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Abstract. Electrical power networks are heavily monitored systems,
requiring operators to perform intricate information synthesis before un-
derstanding the underlying network state. Our study aims at helping this
synthesis step by automatically creating features from the sensor data. We
propose a supervised feature extraction approach using a grammar-guided
evolution, which outputs interpretable and dimensionally consistent fea-
tures. Operations restrictions on dimensions are introduced in the learning
process through context-free grammars. They ensure coherence with phys-
ical laws, dimensional-consistency, and also introduce technical expertise
in the created features. We compare our approach to other state-of-the-
art feature extraction methods on a real dataset taken from the French
electrical network sensors.

Keywords: Grammar-Guided Genetic Programming (GGGP) · Super-
vised Learning · Feature extraction · Interpretability · Electrical Power
System

1 Introduction

Electric transmission power grids are large complex systems monitored and
operated in real-time, 24/7, by highly trained control room operators (also called
dispatchers). Their task is mainly to ensure that the overall system, critical in
modern societies, remains in a secure state at all times to conduct electricity
from producers to consumers. In particular, they watch over the electrical flow
on each line to keep it under its thermal limit ; a physical threshold above which
a short-circuit could happen, risking for the safety of property and people nearby.
To accomplish this monitoring, a large number of sensors placed throughout
the electrical network provide them measurements relayed by a large number of
screens in the control room. From these measurements, operators continuously
perform information synthesis to prepare their strategy upstream and plan
preventive actions (mainly changing the network topology) to redirect the power
flow before it reaches its limit. However, even if their ability to run the power
system is well established, highlighted by the absolute absence of any significant
blackout recently, Transmission System Operators (TSO) have noticed a steep
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rise in the complexity of real-time operations [8]. This trend is mainly linked to
market dynamics, increased renewable energy sources connected to the grid, and
the development of electrical interconnections with other European countries.
As a consequence, power lines are operated closer to their thermal limit, and
dispatchers have to go through their decision-making process faster to keep time to
handle more critical situations. Today, the information synthesis step is computer-
assisted by some hand-crafted aggregation indicators and computationally massive
simulations calculated from the network measurements. Historically created by
operators with the use of their expert knowledge, these few indicators aren’t
exhaustive and can not confirm the safety of all situations regarding electrical
flows. Also, these indicators might need to be revised more frequently than they
are now, given the system’s current dynamics (e.g., newly installed renewable
power plants or cross-border flow thresholds adjusted by the markets). Besides,
the simulations are quite long to compute and cannot cover all possible forecasts
of the future. Consequently, operators still perform some parts of this information
synthesis by themselves using their knowledge of the system and the outputs of
the simulations to synthesize measurements, results, and information about the
connection of the lines in the grid.

A recent study on the French electrical transmission power system [31] pro-
posed an exploratory dimensionality-reduction method, to identify interactively
some factors influencing atypical consumption behaviors. In this experiment,
knowledge was introduced by conditioning autoencoder with input features ex-
perts thought to be causing the output behavior. As in our application data
is given with different physical dimensions such as voltage and active power
and needs to respect physical properties, we were interested in finding ways to
inject a different kind of knowledge coming from the field of physics (Ohm’s
law for example). Therefore, the aim of our work is to propose an automatic
feature extraction method to explain electrical flow with physically consistent and
intelligible indicators created from sensor data. From this point on, dispatchers
could directly then use these indicators as a surrogate of the status of the power
network zone they look after.

In this context, we investigate how to perform feature extraction with expert
constraints for power line flow explanation, by creating relevant and potentially
non-linear combinations of features from the initial dataset. The proposed ap-
proach relies on Grammar-Guided Genetic Programming [34], often abbreviated
as GGGP (or G3P), to extract human-readable combinations of features. Our con-
tribution is twofold. First, we propose a feature creation method which integrates
domain-knowledge from power system experts using a context-free grammar build
interactively with them. More specifically, this grammar includes some physical
properties of electrical systems and prevents from using worthless combination
operators, which helps reduce the search space. Finally, the created features are
analyzed by a human expert who provides insights on what is correct and what
would be expected from operators. The second contribution presented in the exper-
iments is the interpretability evaluation of the outputs. Following the terminology
used by Doshi-Velez and Kim in [9], we performed both “Functionally-Grounded”
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and “Human-Grounded” evaluations of the proposed approach by comparing it
to other interpretable state-of-the-art methods and give created feature for expert
analysis. In this paper, we also use a correlation-based optimization objective
as a metric to evaluate individuals. We compare this metric to distance-based
metric Mean Squared Error (MSE) to detail why both metrics can’t be used
equivalently. Throughout this article, we use the real-world dataset created from
measurements of the French power grid, from January 2014 to December 2018 at
5-minute intervals.

This paper is organized as follows. Section 2 summarizes related works on
the topics of feature extraction, interpretability, and Grammar-Guided Genetic
Programming. Then, Section 3 details the data used to develop our method. In
Section 4, we described the proposed approach. The experimental evaluations
and their results are presented in Section 5, and finally, Section 6 concludes this
paper and introduces some future works.

2 Related Works

2.1 Feature Extraction

Real-world applications often produce data in a very high-dimensional space
[25], but they are very sparse, redundant, and their underlying structure is often
representable in a much lower dimension. In this context, dimensionality reduction
(DR) techniques can be of great support to visualize data or improve a classifier
performance [49] and are even used for data compression [6]. Thus, DR is an
important preprocessing step in many machine learning pipelines. More formally,
DR can be defined as the set of techniques taking inputs X with a high number
of features D, and mapping it to a reduced set of features X ′ with size d, such
as d << D while retaining as much information from the original structure as
possible. Exhaustive reviews on this topic can be found in [17, 27, 47].

DR is mainly done using two types of approaches: feature selection or fea-
ture extraction (also called sometimes feature transformation, augmentation,
or creation). While feature selection only selects the most informative features
from the dataset, feature extraction tries to effectively combine features from
the original dataset to produce more expressive ones. Among the feature extrac-
tion methods, another distinction can be made between linear and non-linear
methods (also called manifold-learning methods). Linear methods have been used
for a long time. They include methods such as Principal Component Analysis
(PCA) [16] which finds axis by variance maximization, Laplacian Eigenmaps [3],
Non-Negative Matrix Factorisation [24] or Locally Linear Embedding (LLE) [36].
PCA has the advantage of providing quite interpretable results using the selected
principal components [48]. However, in many cases, the data structures are too
complex, and linear mappings cannot retain enough information from the initial
feature space. In this context, non-linear mappings are considered to represent
the original data as closely as possible. Among non-linear algorithms, Isomap [46]
is one of the widely used methods. Other methods include Kernel PCA [43] (non-
linear extension of PCA), t-SNE [30] or UMAP [33] two dimensionality-reduction
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methods for data visualization, or deep learning methods such as Variational
Autoencoders [18] or Conditional Autoencoders [45].

However, these DR methods were initially presented in an unsupervised
setting and did not use any supervision scheme. This element is an issue in our
application, as they can’t take into account the valuable knowledge of available
target values. More recent works focus either on how to extend classical methods
to supervised configurations (supervised-LE) [38] or on how to take advantage
of some target features to structure the new feature space: for example by
integrating an additional optimization objective (i.e., as second loss term in the
neural network [28]) or producing multiple transformations one for each class.

2.2 Interpretability

One of the recurring concerns about DR is the lack of interpretability of the
axes in the feature space. As we discussed above, linear methods are often
considered as interpretable (even when they add up different dimensions), but
it is not the case for non-linear ones. It has been observed that many DR
methods construct the new feature space “upon arbitrary combinations of many
uncorrelated physical dimensions” [15], leading to the non-usability in many
industrial processes. Some promising works propose interpretable DR methods
based on kernel dimensionality reduction [50, 15], which are able to project the
embedding dimensions on the label-space to make interpretations.

In the supervised machine learning community, the interpretability of the
results is a key challenge to improve the user trust and acceptation of the created
model, and the proposed results. The existing interpretability methods are roughly
divided into two categories: interpretable models and post-hoc interpretability.
Interpretable models include Linear Regression, Decision Trees [5], Generalized
Additive Models [13], or Rule Fit [12]. They produce interpretable outputs, but
they are often considered as sub-optimal regarding complex classification or
regression tasks. On the other side, post-hoc interpretability is often used for
more complex models which produce more accurate results such as Deep Neural
Networks. This problem is called the accuracy-interpretability trade-off [4]. With
the omnipresence of deep learning models, several works focus today on the
post-hoc interpretation of models using model-agnostic methods such as LIME
(Local Interpretable Model agnostic Explanations) [40] or model-specific ones
SHAP (SHapley Additive exPlanations) [29].

However, recent works by Laugel et al. [23] warns about the “risk of having
explanations that are a result of some artifacts learned by the model instead
of actual knowledge from the data”. They also suggest that further research
needs to be done to provide satisfying post-hoc explanations, both faithful to
the predictor and to ground-truth data. Rudin et al. [41] rather suggests to start
with interpretable models and only shift to black-box models if no sufficient
solution has been found. They also suggest asking for strong explanations of
the created models. Interpretability is therefore increasingly required, whether
for safety, fairness, specification issues, or scientific understanding. However,
there is no complete consensus for now about how to define and how to evaluate
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interpretability. To answer this problem, Doshi-Velez and Kim [9] proposed a
three-level evaluation: the first one is an “Application-grounded” evaluation where
humans evaluate interpretability on an exact application task; the second, called
“Human-grounded”, uses a similarly applied evaluation but on a simpler task;
finally, the “Functionaly-grounded” category uses an even simpler evaluation on
a simple task and involves no human. This final category assesses, for example,
multiple interpretable algorithms on the same metric to identify which one
performs best. We’ll detail interactivity in our experiment using this taxonomy.

2.3 Grammar-Guided Genetic Programming

Recently there has been new application perspectives for Genetic Programming
(GP) regarding the increasing need for interpretable results. GP was for example
used to provide interpretable policies in reinforcement learning [14], to learn
manifolds [25], to create visualizations [26] or to explain complex deep learning
models [10]. For dimensionality reduction tasks, GP has also been used a lot as
a feature construction method [35]. It presents some advantages in comparison
with other methods presented in Section 2.1. As identified in [25]:

– they try building a global learner unlike local methods such as t-SNE [30],
– they do not require a differentiable fitness function (unlike Autoencoders)

and thus can be used with a great variety of objective functions,
– they intrinsically produce an interpretable mapping.

Genetic programming was initially introduced by Koza [20, 21], who identified
that many problems could be reformulated as program induction. Unlike Genetic
Algorithms, which evolves a population of fixed-length binary vector, GP evolves
a population of programs represented as trees. Each tree consists of a combination
of initial features using several operations taken in a list of allowed functions (e.g.,
+, −, ×, %). Initial features are represented in leaves and functions in nodes.

Nowadays, there are many different variants and implementations of GP for
program creation. The three major ones are the following : the first and most
classical approach, tree-like GP; the second Linear GP [2] represents programs
as linear sequences to perform imperative program evolution; the third is gram-
matical evolution [42], where the representation language uses a Backus Naur
Form grammar [19] and programs-trees are derived from this grammar.

As in some cases, the search space in GP may be too large, thus preventing
the algorithm from converging, some alternatives have been proposed among
grammatical evolution strategies. For example, in Grammar-Guided Genetic
Programming (GGGP) [22], the search space is constrained by a set of rules
to create features. These rules are defined using grammar written in Backus-
Naur Form (BNF) [19] as the one provided in Figure 1. A comprehensive review
of Grammar-Guided Genetic Programming can be found in [34]. GGGP has
been identified as a way to enforce expert domain knowledge into the learning
procedure [39] using ontologies. For instance, it has been used as a way to impose
constraints on the dimensions of variables in a classification problem [7]. This is
what led us to consider this method to find explanatory variables.
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3 Data Description

The electrical power network can be represented as a graph G = (N,L) with a set
of nodes N and lines L. Lines represent here electrical transmission power lines,
and nodes are the locations where lines can be physically connected. Measurements
are acquired in nodes and line extremities. In each node n ∈ N the observed
quantities are active power pn and reactive power qn while for a line l measures
contain information about the line connection connectedorl , connectedexl and also
an neighbor idl key corresponding to the list of neighboring lines at this timestep.

Using these measurements as inputs, simulations can be done to estimate
voltage magnitude vn and angle θn in nodes n ∈ N using Netwon-Raphson
based power-flow analysis [44] and eventually compute flow values at each line
extremities (with origin or and extremity ex), iorl and iexl , ∀l ∈ L . In our case,
a solver computes these quantities for each timestep. In the rest of this article,
flow values iorl and iexl will constitute the output of our different methods and
experiments. We can thus consider the studied system as a closed system without
time dependency as the target features ior,exl provided by our simulator only
depends on measures and expert hyperparameters setting used to calibrate the
power-flow calculus.

First, we exhaustively describe the graph with variables reflecting the different
electrical links (connectedor,exl a boolean representing the connection of line l at
its origin or its extremity, and neighbor idl an id used as a key to represent all
lines electrically connected to line l). We move the measured variables from the
nodes of the graph to each origin/end of the line connected to this node. Although
this representation implies redundancy in the data, we can now reason only in
terms of power lines and forget about nodes objects. From now on, we’ll refer
to measured and simulated variables by X = (Xl)l∈L and target flow variables
y = (yl)l∈L where :

∀l ∈ L, Xl = ((p, q, v, θ)n or(l),n ex(l), connected
or,ex
l , neighbor idl)

yl = (iorl , i
ex
l )

In our case, we focus on the network operated by the French TSO called Rte
(Réseau de Transport d’Electricité). The French power grid as a whole is a very
complex system, with up to 6500 nodes, 12000 power lines, and many interactions
both with other European networks and within it. A common approach, to
control how these interactions influence studies of the grid, is to divide into
sub-zones within which the elements have a high-mutual influence on each other
[32]. This approach, historically done by TSOs, allows several operators to work
simultaneously on separated zones of an acceptable size they can control. Thus,
we focus on a specific mountainous valley where the escarpment intrinsically
constrains interactions with the rest of the network. This selection restricts
the study perimeter to 69 nodes and 92 lines, where 9 lines connect the zone
with other parts of the network. By collecting measurements from January 2014
to December 2018, we obtained 365 165 timestep observations and target flow
variables.



Interpretable Dimensionally-Consistent Feature Extraction 7

4 Proposed Approach

As explained in the introduction, we are interested in finding “explanations”
about flow variable yl, ∀l ∈ L. More formally, given a set of observed features
X ∈ RD, we want to extract relevant and potentially non-linear combinations
of these features ∀l ∈ L,Xprime

l ∈ Rd with d << D and so that Xl is relevant
to explain yl. We chose to focus on Grammar-Guided Genetic Programming
(GGGP) methods to propose a custom grammar for electrical data and a new
correlation-based metric.

4.1 Grammar Description

Grammar construction plays a crucial role in GGGP methods as it defines the
search rules in the feature space: a too-loose grammar would have a too-wide space
to search, while a too-constraint grammar would be limited to sub-relevant zones.
For the sake of comprehension, we provide a simplified version of our grammar
in Figure 1. The complete version of the grammar uses all features described
in Section 3 including topological variables, and a wider variety of functions on
each dimension. The grammar is iteratively constructed with experts-in-the-loop
withdrawing or adding constraints such as new variables or new operations.

Dimensions Definition Firstly, we need to define the dimensions the grammar
can handle. The physical dimensions taken into account in this grammar can
either be active power p (with dimension : watt W), reactive power q (volt-
ampere reactive VAR), apparent power s (volt-ampere VA), voltage magnitude v
(voltage V) or intensity i (ampere A). From there, we can define the square of all
dimensions: p2, for example, is the squared value of p with dimension W2.

Grammar Structure The first step to build a grammar is to define the output
structure, here <expr>. The output can be one of the elements separated by the
character “|”. This formulation allows to enforce expert knowledge on the output
dimension. In this example, <expr> can be of dimension q, p2, q2 or v2.

The second step is to impose the dimensional consistency of the output vari-
able, by defining which operations can be performed on each dimension and how
to combine two dimensions. To jump from one dimension to the next, laws of
physics such as the power triangle s =

√
p2 + q2 or some variation of Ohm’s law

i = s
v have been expressed in the grammar. Input variables are defined here using

observations <p var>, <q var>, <v var>, and <i frontier var> (i frontier cor-
reponding to the flow for 9 cross-border lines to model interactions with outside
the zone) with corresponding dimension p, q, v, i.They can be combined to
produce a new variable with either the same dimension (for example <p> - <p>

produces a new variable with dimension p), or a different dimension (<p>/<p>
has no dimension while square(<p>) has dimension p2).

Finally, we define licit operations to perform on a single or a pair of variables,
which are repeated for almost all dimensions.
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# 1) Create unitary expressions (allowed returned dimensions)
<expr> ::= <p> | <s> | <i> | <f> * <expr> | <p>/<v>
# 2) Define legal operations on each dimension
<p> ::= <p>-<p> | <pop>(<p>, <p>) | <sop>(<p>) | <p_var>
<q> ::= <q>-<q> | <pop>(<q>, <q>) | <sop>(<q>) | <q_var>
<v> ::= <v>-<v> | <pop>(<v>, <v>) | <sop>(<v>) | <v_var>
<p2> ::= <p>*<p> | square(<p>)
<q2> ::= <q>*<q> | square(<q>)
<s> ::= sqrt(<p2> + <q2>) |<v> * <i>
<i> ::= <s>/<v> | <pop>(<i>,<i>) | <sop>(<i>) | <i_frontier_var>
<f> ::= <f>*<f> | <p>/<p> | <q>/<q> | <v>/<v>
# 3) Define operations returning variable with the same dimension
<pop>::= sum | minimum | maximum # Functions with two arguments
<sop>::= abs | neg | pos # Functions with only one argument

Fig. 1. Grammar example. “|” represents separation between each possibility of replace-
ment of the element located at the beginning of the line, before “ ::= ”. Input variables
are <p var> <q var>, <v var> and <i frontier var>.

4.2 Methodology Description

We base our method on GGGP algorithms and introduce human-experts in the
grammar construction process. First, as in GGGP methods, we use a population-
based search on the space by performing multiple times operations (selection,
crossover, mutation) on a group of individuals, as described in Algorithm 1. The
particularity of GGGP methods is to ensure individuals are still consistent with
grammar rules after each crossover and mutation operation. In order to select the
parents of the next generation, the performance of each individual in the current
generation is assessed using an optimization objective (called fitness function).
The algorithm stops either when reaching the maximum number of iterations or
when a tree-program has a higher score than a satisfaction threshold.

To constrain the search space, we asked operators to look at the variables
created by the algorithm, to extract relevant characteristics from them and to
propose new grammatical rules. These iterations allowed us to create the grammar
described above.

4.3 Objective Function

We use the absolute value of the correlation coefficient r as a measure of the
efficiency of each individual. This measure, based on the linear Pearson correlation,
lies between 0 and 1, where a r value of 1 indicates that the predictions yhat
perfectly matches the behavior of the target y. While the linear correlation
coefficient mainly measures the strength of the linear relationship between two
variables, it also has a clear advantage to be able to compare the behavior of two
variables which range on different scales.

This measure seems particularly well suited in this particular case because we
are not interested here in predicting the exact flow value but rather to understand
the global underlying relationship between input variables X and flow output y.



Interpretable Dimensionally-Consistent Feature Extraction 9

Algorithm 1: Interactive Evolutionary Search Algorithm

input : observations X, target y
grammar ← initialize grammar()
while operator not satisfied do

population ← create population(grammar)
evolutionary search condition not met ← True
while evolutionary search condition not met do

parents, best individual ← parents selection(population, X, y)
offspring ← crossover(parents)
offspring ← mutation(offspring)
population ← replacement(population, offspring)
evolutionary search condition not met ← test conditions(best individual)

grammar ← operator grammar update(grammar)

return grammar, best individual

Moreover, from an operator viewpoint, it is as interesting to look at one feature
F as its rescaled value 10×F . To understand the advantages of using this metric,
we also compare it to the distance-based metric Mean Squared Error (MSE).

5 Experiments

5.1 Target Selection

As we are only interested in analyzing flows y on sensitive lines, we first selected a
subset of all 92 lines on which we’ll perform feature extraction. This preprocessing
step ensures that we won’t look at residual information or negligible effects on
the target. To do so, we identified which are the most frequently loaded lines by
selecting the ones above a designated percentage percent i threshold (100, 90,
80, and 70%) of the line thermal limit i threshold during a percentage of total
time percent time (0.05 or 0.1%). The final target selection is defined as the
union of lines identified as loaded by one of each combination of hyperparameters
(percent i threshold, percent time). Using this method, we detected 24 lines.

5.2 Settings

Experimental Protocol For each line identified as sensitive, with a correspond-
ing target flow y, we now search for a tree-like variable to represent it. We evolve
a large population of 2 000 individuals over 200 generations by following the
grammatical rules defined above. A large population is proved necessary due
to the high number of constraints defined in the grammar. The initial dataset
containing 365 165 observations is split following a 80/20% ratio between the
train and test sets. Each line feature search is launched 30 times with random
population initialization, and only the top features are kept for manual inspection.
All hyperparameters are provided in Table 1 for reproducibility, and were selected
during preliminary cross-validation experiments.
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Parameter Setting

Generation 200
Population size 2000
Initialization PI Grow with max inital depth 10
Selection Tournament with a size of 2
Crossover Type variable one point (0.9 probability)
Mutation Type int flip per codon (0.1 probability)
Elitisme Top 10
Replacement Generational
Fitness Absolute Pearson correlation or MSE

Table 1. Evolutionary parameters chosen for the experiment.

For the two fitness metrics (correlation and MSE) in both experiments, we
insert an additive regularization term, relative to the depth of the feature-tree:
individual depth. The depth is the maximum number of nodes in the feature
from the root to any leaf. This constraint aims at preventing the tree size explo-
sion (called bloating phenomenon) [37] and is slightly weighted to only remove
redundant nodes without constraining the search-space too much. Eventually our
fitness function is: fitness = selected_metric + 10−8 * individual depth

Implementation To take advantage of their parallelized implementation, we
used the open-source implementation of GE in Python PonyGE2 [11] as backbone
code. We inserted correlation-based error-metrics, a specialized data processing,
custom evolutionary step, and the full grammar tailored to our problem.

5.3 Results

Experiment 1 : Metrics Comparison In this first experiment, we conduct
two parallel trials, where we only vary the fitness metric used to evolve and assess
the top-individuals performance line per line. Our objective is to identify the
adequate fitness to our problem, choosing between distance-based methods such
as Mean Squared Error (MSE) and correlation-based methods such as absolute
Pearson correlation. Obtained results on the test set are summarized in Figures
2 and 3.

Figure 2 details the results of the two trials (MSE or Pearson as fitness) for
30 runs and compares them using MSE metric on a log-scale. In this Figure, two
boxplots are associated to each line. They are placed on each side of a vertical
dotted line: on the left the blue boxplot corresponds to the top-individuals
evolved with MSE fitness ; on the right an orange boxplot contains scores of
correlation-based evolutions. Similarly, Figure 3 compares the same two trials
regarding the absolute value of the Pearson correlation of the top-individual.

By comparing power line per power line the correlation-based and distance-
based evolutions using correlation (Figure 3) and MSE (Figure 2) metrics, we
identify that the two evolutions produce contrastive individuals, with top MSE-
fitness individuals usually performing far worse than correlation-fitness individuals
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Fig. 2. Comparison of two evolution strategies, either using MSE (in blue) or Pearson
Correlation (in orange) as fitness on 30 runs. Each boxplot summarizes the log-MSE
scores for each line’s best individuals (i.e., for each run, the one with the highest fitness
score at the end of the evolution). Figures are best seen in color.

Fig. 3. Comparison of two evolution strategies on the same 30 runs presented in Figure
2. Each boxplot now represents the absolute Pearson Correlation score for the best
individuals of each line. Individuals compared in Figures 2 and 3 are identical.

on the Pearson correlation scale (and conversely on the log-MSE scale). Except
for few lines, where both fitness metrics performed well (ex. lines 3 and 15 on a
log-MSE scale, 15 and 17 on correlation scale which have close scores whatever
the evolution fitness metric), the 2 metrics seem to explore the feature space in
opposite directions and can’t be used equivalently. Moreover, when analyzing
the features produced using MSE fitness, we identify that they tend to select
combinations of features preferentially from the initial dataset with value ranges
similar to the target one (although their behavior is different). Unlike individuals
created with the correlation fitness, features obtained with MSE fitness wouldn’t
have a physical/technical interest and would mainly use the feature with intensity
variables i. This point is critical to use distance-based fitness metrics because
we can’t normalize our data to have similar ranges as it would result in the
impossibility to respect physical laws. For example, after normalizing each input
features independantly, Kirchhoff’s circuit laws don’t apply anymore. Based
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on these observations, the only acceptable strategy is then to use fitness-based
metrics such as Pearson correlation.

Regarding the outputted features, this first experiment also identified that
we couldn’t have constructed fewer features than the number of lines without
loosing in performance, because extracted variables are very different from one
line to another.

Experiment 2: Comparison to Other Methods In the second experiment,
we compare individuals from experiment 1 (obtained through evolution with a
correlation-based fitness) with the output of algorithms such as LASSO Lars
with Bayes Information criterion (Lasso Lars-BIC) [51], depth-3 Decision Tree
[5]. These algorithms were selected because of their capacity to give outputs
with a comparable level of interpretability, thus falling under the “Functionally-
grounded” evaluation [9]. We also show the most correlated feature from the
original dataset as a baseline. The obtained results are presented in Figure 4.
In this figure, the results associated with each line are displayed along a dotted
vertical line and labeled at the bottom by their corresponding line name. Thus,
for line 24 on the right, we have from the bottom to the top: the most correlated
feature from the initial dataset (marked by a red star); the correlation to Lasso
Lars-AIC output (pink rectangle); the correlation to a Decision Tree output (blue
diamond) and the boxplot of our GGGP method (orange box).

Fig. 4. Comparison between GGGP and state-of-the-art-algorithms.

As presented in Figure 4, all GGGP outputs have a higher correlation to the
target than features from the initial dataset. Furthermore, by looking at only
at boxplots, we identify that only 3 out of 24 highest values in boxplots were
under the 0.7 threshold, under which correlation is usually not considered strong
enough for the feature to be significant. We finally compare our approach in
terms of correlation with partially interpretable ones such as Lasso Lars or a
depth-constrained Decision Tree. From these experiments, we can highlight that
GGGP outputs with significant correlation are at least as highly and sometimes
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even more correlated to the target than outputs from other methods. In the next
paragraph, we’ll look in detail at the produced combination categories.

Human-expert Output Analysis and Pieces of Advice Eventually, the
relevance of top features obtained with GGGP-method is technically assessed by
power system experts to identify whether the obtained formulas are conclusive
from a technical and physical perspective, could be useful to operators, and would
make sense to them. This experiment aims at confirming outputs interpretability
from a human perspective by performing a “Human-Grounded” evaluation [9].
The first conclusions are that all features above a 0.8 correlation are relevant
even if some of them could be improved. Thus, 0.8 could then be used as an
acceptation threshold below which features created would be rejected. Indeed,
extracted features with a very high score (above 0.9) show a small discrepancy
between runs and could be useful as-is. However, for features under 0.8, experts
would have found it interesting to intervene during the learning process by
removing, replacing, or adding nodes or leaves in the evolved trees to increase
their score. Uncovering the literal expression of features, we identify groups of
features with intriguing expert interpretations :

– some features are variations around the expression
√
p2 + q2 (such as

√
p2+q2

v

or
√

(p1 + p2)2 + (q1 + q2)2)
– some others are the sum, minimum or maximum of a list of active powers,

tweaked using absolute value, positive or negative parts. In some cases, these
non-linearities are also found useful to tackle outliers coming from sensor or
simulation errors.

– few features are also an aggregation (sum or difference) of cross-border flows
(ex. i frontier1 − abs(i frontier2)). These combinations would tell us that
the corresponding target line is more sensitive to a global phenomenon than
other lines. It could allow to identify which lines are sensitive to a high flow
coming inside or leaving the zone.

– using a specific grammar version, some of those features could even include
multiple features combined using graph topology as conditions, such as :

if{line_1 is connected} then{monitor gggp_feature_1}

else{monitor gggp_feature_2}

6 Conclusion and Future Works

We have shown that the proposed interactive GGGP method achieved promising
results on interpretable feature extraction. We marked the first milestone with
first the production and then both qualitative and quantitative validation of
a custom context-free grammar, which could interactively include some power
system knowledge. Our experiments also provide some insights on the inter-
pretability of our method from “Human-Grounded” and “Functionally-Grounded”
[9] perspectives. By introducing expertise and physical properties in the grammar
rules, we obtained explainable features. Some of them were also found relevant
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enough by power system operators to be included in hyper-vision tools. However,
a few target features were still tricky to handle with only one dimension. Indeed,
for these few lines, a 1D-manifold is surely too restrictive, and we envision that
building a multi-dimensional space could highly increase the representativity
of the reduced space. We also identified the use of Probabilistic Grammars to
enhance more precise space exploration.

Moreover, as these new features are made to be used by operators, the very
next step will be to introduce interactivity with non-machine-learning experts,
directly inside evolutionary runs [1]. We would allow them to provide insights
and technical information that could significantly help to create more insightful
representation: either selecting/removing individuals, inforcing constraints on
the search space by iteratively changing the grammar over the generations.

Undergoing works also focus now on applying the same method to a wider
geographical zone only on high voltage power lines (low voltage power lines
modeled as aggregated consumptions). This perspective brings us closer to
performing an “Application-Grounded” evaluation of our method with humans
on a more complex task. Eventually, to release reproducible results on power
systems test cases and open-source our code, we plan to use the open-source
framework Grid2Op1 developed to test machine learning strategies for power
grid operations.
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