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WORMHOLES IN ACH EINSTEIN MANIFOLDS

OLIVIER BIQUARD AND YANN ROLLIN

Abstract. We give a new construction of Einstein manifolds which
are asymptotically complex hyperbolic, inspired by the work of Mazzeo-
Pacard in the real hyperbolic case. The idea is to develop a gluing
theorem for 1-handle surgery at infinity, which generalizes the Klein
construction for the complex hyperbolic metric.

1. Introduction

In this paper, we present a new construction of asymptotically complex
hyperbolic Einstein metrics (we shall use the acronym ACH from now on),
by gluing wormholes on their conformal infinity. Our results extend the
work of Mazzeo and Pacard [12] in the context of asymptotically real hyper-
bolic Einstein metrics. Using our gluing theory, we can produce many new
examples of ACH Einstein metrics. An interesting feature of the “complex
hyperbolic” theory is that it also enables us to construct Kähler-Einstein
metrics as well.

1.1. Statement of results. First, let us recall the concept of an ACH met-
ric: let X be a compact manifold of even dimension m = 2n with boundary
Y . We will denote by X the interior of X, and choose a defining function u
of Y , that is a function on X, positive on X and vanishing to first order on
Y = ∂X.

The notion of ACH metric on X is related to the data of a strictly pseu-
doconvex CR structure on Y , that is an almost complex structure J on a
contact distribution of Y , such that γ(·, ·) = dη(·, J ·) is a positive Hermitian
metric on the contact distribution (here we have chosen a contact form η).

Identify a collar neighborhood of Y in X with [0, T )×Y , with coordinate
u on the first factor. A Riemannian metric g is defined to be an ACH metric
on X if there exists a CR structure J on Y , such that near Y ,

g ∼ du2 + η2

u2
+
γ

u
, (1.1)

in a sense which will be precised in Section 3.2 (observe that for J being the
standard invariant CR structure of the Heisenberg group, the RHS of (1.1)
is exactly the complex hyperbolic metric). The manifold (Y, J) is called the
conformal infinity of (X, g).

We will consider also more general ACH metrics by allowing (η, J) to be
defined only up to sign. If n is even, notice that volY := η ∧ (dη)n−1 is well
defined although η is defined up to sign. It follows that the contact structure
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induces a standard orientation on Y given by volY if dimR Y = 3 mod 4.
If n is odd (i.e. dimR Y = 1 mod 4), then neither the contact distribution
nor Y need to be orientable. However, an orientation for Y determines an
orientation for ξ and vice versa.

We can now state our main theorem:

Theorem A. Let X be a compact m-dimensional manifold with boundary
and m = 2n, such that its interior X is endowed with an unobstructed ACH
Einstein metric. Let Xk := X ∪ k(B1 × Bm−1), be the manifold obtained
by gluing k copies of a 1-handle on the boundary of X. If 4 divides m, we
require moreover that the handle additions are compatible with the contact
orientation of the boundary.

Then the interior Xk of Xk carries an unobstructed ACH Einstein metric.

Remark 1.1.1. The existence of an ACH metric in the conclusion of Theo-
rem A implies that there exists a strictly pseudoconvex CR structure on the
boundary of Xk, i.e. the conformal infinity of the metric. Thus we recover
a result already known for more general surgeries (cf. [9], [14]).

At the moment, Theorem A is stated in a rather imprecise way. The
metrics on Xk are in fact obtained by a gluing theorem: given X endowed
an ACH Einstein metric, we construct a sequence of approximate Einstein
metrics on Xk (see Section 3).

These approximate Einstein metrics come as a family parametrized by
R2 × U(n − 1) (in the case k = 1), and so do the metrics produced in
Theorem A. This will be clear from the technical version of this result given
in Theorem 4.4.1.

The obstruction hypothesis will be defined later. It is expected to be quite
generic, and is used to deform the approximate solutions into true Einstein
metrics. At this point, all we need to know is that there are three important
cases where the obstruction vanishes, see Section 4.5:

Proposition B. Assume that X is endowed with an ACH Einstein metric
g and either

• g has negative sectional curvature,
• X is oriented, 4-dimensional and g is self-dual Einstein, or
• X is a complex manifold, the metric g is Kähler-Einstein and the

compactly supported cohomology group H1
c (X,TX) vanishes,

then there is no obstruction. Moreover, if X is a disjoint union of unob-
structed components, it is unobstructed.

At the moment, the only known ACH Einstein metrics of negative sec-
tional curvature are the complex hyperbolic metrics, and their deforma-
tions constructed in [2]. It is very important to know that they are unob-
structed. In particular, it implies that the 1-handles, identified to Bm with
its Bergman metric is unobstructed; this property turns out to be essential
for the proof of Theorem A.

However, the gluing problem for gluing Kähler-Einstein metrics is auto-
matically unobstructed, once the complex structure is fixed. Thus we obtain
the following variation on Theorem A for ACH Kähler-Einstein metric.
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Proposition C. Let X be a compact complex manifold with boundary and
dimCM = n, such that its interior X is endowed with an ACH Kähler-
Einstein metric. Let Xk := X ∪ k(B1 ×B2n−1) be the manifold obtained by
adding k copies of a 1-handle respecting the complex orientation.

Then the interior Xk can be endowed with a complex structure and its
interior Xk carries an ACH Kähler-Einstein metric.

Again the precise technical version of this theorem will be given in Sec-
tion 4.4.

1.2. Applications. Existence of ACH (Kähler)-Einstein metrics is known
in several cases:

(1) Complex hyperbolic quotients: some (infinite volume) quotients of
CHn by a group of isometries are ACH, for example disk bundles√
TΣ over a hyperbolic Riemann surface Σ come from a representa-

tion of the fundamental group Σ into SU(1, 1) ⊂ SU(n, 1). On these
ACH complex hyperbolic metrics one can perform the so called Klein
construction (see Section 3.5): for instance, the Klein construction
on the Bergman ball corresponds topologically to glue a 1-handle.
This is precisely the construction that we generalize in Theorem A.

(2) Kähler-Einstein metrics: a strictly pseudoconvex domain of Cn car-
ries an ACH Kähler-Einstein metric, the Cheng-Yau metric con-
structed in [6], whose prototypical example is the Bergman metric
on the ball (see also [13]); other examples include a small neighbor-
hood of the zero section of the cotangent bundle of a real analytic
manifold.

(3) Selfdual Einstein metrics: Calderbank and Singer consider the mini-
mal resolutionsX of the quotient singularity C2/Γ such that c1(X) <
0, where Γ is a finite cyclic subgroup of U(2). In [5] they find
an ansatz for an ACH selfdual Einstein metric defined on a neigh-
borhood of the exceptional fiber in X, with conformal infinity the
link of the singularity. For example, the unit disk bundle D(−p) of
O(−p) → CP1 carries an ACH Einstein metric for p > 3.

These metrics are starting points for the application of Theorem A to get
new ACH Einstein metrics. It gives also new light on the problem: which
manifolds carry strictly pseudoconvex CR structure arising as the conformal
infinity of ACH Einstein metric?

To answer this question, Theorem A is not useful when applied to ACH
Einstein metric of negative sectional curvature. At the moment, the only
known metrics with this property are the complex hyperbolic examples and
their deformations. However we can perform directly the handle addition in
this case (see Section 3.5) and Theorem A is not really needed.

The case of self-dual Einstein metrics is much more enticing. We men-
tioned earlier the large class of ACH self-dual Einstein metrics constructed
by Calderbank and Singer; since they are unobstructed by Proposition B, we
can add 1-handles to these spaces and get many new ACH Einstein metrics.
Rather than describing the complete list of all possible examples one can get
in this way, we just give a very particular case, and let the interested reader
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consult [5] and experiment on his own: the boundary connected sum

X1 = D(−p)]bD(−q)

is obtained by adding a 1-handle to the disjoint union X = D(−p)∪D(−q).
For p, q > 3 it follows from [5], Proposition B and Theorem A that X1 carries
an ACH Einstein metric. Notice that we cannot obtain an Einstein metric
by the construction of Cheng-Yau in this case: although D(−p), D(−q) and
X1 have natural complex structures, none of them is a pseudoconvex domain
of a Stein manifold since they contain closed curves (the exceptional fibers).

We can also construct examples of the form X1 = D(−p)]bZ̄, where p > 3
and Z is a complex hyperbolic quotient. Then X1 carries an ACH Einstein
metric. More generally, we can take any disjoint union of complex hyperbolic
and ACH selfdual Einstein manifolds and glue a bunch of 1-handles ad lib.
Then, the resulting manifold carries an ACH Einstein metric.

Also note that the absence of obstruction in the Kähler-Einstein case gives
a very large class of new ACH Kähler-Einstein manifolds building from the
Cheng-Yau metrics on pseudoconvex domains.

There is also a sort of generalization of the Möbius band example: starting
from a Cheng-Yau metrics on X, it is possible to build a locally Kähler-
Einstein metrics on X1, in the sense that the complex structure J on X1

is defined only up to sign (see Theorem 4.4.5). These examples admit a
double cover which is Kähler-Einstein. This large class of examples of ACH
Einstein spaces is fundamentally new.

Finally, the gluing of 1-handle gives a connected sum for CR structures
on the boundary. In the 3-dimensional case, the construction gives some
indications on the ν-invariant of 3-dimensional strictly pseudoconvex CR
manifolds introduced in [3]. Remind that this a kind of η-invariant for CR
manifolds, whose gradient when one varies the CR structure is the Cartan
curvature. This means that when the complex structure J varies in a contact
distribution, one controls the variation of ν. It is therefore important to
understand what is happening when one changes the contact structure. The
following Proposition is a first step in this direction: it controls what is
happening when one performs a simple surgery on the contact structure:

Proposition D. Let (Y, J) be a 3-dimensional strictly pseudoconvex CR
manifold. Let Y ] be the manifold obtained by applying k successive 1-handle
surgeries to Y . Then there exists a family of CR structures (J ]

τ )τ>0 on Y ],
converging to J (away from the surgered locus) when τ → 0, such that

lim
τ→0

ν(J ]
τ ) = ν(J) + k.

In the case where J is spherical, then the CR structure Jτ on Yk can be
chosen spherical, and the limit becomes an equality for all τ .

Remark 1.2.1. If Y is connected, Yk is homeomorphic to the connected sum
Yk = Y ]k(S1 × S2).

The general path for the proof is close to the one of Mazzeo and Pacard
in the real case [12], but in this paper we insist on several interesting new
features coming from complex hyperbolic geometry and Kähler geometry.
In section 2 we recall some complex hyperbolic geometry, enabling us to
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construct approximate solutions on the manifolds obtained by adding a one
handle. These are deformed to actual solutions in section 4, where the other
results are also proved.

Acknowledgments. We thank Frank Pacard for several useful conver-
sations. We are grateful to Paul Gauduchon who checked carefully the
Weitzenböck formula (4.6). We also thank Yasha Eliashberg, Dmitri Panov
and Michael Singer for their interest and many enticing discussions.

2. Geometry of the complex hyperbolic space

Here we recall some basic facts about the complex hyperbolic geometry.
All the material is standard, see the book [11].

2.1. Definition. The complex hyperbolic space is described as follow. The
complex vector space Cn+1 is endowed with the Hermitian form of signature
(n, 1).

〈Z,Z ′〉 = 2(z̄0z′n + z̄nz
′
0) +

n−1∑
k=1

z̄kz
′
k,

where Z = (z0, z2, · · · , zn) and Z ′ = (z′0, z
′
2, · · · , z′n). The complex hyper-

bolic space is defined by

CHn = {[Z] ∈ CPn | 〈X,X〉 < 0}.
It is endowed with a Kähler-Einstein metric, called the complex hyperbolic
metric, defined as follow: at [Z] ∈ CHn put

gCH
Z (V, V ) = 4

〈Z,Z〉〈V, V 〉 − 〈Z, V 〉〈Z,X〉
−〈Z,Z〉2

, ‘ (2.1)

for any tangent vector V ∈ TZCn+1. Notice that we are using conventions
for which the metric has sectional curvature −1/ 6 K 6 −1/4.

2.2. Dilations and inversions. Consider the family of hyperbolic trans-
formations given by the matrices

Hµ =

 1
µ̄ 0 0
0 In−1 0
0 0 µ

 ,

for any µ ∈ C∗ \ {1}.
The points

ζ− = [0 : 0 : · · · : 1], ζ+ = [1 : 0 : · · · : 0]

of ∂∞CH
n

are the only of CH
n

fixed by the isometry Hµ.
For λ > 0, we define a hypersurface of CHn

Dλ = {[z0 : · · · : zn] ∈ CHn|λ|z0| = |zn|} (2.2)

We have clearly
HµDλ = Dλ|µ|2 .

The hypersurface Dλ (a topological disk) splits the hyperbolic space into
two connected components, and we have a decomposition

CHn = B−λ ∪Dλ ∪B+
λ ,
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where

B−λ = {[z0 : · · · : zn] ∈ CHn | λ|z0| < |zn|} (2.3)

B+
λ = {[z0 : · · · : zn] ∈ CHn | λ|z0| > |zn|} (2.4)

are topological balls. The half-ball B±λ is by construction a neighborhood of
the point at infinity ζ±. As λ → 0, the points of B+

λ converge to ζ+ in the
topology induced by CPn, and, the points of B−λ converge to ζ− as λ→∞.

The inversion of CHn

I1 : [z0 : · · · : zn] 7→ [zn : z1 : · · · : zn−1 : z0]

is an isometry and it is clearly a holomorphic involution of CHn leaving the
disk D1 invariant and switching B+

1 and B−1 .
Composing with the complex conjugation, we get an antiholomorphic

transformation K1 := I1, i.e.

K1 : [z0 : · · · : zn] 7→ [z̄n : z̄1 : · · · : z̄n−1 : z̄0]

which is also an isometric involution. The balls B+
1 and B−1 are exchanged

by K1, and the disk D1 is moreover fixed by K1. This transformation will
be called a conversion1.

We deduce a family of inversions Iλ and conversions Kλ defined by con-
jugation

Iλ := HµI1H
−1
µ , Kλ := Iλ,

where µ is any complex number such that |µ|2 = λ. We get the explicit
formula

Iλ : [z0 : · · · : zn] 7→
[zn
λ

: z1 : · · · : zn−1 : λz0
]

Kλ : [z0 : · · · : zn] 7→
[ z̄n
λ

: z̄1 : · · · : z̄n−1 : λz̄0
]

Again Iλ, Kλ are isometric involutions which preserve Dλ and exchange
B±λ . The inversions are holomorphic whereas the conversions are antiholo-
morphic.

Using the isometries Hµ and, say, Iλ, it is clear that the half spaces B+
λ

and B−λ are all isometric. The disks Dλ are all isometric as well.

2.3. The paraboloid model. The function

f = −〈Z,Z〉
4|z0|2

is well defined on Cn+1 \ {z0 = 0} and C∗ invariant. Therefore f can be
seen as a smooth function on CH

n \ {ζ−} and it is a defining function for
the boundary ∂CH

n \ {ζ−}, i.e. f > 0 on CHn and ∂CH
n \ {ζ−} = f−1(0).

By definition of f , it is convenient to use the affine coordinates given by
fixing z0 = −1, so that

f = Re(zn)− 1
4
(
|z1|2 + · · ·+ |zn−1|2

)
.

Thus, we have the model of the Siegel domain

CHn = {(z1, · · · , zn) ∈ Cn|f(z1, · · · , zn) > 0}.
1conversion=con+version, from conjugation and inversion
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Notice that CHn is foliated by paraboloids, namely the level surfaces of f

Pα = f−1(α),

for α > 0 and P0 corresponds to the boundary at infinity of CHn minus
ζ− (the Heisenberg group). These surfaces are horospheres for the complex
hyperbolic metric.

Notice the property
HµPα = Pα|µ|2 .

Hence HµPα converge to the boundary paraboloid as |µ| → 0. We can
regard the complex hyperbolic space as a stack of hyperboloids using the
diffeomorphism

CHn φ−→ (0,∞)× P0

(z1, · · · , zn) 7−→
(
f,
(
z1, · · · , zn−1, zn − f

4

))
.

(2.5)

This diffeomorphism gives us the horospherical coordinates on CHn:(
f + iv = z̄n − 1

4(|z1|2 + · · ·+ |zn−1|2),W = (z1, . . . , zn−1)
)
. (2.6)

Notice that φ induces a diffeomorphism between Pα and {α} × P0.
We express the complex hyperbolic metric using the horospherical coor-

dinates:

gCH =
df2 + η2

0

f2
+
|dW |2

f
,

where

η0 = dv +
1
2
Im(W̄dW ) = dv +

1
2
Im(z̄1dz1 + · · ·+ z̄n−1dzn−1) (2.7)

is the standard invariant contact form on the Heisenberg group, and the
metric |dW |2 = |dz1|2 + · · ·+ |dzn−1|2 is obtained from the contact form and
the complex structure J0 by the formula

|dW |2 = dη0(·, J0·).

Finally it is important to note that − ln f is a potential for the Kähler
form ω0 of CHn:

ω0 = −ddC ln f = −2i∂∂̄ ln f. (2.8)

3. Pregluing

We have reviewed the basics of the complex hyperbolic space, we can
define new complex hyperbolic manifolds via Klein construction. We are now
on a firm ground to introduce the gluing theory inspired by this construction.

3.1. Annulus near a point at infinity. Let X be a complex manifold
endowed with a complex hyperbolic metric g. In other words, X is a quotient
of CHn by a group of isometries. Assume in addition that the induced metric
on X is ACH. Pick a point p at infinity. Since the metric is hyperbolic,
the points p has a neighborhood B1 ⊂ X which is an isometric copy of
B+

1 ⊂ CHn, and p is identified to ζ+ (cf. Section 2.2), via an isometry

ψ : B1 −→ B+
1 .
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Since B+
λ0
⊂ B+

λ1
for 0 < λ0 < λ1, we can define a neighborhood Bλ ⊂ X of

p, by

Bλ := ψ−1(B+
λ ), for 0 < λ < 1.

Given a pair λ = (λ0, λ1) with 0 < λ0 < λ1, we define the annulus

Uλ := B+
λ1
\B+

λ0
.

Notice that the annulus Uλ has boundary Dλ0 . Accordingly we define (pro-
vided λj 6 1)

Vλ := Bλ1 \Bλ0 = ψ−1(Uλ) ⊂ X.

Lemma 3.1.1. Let λk = (λk
0, λ

k
1), (k = 0, 1) be two pairs of positive num-

bers, such that λk
0 < λk

1 (k = 0, 1) and

λ0
0λ

1
1 = λ1

0λ
0
1.

Then the manifold with boundary Uλk are isometric for k = 1, 2. Moreover,

Hµ : Uλ0 → Uλ1

is a particular isometry, for any µ ∈ C such that

|µ|2 =
λ1

0

λ0
0

=
λ1

1

λ0
1

.

Proof. Clear using a hyperbolic isometry as in the lemma. �

Lemma 3.1.2. There exists an inversion Iλ ( resp.a conversion Kλ) which
is an isometry of Uλ and exchanges the boundary components Dλ0 and Dλ1.
In addition the disk D√

λ0λ1
is preserved by this transformation and so if the

function f restricted to this disk.

Proof. By Lemma 3.1.1 there is an isometry

Hµ : Uλ → Uλ′

where

λ′ =

(√
λ0

λ1
,

√
λ1

λ0

)
, |µ|2 = (λ0λ1)−1/2.

Then, the inversion I1 preserves the annulus Uλ′ , the disk D1 and exchanges
the boundary components as wanted. We have H∗

µf = |µ|f and f |D1 is
invariant under I1. In conclusion, the inversion I√λ0λ1

answers the lemma.
We deduce that the conversion K√

λ0λ1
= I√λ0λ1

answers the lemma for the
case of a conversion. �

3.2. ACH metrics. Here we give a more precise technical definition of
ACH metric.
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3.2.1. Definition. As in the introduction, (Y, J) is a CR manifold, with CR
structure defined along a contact distribution with contact form η. The CR
structure is assumed to be strictly pseudoconvex in the sense that γ(·, ·) =
dη(·, J ·) defines a Hermitian metrics along the contact distribution. The
manifoldX has boundary Y , we choose a defining function u of the boundary
and identify a collar neighborhood of Y with Y × [0, T ). Then on this collar
neighborhood we have a model metric

g0 =
du2 + η2

u2
+
γ

u
.

Also we will often use the weight function w =
√
u.

We say that a metric g on X is ACH, with conformal infinity J , if near
the boundary one has

g = g0 + κ, (3.1)
where κ is a symmetric 2-tensor, such that |κ| = O(wδ0), and more generally
all derivatives satisfy |∇kκ| = O(wδ0) for a weight δ0 6 1 which will be
fixed thorough the paper. (Here, all the norms and derivatives are taken
with respect to the metric g0). Actually, we shall use the convenient choice
δ0 = 1, because in an asymptotic expansion of an Einstein metric g with
conformal infinity J , the first correction may occur at order 1 only. This is
made precise in the following statement.

Proposition 3.2.2. Suppose that g is an ACH Einstein metric with con-
formal infinity J , for some weight δ < 1. Then, by a diffeomorphism of X
inducing the identity on Y , one can put g in a gauge where g = g0 + κ and
|∇kκ| = O(w) for all k > 0.

Proof. In dimension 4, a much stronger asymptotic expansion is constructed
in [3, Section 5], and one can take δ0 = 2. In higher dimension, one must
take only δ0 = 1, because the Nijenhuis tensor of J is a first order invariant
and occurs in the correction of g0 at order 1.

We shall not write the proof of the Proposition, which is simpler that the
4-dimensional case proved in [3]. It suffices to put g in a Bianchi gauge with
respect to g0 as in [3, Lemma 4.1], and then to analyze its regularity. �

Example 3.2.3. An important case of ACH metrics is when X is a complex
manifold with strictly pseudoconvex boundary Y . Choose any defining func-
tion u of the boundary, then one can generalize (2.8) in the following way:
the formula

ω = −ddC lnu (3.2)
defines in a neighborhood of the boundary the Kähler form of an ACH metric
on X, with conformal infinity the natural CR structure induced on Y . More
precisely, choosing on Y the contact form η = −dCu and the metric γ =
dη(·, J ·), the metric with Kähler form (3.2) satisfies g = du2+η2

u2 + γ
u +O(u).

The metric is Kähler-Einstein if u satisfies Fefferman’s equation [10]:

det
(
u uk̄

uj ujk̄

)
=
(
− 1

4

)n
.

On the other hand, any Kähler ACH metric ω on X can be written locally
near a point of the boundary as deriving from a potential with the same
leading term: ω = ddC(− ln f +O(wδ0)).
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3.3. Standardisation of the metric near infinity. In this section, we
modify slightly an ACH Einstein metric near a point a infinity, so that the
metric is complex hyperbolic. We show that we can perturb in such a way
that the resulting metric is not far from being Einstein.

3.3.1. The contact structure. Pick a points p in Y . Since contact structure
have no local invariants, there exists a contactomorphism ψ : Wp → Wζ+

identifying a neighborhood Wp ⊂ Y of p to a neighborhood Wζ+ of ζ+ in
the Heisenberg group P0, such that ψ(p) = ζ+. The contact distribution is
preserved by ψ hence

ψ∗η = hη0,

for a certain non vanishing function h. Replacing the contact structure η by
h−1η in a neighborhood of p, we can assume h = 1. Then we extend ψ to a
diffeomorphism ψ between collar neighborhoods of Wp and Wζ+ given by

Ψ(u, y) = (u, ψ(y)).

It follows from the definition that

Ψ∗ĝ =
du2 + η2

0

u2
+
ψ∗γ

u

Hence the metric of X, transported by Ψ to the upper half-space (with
horospherical coordinates), has the form

g := Ψ∗g =
du2 + η2

0

u2
+
γ1

u
+ κ

where κ is a symmetric 2-tensor on CHn such that w−1κ and all its deriva-
tives are bounded with respect to gCH. Moreover γ1 = dη0(·, J1·) for the
compatible almost complex structure J1 = ψ∗J defined along ξ0 = ker η0 in
P0, and we can always assume that the contactomorphism ψ is chosen so
that

J1 = J0 at ζ+. (3.3)

3.3.2. Approximation for the almost complex structure. Let χ(s) be a smooth
non negative increasing function, such χ(s) = 0 for s 6 1

3 and χ(s) = 1 for
s > 2

3 . Given a pair of numbers τ = (τ0, τ1) with 0 < τ0 < τ1, we define the
cut-off function

ϕτ (x) = χ

(
x− τ0
τ1 − τ0

)
,

and we deduce the function

χτ = ϕτ

(∣∣∣∣znz0
∣∣∣∣)

on CHn. By definition χτ = 0 in B+
τ0 and χτ = 1 outside B+

τ1 . Notice that
if (z1, · · · , zn) ∈ P0 then (xz1, · · · , xzn−1, x

2zn) is also in P0. Then we can
define

Jτ (z1, · · · , zn) := J1(χτz1, · · · , χτzn−1, χ
2
τzn). (3.4)

Notice that J1 and J0 were independent of f (or t). Now the family of
almost complex structures Jτ also depends on f . In particular, because of
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the condition (3.3), Jτ is equal to J0 inside B+
τ0 and Jτ is equal to J1 outside

B+
τ1 . We define a family of Carnot-Carathéodory metrics

γτ = dη0(·, Jτ ·)

and the metric γτ is constructed in such a way that it is equal to γ0 in B+
τ0

and γ1 outside B+
τ1 .

Eventually, we can define the Riemannian metrics on CHn

gτ =
du2 + η2

0

u2
+
γτ

u
+ χτκ.

The metric gτ is equal to the complex hyperbolic metric in B+
τ0 (this is the

locus where we will apply the Klein construction later). Outside B+
τ1 it is

equal to the original metric g. Hence the metric Ψ∗gτ on X can be extended
using the original metric g outside Bτ1 . The resulting metric is denoted gτ .
We expect gτ to be a very good approximation of an Einstein metric, in a
sense that will be clarified in the next section.

3.3.3. Integrable case. Here we consider the case where X is a complex man-
ifold with boundary, and the metric g on X is Kähler-Einstein. We want
to perform the same operation as in (3.4), but remaining in the category
of integrable complex structures and Kähler metrics, so we need a refined
method. There are two steps: gluing the complex structures, and then the
metrics. Therefore we need to fix an intermediate τ2 ∈]τ0, τ1[, for example
τ2 =

√
τ0τ1, and we set τ ′ = (τ0, τ2) and τ ′′ = (τ2, τ1).

We choose complex coordinates z = (zi) near the point p in X, so that Y
is given by a defining function u(z). Using the normal form of Chern and
Moser [7], we can suppose that

u(z) = f(z) +O(|W |4), (3.5)

where f(z) = Rezn− 1
4 |W |2 is the defining function for the half-space model.

Actually if the boundary Y is not 3-dimensional, then one can obtain

u(z) = f(z) +O(|W |6). (3.6)

Now, instead of gluing the almost complex structures, we glue the defining
functions of X and CHn in the normal complex coordinates, choosing

uτ = (1− χτ ′)f + χτ ′u. (3.7)

Still in the coordinates (zi), the domains Xτ := {uτ > 0} give us a fam-
ily of complex domains coinciding with the Siegel domain in B+

τ0 and with
X outside B+

τ2 ⊂ B+
τ1 and there is a natural family of integrable complex

structures Jτ on Xτ .
We now wish to define a Kähler metric on (X,Jτ ), which coincides with

the complex hyperbolic metric on B+
τ0 and with the metric of X outside B+

τ1 .
First remember from (2.8) that the function ϕ0 = − ln f is a potential for the
complex hyperbolic metric. On the other hand, the metric g on X (seen in
the same complex coordinates) admits a local potential ϕ = − lnu+O(w),
see example 3.2.3. The solution of the problem is therefore simple: again by
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example 3.2.3, the function − lnuτ is a potential for a local Kähler metric
on Xτ , so we can consider the modified potential

ϕτ = − lnuτ + χτ ′′(ϕ+ lnu),

which coincides with ϕ0 in B+
τ0 and is equal to ϕ outside B+

τ1 . This potential
defines an ACH Kähler metric on (X, Jτ ) by

ωτ = ddC
Jτ
ϕτ .

This metric coincides with the complex hyperbolic metric in B+
τ0 and with

g outside B+
τ1 .

3.4. Estimates. The perturbed metrics gτ are not Einstein any more. How-
ever they are good approximate Einstein metrics in a sense made precise in
the following Proposition.

Proposition 3.4.1. Let c be a constant with c > 1. There exists a constant
C > 0, depending only on the metric g and c, such that for any pair of
numbers τ = (τ0, τ1) with 0 < τ0 < τ1 and cτ0 6 τ1, the metric gτ verifies

|gτ − gCH| 6 Cτ
1/2
1 and |Ricgτ +

n+ 1
2

gτ | 6 Cw

on the annulus Uτ (the norm being taken w.r.t. the metric gCH). A similar
statement holds for derivatives of higher order.

The construction carried out in Section 3.3.2 uses annuli Uτ which get
smaller and smaller in the sense that τ = (τ0, τ1) with τj → 0. It is conve-
nient for computations to “resize” Uτ : pick a transformation Hµ, for some
complex number µ such that |µ|2 = τ1, for instance H√

τ1 . Then

Hµ : Uτ ′ → Uτ where τ ′ := (τ0/τ1, 1).

Notice that the assumption of Proposition 3.4.1 means that τ0/τ1 is bounded
away from 1, so that the annulus Uτ ′ cannot be too “thin”.

The hyperbolic transformation acts in the half space model by scaling the
coordinates:

H√
τ1(z1, · · · , zn) = (

√
τ1z1, · · · ,

√
τ1zn−1, τ1zn). (3.8)

Hence the hyperbolic transformation acts on the paraboloid at infinity P0

by scaling the coordinates as above. The boundary at infinity of B+
τ is given

by ∂∞B+
τ := B

+
τ ∩ P0, which is the open set

∂∞B
+
τ = {(z1, · · · , zn)|f(z1, · · · , zn) = 0 and |zn| < τ}.

In particular

(z1, · · · , zn) ∈ ∂∞B+
τ ⇒
|zn| < τ and |zj | < 2

√
τ for j = 1, · · · , n− 1. (3.9)

From this observation, we deduce the following lemma:

Lemma 3.4.2. Let J1 be an almost complex structure defined on the stan-
dard contact distribution ξ0 of P0 and let J0 be the standard CR structure.
Assume that J0 = J1 at ζ+. Then there are a constants Ck > 0 such that
for every 0 < τ < 1

|Tτ | 6 C0τ
1/2 in ∂∞B

+
1
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where
Tτ = H∗√

τJ1 − J0

and the norm is taken w.r.t the standard metric induced by Cn. In the case
of derivatives, we have

|∇kTτ | 6 Ckτ
k/2 in ∂∞B

+
1 .

Proof. Notice that the standard CR-structure is invariant under hyperbolic
isometries. In particular H∗√

τ
J0 = J0. So the first part of the lemma follows

from the fact that Aτ = 0 at ζ+ and (3.9). The second part is a consequence
of the fact that the derivatives of J1 − J0 are bounded in a neighborhood of
ζ+ and the Leibniz rule applied to Tτ in view of (3.8). �

The above lemma can be generalized readily generalized as follows:

Lemma 3.4.3. Let Jτ be the family of almost complex structures defined at
3.4. Suppose that cτ0 6 τ1 as in Proposition 3.4.1. Then, there are constants
Ck > 0 (independent of τ) such that

|Tτ | 6 C0τ
1/2
1 , and |∇kTτ | 6 Ckτ

k/2
1 for k > 1 (3.10)

in B+
1 , where

Tτ = H∗√
τ1
Jτ − J0

and the norm is taken w.r.t the standard metric induced by Cn. �

Proof of Proposition 3.4.1. First note that the term κ gives a perturbation
which is uniformly bounded by w, so we can assume that κ = 0 and deal
with the perturbation of γ0.

The first part of the Proposition is a direct consequence of Lemma 3.4.3.
If we pull back the metric gτ on B+

1 thanks to a hyperbolic transformation,
the Carnot-Carathéodory metric is commensurate with the standard γ0 us-
ing (3.10). We deduce that |H∗√

τ1
gτ −gCH| is controlled by τ1/2

1 . Derivatives

of order k are controlled by τk/2
1 . Since Hµ is an isometry of gCH the same

control holds for gτ − gCH.
We consider the vector fields

X0 = u∂u

X1 = R

Xj ∈ ξ0
where R is the Reeb vector field defined by η0(R) = 1 and ιRdη0 = 0,
and Xj is an orthonormal basis of ξ0 with respect to the metric γ0 for j =
2, · · · , 2n− 2. Then, we have an orthonormal frame for gCH given by

Y0 = X0, Y1 = uX1 and Yj =
√
uXj for j > 2.

According to Lemma 3.4.3, there exist perturbations X̃j of the vector fields
Xj for j > 2, so that: X̃j is an orthonormal frame for γτ and the pointwise
norm of H∗√

τ1
(X̃j − Xj) is controlled by τ1/2

1 . Using X0,X1, X̃2, · · · , X̃2n−2,

we define the orthonormal frame Ỹj for gτ similarly to Yj .
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Lemma 3.4.4. We have the following identities

[Ỹ0, Ỹ1] = −2Ỹ1 (3.11)

[Ỹ0, Ỹj ] = −Ỹj +O(w) for j > 2, (3.12)

[Ỹ1, Ỹj ] = O(w) for j > 1, (3.13)

[Ỹi, Ỹj ] = dη0(X̃i, X̃j)Ỹ1 +O(w) for i, j > 2. (3.14)

where O(w) is a tensor which decays as w w.r.t. the metric gτ and involves
a uniform constant, independent of τ1.

Proof. The idea is the following: pull back the metric gτ and all the vector
fields using the hyperbolic isometry H = H√

τ1 . For j > 2, we have

[H∗Y0,H
∗(Ỹj − Yj)] = [u∂u, wH

∗(X̃j − Xj)]

=
1
2
wH∗(X̃j − Xj) + w[u∂u,H

∗(X̃j − Xj)].

Using the control by
√
τ1 on H∗(X̃j − Xj), we deduce that

[H∗Y0,H
∗(Ỹj − Yj)] = O(

√
τ1w).

But (
√
τ1w) ◦H = w, hence we have the control

[Y0, (Ỹj − Yj)] = O(w).

Since [Y0,Yj ] = −Yj for j > 2, we deduce the identity (3.12). The other
identities are proved in the same manner. �

The Proposition is now deduced from the above lemma using the same
computation as in [2, Section I.1.B]. �

3.5. The Klein construction. Given a ACH Einstein manifold (X, g), we
pick two points p0, p1 which belong to the boundary Y = ∂X. A modifi-
cation of the metric in a neighborhood of one point p ∈ Y was defined at
Section 3.3. We perform the same operation near both points p0 and p1,
and call the resulting metric gτ as well. The parameters of the construction
at pj are denoted (τ j

0 , τ
j
1 ). We call Bτ (pj) ⊂ X the neighborhood of pj and

V
(τj

0 ,τj
1 )

(pj) the annular regions near pj (defined as in Section 3.3). By con-
struction, the restriction of gτ to B

τj
0
(pj) is isometric to the neighborhood

B+

τj
0

⊂ CHn of ζ+.

From now on, we fix arbitrarily (for instance)

τ j
0 = τ j

1/2, (3.15)

so that we can apply Proposition 3.4.1 to the metrics gτ . We choose addi-
tional parameters λj

0 and λj
1 such that

0 < λj
0 < λj

1 < τ j
0 < τ j

1 < 1, (3.16)

and

K2 =
λ0

1

λ0
0

=
λ1

1

λ1
0

. (3.17)
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The condition (3.16) implies that the restriction of gτ to the annulus
V

(λj
0,λj

1)
(pj) is an isometric copy of U

(λj
0,λj

1)
(pj) ⊂ CH2. Moreover, the con-

dition (3.17) ensures that the annuli V
(λj

0,λj
1)

(pj) are isometric for j = 0, 1.
The Klein construction close to p0 and p1 consists in the following operation:
we consider the manifold with boundary

X̃ = X \ (Bλ0
0
(p0) ∪Bλ1

0
(p1)).

A neighborhood of the boundary of X̃ is given by the annuli V
(λj

0,λj
1)

(pj),
which are identified via an inversion I. Then, we define the closed manifold

X]
τ = X̃/I

and call g]
τ , the resulting metric on X]

τ . The boundary Y ] := ∂X
]
τ has an

induced CR structure J ]
τ since the identification I is holomorphic. Notice

that the metric g]
τ is by construction ACH with conformal infinity (Y ], J ]

τ ).
A similar construction can be done by using a conversion K rather than

an inversion, and we put
X[

τ = X̃/K.

Notice that the gluing parameter τ consists now of 8 variables (λj
i , τ

j
i )i,j=0,1

verifying the constraints (3.15),(3.16) and (3.17). It is convenient to use the
notation

τ → 0

for a family of parameters τ such that all coefficients λj
i → 0, τ j

i → 0. We
illustrate our construction in Figure 1.
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Figure 1. 1-handle attachment

The construction of X]
τ is represented in a schematic way. The neighbor-

hoods of p0 and p1 are pictured on the left and on the right. On each side,
the striped annulus correspond to the parameters λj

i ; this is the region where
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the metric g is altered. Inside the striped shell, the metric is isometric to the
complex hyperbolic metric. The gray part is the neighborhood of p which is
deleted. The squared part is isometric to the region of CHn pictured in the
middle, which represents the handle addition, and comes with an isometric
inversion as suggested by the line.

Remark 3.5.1. It will be important in the gluing technique, in particular for
Proposition 4.3.2 to impose that the ratio λj

1/λ
j
0 goes to infinity. It means

that in the above picture, the squared annulus is close to be the entire ball,
namely the complex hyperbolic plane itself. So we impose from now on

λj
0 = (λj

1)
2. (3.18)

The manifold X]
τ contains essentially two pieces:

• Zτ ⊂ X]
τ is the closed set defined by X \ (Bλ0

1
(p0) ∪Bλ1

1
(p1)),

• Wτ is given by the identified copies of the annuli V
(λj

0,λj
1)

(pj).

In other words, Zτ is the set of points not in the squared region, whereas
Wτ is the squared region. Notice that we can either consider Zτ ⊂ X]

τ or
Zτ ∈ X.

Remark 3.5.2. Topologically, X] is obtained by a 1-handle addition and does
not depend on the choice of parameters. However, the metric g]

τ depends
on the ratio λ0

0/λ
1
0. Moreover, there is an extra S1 × U(n − 1)-freedom for

identifying the annuli. To see that, one needs to replace the identity block
In−1 in Hµ by a unitary matrix an µ with µeiθ.

Remark 3.5.3. If X is complex hyperbolic and ACH, the Klein construction
X]

τ produces another ACH complex hyperbolic manifold, whereas X[
τ pro-

duces an ACH locally complex hyperbolic manifold, in the sense that the
compatible complex structure is only locally defined.

The geometry of the metrics g]
τ is uniform, in the following sense.

Lemma 3.5.4. The injectivity radius of the metrics g]
τ are bounded below

by a constant ρ > 0 which does not depend on τ . Moreover, one can cover
Xτ by balls of radius ρ such that, in each ball, one can write g]

τ = (g]
τ )ij with

1
c0

∑
(dxi)2 6 g]

τ 6 c0
∑

(dxi)2, (3.19)

and
|∇kg]

τ | 6 ck, (3.20)
and the constants ci do not depend on the ball or on τ .

Proof. If we do not take off the two balls about p0 and p1 and identify the
annuli at the boundary as in Section 3.5 it is natural to consider the family
of metrics g]

τ as being defined on X.
Let p 6= p0, p1 be a point at infinity. By construction, the metric g]

τ is
equal to g on small enough neighborhood of p provided τ is small enough.
One can use the fact that the metric g is ACH as in [2, Section I.3] to show
that the metric g is Ck commensurate with the complex hyperbolic metric
on such neighborhood. In a neighborhood of p0 or p1, Lemma 3.4.1 shows
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that the metric g]
τ is C2-commensurate with the complex hyperbolic metric,

with uniform constant (i.e. independent of τ provided it is small enough). It
follows that the metric g]

τ on X has injectivity radius injX bounded below,
and that it can be covered by a countable collection of open sets Bl, which
are identified to the complex hyperbolic ball B(0, ε) of radius ε. In addition,
the pullback of g]

τ on Bε is Ck-commensurate (with constants independent
of l and τ) with the complex hyperbolic metric. In particular, we have the
properties (3.19) and (3.20) on Bl.

So the only thing left to do, is to show that we can use the balls Bl to
cover X]

τ . For that we must discard sufficiently many balls. It is easy to
check that the subfamily Bl indexed by

{l |Bl ⊂ X̃τ = X \ (Bλ0
0
(p0) ∪Bλ1

0
(p1))}

covers X]
τ for all τ sufficiently small, and that the restriction of the canonical

projection from each ball to X]
τ is an embedding. Therefore the injectivity

radius of X]
τ is uniformly bounded below and we have the uniform controls

(3.19) and (3.20) on each ball. �

3.6. Weight functions. It is important to define suitable weight functions
on X], because weighted Hölder spaces play an essential role in the defor-
mation theory for ACH Einstein metrics (cf. [2]).

In Section 3.3, we constructed a particular coordinate system near pj ∈
∂X. A neighborhood Bc(pj) of pj is identified via these coordinates to
B+

c ⊂ CHn for some ε > 0. On B+
c , we have a particular function given

by f . This is a defining function for the boundary near pj . We can always
extend f into a smooth function on X which is a defining function for the
boundary Y . We denote such an extension f as well.

As we see in the definition of an ACH metric, the weight function

w =
√
f (3.21)

on X, plays an important role in the analysis.
Then, we ought to explain what is a suitable (sequence) of weight func-

tions on the surgered manifold X]. We begin by defining a special function
f̂ on CHn which is a smoothing of the function f |B+

1
extended on the other

side B−1 by asking that it is invariant under the inversion I1. In horospherical
coordinates (u, v,W ), one has

I∗1u =
u

(u+ 1
4 |W |2)2 + v2

,

D1 = ∂B+
1 has equation (u+ 1

4 |W |2)2 + v2 = 1, and I−1
1 (Dλ) = Dλ−1 so the

solution is easy: we define

f̂ = u$
(
(u+ 1

4 |W |2)2 + v2
)
, (3.22)

where $ is a smooth decreasing function so that $(x) = 1 for x 6 1 − ε

and $(x) = 1
x for x > 1 + ε. Replacing f̂ by f̂ + K∗

1 f̂ , we can arrange f̂
so that it is invariant under the inversion. Note that f̂ is a smooth defining
function for CHn.
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Now pass to the weight function. We start from w =
√
f that was just

defined on X. Given parameters τ = (λj
i , τ

i
j) small enough, verifying the

compatibility conditions (3.15),(3.16) and (3.17), we can define the manifold
X]

τ as explained in Section 3.5. We start by taking of two balls B
λj
0
(pj) and

we identify isometrically the annuli V
(λj

0,λj
1)

(p). We examine more closely
how the weight function is transported via this isometry. We can actually
identify each annulus to a reference annulus U(1/K,K) ⊂ CHn. In the case
of p0, we have an isometry

Hp0 : U(1/K,K) → V(λ0
0,λ0

1)(p0)

and we see that H∗
p0

(f) = (λ0
0λ

0
1)
−1/2f . Similarly, there is an isometry Hp1

for the other point and H∗
p1

(f) = (λ1
0λ

1
1)
−1/2f . Now, we add the condition

λ0
0λ

0
1 = λ1

0λ
1
1

which, together with the previous compatibility conditions implies

λ0
i = λ1

i for i = 0, 1.

We want to glue together the two functions H∗
pi
f on U(1/K,K). The solu-

tion is to replace both functions by (λ0
0λ

0
1)
−1/2f̂ , which indeed coincides with

H∗
p0
f (resp. H∗

p1
f) on B+

1−ε (resp. B−1−ε). We denote by f ] the resulting
function on X], and we can define the weight function on X]

τ

w] =
√
f ].

The usefulness of w] as a weight for all metrics g]
τ comes from the fact that

it does not vary too quickly:

Lemma 3.6.1. There is a fixed constant c such that for any τ one has

sup
X]

τ

|∇ lnw]| 6 c.

Proof. This is easy to check in each region coming in the definition of w]. �

4. Gluing

Starting from an ACH Einstein manifold (X, g), we have constructed a
family of approximately ACH Einstein metrics g]

τ on the manifold X] (or
X[) obtained by adding one handle toX. We are going to show that, modulo
the vanishing of a certain obstruction, one can perturb g]

τ in order to get a
true Einstein metric.

4.1. Recollection of deformation theory. The deformation theory for
asymptotically symmetric metrics can be found in [2]. For be a Riemannian
metric h on X, put

Φg(h) = Rich +
n+ 1

2
h+ (δh)∗(δgh+

1
2
dtrgh).

It is shown in [2] that, provided Rich < 0 and |δgh− 1
2dtr

gh| → 0,

Φg(h) = 0 ⇔
{

Rich +n+1
2 h = 0

δgh+ 1
2dtr

gh = 0
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The first equation is of course the Einstein equation, and the other one is
interpreted a gauge condition. Indeed, up to the action of a diffeomorphism,
one can always assume that δgh+ 1

2dtr
gh = 0 for Riemannian metrics close

enough to g.
The differential of the operator Φg at the metric g is given by

dgΦgḣ = 1
2(∇g)∗∇gḣ−

◦
Rg ḣ

+ 1
2(Ricg ◦ḣ+ ḣ ◦ Ricg) + n+1

2 ḣ,

where the action of the curvature R on symmetric 2-tensors is given by

(
◦
Rḣ)u,v =

∑
ḣ(Rei,uv, ei)

for an orthonormal basis (ei) of TX. If g is Einstein, we have the identity

1
2(Ricg ◦ḣ+ ḣ ◦ Ricg) + n+1

2 ḣ = 0.

We are interested in the linearization of the equation Φg]
τ (h) = 0 at h = g]

τ ,
which gives a formally self-adjoint operator. We will denote it by

Lτ = d
g]

τ
Φg]

τ .

4.2. Linear theory. The Hölder spaces Ck,α
δ := (w])δCk,α for functions

and more generally for tensors on X]
τ are endowed with their usual norms.

From the uniform geometry stated in Lemma 3.5.4 and Lemma 3.6.1, one
deduces immediately:

Lemma 4.2.1. There exist a constant c, depending on k and δ, such that
for any τ , one has the uniform local elliptic estimate

‖ḣ‖
Ck+2,α

δ
6 c(‖ḣ‖C0

δ
+ ‖Lτ ḣ‖Ck,α

δ
)

‖ḣ‖
C1,α

δ
6 c(‖ḣ‖C0

δ
+ ‖Lτ ḣ‖C0

δ
)

�

Of course, one can also define Sobolev spaces. Morally, the L2 functions
on X]

τ are the one decaying at least as (w])n. For compatibility of notations,
we define

L2,k
δ := (w])δ−nL2,k.

Notice that with our notations, we have L2,k = L2,k
n , and C0

δ ⊂ L2
δ′ as soon

as δ′ < δ. We shall need the following lemma for weights on the complex
hyperbolic space itself.

Lemma 4.2.2. On CHn, the horospherical function f satisfies f δ/2 ∈ L2
δ′

for any δ′ < δ such that δ+δ′ < n. The function f̂ defined in (3.22) satisfies
the same property.

Proof. It is a simple calculation. �
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4.3. Linear inverse. The analysis on asymptotically symmetric spaces is
developed in [2] and we extract the following theorem.

Theorem 4.3.1 ([2]). The operators

Lτ : Ck+2,α
δ (X]

τ ) → Ck,α
δ (X]

τ )

Lτ : L2,k+2
δ (X]

τ ) → L2,k
δ (X]

τ )

are Fredholm for 0 < δ < 2n. Moreover, their kernel (and cokernel) do not
depend on δ, and are identified to the L2-kernel (and cokernel) of Lτ .

Recall that the compatibility conditions (3.15), (3.16), (3.17) and (3.18)
for the gluing parameter τ = (λj

k, τ
j
k) can be summarized by 0 < λj

0 < λj
1 < τ j

0 < τ j
1 < 1

τ j
0 = τ j

1/2, and λj
0 = (λj

1)
2

λ0
k = λ1

k

for j, k = 0, 1. (4.1)

We will now prove the following key Proposition.

Proposition 4.3.2. Assume that the operator Lg on X has trivial L2-kernel.
Given δ ∈ (0, n) and α ∈ (0, 1), there exists a constant C > 0 such that for
all τ small enough, verifying the compatibility conditions (4.1), we have

C‖ḣ‖
C2,α

δ
6 ‖Lτ ḣ‖C0,α

δ
∀ḣ ∈ C2,α

δ (X]
τ ).

The proposition may be true also for n 6 δ < 2n, but we do not need
that since our weight δ is small. The limitation comes from lemma 4.2.2.

The proof by contradiction of this kind of statement in surgery construc-
tions follows a classical scheme. The real case is done in [12], which we adapt
here to the complex case. We give sufficient details, since this is the main
technical step for the proof.

Proof. By Lemma 4.2.1, it is sufficient to prove the existence of a uniform
constant C such that

C‖ḣ‖C0
δ

6 ‖Lτ ḣ‖C0
δ

∀ḣ ∈ C2,α
δ (X]

τ ).

Assume that the proposition is not true. Then, there are sequences τ i veri-
fying (4.1) and hi such that

τ i → 0, ‖hi‖C0
δ

= 1, ‖Lτ i
hi‖C0

δ
= εi → 0. (4.2)

Let xi ∈ X]
τ i

be a point at which |(w])−δ(xi)hi(xi)| = 1. (If xi is on the
boundary then choose an interior point such that |(w])−δ(xi)hi(xi)| → 1).
Up to extraction of a subsequence, there are basically two cases:

(1) xi converges to an interior point of X or the glued CHn (the limit
of the Wτ i

), then we extract a nonzero solution h of Lh = 0 on X
or CHn and prove that it cannot exist;

(2) xi converges to a boundary point, then there is a sequence of balls
around xi, with radius going to infinity, which converge to CHn:
again we extract a nonzero solution of Lh = 0 on CHn and prove
that it cannot exist.
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Let us see that in detail.
In the first case, if the point xi converges to an interior point x ∈ X, then

on every compact of X we extract hi → h, weakly in C1,α and strongly in
C0. The bounds |hi| 6 (w])δ and |Lτ i

hi| 6 εi(w])δ give at the limit on X
the conditions

Lgh = 0, |h(x)| = w(x)δ, h ∈ C0
δ .

According to Lemma 4.2.2, the function w(x)δ is in L2
δ′ for δ′ > 0 very small.

Hence we have h(x) ∈ L2
δ′ as well. By assumption the L2 kernel of Lg is

reduced to 0, thus we get a contradiction by Theorem 4.3.1.
Still in the first case, if the point xi converges to a point x of the limiting

CHn = limWτ i
, then on Wτ i

(seen as a standard annulus U(1/Ki,Ki) inside
CHn) the weight w] coincides with µif̂

1/2 for constants µi →∞, so that we
get the bounds

|µ−δ
i hi| 6 f̂ δ/2 and |µ−δ

i Lτ i
hi| 6 εif̂

δ/2. (4.3)

Again, we extract µ−δ
i hi → h on CHn which is a nonzero solution of Lh = 0

on CHn with the bound |h| 6 f̂ δ/2. By Lemma 4.2.2, one has h ∈ L2
δ′ for

δ′ < δ, but L on CHn has no kernel in L2
δ′ , so we get the contradiction.

In the second case, the idea is to extract (rescaled) hi on larger and larger
balls converging to CHn, but we must see how the weight is transformed.
First consider the case where xi goes to a point p ∈ ∂X which is different
from p0 and p1. As in Section 3.3, we can use horospherical coordinates
(u, v,W ) near p, and the weight w] gets mutually bounded with

√
u. Remind

that in this model we have Dα = ∂B+
α = {(u+ 1

4 |W |2)2 + v2 = α2}. Define
αi → 0 so that xi ∈ Dαi , and, still in horospherical coordinates, pullback
all the structure to B+

α−1
i

by the parabolic dilation Hi = H√
αi

, which sends

Bα−1
i

(resp. B+
1 ) to B+

1 (resp. B+
αi

). Then H∗
i u = αiu and yi = H∗

i xi ∈ D1.

Therefore the sequence ki = α−δ
i H∗

i hi on B+

α−1
i

satisfies

|ki| 6 uδ/2, |LH∗
i gτi

ki| 6 εiu
δ/2, |ki(yi)| = u(yi)δ/2,

where yi = H−1
i (xi) ∈ D1 and H∗

i gτ i
goes to the standard metric on CHn.

If yi has a limit in the interior of D1, we extract from (ki) a nonzero limit
k such that Lk = 0 and |k| 6 uδ/2, therefore k ∈ L2

δ′ for δ′ < δ which
is a contradiction. If again yi ∈ ∂B+

1 goes to the boundary of CHn, we
reproduce the same process of extraction using dilations from the limit point
of yi, but the difference is now that the pullbacked points of yi will remain
in a compact part of CHn and we can conclude in the same way. (One could
avoid this double extraction by making a more clever choice of the center of
the dilation).

The last case is when xi tends to p0 or p1. Let us see that more precisely.
We see xi as a point in X̂τ = X \

⋃
k=0,1B

√
λ0λ1

(pk). Here one must be
careful that λ0 and λ1 also depend on i, but we shall omit this dependence.
For example, suppose that we are in the case xi → p0. We identify a small
half ball near p0 with some B+

c in CHn, as in Section 3. If xi is outside the
ball B+

λ1
, then it is outside the region where the gluing is performed, and we

can conclude as above. Suppose on the contrary that xi belongs to the region



22 OLIVIER BIQUARD AND YANN ROLLIN

B+
λ1
− B+√

λ0λ1
. Then identify this region with an annulus U(1/Ki,1) ⊂ CHn,

with metric converging to the complex hyperbolic metric. The weight w]
τ i

becomes µif̂
1/2 for constants µi →∞. So one can again conclude as in the

beginning of the proof, distinguishing whether xi converges to an interior
point or a boundary point of CHn. �

4.4. Gluing Einstein metrics. Here is the technical version of Theorem A
in the Einstein case for k = 1. The case k ∈ N is a trivial generalization
making multiple 1-handle surgeries, or by using iteratively Theorem 4.4.1
together with Proposition 4.5.4.

Theorem 4.4.1. Fix a weight δ < 1. Let (X, g) be an ACH Einstein man-
ifold with kerL2 Lg = 0 and let g]

τ be the sequence of approximate Einstein
metrics on X]. Then, given α > 0 small enough, the equation Φg]

τ (g]
τ +h) =

0 has a unique solution such that ‖h‖
C2,α

δ
6 α, for all τ small enough. In

particular g]
τ +h is an ACH Einstein metric with conformal infinity (Y ], J ]

τ ).
A similar statement holds if one replaces X] with X[.

Proof. The proof of this result is standard in gluing theory. It is deduced
immediately from an effective version of the contraction mapping theorem
and Proposition 4.3.2. �

Remark 4.4.2. We apparently lost regularity in the theorem, since we started
from an ACH Einstein metric with weight δ0 = 1, and we end with a slightly
smaller weight δ < 1. This is an artefact of the proof, and comes from the
fact that we used only a rough approximate solution of the Einstein equation
near the boundary. Nevertheless, the regularity can be regained a posteriori
by applying Proposition 3.2.2.

Now pass to the Kähler-Einstein case. We have seen in section 3.3.3 that
if X is Kähler, then one can make the surgery so that g]

τ remains an ACH
Kähler metric on the complex manifold (X]

τ , Jτ ). Moreover, by Proposition
3.4.1, the metrics g]

τ are not far from being Kähler-Einstein, in particular
have negative Ricci. It then follows from [6] that there exists on (X]

τ , Jτ ) a
complete ACH Kähler-Einstein metric. One deduces immediately

Theorem 4.4.3. If (X, g) is an ACH Kähler-Einstein manifold, then for
all τ small enough, (X], Jτ ) admits an ACH Kähler-Einstein metric.

Remark 4.4.4. Instead of using Cheng-Yau’s theorem, one can of course
prove directly this result: the idea is to keep the complex structure and con-
sider Kähler deformations of the approximate Kähler-Einstein metric com-
patible with the given complex structure. Hence we are using Proposition
4.3.2 restricted to Hermitian symmetric 2-tensors. This gluing problem is
now automatically unobstructed by Proposition 4.5.2 (cf. below).

We point out that this construction can be carried out in a similar way
in the case of X[

τ . The only difference is that the complex structure Jτ

is now defined only up to sign. However the decomposition in Hermitian
and skew-Hermitian tensors still makes sense. Thus, we get the following
theorem.
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Theorem 4.4.5. If (X, g) is an ACH Kähler-Einstein manifold, then for
all τ small enough, (X[,±Jτ ) admits a locally ACH Kähler-Einstein metric.

Remark 4.4.6. The examples of ACH Einstein manifolds produced by The-
orem 4.4.5 are not complex. However they admit a double cover which is
ACH Kähler-Einstein. Notice moreover that if the complex dimension n of
X is even, then X[ is oriented, whereas if n is odd then X[ is non orientable.

4.5. Obstruction. In this section, we show that the gluing Theorem 4.4.1
can be used for a large class of ACH Einstein manifolds, and in particular
prove Proposition B. The only assumption for the gluing is the vanishing of
the obstruction.

In [2], the following result is proved thanks to a Weitzenböck formula:

Proposition 4.5.1. If g is an ACH (or AH) Einstein metric with negative
sectional curvature, then kerL2 Lg = 0.

In particular, this proposition applies to the case of the real and complex
hyperbolic space. More generally it shows that any Klein construction (for
the real or complex case) gives an unobstructed Einstein metric.

The other vanishing result concerns Kähler-Einstein metrics. All strictly
pseudoconvex domains of Cn admits an ACH Kähler-Einstein metric, the
Cheng-Yau metric. The following result shows that they are unobstructed
for gluing.

Proposition 4.5.2. Let (g, J) be an ACH Kähler-Einstein metric. Then
kerLg is identified to infinitesimal complex deformations which leave the CR
boundary invariant, in other words, to the compactly supported cohomology
group H1

c (X,TX).

Proof. The argument is adapted from [1, p. 362-363], so we will be brief.
Decompose a solution h of the equation Lh = 0 into its Hermitian part hH

and skew-Hermitian part hS . It turns out that the operator L = ∇∗∇− 2
◦
R

respects this splitting, so that we get

LhH = 0 and LhS = 0. (4.4)

A Hermitian symmetric 2-tensor is the same as a (1,1)-form, and L is
related to the De Rham Laplacian on (1,1)-forms by the formula

L = ∆− s

n
on Ω1,1

which obviously has trivial L2-kernel since s < 0.
On the other hand, a skew-Hermitian symmetric 2-tensor can be iden-

tified with a real symmetric endomorphism φ which anticommutes with J .
Alternatively, φ may be considered as a T 1,0-valued (0,1)-form. Now, the
operator L is related to the ∂̄ operator by the formula

Lh = (∂̄∗∂̄ + ∂̄∂̄∗)φ (4.5)

so that a L2-solution of Lh = 0 corresponds to a solution of

∂̄φ = ∂̄∗φ = 0.
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It follows that φ represents a symmetric infinitesimal deformation of the
complex structure. On the other hand, any infinitesimal complex deforma-
tion of the complex structure of a Kähler-Einstein manifold with negative
scalar curvature must be symmetric (see [8, Theorem 3.1]), and the propo-
sition is proved. �

Our last vanishing result is about dimension 4. In that case, the metric g
may be self-dual. Then one has:

Proposition 4.5.3. If (X4, g) is an ACH (or AH) self-dual Einstein man-
ifold, then kerL2 Lg = 0.

Proof. We have to prove that there is no L2 solution of the equation

Lh =
1
2
∇∗∇h−

◦
Rh = 0.

On the trace part, we get
1
2
∆ trh− s

4
trh = 0,

which implies trh = 0 since s < 0. Therefore we are reduced to trace free
2-tensors h. In dimension 4, there is an isomorphism

Ω2
+X ⊗ Ω2

−X
∼−→ S2

0T
∗X,

obtained by sending ω+ ⊗ ω− to the 2-tensor

(ω+ω−)u,v = 〈ω+(u), ω+(v)〉.
(Here we identify 2-forms with skew-Hermitian endomorphisms, by sending
u∧v to the morphism w 7→ 〈u,w〉v−〈v, w〉u). The advantage is to introduce
the exterior differential

d+ : Ω1X ⊗ Ω2
−X −→ Ω2

+X ⊗ Ω2
−X,

and we shall compare L with the Laplacian d+d
∗
+.

Claim. If the metric is Einstein, then on trace free symmetric 2-tensors, one
has

1
2
∇∗∇−

◦
R = d+d

∗
+ −

◦
W− −

s

12
. (4.6)

The proposition follows immediately from the claim: if the metric is self-
dual, then W− = 0, and since s < 0, a solution of Lh = 0 must vanish.

There remains to prove the claim. One has the Weitzenböck formula on
self-dual 2-forms with values in a bundle E with connection [4]:

2d+d
∗
+ = ∇∗∇+

s

3
− 2W+ + RE

+,

where W+ is the Weyl curvature operator acting on 2-forms, and RE
+ denotes

some action of the self-dual part of the curvature of E. Here, remark that
E = Ω2

− is anti-self-dual because the metric is Einstein, so that this term
disappears. From the decomposition (still on trace free tensors)

◦
R = − s

12
+

◦
W+ +

◦
W−,

we deduce
1
2
∇∗∇−

◦
R = d+d

∗
+ −

s

12
−

◦
W− + (W+ −

◦
W+),
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so the claim is reduced to proving that W+ =
◦
W+ on trace free 2-tensors.

There is only one possible action of self-dual Weyl type tensors on trace

free 2-tensors, so there is a constant α such that W+ = α
◦
W+ on S2

0T
∗X.

In order to calculate α, it is sufficient to calculate an example. Let us
look at a 4-dimensional Kähler manifold, with Kähler form ω, and constant
holomorphic sectional curvature (e.g. CH2). On one hand, one has

W+(ω) =
s

6
ω.

On the other hand, complete the Kähler form ω = ω1 into an orthogonal
basis (ω1, ω2, ω3) of Ω2

+ with |ωi| =
√

2. In this basis, the Weyl tensor is
diagonal with eigenvalues

λ1 =
s

6
, λ2 = λ3 = − s

12
.

For any ξ ∈ Ω2
−, we wish to calculate

◦
W+(ωξ)u,v =

4∑
i=1

〈ωW+
ei,uv, ξei〉

= −1
2

4∑
i=1

3∑
j=1

λj(ωj)ei,u〈Jωjv, ξei〉

=
1
2

3∑
j=1

λj〈Jωjv, ξωju〉

= −1
2

3∑
j=1

λj〈ωjJωjv, ξu〉

=
1
2
(λ1 − λ2 − λ3)〈Jv, ξu〉

=
s

6
(ωξ)u,v.

Therefore
◦
W+(ωξ) =

s

6
ωξ

and α = 1, which concludes the proof of the claim. �

Finally we check that one can continue the surgeries with the metrics that
we construct.

Proposition 4.5.4. The metrics obtained in Theorem 4.4.1 or 4.4.3 by
surgery from an unobstructed metric are unobstructed for τ small enough.

Proof. In the case of ACH Kähler-Einstein metric, we obtain an ACH Käh-
ler-Einstein metric by Theorem 4.4.3 and the resulting metric is automati-
cally unobstructed by Proposition B.

Let gE
τ = g]

τ + hτ be the metrics produced by Theorem 4.4.1 and put

LE
τ := dgE

τ
ΦgE

τ .
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For τ small enough, ‖hτ‖C2,α
δ

becomes arbitrarily small. Therefore, we can
assume that

‖(Lτ − LE
τ )k‖

C0,α
δ

6
C

2
‖k‖

C2,α
δ

for all k, where C is the constant of Proposition 4.3.2. Applying Proposition
4.3.2 we deduce

C

2
‖k‖

C2,α
δ

6 ‖LE
τ k‖C0,α

δ
.

It follows that the metric gE
τ is unobstructed for every τ small enough. �

4.6. The ν invariant. In this section we prove Proposition D stated in the
introduction, concerning the behavior of the ν invariant under surgery.

Let (Y, J) be a CR 3-manifold. We pick a pair of points p0, p1 ∈ Y .
We construct a family of almost complex structures Jτ on Y as defined in
Section 3.3.2. By definition Jτ converges smoothly to J as τ → 0. By
continuity of the ν invariant we therefore have

ν(Jτ ) → ν(J) as τ → 0. (4.7)

The definition of ν(Jτ ) requires the construction of a formal ACH Kähler-
Einstein metric gτ on M := (0, η]×Y with conformal infinity Jτ on {0}×Y
(cf. [3]). Since Jτ is given by the standard spherical CR structure in a
neighborhood Uj ⊂ Y of pj , one can take gτ to be given by the complex hy-
perbolic metric on (0, η]×Uj ⊂M . One can perform the Klein construction
at the points (0, pj) ∈ M := [0, η]× Y , thus obtaining a manifold M

]
τ with

ACH metric g]
τ deduced from gτ . Topologically M ]

τ = M ∪ {1-handle} and

the manifold M ]
τ has two boundaries:

• the boundary at infinity Y ], obtained by the 1-handle surgery at
p0, p1, with conformal infinity (Y ], J ]

τ );
• the inner boundary {η} × Y .

Then, according to [3],

1
8π2

∫
M]

τ

(
3|W−(g]

τ )|2 − |W+(g]
τ )|2 −

1
2
|Ric0(g]

τ )|2 +
1
24

Scal(g]
τ )

2)
volg

]
τ

= χ(M ]
τ )− 3τ(M ]

τ ) + ν(J ]
τ ) + inner boundary term.

On the other hand, we have the same formula for the initial metric gτ :

1
8π2

∫
M

(
3|W−(gτ )|2 − |W+(gτ )|2 −

1
2
|Ric0(gτ )|2 +

1
24

Scal(gτ )
2) volgτ

= χ(M)− 3τ(M) + ν(Jτ ) + inner boundary term.

Now compare the two formulas: because the surgery takes place on a
region where gτ is complex hyperbolic (therefore where the integrand of the
LHS vanishes), the two LHS coincide. The two metrics also coincide near
the inner boundary, so that the inner boundary terms coincide. Therefore
we deduce that

χ(M ]
τ )− 3τ(M ]

τ ) + ν(J ]
τ ) = χ(M)− 3τ(M) + ν(Jτ ).
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The manifold M ]
τ is obtained from M by a 1-handle addition, hence the

signature does not vary and the Euler number decreases by 1. Therefore

ν(J ]
τ ) = ν(Jτ ) + 1

and eventually, using (4.7)

lim
τ→0

ν(J ]
τ ) = ν(J) + 1.

Remark 4.6.1. In the spherical case, there is of course no need to modify the
CR structure J near the point at which the surgery is done. The resulting
CR manifolds are spherical, and therefore the ν invariant is independent of
the parameter τ . So one gets the equality

ν(J ]
τ ) = ν(J) + 1.
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