of the SCN under H1 as function
of N with M = 1024 and SNR = 0dB.

it can be seen that asM approaches infinity, f Asy
κ
H1
N

approaches

f
κ
H1
N ,2ρN

due to the fact that the second term tends to zero.

Under both scenarios, the numerically evaluated proba-
bility density function of the SCN under H1 hypothesis,
for fixed M and SNR values, as function of the number of
received samples N is plotted in Fig. 9. Given fixed SNR and
M = 1024, the probability density functions curves change
slightly between both scenarios when N = 64 (i.e. Hellinger
distance = 0.0036). However, in the case when N = 256,
we note that the probability density functions curves are
significantly different from each other (i.e. Hellinger distance
= 0.0567), which indicates that the detection probabilities
values under both scenarios will be very different too. The-
oretically, for any N , as the ratio M/N tends to infinity, the
probability density function of the SCN under asynchronous
scenario converges to f

κ
H1
N ,2ρN

.

Fig. 10 shows a comparison between the considered two
scenarios, asynchronous and synchronous PU traffic, in term
of detection probabilities as function of SNR. To keep the
performance comparison consistent, we fixed the false-alarm
probability target to the value of 0.1 for all graphs (i.e. PSynfa =

PAsynfa,wc = 0.1). It is obvious that under synchronous scenario,
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FIGURE 10. Probability of detection versus SNR with target false-alarm
probability equal to 0.1, and different (N,M) pairs.

FIGURE 11. The ROC curves for N = 128. Solid lines represent different
SNR values, −4 dB and −2 dB, under synchronous PU traffic, dashed lines
represent different SNR values, −4 dB and −2 dB, under asynchronous PU
traffic for fixed M = 10×N , and dot-dashed line represent the theoretical
lower bound of false-alarm probability under asynchronous scenario with
N = 128 and M = 1280.

the SCN-based detector achieves best performances. More-
over, as expected, the detection performance improves with
the increase of the number of received samples N during the
sensing time. Using (40), we are able to fix the mean duration
of primary user busy/idle stateM to 10×N in order to ensure
that the target false-alarm probability is at most 0.1 under
asynchronous scenario. From Fig. 10, we can see that the
detection performance of the SCN-based sensing technique
degrades severely under asynchronous PU traffic. Moreover,
it can be noted that the SNR gap between synchronous and
asynchronous scenarios decreases as M increases. Thus, for
a detection probability of 0.9, the SNR gap between the two
considered scenarios with (N = 32,M = 320), (N =
128,M = 1280), and (N = 256,M = 2560), is 2.18 dB,
1.72 dB, and 1.65 dB respectively.

C. RECEIVER OPERATING CHARACTERISTIC
The SCN-based detector performance can be represented by
the receiver operation characteristic (ROC) curves, in which
the detection probabilities and false alarm probabilities are
plotted. Thus, the ROC curves indicate the practical regions
inside of which the SCN-based detector is capable of provid-
ing reliable results. Fig. 11 shows that, for the SCN-based
detector over Rayleigh fading channel, ROC curves move to

the upper left corner as increasing SNR under any scenar-
ios (synchronous/asynchronous), confirming better overall
detection performance. By comparing the results collected in
Fig. 11, it is noticeable that the no synchronization between
PU and SU during the sensing time decreases the probability
of detection for a given false alarm probability. We note that,
the main observation is in Fig. 11, which shows the existence
of the ‘‘Pfa wall’’ phenomenon, below which SCN-based
detector will fail to be robust under asynchronous scenario.
The position of this ‘‘Pfa wall’’ is determined by N and M ,
and it can be derived as follows:

PAsy,wallfa =
N

N +M
(44)

IV. CONCLUSION
From the view of an opportunistic spectrum access, correct
detection of the absence or presence of primary user is a vital
component. Traditionally, perfect synchronization between
PU and SU is assumed, which is infeasible in the absence
of a centralized control unit. In this paper, we discuss the
impact of an asynchronous situation, which means SU have
no idea about the communication time of PU, on the detection
performance of SCN-based technique for spectrum sensing.
By assuming that the PU activity follows with an idle/busy
Markov chain, we derived the false-alarm and detection prob-
abilities under asynchronous scenario. The existence of the
‘‘Pfa wall’’ has been established, and its exact expression has
been derived. While the present paper considered a single SU
and a single primary spectrum band, ourmain future objective
is to extend the presented analytical framework to the case of
asynchronous cooperative spectrum sensing where there are
no synchronization among the different secondary users, and
also between them and the primary user.
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