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EINSTEIN METRICS WITH ANISOTROPIC
BOUNDARY BEHAVIOUR

STUART ARMSTRONG AND OLIVIER BIQUARD

In recent years the relation between complete, infinite volume, Ein-
stein metrics and the geometry of their boundary at infinity has been in-
tensively studied, especially since the advent of the physical AdS/CFT
correspondence.

In all the previous examples of this correspondence, the Einstein met-
rics at infinity are supposed to be asymptotic to some fixed model—a
symmetric space of noncompact type G/K. Here we shall restrict to
the rank one case, where the examples are asymptotically real, complex
or quaternionic hyperbolic metrics. The corresponding geometries at
infinity (“parabolic geometries” modelled on G/P , where P is a min-
imal parabolic subgroup of G) are conformal metrics, CR structures
or quaternionic-contact structures. In this article, we introduce a new
class of examples, which are no more asymptotic to a symmetric space.
Actually the model at infinity is still given by a homogeneous Einstein
space, which may vary from point to point on the boundary at infinity.

This phenomenon cannot occur in the most classical examples (real
or complex hyperbolic spaces), because the algebraic structure at in-
finity (abelian group or Heisenberg group) has no deformation. But
such deformations exist for the quaternionic Heisenberg group (except
in dimension 7), and even in the 15-dimensional octonionic case. So
these are the two cases on which this article shall focus. In the par-
abolic geometry language, these are the two cases where non regular
examples exist.

More concretely, the basic quaternionic example is the sphere S4m−1,
with its (4m − 4)-dimensional distribution D , and the octonionic ex-
ample is the sphere S15 with a 8-dimensional distribution D . At each
point x of the sphere, there is an induced nilpotent Lie algebra struc-
ture on nx = Dx ⊕ TxS/Dx, given by the projection on TxS/Dx of the
bracket of two vector fields X, Y ∈ Dx. It was proved in [2] that small
deformations of D , such that nx remains the quaternionic Heisenberg
algebra for all x, are boundaries at infinity of complete Einstein metrics
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on the ball. This regularity assumption (that is, keeping the isomor-
phism type of the algebra nx fixed) is a strong differential system on
D : it was shown in [2] that such quaternionic-contact structures exist
in abundance, but there is no octonionic example [11].

In this article, we relax the regularity assumption in these two cases.
There is a beautiful family of examples, already known in the liter-
ature: the homogeneous Einstein metrics of Heber [8]. In the upper
space model, each hyperbolic space is identified with the solvable group
S = AN , with boundary at infinity the Heisenberg group N (where
G = KAN is the Iwasawa decomposition). Then Heber proved that
every deformation of S carries a unique homogeneous Einstein met-
ric. In particular, we can associate to a deformation of the nilpotent
Lie algebra n the homogeneous Einstein metric on the corresponding
solvable group S = AN .

Theorem 0.1. Let n = 4m − 1 ≥ 11 in the quaternionic case, or
n = 15 in the octonionic case. Any small deformation of the (4m− 4)-
dimensional (in the quaternionic case) or 8-dimensional (in the octo-
nionic case) distribution of Sn is the boundary at infinity of a complete
Einstein metric on the ball Bn+1.

At each point x ∈ Sn, the Einstein metric is asymptotic to Heber’s
homogeneous metric on the solvable group associated to the nilpotent
algebra nx.

Let us precise immediately the meaning of the statement on the
asymptotic behaviour of the Einstein metric. Fix a defining function t
of the boundary Sn of Bn+1 (for example t = 1− r2), then there exists
a metric γ on the distribution D and a metric η on TS/D , such that
near the boundary the Einstein metric g is asymptotic to

(1) dt2 + η

t2
+ γ

t
,

where we identify a neighborhood of S in B with (0, ε)× S. Then the
2-tensor t2g extends continuously to the boundary S, and one recovers
the distribution D from the metric as the kernel of (t2g)|S. In the
formula (1), the metric η is extended to a 2-tensor on TS by choosing
a supplementary subspace to D ⊂ TS, but the asymptotics of g does
not depend on this choice. As will be explained in remark 1.3, at
each point x ∈ Sn, the meaning of (1) is that when one approaches
the boundary point x, the Einstein metric approaches a homogeneous
metric on a solvable group associated to the nilpotent Lie algebra nx.
This metric is Heber’s metric. As Heber’s metric on a given solvable
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group is unique, this implies that the choice of (ηx, γx) is unique up to
dilations (ηx, γx)→ (λ2ηx, λγx) for a positive real number λ.

Compared to previous results, the meaning of the theorem is that
all deformations of the distributions on the boundary of the rank one
symmetric spaces can be interpreted as boundaries at infinity of Ein-
stein metrics, but maybe with an anisotropic behaviour (the asymp-
totics depends on the point at infinity). This gives new examples in
the quaternionic case, for dimension at least 11, and in the octonionic
case.

The relation between the regular examples and the new examples is
perhaps best understood by remembering that the Einstein metrics as-
sociated to quaternionic-contact structures in dimension at least 11 are
actually quaternionic-Kähler [3], so they keep the holonomy SpmSp1 of
the hyperbolic space. This condition distinguishes exactly the regular
case:

Corollary 0.2. In the quaternionic case, for m ≥ 3, the Einstein met-
ric constructed by the previous theorem is quaternionic-Kähler if and
only if the distribution on S4m−1 is regular (that is, is a quaternionic-
contact structure).

The corollary follows from the fact that the boundary at infinity of
a quaternionic-Kähler metric must be a quaternionic-contact structure
[2].

There is a similar, but obvious, story in the octonionic case. The
Cayley plane has holonomy Spin9. If the Einstein metric keeps the
Spin9 condition, it is well-known that it is the hyperbolic metric (Spin9
metrics are locally symmetric). On the other hand, a regular distribu-
tion of dimension 8 on S15 must be standard. So we have a (trivial)
example of the equivalence of the holonomy condition on the Einstein
metric with the regularity condition on the boundary.

The article has two parts. The first part is algebraic, and consists in
the construction of an approximate Einstein metric near the boundary
at infinity. The new point here is that the model is not explicit: it is
the solution of algebraic equations giving the metrics γ and η on the
distribution D and on the quotient TS/D . These equations have a nice
interpretation in terms of a stronger geometric structure, a quaternionic
(or octonionic) structure on D , on which we add a gauge condition
which enables to find a unique solution. This additional structure
should be useful in future applications, in particular if one wishes to
work out a Fefferman-Graham type development of the Einstein metric.
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The second part is analytic, and consists in deforming an approx-
imate Einstein metric into a solution of the equations. This relies
basically on a deformation argument, which requires to understand the
analytic properties of the deformation operator. If one has a good un-
derstanding of the analysis for the models (Einstein metrics on solvable
groups), then one can probably use microlocal analysis to glue together
the inverses of the deformation operator into the required parametrix.
However here we prefer to avoid the analysis on these solvable groups,
since more direct methods give the required result. Nevertheless, it is
clear that the more sophisticated microlocal analysis may be required
in further developments of the theory.

1. Algebraic considerations

Let V1 and V2 be vector spaces of dimensions 4m − 4 and 3 (in the
quaternionic case) or of dimensions 8 and 7 (in the octonionic case). A
formal Levi bracket is an element ` of W = ∧2V ∗1 ⊗ V2. This bracket
makes

(2) n = V1 ⊕ V2

into a two-graded nilpotent Lie algebra (as the Jacobi identity is triv-
ially satisfied). The corresponding Lie group N will then carry an
invariant distribution D of same dimension as V1. Consider the Lie
bracket [, ] on sections of D . This is a differential bracket, but the
differential part of it only maps into D . Hence the map

L : ∧2Γ(D) → Γ(TN/D)
L (X, Y ) = [X, Y ]/D

is an algebraic map, i.e. a section of ∧2D∗ ⊗ (TN/D). If we designate
by L the group GL(V1) ⊕ GL(V2), then D and TN/D are bundles
associated to an L-principal bundle E → N .

In this set-up, L corresponds to an L-equivariant map fL from E

to W . Designate by Ep the fibre of E at p ∈ N . By construction, ` is
in the image fL (Ep) for all p, and this image consists precisely of the
L orbit of ` in W .

Under the identifications V1 = Hm−1 and V2 = im H, the quaternionic
standard Levi bracket κ is given by the choice of a Hermitian metric h
on V1; in this case, κ is simply the imaginary part of h.

Similarly, the standard octonionic bracket (also designated κ) is also
defined by identifications V1 = O, V2 = im O and a choice of h.

In general, κ is only defined up to L-action; but as ` is only defined
up to L-action, we will assume our choice of κ is fixed.
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We identify G0 as the stabiliser of κ in L; this can be seen as the
group that stabilises the quaternionic or octonionic structure. In the
quaternionic case,

G0 = R∗+Sp(1)Sp(m− 1),

while in the octonionic case,

G0 = R∗+Spin(7).

In general, we consider a manifold Xn of dimension n = 4m−1 in the
quaternionic case, or n = 15 in the octonionic case, and a distribution
D ⊂ TX of dimension equal that of V1. At each point x of X, the
image in TX/D of the bracket [X1, X2] of two vector fields in D is
an algebraic map, Lx ∈ Λ2D∗x ⊗ (TxX/Dx). If we choose a linear
identification e : V1 ⊕ V2

∼→ Dx ⊕ TxX/Dx, sending V1 to Dx and V2
to TxX/Dx, then the algebraic bracket Lx can be identified with the
element e∗Lx in W , but there is an ambiguity, since we can compose
e by the action of L on V1 ⊕ V2. Therefore Lx defines only a L-orbit
in W , which will be denoted by O(Lx). In more intrinsic terms: e is
an element of the product E of the frame bundles of D and TX/D
(this is a L-principal bundle), and the formula fL (e) = e∗Lx defines
a L-equivariant map fL : Ex → W . Then the orbit O(Lx) ⊂ W is
exactly the image fL (Ex).

The main result of this section is:

Proposition 1.1. There exists a L-invariant open set U ⊂ W (that is
an open set of L-orbits), containing κ, with the following property. If
Xn has a distribution D such that for every x ∈ X the induced bracket
Lx satisfies O(Lx) ⊂ U , then there exist metrics η and γ on TX/D
and D , such that, choosing any splitting TX = D ⊕ V , the metric

(3) g = dt2 + η

t2
+ γ

t

on R∗+ ×X is asymptotically Einstein when t→ 0:

(4) Ric(g) = λg +O(t 1
2 ),

where λ = −m− 2 in the quaternionic case, λ = −9 in the octonionic
case. Moreover, this choice of η and γ is unique, up to the conformal
transformation:

(η, γ)→ (f 2η, fγ)

for f a strictly positive function X → R.
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In this statement, it is important to note that the asymptotic be-
haviour (4) does not depend on the choice of splitting TX = D ⊕ V .

Note the square root t 1
2 in (4): this is natural with the form (3) of

the metric, e.g. in the asymptotically complex case the expansion of
the Einstein metric involves powers of t 1

2 rather than t. It might be
interesting to study whether a good choice of the splitting TX = D⊕V
might lead to a metric g which is Einstein already up to the higher order
O(t).

Remark 1.2. In the special case where X is the nilpotent group N

associated to an algebraic bracket ` ∈ Λ2V ∗1 ⊗ V2, and the distribution
D is the associated distribution, then the splitting (2) gives a canonical
choice for V . Then the metric (3) is an invariant metric on the solvable
group S = R∗+ n N . In particular, Ric(g) − λg is homogeneous and
has constant norm, so by (4) it must be zero. Therefore the metric
is Einstein. This is the metric constructed by Heber [8] on S (by
uniqueness of Heber’s metric). The proof of the proposition will give
another construction of this metric, at least for small deformations of
the distribution. Conversely, it also follows from our proof that the
open set U can be taken equal to the set of brackets ` such that an
Einstein metric exists on the associated solvable group.

Remark 1.3. In general, at each point x ∈ X the bracket Lx gives
a nilpotent Lie algebra structure on nx = Dx ⊕ TxX/Dx. Let Nx be
the corresponding nilpotent group and Sx the associated solvable group
Sx = R∗+ nNx. We are going to see the relation between the asymptot-
ically Einstein metric (3) and Sx. To simplify notation, let us consider
only the quaternionic case (but the octonionic case is similar). Near
x we choose coordinates (x1, . . . , xn) on X such that Dx is generated
by the vector fields ( ∂

∂x4
, . . . , ∂

∂xn
). The distribution D is given by the

kernel of three 1-forms, α1, α2 and α3, and we can suppose that near
the point x one has η = α2

1 + α2
2 + α2

3. Moreover we can arrange the
coordinates so that at the point x one has αi = dxi. Then we consider
the homothety

(5) hr(t, x1, . . . , xn) = (rt, rx1, rx2, rx3,
√
rx4, . . . ,

√
rxn).

Note αi = αjidxj, with α
j
i (0) = δji . Then one has

ᾱi := lim
r→0

1√
r
h∗rαi = dxi +

n∑
j,k=4

xk
∂αji
∂xk

(0)dxj.

The three forms ᾱ1, ᾱ2 and ᾱ3 are homogeneous, and define exactly the
horizontal distribution of the nilpotent group Nx. Denote γ̄ := γ(0)
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and η̄ = ᾱ2
1 + ᾱ2

2 + ᾱ2
3, then, when r → 0, one obtains the limit

h∗rg −→ ḡ = dt2 + η̄

t2
+ γ̄

t
.

This metric is now defined globally in the coordinates (t, x1, . . . , xn),
and is actually an invariant metric on the solvable group Sx. (This is
a nice way to see the solvable group Sx directly from the distribution
as the limit of the inhomogeneous rescaling (5) when r → 0). From
(4) one has Ric(h∗rg) + λh∗rg = O(r 1

2 t
1
2 ) and therefore at the limit

Ric(ḡ) + λḡ = 0, that is ḡ is Einstein. Therefore ḡ must be the unique
homogeneous Einstein metric on Sx mentioned in the previous remark.
This justifies the statement in Theorem 0.1 that at each point the
constructed metric is asymptotic to the corresponding Heber’s metric.

Proof of proposition 1.1. The uniqueness comes from remark 1.3 and
the uniqueness of the homogeneous Einstein metric on Sx proved by
Heber. Later in the paper, a weaker uniqueness will also be proved.

We will calculate the Ricci tensor of the metric (3) as a function of
γ and η. The calculation is local, so we can choose orthonormal frames
{X̌i} and {Y̌i} of (TX/D) and D , respectively.

On M = R∗+ ×X, we can define an orthonormal frame via:

X0 = t
∂

∂t
,

Xi = tX̌i,

Yi =
√
tY̌i.

Let O(a) denote sections of TM whose norm (under g) tends to zero
at least as last as ta. Then we may calculate the Lie brackets of the
above frame elements:

[X0, Xi] = Xi,

[X0, Yi] = 1
2Yi,

[Xi, Xj] = O(1),
[Xi, Yj] = O(1/2),
[Yi, Yj] = Lij +O(1/2),

where Lij = LYiYj . In future, if υ is a section of TX/D , we will denote
by L υ the υ component of L – i.e.

L υ
ξζ = g(Lξζ , υ),
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which we will abbreviate as L k for υ = Xk. Similarly, for ξ a section
of D we denote by L υ

ξ the section of D defined by:

g(L υ
ξ , Yj) = L υ

ξYj
,

and use the short forms L k
i = L k

Yi
, L k

iξ = L k
Yiξ

and L k
ij = L k

YiYj
.

Now let ∇ be the Levi-Civita connection of g. We can calculate ∇
by using the Koszul formula:

2g(∇XY, Z) = X · g(Y, Z) + Y · g(X,Z)− Z · g(X, Y )
+g([X, Y ], Z)− g([X,Z], Y )− g([Y, Z], X).

Since our frame elements are orthonormal, the formula reduces to

2g(∇XY, Z) = g([X, Y ], Z)− g([X,Z], Y )− g([Y, Z], X),

giving:

∇X0X0 = 0,
∇X0Xi = ∇X0Yi = 0,

∇XiX0 = −Xi,

∇YiX0 = −1
2Yi,

∇XiXj = δijX0 +O(1/2),

∇XiYj = ∇YjXi = −1
2L i

j +O(1/2),

∇YiYj = ∇YjYi = 1
2Lij + 1

2δijX0 +O(1/2).

So in this frame, ∇ = d+A+O(1/2) where A ∈ Γ(T ∗X ⊗EndTX)
is independent of t. In detail:

A(X0) = 0,

A(Xi) :


X0 → −Xi

Xj → δijX0
Yj → −1

2L
i
j ,

A(Yi) :


X0 → −1

2Yi
Xj → −1

2L
j
i

Yj → 1
2Lij + 1

2δijX0.

One has dA(X, Y ) = X · A(Y ) − Y · A(X) − A([X, Y ]). Note that
differentiating A in the X0 direction is zero, while differentiating A in
the direction of Xi or Yi picks up a t or

√
t term, and hence become

O(1/2). Thus dA(X, Y ) = −A([X, Y ]) +O(1/2).
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The curvature R of ∇ is dA + [A,A] + O(1/2), which immediately
implies that

RX0,Xi = −A(Xi) +O(1/2),

RX0,Yi = −1
2A(Yi) +O(1/2),

RXi,Xj = [A(Xi), A(Xj)] +O(1/2),
RXi,Yj = [A(Xi), A(Yj)] +O(1/2),
RYi,Yj = −A(Lij) + [A(Xi), A(Xj)] +O(1/2).

The commutator terms are given by:

[A(Xi), A(Xj)] :


X0 → 0
Xk → δikXj − δjkXi

Yk → 1
4

(
L i

L j
k

−L j
L i
k

)
,

[A(Xi), A(Yj)] :


X0 → −1

4L
i
j

Xk → 1
4L

i
L k
j

+ 1
2δikYj

Yk → −1
2δjkXi + 1

4LjL i
k
,

[A(Yi), A(Yj)] :


X0 → 1

2Lji

Xk → 1
4

(
LjL k

i
−LiL k

j

)
+ 1

2L
k
jiX0

Yk → 1
4

(
L Lik
j −L

Ljk

i + δikYj − δjkYi
)
.

Now we need to take the Ricci-trace of this expression:

RicX0,X0 =
∑
i

g(Xi, RXi,X0X0) +
∑
i

g(Yi, RYi,X0X0)

=
∑
i

g(Xi,−Xi) +
∑
i

g(Yi,−
1
4Yi) +O(1/2)

= λ+O(1/2).

Here λ is equal to −3− (4m− 4)/4 = −m− 2 in the quaternionic case,
and −7−8/4 = −9 in the octonionic case. The cross-terms of the Ricci
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curvature all vanish:

RicX0,Xi =
∑
j

g(Xj, RXj ,X0Xi) +
∑
i

g(Yj, RYj ,X0Xi)

=
∑
j

g(Xj, δijX0) +
∑
j

1
4Ljj +O(1/2)

= O(1/2),
RicX0,Yi =

∑
j

g(Xj, RXj ,X0Yi) +
∑
i

g(Yj, RYj ,X0Yi)

= O(1/2),
RicXi,Yj = g(X0, RX0,XiYj) +

∑
j

g(Xj, RXj ,XiYj) +
∑
i

g(Yj, RYj ,XiYj)

= O(1/2),

the last two expressions vanishing because they are sums of terms of
type g(X, Y ) with X ⊥ Y . Next, the D ×D term is:

RicXi,Xj = g(X0, RX0,XiXj) +
∑
k

g(Xk, RXk,XiXj) +
∑
k

g(Yk, RYk,XiXj)

= −δij + δij −
∑
k

δijg(Xk, Xk)−
∑
k

1
2δijg(Yk, Yk)

−
∑
k

1
4g(Yk,L

i
L j
k

) +O(1/2).

In the quaternionic case, this is

RicXi,Xj = λδij + (1−m)δij +
4m−4∑
k=1

1
4L i

kL j
k

+O(1/2).(6)

In the octonionic case, this is

RicXi,Xj = λδij − 2δij +
8∑

k=1

1
4L i

kL j
k

+O(1/2).(7)

Finally the (TX/D)× (TX/D) term is

RicYi,Yj = g(X0, RX0,YiYj) +
∑
k

g(Xk, RXk,YiYj) +
∑
k

g(Yk, RYk,YiYj)

= −1
4δij +

∑
k

(1
4L k

iL k
j
− 1

2δij
)

+ 1
4

(
δij +

∑
k

3L Lkj

ik − δij
)

+O(1/2)

= −1
2
∑
k

δij + 1
4
∑
k

(2L Lkj

ik − δij) +O(1/2).

since ∑
k

L
Lkj

ik =
∑
kp

L p
ikL

p
kj =

∑
pk

L k
ipL

k
pj =

∑
k

−L k
iL k

j
.
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In the quaternionic case, the curvature is

RicYi,Yj = λδij + 3
2δij + 1

2

4m−4∑
k=1

L
Lkj

ik +O(1/2).(8)

In the octonionic case, it is:

RicYi,Yj = λδij + 7
2δij + 1

2

8∑
k=1

L
Lkj

ik +O(1/2).(9)

Now (M, g) is asymptotically Einstein if RicXi,Xj = λδij +O(1/2) and
RicYi,Yj = λδij + O(1/2). From now on, we will use the Einstein sum-
mation convention, where any repeated index is summed over. Then
the equations (6) and (8) imply that in the quaternionic case, we must
have:

L k
ijL

q
opγ

ioγjp = 4(m− 1)ηkq,
L k
ijL

q
opγ

ioηkq = 3γjp,
(10)

while equations (7) and (9) imply that in the octonionic case, we must
have:

L k
ijL

q
opγ

ioγjp = 8ηkq,
L k
ijL

q
opγ

ioηkq = 7γjp.
(11)

For an ` sufficiently close to κ, these equations can be solved (see
Theorem 1.7), and the solution is unique up to conformal transforma-
tions. �

A natural question is whether, as in the quaternionic-contact case,
the conformal class (η, γ) comes with a quaternionic structure on D
and TX/D . The same applies for the octonionic-contact structures, of
course. We propose here a construction, where instead of looking only
for a conformal class, one constructs directly a quaternionic or octo-
nionic structure. As a byproduct, the system (10) or (11) is interpreted
in a natural way, see (15), and existence of a solution is provided.

The automorphism group of these structures is G0, which is con-
tained in the conformal automorphism group

G′ = R∗+ × SO(η)× SO(γ)

of (η, γ). Thus it seems that to get the quaternionic/octonionic struc-
tures on the manifold, we need to impose extra equations beyond (10)
and (11).

These can best be understood by looking at the normality ∂∗ op-
erator described in [6], [5] and [7]. It is an algebraic Lie algebra co-
differential, which extends naturally to a bundle operator on associated
bundles. If X is a quaternionic- or octonionic-contact manifold, K the
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corresponding Levi-bracket, and M is any section of ∧2D∗⊗ (TX/D).
Then ∂∗M = αM ⊕ βM where

(αM )rq = (γjrγipηko)(M k
ijK

o
pq),

(βM )kr = −1
2(ηorγ

ipγjq)(M k
ijK

o
pq),

(12)

Einstein summation over repeated indexes being assumed. Note that
these expressions are invariant under conformal transformations (η, γ)→
(f 2η, fγ). If we apply α and β to K itself, we get:

Lemma 1.4. In the quaternionic-contact case:

(αK ) = 3IdD

−2(βK ) = 4(m− 1)IdTX/D ,

while in the octonionic-contact case:

(αK ) = 7IdD

−2(βK ) = 8IdTX/D ,

the same numbers as in equations (10) and (11).

Proof. Fix η and γ, and pick local orthonormal sections {I1, · · · , Ip}
of TX/D , where p = 3 in the quaternionic case, and p = 7 in the
octonionic case. These all correspond to complex structures on D .
Then for X, Y ∈ Γ(D), K (X, Y ) can be written as:

K (X, Y ) =
p∑
i=1

γ(Ii(X), Y )Ii.

By extension, define I0 to be the identity transformation of D . Now
pick local orthonormal sections {Y1, · · ·Yq} of D , chosen so that IiYj is
orthogonal to all IkYl whenever i 6= k or j 6= k. This is possible, as γ
must be hermitian with respect to these complex structures. Here, q =
m− 1 for quaternionic structures, and q = 1 for octonionic structures.

Again, we may rewrite K as:

K =
i,j=p,k=q∑
i=0,j,k=1

−(IjIiYk)∗ ⊗ (IiYk)∗ ⊗ Ij.

If we raise and lower all indexes with η and γ, we get K ∗, which is

K =
i,j=p,k=q∑
i=0,j,k=1

−(IjIiYk)⊗ (IiYk)⊗ (Ij)∗.

Now αK involves taking the trace of K and K ∗ over one of the
D components and over the TX/D components. The trace over the
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TX/D component is trivial; and if x denotes contraction between a
space and its dual,

αK =
q∑

k,o=1

p∑
j,r=1

p∑
i,l=0

((IjIiYk)∗x(IrIlYo)) (IjxI∗r ) (IiYk)∗ ⊗ (IlYo)

=
q∑

k,o=1

p∑
j,r=1

p∑
i,l=0

((IjIiYk)∗x(IrIlYo)) δjr(IiYk)∗ ⊗ (IlYo)

=
q∑

k,o=1

p∑
j=1

p∑
i,l=0

((IjIiYk)∗x(IjIlYo)) (IiYk)∗ ⊗ (IlYo)

=
q∑

k,o=1

p∑
j=1

p∑
i,l=0

δilδko(IiYk)∗ ⊗ (IlYo)

=
p∑
j=1

p∑
i=0

q∑
k=0

(IiYk)∗ ⊗ (IiYk)

= pIdD .

The −2βK term is the contraction of K and K ∗ over both their D
components; it is

−2βK =
q∑

k,o=1

p∑
j,r=1

p∑
i,l=0

((IjIiYk)∗x(IrIlYo)) ((IiYk)∗x(IlYo)) Ij ⊗ I∗r

=
q∑

k,o=1

p∑
j,r=1

p∑
i,l=0

((IjIiYk)∗x(IrIlYo)) (δkoδil)Ij ⊗ I∗r

=
q∑

k=1

p∑
i=0

p∑
j,r=1

((IjIiYk)∗x(IrIiYk)) Ij ⊗ I∗r

=
q∑

k=1

p∑
i=0

p∑
j,r=1

δjrIj ⊗ I∗r

=
q∑

k=1

p∑
i=0

p∑
j=1

Ij ⊗ I∗j

= q(p+ 1)IdTX/D .

Then substituting in the values for p and q gives the result. �

Now if N is a section of ∧2D∗⊗(TX/D), we may use it in equations
(12) instead of K ; in that case, define

(αN M )rq = (γjrγipηko)(M k
ijN

o
pq),

(βN M )kr = −1
2(ηorγipγjq)(M k

ijN
o
pq).

Similarly, though K defines the conformal class of (η, γ), (through the
reduction to structure group G0 ⊂ G′), there is no reason to require
that K be the Levi-bracket of the distribution D . Given (η, γ) on
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a general manifold with distribution D of correct dimension and co-
dimension, they define a (local) class of compatible brackets K of
quaternionic-contact or octonionic-contact type. Then the equations
(10) and (11) can be rewritten as saying that we must find (η, γ) such
that for any K compatible with them,

αK K = αL L ,(13)
βK K = βL L ,(14)

or, more compactly,

∂∗K K = ∂∗L L .(15)

It is easy to see that these equations are conformally invariant.

Remark. It is useful to compare these equations with those defining
a ‘Damek-Ricci’ space (this is a subclass of Heber’s metrics, see [10]).
For any section Z of D , we may define an endomorphism JZ of D by

γ(JZX, Y ) = η(Z,L (X, Y )),

for sections X and Y of D . Then X is asymptotically Damek-Ricci if
J2
Z = −1η(Z,Z). Now if {Zj} is a local orthonormal frame for TX/D ,

then we may rewrite αL L once more as

αL L = Trγ
(∑
jk

η(Zj, Zk)η(Zj,L )⊗ η(Zk,L )
)

= Trγ
(∑

j

JZj ⊗ JZj
)

= −
∑
j

J2
Zj
.

Since Zj is normal, J2
Zj

= −IdD , and Damek-Ricci spaces must solve
equation (13). Similarly, for Z and Z ′ sections of TX/D

−2η((βL L )(Z), Z ′) = Trγ Trγ JZ′ ⊗ JZ .

Since this must be symmetric, it values are determined by taking
Z = Z ′; in which case it is 4(m−1)η(Z,Z) in the quaternionic case, and
8η(Z,Z) in the octonionic one. Consequently Damek-Ricci spaces are
special solutions of equation (15), as are any spaces that are asymptot-
ically Damek-Ricci (i.e. spaces with L , γ and η such that the relation
J2
Z = −1η(Z,Z) holds).

It is still somewhat unsatisfactory that there is a large class of K
compatible with a given L . It would be better to have a procedure that
fixes K uniquely (and hence the quaternionic/octonionic structure, as
well as (η, γ)).
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In the quaternionic case, the dimension of L (the full graded auto-
morphism group) is (4m−4)2 +32 = 16m2−32m+25, while the group
G′ is of dimension (4m− 4)(4m− 5)/2 + 3 + 1 = 8m2 − 18m+ 14 and
G0 is of dimension (2m− 2)(2m− 1)/2 + 3 + 1 = 2m2 − 3m+ 1.

Looking at equation (15), one can see that αL L takes values in the
γ-symmetric component of D ⊗ D∗, while βL L takes values in the η
symmetric component of (TX/D) ⊗ (TX/D)∗. These values are not
completely independent, however: the γ trace of αL L is the complete
trace of L with itself, as is the η trace of −2βL L . Hence there is
one extra relation, giving a total of (4m − 4)(4m − 3)/2 + 6 − 1 =
8m2 − 14m + 11 independent equations – just the right amount to
reduce the structure group from L to G′.

Now let us consider a slight deformation of a quaternionic-contact
structure, L = K + εM . Re-writing equation (15):

0 = ∂∗L L − ∂∗K K

= ε (∂∗M K + ∂∗K M ) +O(ε2).

The ε term is the symmetric part of ∂∗K M ; so, to first order, the
requirement is that ∂∗K L be completely anti-symmetric. A method
for fixing K is suggested by the following lemma:

Lemma 1.5. The equation ∂∗K M = 0 consists of 16m2 − 32m + 24
independent equations, which is exactly enough to restrict the structure
group from L to G0.

Proof. The operator ∂∗ takes values in D ⊗D∗⊕ (TX/D)⊗ (TX/D)∗.
This bundle may be identified with E(l), where l is the Lie algebra
of L. The bracket K defines a reduction to the structure group G0
and hence E0, a G0-principal bundle. This defines the vector bundle
E0(g0), with g0 the Lie algebra of G0. The inclusion E0 ⊂ E defines
an inclusion of this bundle into E(l). Then the book [7] implies that
the image of ∂∗ is transverse to E0(g0), giving us our dimensionality
result. �

So the natural candidate for fixing K would be one whose deriv-
ative close to a quaternionic-contact structure is one where the anti-
symmetric part of ∂∗K M vanishes.

The simplest such condition is to simply require that the anti-symmetric
part of ∂∗K L vanishes. Thus:

Definition 1.6 (Compatibility). The algebraic bracket K , a section
of ∧2D∗ ⊗ (TX/D), is compatible with the Levi bracket L if:
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(1) K is of quaternionic-contact or octonionic-contact type – hence
the dimension and co-dimension of D is correct, and K defines
a pair of metric (η, γ) up to conformal transformations,

(2) ∂∗K K = ∂∗L L ,
(3) ∂∗K L is symmetric.

Now, this definition is similar, but not identical, with the condition
for non-regular two-graded geometries laid out in [1]; indeed, the con-
dition there (that ∂∗K L = 0) is precisely the infinitesimal version of
the above.

We now phrase our general result. The setting is the same as for
proposition 1.1: we consider a manifold Xn of dimension n = 4m −
1 in the quaternionic case, or n = 15 in the octonionic case, and a
distribution D ⊂ TX of codimension 3 in the quaternionic case, and
7 in the octonionic case. Remind that the vector field bracket is an
algebraic map, Lx ∈ Λ2D∗x ⊗ (TxX/Dx). The isomorphism type of Lx

defines in W a L orbit, O(Lx), which does not depend on any choice.

Theorem 1.7. There is an open set U ⊂ W , containing the standard
bracket κ, such that for all points x ∈ X where O(Lx) intersects U ,
there exists a locally unique, continuously defined, choice of compatible
algebraic bracket Kx.

Proof. We need to prove the existence and uniqueness of compatible
K . This is a purely algebraic construction, so we may work at a point.
If we choose the natural bracket κ to be fixed in ∧2V ∗1 ⊗ V2, define θ
as the map ∧2V ∗1 ⊗ V2 → s,

θ = 1
2 (∂∗` `+ ∂∗κ`− ∂∗`κ)− ∂∗κκ.(16)

Note that the first ` term must by symmetric, while the other two `
terms together are anti-symmetric, so there is no overlap between them.
Another important fact is that the Lie algebra g0 has one symmetric
part (the grading element) and the rest is anti-symmetric. We already
know that the image of ∂∗` ` is of co-dimension one in the symmetric
part of s; its image it precisely the part transverse to the grading
element (2Id, Id). Now ∂∗κ`− ∂∗`κ is simply the anti-symmetric part of
2∂∗κ`. We know that 2∂∗κ` must be transverse to g0, and hence so is its
anti-symmetric part. Consequently θ maps into l/g0.

Now if fL (Ex) intersects the zero set of θ, then there is a point
p ∈ Ex such that θ(fL (p)) = 0. Then if we define Kx by the property
that fK (p) = κ, we will get the vanishing of the bundle version of
equation (16). Hence this K will be compatible.
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So what we need to show is that the L-orbit of the zero set of θ
contains an open set U around κ. Now consider the map Θ : L×W → s,

Θ(s, `) = θ(s · `),

where s · l denotes the action of s ∈ L on `. We wish to calculate the
derivative of this map in the L directions around the point (κ, Id). Let
s ∈ l; then a little bit of calculations demonstrate that this derivative
is

DΘ(s)(κ, Id) = ∂∗κ(∂κs)

where

(∂κs)(x, y) = κ(s(x), y) + κ(x, s(y))− s(κ(x, y))

(see [1] for more details of how this is derived). The book [7] then
demonstrates that ∂∗κ∂κ is an invertible map from the image of ∂∗ to
itself, with kernel equal to g0. An extra subtlety is needed to demon-
strate that result, namely the vanishing of the first cohomology groups
H(1)(g+, g) in homogeneity zero, see [7] and [1]. But Kostant’s proof of
the Bott-Borel-Weil theorem ([9]) show that this is indeed the case in
our situation.

Hence, under the action of L, θ(s · κ) must trace out an open neigh-
bourhood of zero in l/g0. This property must extend to points ` close
to κ by the implicit function theorem, defining our set U .

Now let ` be in U intersected with the zero set of θ. If ` is close
enough to κ (possibly restricting U to a smaller open subset), we know
that if B` ⊂ S is defined such that θ(b · `) = 0 for all b ∈ B`, then B
must be of same dimension as g0 (at least around the identity in L).
However, if g ∈ G0, then

θ(g · `) = 1
2
(
∂∗g·lg · `+ ∂∗κ(g · `)− ∂∗(g·`)κ

)
− ∂∗κκ

= 1
2
(
∂∗g·`g · `+ g · (∂∗κ`− ∂∗`κ)

)
− ∂∗κκ

= 1
2(∂∗` `)− ∂∗κκ = 0,

since g is a conformal transformation, commutes with ∂∗, and ∂∗κ` −
∂∗`κ = 0 by the assumption θ(`) = 0.

Hence around the identity, dimension count implies that B` is pre-
cisely the group G0. Action by G0 preserves κ, so does not affect the
value of Kx. Consequently, the choice of Kx is locally unique for ` ∈ U .

�
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Remark. As noted before, the condition that ∂∗K L be symmetric can
be replaced with any other condition that approximates the one above
to first order. There are more natural candidates for that – involv-
ing, for instance, the decomposition of the partial trace L k

ijL
r
loγ

il into
irreducible G0 components, and the vanishing of one of these compo-
nents. But since we’re been unable to find a direct use of such a result
(it affect the curvature of the asymptotically Einstein metric, but it’s
not clear exactly how), we’ve stuck with the simpler condition in this
paper.

2. Construction of the Einstein metrics

In this section, we prove theorem 0.1, along the lines of [2]. Because
we restrict to the case of small deformations of the model hyperbolic
metric, we are able to give a short direct proof, in which the main step
is a uniform estimate for the norm of the inverse of the linearization.

We start with the quaternionic or octonionic hyperbolic space M ,
whose metric in polar coordinates is expressed in both cases by
(17) g0 = dr2 + sinh2( r2)γ0 + sinh2(r)η0.

Here η0 = α2
0, where α0 is a 1-form on S4m−1 (resp. S15) with values in

R3 (resp. R7), and γ0 is the induced metric on the 4(m−1)-dimensional
(resp. 8-dimensional) distribution D0 of Sn.

We will need the mean curvature H0(r) = ∂r log v of the spheres
r = cst, where v is the volume element. It is given by H0(r) = 2(m−
1) coth( r2) + 3 coth(r) in the quaternionic case, or H0(r) = 4 coth( r2) +
7 coth(r) in the octonionic case. Also we note

H = lim
r→∞

H0(r)

the limit at infinity, so that H = 2m+ 1 in the quaternionic case and
H = 11 in the octonionic case.

Suppose that we have now a small perturbation D of the distribution
D0. From proposition 1.1 we have constructed γ and η on D and TS/D
such that
(18) gD = dr2 + sinh2( r2)γ + sinh2(r)η
is asymptotically Einstein :
(19) Ric(gD)− λgD = O(e− r2 ),
with λ = −m− 2 (resp. λ = −9). Here the norms are with respect to
gD . Actually, in the proof of proposition 1.1, we proved more, that is
there is a development for the curvature,
(20) R = R0 + e−

r
2R1 + e−rR2 + · · · ,
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where the terms Ri do not depend on r, the term R1 depends on one
derivative of the bracket L on the boundary, and the other terms
depend on two derivatives of L . This immediately implies

(21) |∇k(Ric(gD)− λgD)| ≤ cke
− r2 for all k,

where ck can be made small if L is Ck+2 close to the standard bracket.
Of course, the formula (18) does not give a smooth metric at the

origin. To remedy this, we choose a cutoff function χ(r), such that
χ(r) = 1 for r ≥ R + 1 and χ(r) = 0 or r ≤ R− 1. Then we define

(22) g = χgD + (1− χ)g0.

The metric g is a global filling of (η, γ) in the ball.
The first observation is that the metrics gD have uniform geometry:

Lemma 2.1. Suppose k ≥ 2. For D varying in a fixed Ck+1 neigh-
bourhood of D0, the sectional curvature of g is negative, the curvatures
of g and their (k − 2) covariant derivatives are uniformly bounded.

Proof. A Ck+1 control of D gives a Ck control of the conformal metric
(η, γ), since one derivative is needed to calculate the Levi bracket and
(η, γ) is then obtained as the solution of algebraic equations. Therefore
we have a Ck control on the coefficients of g. The lemma then follows
from the form (20) of the curvature. �

This implies that balls for the metrics gD are uniformly comparable
with Euclidean balls. Then the Hölder norm of a function f is defined
as the supremum of the Hölder norms of f on each ball of radius 1.

The analysis of the Einstein equation requires the use of weighted
Hölder spaces. Our weight function will be

(23) w(r) = cosh(r)δ

and we then define the weighted Hölder space Ck,α
δ = w−δCk,α. Of

course, from the initial estimate (19), the weight we are interested in
is δ = 1

2 .
As in [2, chapter I], the Einstein metric will be constructed as a

solution h of the equation

(24) Φg(h) := Ric(h)− λh+ δ∗h(δgh+ 1
2dTrg h) = 0,

and we require that h is asymptotic to g in the sense that

(25) h− g ∈ C2,α
1/2.

Indeed, by [2, lemma I.1.4], a solution h of Φg(h) = 0 then satisfies
δgh + 1

2dTrg h = 0 and Ric(h) = λh. Given lemma 2.1 (in particular,
the negative curvature of g implies that the linearization of Φg has no
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L2 kernel), the proof in [2] applies and proves that if the data (η, γ)
is sufficiently close to (η0, γ0) in C2,α norm, that is if D is sufficiently
close to D0 in C3,α norm, then one can find a solution h of (24), if one
has a uniform bound on the inverse of the linearization of Φg. This is
provided by:

Lemma 2.2. Suppose that 1
2(H −

√
H 2 − 8) < δ < 1

2(H +
√

H 2 − 8).
For D sufficiently close to D0 in C3,α norm, the linearization Pg =
dgΦg : C2,α

δ (Sym2 T ∗M) → Cα
δ (Sym2 T ∗M) is invertible and the norm

of the inverse is uniformly bounded.

From the value of H , we check that the weight δ = 1
2 indeed satisfies

the hypothesis, so theorem 0.1 follows from the lemma.
So we now concentrate on the proof of the lemma. One has

Pg = 1
2∇
∗∇−

◦
Rg.

The property of the curvature term
◦
Rg we need is the following [2,

lemmas I.4.1 and I.4.2]: for the hyperbolic metric g0, the largest eigen-
value of

◦
Rg0 is equal to 1 (instead of 4 in [2], because here we normalize

here the sectional curvature of g0 in [−1,−1
4 ] instead of [−4,−1]). This

immediately implies that, for D close enough to D0 in C3 norm, one
has

(26)
◦
Rg ≤ 1 + ε.

For the function w depending on r only, one has

(27) ∆w = −∂2
rw −H(r)∂rw,

where H(r) = ∂r log v is the mean curvature. For the metric g given
by (22), the mean curvature H(r) coincides with H0(r) for r ≥ R + 1
or r ≤ R − 1, and for R − 1 ≤ r ≤ R + 1 we get |H(r)−H0(r)| ≤ ε if
we suppose (η, γ) close enough to (η0, γ0).

An easy calculation gives, for the hyperbolic metric,

(28) − ∆w
w
− 2 |dw|

2

w2 = δ

(
H − δ + dim D

2 cosh r + δ + 1
cosh2 r

)
.

It follows that, for the metric g, if D is sufficiently close to D0,

(29) − ∆w
w
− 2 |dw|

2

w2 ≥ δ(H − δ − ε).

Using this property of the weight function w, we can now establish
lemma 2.2 using the maximum principle. From Kato’s inequality,

〈u,∇∗∇u〉 = |u|∆|u|+ |∇u|2 − |d|u||2 ≥ |u|∆|u|.
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Using the formula

w∆|u| = ∆(w|u|)− w|u|
(∆w
w

+ 2 |dw|
2

|w|2
)

+ 2
〈dw
w
, d(w|u|)

〉
≥ ∆(w|u|) + δ(H − δ − ε)w|u|+ 2

〈dw
w
, d(w|u|)

〉
it follows from (26) that

(30) w|Pu| ≥ 1
2∆(w|u|)+

(
1
2δ(H −δ−ε)−1−ε

)
w|u|+

〈dw
w
, d(w|u|)

〉
.

Let A = 1
2δ(H − δ − ε)− 1− ε. If δ satisfies the hypothesis of lemma

2.2, then one can choose ε sufficiently small so that A > 0. Then by
the maximum principle applied to w|u|, it follows that
(31) sup(w|u|) ≤ A−1 sup(w|Pu|).
(A priori we cannot apply the maximum principle to w|u| since it has
not to go to zero at infinity, but we can apply it for w = (cosh r)δ′ for
any δ′ < δ; then taking δ′ → δ gives the estimate).

From this estimate, it is immediate that if v ∈ Cα
δ , then one can

solve Pu = v with u ∈ C0
δ and ‖u‖C0

δ
≤ A−1‖v‖C0

δ
. It remains to

obtain a bound on higher derivatives, but from the uniform geometry
lemma 2.1, applying the usual elliptic estimate in each ball, one obtains
a constant C such that

‖u‖C2,α
δ
≤ C

(
‖Pu‖Cα

δ
+ ‖u‖C0

δ

)
≤ C(1 + A−1)‖Pu‖Cα

δ

which is the required estimate.

Remark. The previous lemma does not give an optimal interval of
weights for the isomorphism. In [2] the optimal interval for g0 is cal-
culated; using microlocal analysis, it is proved in [4] that the same
interval holds if the distribution D is quaternionic-contact (the regular
case). In general, the optimal interval may depend on the supremum of
the eigenvalues of the curvatures

◦
Rx, where

◦
Rx is the curvature of the

homogeneous Einstein model attached to the point x of the boundary.
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