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EINSTEIN METRICS WITH ANISOTROPIC
BOUNDARY BEHAVIOUR

STUART ARMSTRONG AND OLIVIER BIQUARD

In recent years the relation between complete, infinite volume, Ein-
stein metrics and the geometry of their boundary at infinity has been in-
tensively studied, especially since the advent of the physical AdS/CFT
correspondence.

In all the previous examples of this correspondence, the Einstein met-
rics at infinity are supposed to be asymptotic to some fixed model—a
symmetric space of noncompact type G/K. Here we shall restrict to
the rank one case, where the examples are asymptotically real, complex
or quaternionic hyperbolic metrics. The corresponding geometries at
infinity (“parabolic geometries” modelled on G/P, where P is a min-
imal parabolic subgroup of G) are conformal metrics, CR structures
or quaternionic-contact structures. In this article, we introduce a new
class of examples, which are no more asymptotic to a symmetric space.
Actually the model at infinity is still given by a homogeneous Einstein
space, which may vary from point to point on the boundary at infinity.

This phenomenon cannot occur in the most classical examples (real
or complex hyperbolic spaces), because the algebraic structure at in-
finity (abelian group or Heisenberg group) has no deformation. But
such deformations exist for the quaternionic Heisenberg group (except
in dimension 7), and even in the 15-dimensional octonionic case. So
these are the two cases on which this article shall focus. In the par-
abolic geometry language, these are the two cases where non regular
examples exist.

More concretely, the basic quaternionic example is the sphere S4m~1
with its (4m — 4)-dimensional distribution 2, and the octonionic ex-
ample is the sphere S with a 8-dimensional distribution 2. At each
point x of the sphere, there is an induced nilpotent Lie algebra struc-
ture on n, = 2, @ 1,5/ Y., given by the projection on 7,5/ %, of the
bracket of two vector fields X,Y € Z,. It was proved in [2] that small
deformations of &, such that n, remains the quaternionic Heisenberg
algebra for all x, are boundaries at infinity of complete Einstein metrics
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2 STUART ARMSTRONG AND OLIVIER BIQUARD

on the ball. This regularity assumption (that is, keeping the isomor-
phism type of the algebra n, fixed) is a strong differential system on
Z: it was shown in [2] that such quaternionic-contact structures exist
in abundance, but there is no octonionic example [11].

In this article, we relax the regularity assumption in these two cases.
There is a beautiful family of examples, already known in the liter-
ature: the homogeneous Einstein metrics of Heber [§]. In the upper
space model, each hyperbolic space is identified with the solvable group
S = AN, with boundary at infinity the Heisenberg group N (where
G = KAN is the Iwasawa decomposition). Then Heber proved that
every deformation of S carries a unique homogeneous Einstein met-
ric. In particular, we can associate to a deformation of the nilpotent
Lie algebra n the homogeneous Einstein metric on the corresponding
solvable group S = AN.

Theorem 0.1. Let n = 4m — 1 > 11 in the quaternionic case, or
n = 15 in the octonionic case. Any small deformation of the (4m — 4)-
dimensional (in the quaternionic case) or 8-dimensional (in the octo-
nionic case) distribution of S™ is the boundary at infinity of a complete
Einstein metric on the ball B"*!.

At each point x € S™, the Einstein metric is asymptotic to Heber’s
homogeneous metric on the solvable group associated to the nilpotent
algebra n,.

Let us precise immediately the meaning of the statement on the
asymptotic behaviour of the Einstein metric. Fix a defining function ¢
of the boundary S™ of B"*! (for example ¢t = 1 —7?), then there exists
a metric vy on the distribution 2 and a metric n on T'S/ 2, such that
near the boundary the Einstein metric ¢ is asymptotic to
1) at* +n v

t2 t’
where we identify a neighborhood of S in B with (0,¢€) x S. Then the
2-tensor t?g extends continuously to the boundary S, and one recovers
the distribution 2 from the metric as the kernel of (t?g)|s. In the
formula , the metric 7 is extended to a 2-tensor on 7'S by choosing
a supplementary subspace to ¥ C T'S, but the asymptotics of g does
not depend on this choice. As will be explained in remark [1.3] at
each point x € S", the meaning of is that when one approaches
the boundary point x, the Einstein metric approaches a homogeneous
metric on a solvable group associated to the nilpotent Lie algebra n,.

This metric is Heber’s metric. As Heber’s metric on a given solvable
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group is unique, this implies that the choice of (7,,,) is unique up to
dilations (1, 7:) — (A*1, Ay.) for a positive real number \.

Compared to previous results, the meaning of the theorem is that
all deformations of the distributions on the boundary of the rank one
symmetric spaces can be interpreted as boundaries at infinity of Ein-
stein metrics, but maybe with an anisotropic behaviour (the asymp-
totics depends on the point at infinity). This gives new examples in
the quaternionic case, for dimension at least 11, and in the octonionic
case.

The relation between the regular examples and the new examples is
perhaps best understood by remembering that the Einstein metrics as-
sociated to quaternionic-contact structures in dimension at least 11 are
actually quaternionic-Kéhler [3], so they keep the holonomy Sp,,Sp; of
the hyperbolic space. This condition distinguishes exactly the regular
case:

Corollary 0.2. In the quaternionic case, for m > 3, the Einstein met-
ric constructed by the previous theorem is quaternionic-Kéhler if and
only if the distribution on S*™~! is regular (that is, is a quaternionic-
contact structure).

The corollary follows from the fact that the boundary at infinity of
a quaternionic-Kéahler metric must be a quaternionic-contact structure
[2].

There is a similar, but obvious, story in the octonionic case. The
Cayley plane has holonomy Sping. If the Einstein metric keeps the
Sping condition, it is well-known that it is the hyperbolic metric (Sping
metrics are locally symmetric). On the other hand, a regular distribu-
tion of dimension 8 on S must be standard. So we have a (trivial)
example of the equivalence of the holonomy condition on the Einstein
metric with the regularity condition on the boundary.

The article has two parts. The first part is algebraic, and consists in
the construction of an approximate Einstein metric near the boundary
at infinity. The new point here is that the model is not explicit: it is
the solution of algebraic equations giving the metrics v and 7 on the
distribution 2 and on the quotient T'S/%. These equations have a nice
interpretation in terms of a stronger geometric structure, a quaternionic
(or octonionic) structure on %, on which we add a gauge condition
which enables to find a unique solution. This additional structure
should be useful in future applications, in particular if one wishes to
work out a Fefferman-Graham type development of the Einstein metric.
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The second part is analytic, and consists in deforming an approx-
imate Einstein metric into a solution of the equations. This relies
basically on a deformation argument, which requires to understand the
analytic properties of the deformation operator. If one has a good un-
derstanding of the analysis for the models (Einstein metrics on solvable
groups), then one can probably use microlocal analysis to glue together
the inverses of the deformation operator into the required parametrix.
However here we prefer to avoid the analysis on these solvable groups,
since more direct methods give the required result. Nevertheless, it is
clear that the more sophisticated microlocal analysis may be required
in further developments of the theory.

1. ALGEBRAIC CONSIDERATIONS

Let Vi and V5, be vector spaces of dimensions 4m — 4 and 3 (in the
quaternionic case) or of dimensions 8 and 7 (in the octonionic case). A
formal Levi bracket is an element ¢ of W = A?V* @ V5. This bracket
makes

(2) n=Vol

into a two-graded nilpotent Lie algebra (as the Jacobi identity is triv-
ially satisfied). The corresponding Lie group N will then carry an
invariant distribution 2 of same dimension as V;. Consider the Lie
bracket [,] on sections of . This is a differential bracket, but the
differential part of it only maps into &. Hence the map

&L NT(2) — T(TN/9D)
ZL(X)Y) = [X,Y])2

is an algebraic map, i.e. a section of A2Z* ® (T'N/2). If we designate
by L the group GL(V;) & GL(V;), then 2 and TN/% are bundles
associated to an L-principal bundle ' — N.

In this set-up, .Z corresponds to an L-equivariant map f¢ from E
to W. Designate by E, the fibre of E at p € N. By construction, ¢ is
in the image fy(E,) for all p, and this image consists precisely of the
L orbit of £ in W.

Under the identifications V; = H™ ! and V, = im H, the quaternionic
standard Levi bracket x is given by the choice of a Hermitian metric h
on Vi; in this case, k is simply the imaginary part of h.

Similarly, the standard octonionic bracket (also designated k) is also
defined by identifications V; = O, Vo = im O and a choice of h.

In general,  is only defined up to L-action; but as ¢ is only defined
up to L-action, we will assume our choice of x is fixed.
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We identify G| as the stabiliser of x in L; this can be seen as the
group that stabilises the quaternionic or octonionic structure. In the
quaternionic case,

Go = RL.Sp(1)Sp(m — 1),
while in the octonionic case,
Gy = R’ Spin(T7).

In general, we consider a manifold X" of dimension n = 4m—1 in the
quaternionic case, or n = 15 in the octonionic case, and a distribution
2 C TX of dimension equal that of V;. At each point x of X, the
image in TX/Z of the bracket [X;, X3] of two vector fields in Z is
an algebraic map, %, € A9 @ (T,X/9,). If we choose a linear
identification e : Vi & Vo = 9, & T, X/D,, sending Vi to 2, and V,
to T, X/%,, then the algebraic bracket £, can be identified with the
element e*.Z, in W, but there is an ambiguity, since we can compose
e by the action of L on V; & V5. Therefore .Z, defines only a L-orbit
in W, which will be denoted by ¢(.%,). In more intrinsic terms: e is
an element of the product E of the frame bundles of 2 and TX/2
(this is a L-principal bundle), and the formula f¢(e) = e*.%, defines
a L-equivariant map fg : E, — W. Then the orbit (%) C W is
exactly the image fo(E,).

The main result of this section is:

Proposition 1.1. There exists a L-invariant open set U C W (that is
an open set of L-orbits), containing x, with the following property. If
X" has a distribution Z such that for every x € X the induced bracket
%, satisfies 0(%,) C U, then there exist metrics n and v on TX/2
and 2, such that, choosing any splitting TX = Z @& V', the metric

_dt+n Y
2

(3)
on R x X is asymptotically Einstein when ¢ — 0:
(4) Ric(g) = Ag + O(#2),

where A = —m — 2 in the quaternionic case, A = —9 in the octonionic
case. Moreover, this choice of n and 7 is unique, up to the conformal
transformation:

(n.7) — (f*n, f7)

for f a strictly positive function X — R.
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In this statement, it is important to note that the asymptotic be-
haviour does not depend on the choice of splitting TX =2 o V.

Note the square root £ in : this is natural with the form of
the metric, e.g. in the asymptotically complex case the expansion of
the Einstein metric involves powers of t3 rather than ¢. It might be
interesting to study whether a good choice of the splitting TX = oV
might lead to a metric g which is Einstein already up to the higher order

o).

Remark 1.2. In the special case where X is the nilpotent group N
associated to an algebraic bracket £ € A*V}* ® V3, and the distribution
2 is the associated distribution, then the splitting gives a canonical
choice for V. Then the metric is an invariant metric on the solvable
group S = R% x N. In particular, Ric(g) — Ag is homogeneous and
has constant norm, so by it must be zero. Therefore the metric
is Einstein. This is the metric constructed by Heber [8] on S (by
uniqueness of Heber’s metric). The proof of the proposition will give
another construction of this metric, at least for small deformations of
the distribution. Conversely, it also follows from our proof that the
open set U can be taken equal to the set of brackets ¢ such that an
Einstein metric exists on the associated solvable group.

Remark 1.3. In general, at each point x € X the bracket .Z, gives
a nilpotent Lie algebra structure on n, = %, ® 7,X/%,. Let N, be
the corresponding nilpotent group and S, the associated solvable group
Sz = R x N,. We are going to see the relation between the asymptot-
ically Einstein metric and S,. To simplify notation, let us consider
only the quaternionic case (but the octonionic case is similar). Near
x we choose coordinates (z1,...,x,) on X such that 2, is generated
by the vector fields (3%4, ey %). The distribution & is given by the
kernel of three 1-forms, «q, as and as, and we can suppose that near
the point z one has n = of + a3 + o3. Moreover we can arrange the
coordinates so that at the point x one has «; = dz;. Then we consider
the homothety

(5) he(t,z1,...,2,) = (rt, 7Ty, 122, 123, /T2y, . .., /TTy).

Note a; = ol dx;, with (0) = 6/. Then one has

5= By = o+ 3 % (0)d
Q; = 1m —=n,.o; = ax; L= XT;.
r=0 /" ji k=4 kaxk !

The three forms oy, as and a3 are homogeneous, and define exactly the
horizontal distribution of the nilpotent group N,. Denote 4 := ~(0)
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and 7] = a2 + a3 + a3, then, when r — 0, one obtains the limit

_d* +
hrg — 9= 1.1
12 t
This metric is now defined globally in the coordinates (t,zy,...,z,),

and is actually an invariant metric on the solvable group S,. (This is
a nice way to see the solvable group S, directly from the distribution
as the limit of the inhomogeneous rescaling when r — 0). From
(4) one has Ric(hig) + Ahig = O(rztz) and therefore at the limit
Ric(g) + A\g = 0, that is g is Einstein. Therefore g must be the unique
homogeneous Einstein metric on .S, mentioned in the previous remark.
This justifies the statement in Theorem that at each point the
constructed metric is asymptotic to the corresponding Heber’s metric.

Proof of proposition[I.1. The uniqueness comes from remark and
the uniqueness of the homogeneous Einstein metric on S, proved by
Heber. Later in the paper, a weaker uniqueness will also be proved.
We will calculate the Ricci tensor of the metric as a function of
~ and n. The calculation is local, so we can choose orthonormal frames
{X;} and {V;} of (T'X/2) and 2, respectively.
On M =R’ x X, we can define an orthonormal frame via:

0

Xo = t—
0 at7
X, = tX,
Y, = ViYL

Let O(a) denote sections of TM whose norm (under g) tends to zero
at least as last as t*. Then we may calculate the Lie brackets of the
above frame elements:

[XoaXi] - Xza

[Xo,Yi] = ;Yi,
[XMX] = O(l)

[ 2 J] = (1/2)

Y., Y;] = Zi;+0(1)2),

where .Zj; = Zy,y,. In future, if v is a section of TX/Z, we will denote
by Z" the v component of .Z — i.e.

°§/ﬂ§% - g(.ﬁ,ﬂ&,v),
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which we will abbreviate as .#* for v = Xj,. Similarly, for ¢ a section
of 7 we denote by £ the section of Z defined by:

9(L8Y;) = 25,

and use the short forms £ = 2, Lf = £F, and £} = .iﬂykyj .
Now let V be the Levi-Civita connection of g. We can calculate V
by using the Koszul formula:

29(VxY,Z2) = X-g(Y,2)+Y -9(X,Z) - Z-g(X,Y)
+g([X’Y]7Z)_g([szLY)_g([KZ]aX)‘

Since our frame elements are orthonormal, the formula reduces to

29<VXY7 Z) = g([X, Y],Z) - g([X, Z]7Y> - g([Y, Z]7X)7

giving:
VX, = 0,
Vx,Xi=VxY;, = 0,
Vx,Xo = =X,
1
Vy,Xo = —53/%,
Vx,X; = 6;X0+0(1/2),
L.,
VY, =V Xi = 4 001/2),

1 1

So in this frame, V = d+ A+ O(1/2) where A € I'(T*X ® End T'X)
is independent of ¢. In detail:

A(Xo) = 0,
Xo — —X;
A(X;) {X] — 0, X0
Y]

!

Xo — —%Y;' .
Ay -l x, - i
— 3% + 30, Xo.
One has dA(X,Y) = X - AY) - Y - A(X) — A([X,Y]). Note that
differentiating A in the X direction is zero, while differentiating A in

the direction of X; or Y; picks up a t or v/t term, and hence become
O(1/2). Thus dA(X,Y) = —A([X,Y]) + O(1/2).
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The curvature R of V is dA + [A, A] + O(1/2), which immediately

implies that

Rx,,x;
RX07Yi
RXZ:Y?

By,

—A(Xi) + 0(1/2),

S A) +0(1/2),

[A(X3), ACX)] + O(1/2),

[A(X3), A(Y))] + O(1/2),

—A(Zy) + [A(X), AX))] + O(1/2).

The commutator terms are given by:

X(] — 0
X — 0uXj — 0pX;

1 i j
Yo — 1 <,§f 3&),
X(] — 1.,%1
X — 13’ 7 + 5zkY

Yk - 5]kX + "%ﬁlga

Xy — 3%,
Xk — i( jiﬂk— ,L:Z]k)‘i‘lgkXo
Yy (LT — L+ ouY; — oY)

Now we need to take the Ricci-trace of this expression:

RiCXO,XO

Here ) is equal to —3 —

Z 9(Xi, Rx; x,Xo) + Z 9(Yi, Ry, x,Xo)

Zg Xi, =X +Zg i) +0(1/2)
)\+O(1/2).
(4m —4)/4 = —m — 2 in the quaternionic case,

and —7—8/4 = —9 in the octonionic case. The cross-terms of the Ricci
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curvature all vanish:

Ricx,x, = Y 9(Xj, Rx, x,Xi) + Y 9(Y;, Ry, x,X)
7 7

1
Zg(va 0:;X0) + Z ijj +0(1/2)
J J

= 0(1/2),
Ricx,y, = 2 9(Xj Rx; x,Y:) +>_9(Y}, Ry, x,Ys)
7 1

= 0(1/2)7
RiCXth = g(XO’ RXoyXiY}) + Zg(Xj’ RXj»X + Zg RY X )
J

= 0(1/2),
the last two expressions vanishing because they are sums of terms of
type g(X,Y) with X | Y. Next, the Z x 2 term is:

Ricx,x, = 9(Xo, Rxox. X;) + > 9(Xi Rx, x,X;) + Y 9(Ye, Ry, x, X;)
k k
1
= —0;; + 0ij — Z%g(Xk,Xk) -> §5ijg(yku Y)
k

_Z (Ye, & +O(1/2)

In the quaternionic case, this is

4m4

(6) RicXi,Xj = )\(5” + (1 51] + Z kﬁj + 0(1/2)
In the octonionic case, this is
(7) Ricy, x, = Ad;; — 20;; + Z vz +0(1/2).

Finally the (TX/2) x (TX/2) term is

Ricy,y, = 9(Xo, Rx,v;Y;) +Zg XkaRXkYY)+Z (Yi, Ry, v,Y))
1
= _6ZJ+Z( ljk_Q(; > <5z]+23 jkj_ )
+O(1/2)

= Zw Z Ly = b) + 0(1/2).
since

S L =3 ,szzéz%’; Z Llyr.
k kp
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In the quaternionic case, the curvature is

4dm—4
3 el

1
k=1

In the octonionic case, it is:

7 13 .
k=1
Now (M, g) is asymptotically Einstein if Ricx, x; = Ad;; + O(1/2) and
Ricy,y; = Adi; + O(1/2). From now on, we will use the Einstein sum-
mation convention, where any repeated index is summed over. Then
the equations () and (8) imply that in the quaternionic case, we must
have:
k 0,7 _ k
L5 Loy = 4(m — 1),

(10) 20
%I;i’ﬁo%y Nkq = 3'7jpa

while equations (7)) and (9] imply that in the octonionic case, we must
have:
k 6pq ioNdp kq
(11) "%?ggo;/yw/y 87) ’
%j"%p’y Mg = Vjp-

For an ¢ sufficiently close to k, these equations can be solved (see
Theorem [1.7]), and the solution is unique up to conformal transforma-
tions. U

A natural question is whether, as in the quaternionic-contact case,
the conformal class (n,v) comes with a quaternionic structure on &
and T X/2. The same applies for the octonionic-contact structures, of
course. We propose here a construction, where instead of looking only
for a conformal class, one constructs directly a quaternionic or octo-
nionic structure. As a byproduct, the system or is interpreted
in a natural way, see , and existence of a solution is provided.

The automorphism group of these structures is Gy, which is con-
tained in the conformal automorphism group

G =R* x SO(n) x SO(v)

of (n,7v). Thus it seems that to get the quaternionic/octonionic struc-
tures on the manifold, we need to impose extra equations beyond
and (1)

These can best be understood by looking at the normality 0* op-
erator described in [6], [5] and [7]. It is an algebraic Lie algebra co-
differential, which extends naturally to a bundle operator on associated
bundles. If X is a quaternionic- or octonionic-contact manifold, 22" the
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corresponding Levi-bracket, and .# is any section of A°’Z* @ (T X/9).
Then O* M = ol & M where

(ol )y = (V" Pro) (M5 H ),

(12) Gt = i (k).

Einstein summation over repeated indexes being assumed. Note that
these expressions are invariant under conformal transformations (7, y) —
(f?n, f7v). If we apply a and 3 to ¢ itself, we get:

Lemma 1.4. In the quaternionic-contact case:

while in the octonionic-contact case:

(Oéji/) = 7]d@
—2(BX) = 8ldrx/g,

the same numbers as in equations and .

Proof. Fix n and +, and pick local orthonormal sections {Iy,---,1,}
of TX/9, where p = 3 in the quaternionic case, and p = 7 in the
octonionic case. These all correspond to complex structures on Z.
Then for X,Y € I'(2), #(X,Y) can be written as:
p
H(X,)Y)=> v(L;(X),Y)],.
i=1
By extension, define Iy to be the identity transformation of . Now
pick local orthonormal sections {Y7,---Y,} of 2, chosen so that ;Y] is
orthogonal to all IY; whenever ¢ # k or j # k. This is possible, as ~y
must be hermitian with respect to these complex structures. Here, ¢ =
m — 1 for quaternionic structures, and ¢ = 1 for octonionic structures.
Again, we may rewrite % as:
i,j=p,k=q
H = > —(LLYy) @ (LYy) @I

i=0,5,k=1
If we raise and lower all indexes with n and ~, we get £, which is

i,j=p,k=q
H = > —(LLYy) ® (LY:) @ (I;)".
i=0,j,k=1
Now «a.% involves taking the trace of £ and J£* over one of the
2 components and over the TX/% components. The trace over the
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TX/2 component is trivial; and if _ denotes contraction between a
space and its dual,

aX =

M=
M-

(L LY) (L4LY5)) (L Ly) (1Ye)" @ (1Y)

ks
[
Il
—
<
_
-
Il
<)

(L LYe) (1 1Y,)) 6 (LiYe)™ @ (1Y)

M= il
=

>
—_

)
—_
-
=
I
<)

(L LYy) ' (LY,)) (LYR)" @ (1Y)

ko
—
<
Il
—_
.
T~
Il
o

7
M’B

_.
<
I
—
-
T~
Il
=)

3ilko(LY3)" @ (1Y)

E

I
F M= 5= 5=
M”B
M*@

(LYr)" @ (1;Yy)

I
1=
e

M=

<
Il
—
-
I
o
>
I
o

3
~
IS

)

The —25.% term is the contraction of J# and £ over both their 2
components; it is

—28H = Z 30 2 () (YD) () e (Y) [ o 1
= Z Z Z ]IYk: ]Il )) (5k051l)jj®]:

q p p
= SN (LY L(LIYV) Lo I

k=11i=0 j,r=1
a P P
= 2.2 > Lol
k=11i=0 j,r=1
a p D
= 222 L8l
1:i=0j=1
= q(p+1)Idrx)o.
Then substituting in the values for p and ¢ gives the result. O

Now if A4 is a section of A2Z*® (T X /%), we may use it in equations
(12) instead of J¢7; in that case, define

(awdl)y = (¥ "o) (M Ne),
1
Bt = ™) AN
Similarly, though " defines the conformal class of (7, v), (through the

reduction to structure group Gy C G’), there is no reason to require
that % be the Levi-bracket of the distribution 2. Given (n,7) on
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a general manifold with distribution Z of correct dimension and co-
dimension, they define a (local) class of compatible brackets .#  of
quaternionic-contact or octonionic-contact type. Then the equations
and can be rewritten as saying that we must find (7, ) such
that for any # compatible with them,

(13) « jge%/ = « ;/g 5

(14) Br KX = BzZ,

or, more compactly,

(15) Oy KX =0uL.

It is easy to see that these equations are conformally invariant.

Remark. It is useful to compare these equations with those defining
a ‘Damek-Ricci’ space (this is a subclass of Heber’s metrics, see [10]).
For any section Z of &, we may define an endomorphism J; of & by

12X, Y) = n(Z, Z(X,Y)),

for sections X and Y of 2. Then X is asymptotically Damek-Ricci if
Jz = —1n(Z,Z). Now if {Z;} is a local orthonormal frame for TX /2,
then we may rewrite ay.Z once more as

ar? = T, (S 07, Zn(Z;, L) @07, L))
jk
= TI",Y(ZJZj(X)JZj)
J
= =Y J7.
J

Since Z; is normal, J%j = —Idy, and Damek-Ricci spaces must solve

equation ([L3). Similarly, for Z and Z’ sections of TX/2
_2n((ﬁf$)(z)vzl> = Tr"/ Tr7 JZ’ X JZ-

Since this must be symmetric, it values are determined by taking
Z = Z'; in which case it is 4(m—1)n(Z, Z) in the quaternionic case, and
8n(Z, Z) in the octonionic one. Consequently Damek-Ricci spaces are
special solutions of equation , as are any spaces that are asymptot-
ically Damek-Ricci (i.e. spaces with .Z, v and 1 such that the relation
J2 = —1n(Z, Z) holds).

It is still somewhat unsatisfactory that there is a large class of &
compatible with a given .Z. It would be better to have a procedure that
fixes £ uniquely (and hence the quaternionic/octonionic structure, as

well as (1,7)).
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In the quaternionic case, the dimension of L (the full graded auto-
morphism group) is (4m —4)? + 3% = 16m? — 32m + 25, while the group
G is of dimension (4m — 4)(4m —5)/2 + 3+ 1 = 8m?* — 18m + 14 and
Gy is of dimension (2m —2)(2m —1)/2+3+1=2m? — 3m + 1.

Looking at equation , one can see that oy takes values in the
~v-symmetric component of ¥ ® %, while §,.Z takes values in the n
symmetric component of (TX/2) @ (TX/2)*. These values are not
completely independent, however: the 7 trace of a¢.Z is the complete
trace of £ with itself, as is the n trace of —204.%. Hence there is
one extra relation, giving a total of (4m — 4)(4m — 3)/24+6 — 1 =
8m? — 14m + 11 independent equations — just the right amount to
reduce the structure group from L to G'.

Now let us consider a slight deformation of a quaternionic-contact
structure, £ = A + e.# . Re-writing equation ((15)):

0 = 9L — 0y
= (O H + Oy dl) + O(E).

The € term is the symmetric part of 9% .#; so, to first order, the
requirement is that 0% .2 be completely anti-symmetric. A method
for fixing ¢ is suggested by the following lemma:

Lemma 1.5. The equation 9% .# = 0 consists of 16m?* — 32m + 24
independent equations, which is exactly enough to restrict the structure
group from L to Gj.

Proof. The operator 0* takes values in 2@ 2* & (TX/2)® (TX/2)*.
This bundle may be identified with E([), where [ is the Lie algebra
of L. The bracket J# defines a reduction to the structure group Gg
and hence Ey, a Gg-principal bundle. This defines the vector bundle
Eo(go), with go the Lie algebra of Gy. The inclusion Ey C E defines
an inclusion of this bundle into E(I). Then the book [7] implies that
the image of 0* is transverse to Fy(go), giving us our dimensionality
result. O

So the natural candidate for fixing .#° would be one whose deriv-
ative close to a quaternionic-contact structure is one where the anti-
symmetric part of 0% .# vanishes.

The simplest such condition is to simply require that the anti-symmetric
part of 0% .Z vanishes. Thus:

Definition 1.6 (Compatibility). The algebraic bracket %, a section
of N29* @ (TX/2), is compatible with the Levi bracket & if:
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(1) 2 is of quaternionic-contact or octonionic-contact type — hence
the dimension and co-dimension of & is correct, and %" defines
a pair of metric (7,7) up to conformal transformations,

(2) 0% K =032,

(3) 0%,.Z is symmetric.

Now, this definition is similar, but not identical, with the condition
for non-regular two-graded geometries laid out in [1]; indeed, the con-
dition there (that 0% .2 = 0) is precisely the infinitesimal version of
the above.

We now phrase our general result. The setting is the same as for
proposition [1.1} we consider a manifold X" of dimension n = 4m —
1 in the quaternionic case, or n = 15 in the octonionic case, and a
distribution ¥ C T X of codimension 3 in the quaternionic case, and
7 in the octonionic case. Remind that the vector field bracket is an
algebraic map, %, € A’Z} ® (T,X/2,). The isomorphism type of %,
defines in W a L orbit, 0(.%,), which does not depend on any choice.

Theorem 1.7. There is an open set U C W, containing the standard
bracket s, such that for all points x € X where 0/(.%Z,) intersects U,
there exists a locally unique, continuously defined, choice of compatible
algebraic bracket 7.

Proof. We need to prove the existence and uniqueness of compatible
¢ . This is a purely algebraic construction, so we may work at a point.
If we choose the natural bracket x to be fixed in A?V}* ® Vs, define 0
as the map A2V @ Va — s,

(16) 0 = ; (O + 00 — O k) — O k.

Note that the first ¢ term must by symmetric, while the other two /¢
terms together are anti-symmetric, so there is no overlap between them.
Another important fact is that the Lie algebra gy has one symmetric
part (the grading element) and the rest is anti-symmetric. We already
know that the image of 9;¢ is of co-dimension one in the symmetric
part of s; its image it precisely the part transverse to the grading
element (21d, Id). Now 0%¢ — 0;k is simply the anti-symmetric part of
20%¢. We know that 207¢ must be transverse to go, and hence so is its
anti-symmetric part. Consequently § maps into [/go.

Now if fg(FE,) intersects the zero set of 6, then there is a point
p € E, such that 0(f«(p)) = 0. Then if we define %, by the property
that fx(p) = Kk, we will get the vanishing of the bundle version of
equation . Hence this JZ" will be compatible.
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So what we need to show is that the L-orbit of the zero set of 6
contains an open set U around x. Now consider the map © : LxW — s,

O(s,l) =0(s- 1),

where s - [ denotes the action of s € L on £. We wish to calculate the
derivative of this map in the L directions around the point (x, Id). Let
s € [; then a little bit of calculations demonstrate that this derivative
is

Do(s)(k, Id) = 0%(0xs)
where

(0x5)(2,y) = K(s(x),y) + w(z, s(y)) — s(x(z, y))

(see [I] for more details of how this is derived). The book [7] then
demonstrates that 9/0, is an invertible map from the image of 0" to
itself, with kernel equal to gy. An extra subtlety is needed to demon-
strate that result, namely the vanishing of the first cohomology groups
HM(g*, g) in homogeneity zero, see [7] and [I]. But Kostant’s proof of
the Bott-Borel-Weil theorem ([9]) show that this is indeed the case in
our situation.

Hence, under the action of L, (s - k) must trace out an open neigh-
bourhood of zero in [/go. This property must extend to points ¢ close
to k by the implicit function theorem, defining our set U.

Now let ¢ be in U intersected with the zero set of 6. If ¢ is close
enough to x (possibly restricting U to a smaller open subset), we know
that if B, C S is defined such that 6(b-¢) = 0 for all b € B, then B
must be of same dimension as gy (at least around the identity in L).
However, if g € Gy, then

1
blg-0) = (05,9 £+0:(g - 0) = Oyyk) — O

1 * * k k
= 3 (9509 C+g- (05t — k) — Ok

1
= 50 -0 =0,

since ¢ is a conformal transformation, commutes with 0%, and 9:¢ —
J;k = 0 by the assumption 0(¢) = 0.

Hence around the identity, dimension count implies that B, is pre-
cisely the group Gy. Action by Gy preserves k, so does not affect the
value of #,. Consequently, the choice of %, is locally unique for ¢ € U.

O
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Remark. As noted before, the condition that 0% 2 be symmetric can
be replaced with any other condition that approximates the one above
to first order. There are more natural candidates for that — involv-
ing, for instance, the decomposition of the partial trace .,iﬂl’;.,?lgfy” into
irreducible Gy components, and the vanishing of one of these compo-
nents. But since we’re been unable to find a direct use of such a result
(it affect the curvature of the asymptotically Einstein metric, but it’s
not clear exactly how), we’ve stuck with the simpler condition in this

paper.
2. CONSTRUCTION OF THE EINSTEIN METRICS

In this section, we prove theorem [0.1] along the lines of [2]. Because
we restrict to the case of small deformations of the model hyperbolic
metric, we are able to give a short direct proof, in which the main step
is a uniform estimate for the norm of the inverse of the linearization.

We start with the quaternionic or octonionic hyperbolic space M,
whose metric in polar coordinates is expressed in both cases by

(17) go = dr? + sinh*(Z)7o + sinh®(r)n.

Here 19 = o, where ap is a 1-form on S~ (resp. S'%) with values in
R3 (resp. R7), and 7 is the induced metric on the 4(m—1)-dimensional
(resp. 8-dimensional) distribution %, of S™.

We will need the mean curvature Hy(r) = 0,logv of the spheres
r = cst, where v is the volume element. It is given by Hy(r) = 2(m —
1) coth(5) + 3 coth(r) in the quaternionic case, or Ho(r) = 4 coth(3) +
7 coth(r) in the octonionic case. Also we note

A = lim Hy(r)

the limit at infinity, so that s = 2m + 1 in the quaternionic case and
2 = 11 in the octonionic case.

Suppose that we have now a small perturbation & of the distribution

2. From proposition we have constructed v and n on 2 and T'S/2
such that

(18) gy = dr® + sinh?(%)y + sinh*(r)n

is asymptotically Einstein :

(19) Ric(gg) — Agg = O(e™?),

with A = —m — 2 (resp. A = —9). Here the norms are with respect to

gg. Actually, in the proof of proposition [1.1] we proved more, that is
there is a development for the curvature,

(20) R:Ro—i‘@i%Rl—i‘eing‘i‘"' 5
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where the terms R; do not depend on r, the term R; depends on one
derivative of the bracket . on the boundary, and the other terms
depend on two derivatives of .Z. This immediately implies

(21) IV¥(Ric(gy) — Ago)| < cpe™2 for all k,

where ¢, can be made small if .Z is C**2 close to the standard bracket.
Of course, the formula does not give a smooth metric at the

origin. To remedy this, we choose a cutoff function x(r), such that

x(r)=1forr >R+ 1and x(r) =0or r < R—1. Then we define

(22) 9= x92 + (1 = x)g0-

The metric g is a global filling of (n,~) in the ball.
The first observation is that the metrics g4 have uniform geometry:

Lemma 2.1. Suppose k& > 2. For Z varying in a fixed C**! neigh-
bourhood of %, the sectional curvature of g is negative, the curvatures
of g and their (k — 2) covariant derivatives are uniformly bounded.

Proof. A C**! control of 2 gives a C* control of the conformal metric
(n,7), since one derivative is needed to calculate the Levi bracket and
(n,7) is then obtained as the solution of algebraic equations. Therefore
we have a C* control on the coefficients of g. The lemma then follows

from the form of the curvature. O

This implies that balls for the metrics g4 are uniformly comparable
with Euclidean balls. Then the Holder norm of a function f is defined
as the supremum of the Holder norms of f on each ball of radius 1.

The analysis of the Einstein equation requires the use of weighted
Holder spaces. Our weight function will be

(23) w(r) = cosh(r)°
and we then define the weighted Holder space C’?’O‘ = wOCke, Of
course, from the initial estimate , the weight we are interested in
is ) = %

As in [2] chapter I], the Einstein metric will be constructed as a
solution h of the equation
(24) ®9(h) := Ric(h) — Ah + 65 (64h + 3d Try h) =0,
and we require that h is asymptotic to ¢ in the sense that
(25) h—geCry.
Indeed, by [2, lemma 1.1.4], a solution h of ®9(h) = 0 then satisfies
d0gh + 3d Tryh = 0 and Ric(h) = Ah. Given lemma (in particular,
the negative curvature of g implies that the linearization of ®¢ has no
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L? kernel), the proof in [2] applies and proves that if the data (n,~)
is sufficiently close to (1y,70) in C** norm, that is if 2 is sufficiently
close to 2, in C** norm, then one can find a solution h of , if one
has a uniform bound on the inverse of the linearization of ®9. This is
provided by:

Lemma 2.2. Suppose that (' —/ 2 —8) < 6 < $(HA+VH? —8).
For 2 sufficiently close to %y in C** norm, the linearization P, =
dy®9 : CF*(Sym? T*M) — C§(Sym? T*M) is invertible and the norm
of the inverse is uniformly bounded.

From the value of 77, we check that the weight § = % indeed satisfies
the hypothesis, so theorem follows from the lemma.
So we now concentrate on the proof of the lemma. One has

P,=1V'V—R,

The property of the curvature term R, we need is the following [2]
lemmas [.4.1 and 1.4.2]: for the hyperbolic metric go, the largest eigen-

value of Ry, is equal to 1 (instead of 4 in [2], because here we normalize
here the sectional curvature of go in [—1, —1] instead of [—4, —1]). This
immediately implies that, for 2 close enough to %, in C® norm, one
has

o

(26) R, <1+e
For the function w depending on r only, one has
(27) Aw = —0*w — H(r)d,w,

where H(r) = 0, logv is the mean curvature. For the metric g given
by (22)), the mean curvature H(r) coincides with Hy(r) for r > R+ 1
orr<R-—1,and for R—1<r <R+ 1 weget |H(r)— Ho(r)| <eif
we suppose (1,7) close enough to (10, Y0)-

An easy calculation gives, for the hyperbolic metric,

Aw  _|dw|? dim?  6+1
2 - =2 )
(28) 2 coshr cosh27“>

w w

It follows that, for the metric g, if Z is sufficiently close to %,
A 2

_Aw vl s s e,

w w2

(29)

Using this property of the weight function w, we can now establish
lemma using the maximum principle. From Kato’s inequality,

(u, V'Vu) = [ulAfu| + [Vul® = |d]ul|* = |u|Alul.
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Using the formula

Aw dwl? dw
wAu| = Awlu|) — w|u|(7 4 oldw )+ 2<E’ d(wlul))

|w|?
dw
> A(w|u]) + 6(H — § — e)wlu| + 2<E’ d(wlul))
it follows from that
d
(30) w|Pul > %A(w|u|)+(%5(%—5—6)—1—6>w|u|+<§,d(w|u|)>.

Let A= 16( —0 —€) — 1 —e. If § satisfies the hypothesis of lemma
2.2] then one can choose e sufficiently small so that A > 0. Then by
the maximum principle applied to w|ul, it follows that

(31) sup(w|ul) < A~ sup(uw| Pul).

(A priori we cannot apply the maximum principle to w|u| since it has
not to go to zero at infinity, but we can apply it for w = (coshr)? for
any ¢ < J; then taking &' — 0 gives the estimate).

From this estimate, it is immediate that if v € C§', then one can
solve Pu = v with u € Cf and [lullco < A7'||v[[co. It remains to
obtain a bound on higher derivatives, but from the uniform geometry
lemma 2.1}, applying the usual elliptic estimate in each ball, one obtains
a constant C' such that

lull ez < C(I1Pullcg + llullce) < C(1+ AT Pullop
which is the required estimate.

Remark. The previous lemma does not give an optimal interval of
weights for the isomorphism. In [2] the optimal interval for g is cal-
culated; using microlocal analysis, it is proved in [4] that the same
interval holds if the distribution 2 is quaternionic-contact (the regular
case). In general, the optimal interval may depend on the supremum of

the eigenvalues of the curvatures R,, where R, is the curvature of the
homogeneous Einstein model attached to the point x of the boundary.

Acknowledgment. We thank the referee for his comments, which re-
sulted in a enhanced presentation of the paper.
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