
HAL Id: hal-02928853
https://hal.science/hal-02928853

Submitted on 21 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A nonlinear Poisson transform for Einstein metrics on
product spaces

Olivier Biquard, Rafe Mazzeo

To cite this version:
Olivier Biquard, Rafe Mazzeo. A nonlinear Poisson transform for Einstein metrics on product spaces.
Journal of the European Mathematical Society, 2011, 13, 5, pp.1423-1475. �10.4171/JEMS/285�. �hal-
02928853�

https://hal.science/hal-02928853
https://hal.archives-ouvertes.fr


A NONLINEAR POISSON TRANSFORM

FOR

EINSTEIN METRICS ON PRODUCT SPACES

OLIVIER BIQUARD AND RAFE MAZZEO

Abstract. We consider the Einstein deformations of the reducible rank
two symmetric spaces of noncompact type. If M is the product of
any two real, complex, quaternionic or octonionic hyperbolic spaces,
we prove that the family of nearby Einstein metrics is parametrized by
certain new geometric structures on the Furstenberg boundary of M .

1. Introduction

This paper is the first in a series to investigate the deformation theory of
Einstein metrics asymptotically modelled by Riemannian globally symmetric
spaces of noncompact type and of arbitrary rank. In the special case of
real hyperbolic space, and the slightly more general setting of conformally
compact asymptotically hyperbolic manifolds, this has been the focus of
extensive study over the last fifteen years; this attention is due both to
the many deep connections with conformal geometry, cf. [10], as well as
the central role that these ‘Poincaré-Einstein’ spaces play in the AdS/CFT
correspondence in string theory, for which the proceedings [4] provides a
good introduction. More recently, some of this analysis has been extended to
the other rank one noncompact symmetric spaces [2]. Some recent advances
in linear analysis on symmetric spaces has now made it reasonable to attack
this problem in greater generality.

The rank one globally symmetric spaces of noncompact type are the real,
complex, and quaternionic hyperbolic spaces, denoted RHm, CHm, HHm,
respectively, and the octonionic hyperbolic plane OH2. Each has curvature
bounded between two negative constants and is diffeomorphic to an open
ball Bn+1. There is a family of ‘asymptotically K hyperbolic’ (K = R,C,H
or O) – or briefly, AKH – metrics, with asymptotics modelled on KHm, each
of which induces a geometric structure on the sphere at infinity, Sn. In the
real case, this geometric structure is a conformal class; in the complex and
quaternionic case, it is a CR or quaternionic contact structure, as described
in [2]. There is an octonionic contact structure on S15, but it is rigid. We
call these boundary structures either the conformal infinity data of the AKH
metrics, or alternately, G-conformal structures, where G is the semisimple
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2 OLIVIER BIQUARD AND RAFE MAZZEO

Lie group associated to KHm. One main result of [2] is that for each G
conformal structure near the standard one on Sn there is a unique AKH
Einstein metric near to KHm, and with that conformal infinity data. This
correspondence between AKH Einstein metrics and G-conformal structures
can be regarded as an asymptotic boundary problem, and the assignment of
the interior Einstein metric to the conformal infinity data a sort of nonlin-
ear Poisson transform. There are other very interesting, and more subtle,
problems of this type: we mention in particular LeBrun’s positive frequency
conjecture, concerning self-dual and anti-self-dual Einstein metrics in four
dimensions, which was solved by the first author in [3].

It is our goal in this paper to establish a similar local deformation theory
in the first higher rank case, namely for products of the various hyperbolic
spaces listed above. There are a number of new and interesting features
not encountered in the rank one case, and the details of the geometry and
analysis are already sufficiently complicated that it has seemed reasonable
to keep this as a separate paper. In later papers we shall treat the cases
corresponding to more general noncompact higher rank symmetric spaces.
This mirrors the recent developments for the linear analysis (for the scalar
Laplacian) [20, 21, 22, 23].

At the roughest level, the proof proceeds exactly as in the AKH setting,
by constructing a family of approximate Einstein metrics, parametrized by a
family of boundary structures generalizing the G-conformal structures, and
then applying the inverse function theorem to an appropriately gauged ver-
sion of the Einstein operator. The solution of the resulting nonlinear elliptic
equation yields the ‘near product hyperbolic’ Einstein metric with the pre-
scribed conformal infinity data. There are three main new issues in carrying
this out for higher rank symmetric spaces. The first, purely geometric in na-
ture, involves defining the appropriate analogue of G-conformal structures.
This relies in turn on a choice of compactification for each of these product
hyperbolic spaces as a manifold with corners of codimension two; the new
boundary structures are defined on the corner. However, not every one of
these new boundary structures can be extended to an asymptotically prod-
uct hyperbolic metric which is also asymptotically Einstein everywhere near
infinity. Extra hypotheses on the boundary structure must be imposed, and
even then one must solve an extra Einstein-like equation to be able to ex-
tend this structure from the corner to the codimension one boundary faces.
The final issue is to attain some understanding of the mapping properties
of the linearized gauged Einstein operator on these asymptotically prod-
uct hyperbolic metrics so that we can apply an inverse function theorem
argument.

In slightly more detail, if Mj is a rank one hyperbolic space, j = 1, 2, then
the correct notion of conformal infinity data on M1 ×M2 is what we call a
(G1 × G2)-conformal structure on the Furstenberg boundary ∂M1 × ∂M2.
This is defined carefully in § 5. To construct an approximate Einstein met-
ric associated to one of these, the first step is to extend this structure from
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the corner to the full boundary (M1 × ∂M2) ∪ (∂M1 ×M2); this involves
solving an auxiliary PDE on these hypersurface boundaries, which is a cou-
pled version of the Einstein equation on each factor Mj . Once this has been
done, we can extend the conformal infinity data to an approximate solu-
tion of the problem, i.e. a metric which induces this designated structure on
the Furstenberg boundary, and which is asymptotically Einstein uniformly
near infinity. The next step is to determine the mapping properties of the
linearized gauged Einstein operator on weighted Hölder spaces in order to
perturb this asymptotically Einstein metric to an exact one. This is done us-
ing the geometric parametrix approach developed by the second author and
Vasy, as referenced above, which involves an adaptation of the techniques
of N -body scattering theory to study elliptic theory on symmetric spaces
of rank greater than one. A subtle but important complication is that if
either of the factors is quaternionic, then the approximate Einstein metrics
corresponding to different (G1 × G2)-conformal structures are not mutu-
ally quasi-isometric, even up to diffeomorphism. Because of this, even the
function spaces vary in a nontrivial way as we vary the boundary (G1×G2)-
conformal structure. This means that we must analyze the Green function
for the linearized gauged Einstein operator not just at the exact product
metric, but for all nearby approximate Einstein metrics. This necessitates
that we carry out a parametrix construction at ‘near product hyperbolic
metrics’, which is more complicated than doing it just at the product hy-
perbolic space only. (This difficulty is already present in the quaternionic
hyperbolic case [2]; there is a way to circumvent it then which unfortunately
does not generalize to this product setting, so the parametrix construction
seems unavoidable here.)

General information about the geometric analysis behind the deformation
theory for Einstein metrics, particularly in the compact setting, can be found
in [1]. We follow a slightly different route developed in [2]. Suppose that g
is Einstein, i.e. Ricg − λg = 0 for some real number λ. If h is a sufficiently
small symmetric 2-tensor, then to make the equation h 7→ Ricg+h−λ(g+h)
elliptic we supplement it with the so-called Bianchi gauge condition Bg(h) :=
δgh− 1

2dtr gh = 0. Equivalently, we look for solutions of the nonlinear elliptic
system

Ng(h) := Ricg+h − λ(g + h) + (δg+h)∗Bg(h) = 0.

It is not hard to show that if λ < 0 and Bg(h)→ 0 at infinity, then solutions
of this equation correspond to Einstein metrics g+ h in Bianchi gauge with
respect to g. One advantage of this gauge is that the linearization of Ng at
h = 0 is the particularly simple operator

Lg =
1

2

(
∇∗∇− 2

◦
R

)
,

where the final term on the right is the usual action of the full curvature
tensor for g on symmetric 2-tensors. Throughout this paper, this operator
will be called the linearized gauged Einstein operator.
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Our principal result is the

Main Theorem. Let (Mj , gj) be an AKjH Einstein space, j = 1, 2, and
let c be the product (G1 ×G2)-conformal structure on ∂M1 × ∂M2. Assume
that 0 is not an L2 eigenvalue for the linearized gauged Einstein operator
on either (Mj , gj), j = 1, 2, or (M1 × M2, g1 + g2). Let c′ be any other
smooth (G1 ×G2)-conformal structure which is sufficiently close to c in the
C 2,α norm. Assume also that c′ satisfies the global integrability hypothesis
in Definition (26). Then there is a near product hyperbolic Einstein metric
g′ with conformal infinity data c′, and moreover g′ is unique amongst such
metrics in a neighbourhood of the product metric g.

The hypothesis on the linearized gauged Einstein operator is satisfied in
many situations, in particular for convex cocompact quotients of K hyper-
bolic spaces and negatively curved AKH Einstein spaces.

We note also that the techniques and results of this paper apply some-
what more generally than when M is globally a product. It would not be
too difficult to define a class of manifolds and metrics with appropriate local
product conditions near the corners and boundary faces to which this defor-
mation theory also applies. As a very simple example, M might be obtained
by a compact topological perturbation from the product M1×M2. However,
we do not currently know any manifolds of this type which are Einstein, and
so have not formulated our main result in this greater generality.

One final comment about notation. We shall be using various classes
of Hölder spaces, often weighted by powers of boundary defining functions.
We typically write C k,α for Hölder spaces on compact manifolds (or in any

compact set), and Λk,αg when these spaces are defined relative to some com-
plete metric g on an manifold. (In fact, the subscript g is replaced by some
moniker for a general class of complete metrics with a type of prescribed
asymptotic geometry.)

The plan of this paper is as follows. In § 2 we review the geometry of AKH
hyperbolic spaces. § 3 contains a lengthy review of the geometric parametrix
theory used to study elliptic theory on these spaces, which is called the KΘ-
pseudodifferential calculus; we also establish some results here about the
resolvent family of Lg for such a metric. § 4 reviews the analysis needed to
carry out the deformation theory of Einstein metrics in the AKH setting.
§ 5 develops the notion of (G1×G2)-conformal structures and some geomet-
ric properties and estimates for the corresponding asymptotically product
hyperbolic metrics. The extension of these structures to the codimension
one boundary faces is the subject of § 6. The parametrix construction in
the near product hyperbolic case is the topic of § 7, and finally, the brief § 8
finishes the proof of the main theorem.
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2. Asymptotically K hyperbolic spaces

This section reviews the geometry of rank one symmetric spaces of non-
compact type, and of the more general class of Riemannian manifolds which
are asymptotically modelled on these.

Hyperbolic spaces and their conformal infinities. The noncompact
symmetric spaces of rank one are commonly called hyperbolic spaces and
written as KHm, where K = R, C, H (the quaternions) or O (the octonions).
Note that OHm exists only when m = 1, 2, and in fact OH1 = RH8, so the
only new space in this last family is the 16-dimensional octonionic hyperbolic
plane OH2. As a homogenous space, KHm = G/K, where G is a real
semisimple Lie group and K a maximal compact subgroup; more specifically,

RHm = SO1,m/SOm, CHm = SU1,m/Um,

HHm = Sp1,m/Sp1Spm, OH2 = F−20
4 /Spin9.

These are the noncompact duals of the corresponding projective spaces
KPm.

Throughout this paper we write

(1) d = dimRK,

so that

dimRKHm = md := n+ 1,

where this last equality defines n in terms of m and d.
The polar coordinate expression for the metric on RHm is

(2) g = dr2 + sinh2(r) γ,

where γ is the standard metric on Sn. For the analogous expression on
the other hyperbolic spaces, denote by η ∈ Ω1(Sn)⊗ Im(K) the connection
1-form of the Hopf bundle

Sd−1 −→ Sn

↓
KPm−1

and let γ be the pullback of the standard metric on KPm−1, regarded as a
metric on the distribution D = ker η. The metric on KHm, normalized to
have sectional curvatures in [−4,−1], is given by

(3) g = dr2 + sinh2(r) γ + sinh2(2r) η2.

The metric γ on the distribution D can be obtained as the limit as r →∞
of the family of metrics γr = 4e−2rg|TSnr on Sn; note that this limit is finite
only on D , and becomes infinite on any complementary direction. There
is no natural ‘origin’, so e−2r and γ are defined only up to a multiplicative
factor. Indeed, once we are in the fully geometric setting below, it is most
natural to take r as the distance from a large convex hypersurface, and then
we see that γ is only determined up to an arbitrary smooth positive factor;
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thus only the conformal class [γ] of this metric on D is well-defined. We call
this asymptotic data (D , [γ]) the conformal infinity of g.

Associated to the distribution D on Sn is the bundle D ⊕ (TSn/D) over
Sn. The Lie bracket on sections of D equals −dη, and thus induces the
structure of a nilpotent Lie algebra on each fibre of this extended bundle
which is isomorphic to the K-Heisenberg algebra KHeism−1 ∼= Km−1⊕Im(K).
The metric γ is compatible with dη ∈ Ω2

D ⊗ Im(K) in the sense that the pair
(dη, γ) defines a K-structure on D , i.e. a collection of d− 1 almost complex
structures which are orthogonal with respect to γ, and which satisfy the
algebraic relations of the basis elements in Im(K).

G-conformal structures. The hyperbolic metrics (2) and (3) are the mod-
els for more general asymptotically hyperbolic metrics (of type R, C, H or
O). Before defining these, however, we first introduce terminology for the
conformal infinity structures, which will also be used later in the product
case.

Definition 1. Fix the K hyperbolic space KHm = G/K. A G-conformal
structure on an arbitrary manifold Y n, n = md− 1, is a codimension d− 1
distribution D ⊂ TY , with a conformal structure [γ] on the fibres of D , such
that the induced nilpotent Lie algebra D⊕TY/D is isomorphic at each point
to the K-Heisenberg algebra, and any metric γ ∈ [γ] is compatible with the
K structure on D . We say that the distribution D is of K-contact type.

This definition unifies several cases:

• when K = R, D is the entire tangent space and [γ] is a conformal
structure in the usual sense;
• when K = C, D is a contact distribution in the ordinary sense; if η is

a contact 1-form which defines D , then the compatibility of a metric
γ on D with dη means that on D one has dη(·, ·) = γ(J ·, ·) for some
almost complex structure J which is orthogonal with respect to any
γ ∈ [γ]; this is simply an almost CR structure on D ;
• when K = H, D is a “quaternionic contact structure” as defined and

studied in [2]; it turns out that the conformal class [γ] is completely
determined by dη;
• finally, the octonionic case is rigid; D is automatically locally iso-

morphic to the standard distribution on the sphere S15, and [γ] is
determined completely by dη.

It is important to note here that in the quaternionic case, even though
each of the tangent nilpotent Lie algebras is isomorphic to the standard
quaternion Heisenberg algebra, the distribution D is not locally diffeomor-
phic to the model structure on the sphere (unless it is standard everywhere).
In other words, there is no direct analogue of Darboux’s theorem for quater-
nionic contact structures, and the infinitesimal equivalence of these struc-
tures at each point does not imply their local equivalence.



A NONLINEAR POISSON TRANSFORM 7

AKH metrics. Let M be a manifold with boundary Y = ∂M admitting a
G-contact structure (associated to KHm = G/K). We give two equivalent
definitions of the class of complete metrics on the interior of M which induce
a G-conformal structure on Y .

The first mimics the polar coordinate definition of the model case.

Definition 2. A metric g on Mn+1 is called asymptotically K hyperbolic
(or AKH for short) if the following conditions are satisfied: there is a neigh-
bourhood U of Y in M , a diffeomorphism identifying U with (1,∞)r × Y ,
and a G-conformal structure (D , [γ]) on Y , such that, fixing a representative
(η, γ) of the G-conformal structure and defining

g0(γ, η) = dr2 + sinh2(r) γ + sinh2(2r) η2

in U , we have
g = g0(γ, η) + k,

where k is in the weighted geometric Hölder space e−νrΛ2,α
g0 for some ν > 0.

(The derivatives and norms are taken with respect to g0(γ, η).)

This definition does not depend on the choice of (η, γ) in the confor-
mal class since, replacing (η, γ) by (fη, fγ) for some f ∈ C∞(M), f > 0,
changes the model (up to diffeomorphism) by an error which is O(e−r). The
pair ([γ], η) (or more properly, the triple (D , [γ], η)), is called the conformal
infinity of g.

The alternate definition simply replaces the radial variable r by x = e−r,
which is a defining function for Y in M (recall, this means that x ≥ 0 in M ,
x = 0 only on Y and dx 6= 0 there); thus

(4) g0(γ, η) =
dx2 + γ

x2
+
η2

x4
, g = g0(γ, η) + k,

where k ∈ xνΛ2,α. (Again, norms and derivatives are with respect to
g0(γ, η).) This will be more useful from our point of view since the boundary
Y appears explicitly as the hypersurface {x = 0}. Near the boundary, the
volume form of g has the form

(5) dVg = x−n−d dx dAY (x)

where dAY (x) is a family of volume forms on Y depending smoothly on x.
A straightforward calculation, cf. [2], shows that an AKH metric has

curvature tensor which is asymptotic to that of KHm to order O(e−νr) =
O(xν).

The complex hyperbolic metric on the unit ball B in Cm has a slightly
different form in standard Euclidean coordinates, and it is worth explaining
the difference. This metric has Kähler form

−∂∂ρ
ρ

+
∂ρ

ρ
∧ ∂ρ
ρ
,

where ρ = 1
2(1− |z|2) is a defining function for ∂B. As a Hermitian metric,

the first term blows up only like 1/ρ; its leading coefficient is the Levi form,
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which is positive definite on D . The second term, which blows up at the
faster rate 1/ρ2, vanishes on (the radial extension of) D , and is positive on
the directions spanned by ∂ρ and ∂ρ, or equivalently, on the span of ∂ρ and
i∂ρ. There are analogous expressions for the Bergman and Kähler-Einstein
metrics on any strictly pseudoconvex domain.

The obvious discrepancy with (4) is resolved by setting x =
√
ρ. This

accords with the fact that the geodesic distance function r for the hyperbolic
metric is comparable to −1

2 log ρ rather than − log ρ. More bluntly, the
standard C∞ structure on the closure of the Euclidean ball (or any strictly
pseudoconvex domain) induced from its inclusion in Cm is not quite the
right one for our purposes.

3. Linear elliptic theory on asymptotically hyperbolic spaces

We now describe the structure of the Green function and mapping prop-
erties for the linearized gauged Einstein operator on an asymptotically K
hyperbolic space.

There are several ways to approach linear elliptic problems of this type.
Because the underlying geometric structure is asymptotically rank one, cer-
tain features of the operators in question are dominated by their radial
behaviour, which is one-dimensional. Using this, the first author [2] car-
ried out a detailed ODE analysis for the radial part of the relevant oper-
ators on each K hyperbolic space to capture the decay of the correspond-
ing Green functions, from which the required mapping properties can be
deduced. For higher rank geometries, the radial parts of these operators
are multi-dimensional and must be studied using more powerful techniques.
This will be done here via the machinery of geometric microlocal analysis.
We begin by reviewing these methods in the setting of asymptotically K hy-
perbolic geometry, even though as we have just indicated, simpler methods
are available there, because this is a good warm-up for the construction in
the product case below, but also since we require in the product analysis of
§7 a number of subtle estimates on the resolvent family which do not seem
to be easy to obtain in other ways.

Before embarking on all of this, we owe the reader a few words about the
general strategy. Local elliptic theory (and hence global elliptic on compact
manifolds) can be developed entirely via Schauder estimates. An under-
standing of the global mapping properties for a Laplace-type operator L on
a complete noncompact manifold, however, requires both this local theory
and also some information about ‘far-field’ effects. Roughly speaking, one
needs estimates at infinity for solutions of Lu = f , even when f ∈ C∞0 . If
L is invertible on L2, for example, and we represent its inverse by an inte-
gral operator f 7→ u(z) =

∫
G(z, z′)f(z′) dz′, then G(z, z′) is a distribution

on M ×M usually called the Green function for L. Its structure near the
diagonal {z = z′} is exactly the same as in the compact case, but the impor-
tant point is to determine its asymptotics as (z, z′) → ∞ in any direction
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in M ×M . These determine the mapping properties of L: for example, for
nonlinear problems it is usually more convenient to use the invertibility of
L on Hölder spaces rather than Sobolev spaces. It is not straightforward to
pass from an L2 to a Hölder setting in general, but such things can be de-
duced from pointwise estimates for the off-diagonal asymptotics of G. Thus
it is a fundamental goal to determine these asymptotics when possible.

One often deduces the existence of G via Hilbert space theory and a
Bochner-type argument, but this gives no information about its asymptotic
structure. This is where parametrix methods can be useful. To prove that L
is Fredholm, it suffices to construct an operator which inverts L up to com-
pact errors. A parametrix is thus an explicitly constructed approximation
to a (generalized) inverse for L. Hopefully, the nature of its construction
yields good pointwise control on the Schwartz kernel. In special geometric
settings such as the ones considered here, a parametrix construction pro-
ceeds by patching together the inverses of a set of model problems to get
an approximate inverse with compact error; better approximations to the
inverse are obtained by an iteration process. To organize this procedure, it

is useful to perform this construction on a certain compactification M̃2 of
M ×M . This compactification is a manifold with corners, and the model
problems appear as the induced operators on its different boundary hyper-
surfaces. The off-diagonal behaviour of the parametrix (and later, the Green
function) is encoded by these various boundary hypersurfaces, since these
correspond to various asymptotic regimes. The fine pointwise structure of
a parametrix reduces to the fact that it is a conormal (or even better, poly-

homogeneous conormal) distribution on M̃2. A posteriori one deduces this
same regularity structure for the Green function itself. The technicalities of
this construction involve defining a pseudodifferential calculus on M large
enough to allow for a parametrix construction for ‘fully elliptic’ operators.
Elements of such a calculus are characterized by the regularity properties of

their Schwartz kernels on M̃2, and the main work consists in verifying the
usual properties, i.e., composition, boundedness, etc. This has been carried
out for a number of ‘asymptotically regular’ geometries. In this section we
explain how this looks for the asymptotically K hyperbolic geometries.

We assume in this section that L is a generalized Laplacian acting between
sections of bundles E and F over M associated to the bundle of orthonormal
frames via a representation of the orthogonal group; these are equipped with
the Levi-Civita connection ∇. A geometric differential operator is a linear
combination of powers ∇k, with coefficients determined by the metric and
curvature tensor. In particular a generalized Laplacian is an operator of the
form

L = ∇∗∇+R,

where R is a symmetric endomorphism on E constructed from the curvature
tensor associated to ∇. (Everything here adapts easily to first order Dirac-
type operators, and to many other operators as well.) We shall describe
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the construction of a parametrix for L, and explain how it gives information
about the Green function and mapping properties of L on various function
spaces. At the end of this section we collect additional facts about the
resolvent family R(λ) = (L− λ)−1 needed later.

We conclude with some historical remarks. The analysis of elliptic uni-
formly degenerate operators (which is the case K = R) appeared in [17]
and [18]. The complex case was developed initially by Epstein, Melrose
and Mendoza [9] (and further development and ramifications of this theory
are contained in the unpublished manuscript [8]). The quaternionic and
octonionic cases have not previously been written down explicitly before,
though these are direct adaptations of [9]. These various pseudodifferential
calculi are quite similar to one another. (For K = H, one needs to make
minor adjustments because of the lack of Darboux theorem then, but this
is not serious since these constructions depend on the infinitesimal, rather
than the local, identifications between manifolds with KΘ structure and the
K-Heisenberg models.)

KΘ structures. We first describe the notion of a KΘ structure on a man-
ifold with boundary M , and its ancillaries: the KΘ tangent, cotangent and
tensor bundles, and the classes of KΘ metrics and KΘ differential opera-
tors, the latter of which contains all geometric elliptic operators for any KΘ
metric as elliptic elements.

Suppose that Y = ∂M carries a distribution D of type K; let ([γ], η) be
any associated conformal infinity. Choosing an identification of a neighbour-
hood U of Y in M as a product Y × [0, 1)x, we extend this data to U , and
hence write down the model AKH metric g0 = g0(γ, η) as in (4). Now define
the space VKΘ of all smooth vector fields V on the (closed) manifold M such
that g0(V, V ) is smooth (in U ) up to x = 0. This is independent of γ and
η, but depends on D (and the 1-jet of its extension to the interior).

It is helpful to write this out in a local frame. First choose a local frame
Y1, . . . , Y`, ` = m(d− 1), for D and another set of independent vector fields
Z1, . . . , Zr, r = d − 1, which are complementary to D at each point and
tangent to each Y ×{x}; the vector field ∂x completes this to a full basis of
sections of TM . Then V ∈ VKΘ if and only if

(6) V = a x∂x +
∑̀
j=1

bj xYj +
r∑

k=1

ck x
2Zk,

where a, bj , ck are all C∞ up to the boundary. Hence VKΘ is locally the span

over C∞(M) of {x∂x, xY1, . . . , xY`, x
2Z1, . . . , x

2Zr}.
The terminology ‘Θ-structure’ comes from [9], where Θ denotes a nonva-

nishing section of T ∗∂MM ⊗ Im(K), the pullback of which to T ∗∂M equals η.
Hereafter, we let Θ denote not only this form on ∂M , but also some choice
of smooth extension to the interior. All of the notions here can be defined in
terms of this form, or equivalently, the corresponding oriented (d− 1)-plane
bundle S of 1-forms on M at ∂M . Thus, for example, elements of VKΘ are
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also characterized as vector fields which are smooth on M and which satisfy
Θ(V ) = O(x2).

Note that VKΘ is closed under Lie bracket. Next, there is a vector bundle,
KΘTM , for which VKΘ is the entire space of smooth sections. The fibres are
defined by

KΘTpM = VKΘ/IpVKΘ,

where Ip denotes the space of smooth functions on M vanishing at p. (For
a more prosaic definition, we take the sections x∂x, xYi, x

2Zj as a local basis
of sections of KΘTM .) This bundle is naturally isomorphic to TM over the
interior, but the natural bundle map

KΘTM −→ TM,

defined via evaluation, V 7→ V (p), is the zero map when p ∈ Y . The subbun-
dle over ∂M spanned by {xYi, x2Zj} can also shown to have an invariant
definition, and we denote (with a slight abuse of notation) by KΘT∂M .
Third, when p ∈ Y , the subspace IpVKΘ is an ideal in VKΘ with respect
to bracket of vector fields; hence for such p, KΘTpM is a Lie algebra, where
the Lie bracket of two elements given as the equivalence class of the vector
field bracket of representatives of the two individual classes, and as such
is isomorphic to the solvable homogeneous extension KSm of KHeism−1,
the K-Heisenberg algebra. Note that KΘTp∂M is a nilpotent subalgebra,
isomorphic to KHeism−1 itself.

In the simplest case, when K = R, this space of vector fields is usually
called the space of uniformly degenerate vector fields, denoted V0, and con-
sists of all smooth vector fields on M vanishing at Y . There is no form Θ
now, so to avoid complicating the presentation we shall mostly discuss only
the other cases, save for a few passing comments about the real case. The
other familiar case is when M is a strictly pseudoconvex domain in Cm;
the CΘ structure is the CR structure on the boundary and the canonical
Bergman or Kähler-Einstein metrics are CΘ metrics (admittedly only poly-
homogeneous rather than C∞). As explained earlier, one needs to take x
as the square root of the Euclidean distance to the boundary in order to fit
this into the present framework.

The dual of the KΘ tangent bundle is denoted KΘT ∗M . Note that smooth
sections of this KΘ cotangent bundle are singular in the ordinary sense: in
terms of the dual basis of one-forms dx, Y ∗i and Z∗j ,

C∞(M ; KΘT ∗M) 3 ω = a
dx

x
+
∑

bi
Y ∗i
x

+
∑

cj
Z∗j
x2
,

where a, bi, cj ∈ C∞(M). Similar remarks apply to all other tensor bundles
too. Note in particular that an AKH metric g is a section of S2(KΘT ∗M)
which is positive definite on KΘTM . If E is any bundle constructed func-
torially from TM , then applying the same functorial operations to KΘTM
yields a bundle which we denote KΘE.
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Definition 3. Let M be a compact manifold with boundary and D a dis-
tribution of type K on Y = ∂M . The space Diff∗KΘ(M) of KΘ differential
operators on M consists of all operators which can be locally expressed as a
finite sum of products of elements of VKΘ. If E,F are any vector bundles
over M , then a KΘ operator acting between sections of E and F is one
which has this form with respect to any local trivialization.

It is important for VKΘ to be closed under Lie bracket for this space of
operators to be well-defined.

In our applications, the bundles E and F are geometric bundles, and the
operator is a KΘ differential operator between KΘE and KΘF .

Theorem 4. Let g be any AKH metric on M , and L a geometric elliptic
operator of order µ between sections of two geometric bundles E and F .
Then L ∈ DiffµKΘ(M ; KΘE,KΘF ).

This result is tautological once one checks that the Levi-Civita connection
∇ satisfies

∇ : C∞(M ;E) −→ C∞(M ;E ⊗ KΘT ∗M).

We leave details to the reader.
There is a principal symbol mapping for VKΘ operators, defined formally

replacing x∂x, xYi and x2Zj , respectively, by linear coordinates ξ, ηi, ζj .
Thus,

DiffµKΘ(M ;E,F ) 3 P =
∑

j+|α|+|β|≤µ

ajαβ(z)(x∂x)j(xY )α(x2Z)β

7−→ KΘσµ(P )(z; ξ, η, ζ) =
∑

j+|α|+|β|=µ

ajαβ(z)ξjηαζβ.

The usual calculation shows that this is a well-defined smooth function on
KΘT ∗M (with values in Hom(E,F )), homogeneous of degree µ on the fibres.

Definition 5. The operator P ∈ DiffµKΘ(M ;E,F ) is called (KΘ) elliptic if
KΘσµ(P )(z; ξ, η, ζ) is an invertible endomorphism whenever (ξ, η, ζ) 6= 0.

Parabolic dilations and model operators. The key to the analysis of
KΘ operators is their approximate dilation invariance. More precisely, for
any p ∈ Y , one may define an equivalence class of dilations based at p. When
K = R, these are ordinary radial dilations, but in the other cases the dilations
are ‘parabolic’. Using these we can define for any P ∈ Diff∗KΘ the normal
operator Np(P ); this is a finite dimensional reduction in that it is a left-
invariant operator on the solvable group KSm, depending parametrically
on p ∈ Y . Its invertibility (for all p) is the other key hypothesis, besides
symbol ellipticity, needed to prove that P is Fredholm.

We begin by defining these families of dilations. The situation is simplest
when K = R; in this case, choose a diffeomorphism of a neighbourhood of p
in M with a half-ball around the origin in the half-space Rn+ = {(s, u) : s ≥
0, u ∈ Rn−1}. Now use this identification and the ordinary dilation operator
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Mδ : (s, u) 7→ (δs, δu) to define the sequence of pushforwards of the vector
field V ∈ V0:

(7) lim
δ→0

(M−1
δ )∗V = Np(V ).

From the local coordinate description of V , we see readily that Np(V ) is
a left-invariant operator defined on Rn+ ∼= RS n. More generally, for any
uniformly degenerate differential operator P , define

(8) lim
δ→0

(M−1
δ )∗P = Np(P );

This is in the universal enveloping algebra of RS n, and is well-defined up
to the action of an element A ∈ RS n.

In the other cases we begin by recalling the parabolic dilation structure
on KSm. To define this, recall that KS = R+ nKHeism−1 (this is just the
A·N part of the G = KAN decomposition). Choose a system of coordinates

(s, σ, u) where s > 0, σ ∈ Rd−1 = ImK and u ∈ Rd(m−1) = Km−1 so that (in
K coordinates)

(9) Θ0 = dσ +
1

2
Im(du · ū)

defines the standard K contact structure on KHeism−1. Thus,

(10) s∂s, s
(
∂ui − 1

2 Im(∂ui ū)
)
, s2∂σj

is a basis of left-invariant vector fields, where in Im(∂ui ū) we identify the
vector ∂ui with a vector with K coordinates in Km−1, and the imaginary
quaternions with vertical vectors ∂σj . The dilation is then given by

Mδ(s, σ, u) = (δs, δ2σ, δu).

(Note that these vector fields are homogeneous of degree 0 with respect to
Mδ.) When K = C or O, we can choose a diffeomorphism as before which
identifies a neighbourhood of p in M with a neighbourhood of 0 in KS ,
which carries the distribution D to the model distribution on KHeism−1;
the model Θ0 above is a suitable choice for Θ on M . In the complex case
this uses the Darboux theorem, while in the octonion case this follows from
the local rigidity of octonion contact structures (so that (Y,D) is locally
identified with the model geometry). In terms of this identification, we
define Np(P ) by the same formula as above, arriving at an operator which
is left-invariant on KS and well-defined up to translation by an element of
this group. In the last case, K = H, one has no longer the Darboux theorem
or rigidity, but the following Lemma is proved in the Appendix.

Lemma 6. For any quaternionic contact structure on Y 4m−1, and any point
p ∈ Y , there exist local coordinates (σ, u) ∈ Im(H) × Hm−1, such that the
quaternionic distribution is given by the kernel of a 1-form Θ with values in
Im(H), and the difference with the standard form Θ0 of the Heisenberg group
near the origin (σ = 0, u = 0) satisfies the estimate |Θ−Θ0| = O(|u|2 + |σ|).
The two nilpotent algebra structures coincide at the point p.
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This result constructs a diffeomorphism from a neighbourhood of p to
a neighbourhood of 0 in HS so that the distributions agree at the origin.
Letting {Yi} and {Y 0

i } be local frames for D and the model distribution (in
HHeism−1, extended to HSm and then transfered to this neighbourhood),
then clearly Yi = Y 0

i +O(|u|2 + |σ|). It follows that the limit of the parabolic
dilations of P is still a left-invariant operator on HS .

To express this more concretely, fix a boundary defining function and
smooth vector fields Yi, i = 1, . . . , d(m− 1), Zj , j = 1, . . . , d− 1, such that
the Yi span the extension of D and the Zj span a subspace complementary
to D at each point. Using the obvious multi-index notation, write

P =
∑

j+|α|+|β|≤m

ajαβ(w)(x∂x)j(xY )α(x2Z)β,

where the coefficients are assumed to be C∞ (up to the boundary). The
values of x∂x, xYi and x2Zj at p fix an isomorphism of KΘT ∗pM and KS ,
and

Np(P ) =
∑

j+|α|+|β|≤m

ajαβ(p)(s∂s)
j(sY 0)α(s2Z0)β

where s ∈ R+, and {Y 0
1 , . . . , Y

0
d(m−1), Z

0
1 , . . . , Z

0
d−1} are a fixed basis of left-

invariant vector fields on KHeism−1.
The following result is well-known in the real and complex cases. It is

obvious in the octonionic case, and a direct consequence of Lemma 6 in the
quaternionic case.

Proposition 7. Let g be an AKH metric on M , and L be a generalized
Laplace operator on M . Then, at each point of ∂M , the normal operator of
L identifies to the corresponding operator on the hyperbolic space KHm. In
particular, up to isomorphism, it does not depend on the point of ∂M .

For P as above, there is a simpler family of model ordinary differential
operators on R+ called the indicial family, defined by the expression

Ip(P ) =
∑
j≤m

aj00(p)(s∂s)
j .

The coefficients are endomorphisms of Ep. Since this is a constant coefficient
Fuchsian operator, it is equivalent by Mellin transform to multiplication by
a (matrix-valued) polynomial

Ip(P ; ζ) =
∑
j≤m

aj00(p)(ζ)j .

A number ζ ∈ C, is called an indicial root if Ip(P ; ζ) is singular. This is
equivalent to the requirement that

P (xζv(y)) = O(xζ+1) ∀ v ∈ C∞(Y ).

These indicial roots are fundamental invariants of P .
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Blowups and the KΘ double space. There is a more sophisticated way
to interpret the parabolic dilations, leading to a more obviously invariant
definition of normal operators. The idea is to introduce a resolution, or
blowup, of the product space M ×M which reflects the scaling invariance
properties of KΘ differential operators near the boundary. This provides the
means to define the KΘ pseudodifferential operators. We describe this now.

As usual, we start with the simplest case K = R. The distributional
Schwartz kernels of pseudodifferential operators are singular along the diag-
onal in M×M . Unfortunately, this diagonal intersects the corner ∂M×∂M ,
making it difficult to describe the precise structure of its singularity near this
intersection. To remedy this we introduce a new space

M2
0 = [M ×M ; diag∂M×∂M ],

where this notation on the right indicates that we blow up M ×M at the
boundary of the diagonal. This amounts to replacing this submanifold by the
space of inward pointing unit normal vectors; the space M2

0 is endowed with
the smallest C∞ structure containing the lifts of all smooth functions on M×
M and polar coordinates around diag∂M . Thus M2

0 has three hypersurface
boundaries, B10 and B01, the left and right faces, which are the ones lifted
from the two hypersurface boundaries in M ×M , and the new front face
B11 created in this blowup, which is often also denoted ff. The blowdown
map β : M2

0 −→M2 is a smooth mapping of manifold with corners.
The front face B11 fibres over diag∂M , with fibre at p ∈ Y the set of unit

inner normal vectors at that point; this is a quarter-sphere, the interior of
which carries a natural projective structure. Let (x, y) and (x′, y′) denote
coordinates on the two copies ofM inM2; we are blowing up the submanifold
x = x′ = 0, y = y′, and so it is legitimate to introduce the new singular
coordinate system s = x/x′, u = (y − y′)/x′, x′, y′. The coordinates (s, u)
are then projective coordinates on this quarter sphere. The normal operator
of P is the restriction to the fibres of B11 of the lift of P from the left factor
of M to M2 and then to M2

0 . Thus, as in the previous definition, each Np(P )
acts on a half-space Rn+ = R+ nRn−1. The underlying dilation structure is
implicit here since we are taking the normal blowup, which involves ordinary
homothetic scaling in the tangent spaces.

There is a similar development for the other cases (see [9] in the com-
plex case), but the normal blowup of the boundary of the diagonal must be
replaced by a blowup of this submanifold which respects the underlying par-
abolic dilation structure. Now, instead of ordinary spherical normal vectors,
we use equivalence classes of paths converging to p, where the equivalence
relationship is governed by the form KΘ.

First define IY to consist of the smooth functions on M vanishing on Y
and, recalling the bundle S ⊂ T ∗∂MM determined by Θ, let IS denote the
subset of those elements f ∈ IY such that df |Y are sections of S. Next, fix
p ∈ Y and define the set of S-parabolic curves at p to consist of those smooth
functions γ : [0, 1] → M , γ(0) = p and f(γ(t)) = O(t2) for all f ∈ IS . We
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define an equivalence relation on such curves:

γ1 ∼ γ2 ⇔ f(γ1(t))− f(γ2(t)) = O(t2) ∀f ∈ IY ;

f(γ1(t))− f(γ2(t)) = O(t3) ∀f ∈ IS .
The space of equivalence classes is the set of inward-pointing S-parabolic nor-
mal vectors to Y at p, which we denote Sp, and these fit together to form a
bundle S over Y . Each Sp has a natural R+ and additive structure, defined
by δ [γ(t)] = [γ(δt)] and [γ] = [γ1] + [γ2] if f(γ(t)) − (f(γ1(t)) + f(γ2(t)) =
O(t2) for all f ∈ IY , and O(t3) for all f ∈ IS , respectively. These do not
define a linear structure, however, since the scalar action does not distrib-
ute over addition. However, directly from a local coordinate calculation one
finds that Sp

∼= KS , and scalar multiplication corresponds to parabolic
dilation.

Conormal distributions. We make a small diversion from the main thread
of this section to recall the definitions of conormal and polyhomogeneous
conormal distributions on manifolds with corners since these are used in
many places below. Good references for this material include [18], to which
we refer for more details.

Let X be a manifold with corners and {Hj}Nj=1 an enumeration of the
boundary hypersurfaces of X. We assume that each Hj is a smooth embed-
ded submanifold with corners in X, so we can fix a global defining function
ρj for that face, i.e. ρj ≥ 0, Hj = {ρj = 0} and dρj 6= 0 there.

The space Vb(X) of b-vector fields on X consists of all smooth vector
fields V which are arbitrary in the interior of X and which lie tangent to all
boundary faces, and hence all corners. Any point p ∈ ∂X lies in some corner
of codimension k, Hj1 , . . . ,Hjk . Choose local coordinates (x1, . . . , xk, y) near
p with xi = ρji , i = 1, . . . , k, and where y = (y1, . . . , yn−k) lies in an open

neighbourhood of 0 in Rn−k. Thus near p, any V ∈ Vb can be written as

V =
∑

aij(x, y)xi∂xj +
∑

b`(x, y)∂y` , aij , b` ∈ C∞.

In other words, Vb(X) is spanned locally over C∞(X) by xi∂xj , ∂y` , i, j =
1, . . . , k, ` = 1, . . . , n− k.

Definition 8. For any multi-weight σ = (σ1, . . . , σN ) ∈ RN , define ρσ =
ρσ11 . . . ρσNN ; then the space of conormal distributions of order σ is

A σ(X) = {u : V1, . . . , Vru ∈ ρσL∞(X) ∀ r ≥ 0 and Vj ∈ Vb}.
We also write A (X) = ∪σA σ(X).

Elements of A (X) are tangentially regular, and have a certain normal
regularity too, but (for example), elements of A 0(X) do not necessarily
have well-defined boundary values. Typical conormal distributions include
ργ and | log ρ|s, where γ and s are multi-indices in C.

Polyhomogeneous functions constitute the most useful subclass of A (X).
By definition, u ∈ A (X) is polyhomogeneous if near any point p which lies
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in a corner of codimension k in X, then using coordinates and multi-indices
as above,

u ∼
∑

aγ,`(y)xγ(log x)`, aγ,` ∈ C∞.

Here (γ, `) varies over a discrete set in Ck ×Nk which has finite intersection
with each sector ∪kj=1{γ : Re(γj) ≤ Cj} × Nk.

A p-submanifold Y ⊂ X is, by definition, one which can be expressed
locally in terms of adapted boundary coordinates as {xi1 = . . . = xij =
0, yr1 = . . . = yrs = 0} (the p means ‘product’, i.e. Y is locally of product
form in X). One can form the blowup of any such Y in X to obtain a space
[X;Y ]. A distribution is conormal or polyhomogeneous to Y if its lift to
[X;Y ] has either of these properties at the boundary face of [X;Y ] which
covers Y .

Although the Schwartz kernels we deal with below are polyhomogeneous,
we typically only use a property only slightly stronger than conormality. Fix
a boundary face H and suppose that the weight σH corresponding to this
face is 0. We say that u ∈ A σ

H(X) if u ∈ A σ(X) as before, and that near
H, u = u0 + v where both u0 and v are conormal, but u0 is smooth up to H
and v vanishes like ρεH there. In other words, u decomposes into a ‘leading
coefficient’ u0, which is a smooth function on H (conormal at all boundaries
of H) and a conormal remainder term v which vanishes to some positive
order. If H is a subset of the set of all boundary faces, then A σ

H (X) consists
of functions with this type of decomposition at each face H ∈H . If Y is an
interior p-submanifold of X, and H some subset of the boundary faces of
X, all elements of which intersect Y at ∂X, and σH = 0 for all H ∈H , then
we define A σ

H (X;Y ) to consist of all u which can be decomposed as a sum
u′ + u′′ where u′ ∈ A σ

H (X) and u′′ is supported in a small neighbourhood
of Y , and is polyhomogeneous along Y with polyhomogeneous singularity
smoothly extendible across all boundary faces of Y .

All of these definitions generalize immediately if u is a section of some
smooth vector bundle over X.

KΘ pseudodifferential operators. The KΘ double space provides the
geometric setting for Schwartz kernels of KΘ pseudodifferential operators.

Definition 9. For any µ ∈ R and set of weights σ = (σ10, σ01, 0) correspond-
ing to the boundary faces B10, B01 and B11 of M2

KΘ, the space Ψµ,σ
KΘ(M) of

conormal KΘ pseudodifferential operators on M consists of all those opera-
tors A on M with the following properties:

• the Schwartz kernel KA of A is the pushforward (under the blowdown
β : M2

KΘ →M2) of a distribution κA on M2
KΘ;

• κA is a distribution on M2
KΘ which is conormal with respect to all

boundaries, partially homogeneous with respect to the front face, and
which has a polyhomogeneous singularity of pseudodifferential order
µ along the lifted diagonal diagKΘ, i.e.

κA ∈ A σ
B11

(M2
KΘ, diagKΘ).



18 OLIVIER BIQUARD AND RAFE MAZZEO

Slightly more generally, we also define Ψµ,σ
KΘ(M) in an analogous way when

σ = (σ10, σ01, σ11) and σ11 > 0 (however, dropping the partial polyhomo-
geneity at B11 and only requiring that κA is conormal and vanishes to order
σ11 at that face).

The action of KA on a function f on M requires the choice of a density γ
onM against which to integrate, so that (KAf)(z) =

∫
M KA(z, z′)f(z′) γ(z′).

It is purely a matter of convention whether we fix γ to be a smooth measure
on M , for example, or some power of a defining function times a smooth
measure; any two such choices yield equivalent theories, but one does need
to make an adjustment to the index set σ below based on this choice. We
shall follow the convention that γ is instead a volume form for some fixed
KΘ metric, and hence is of the form x−n−d times a smooth measure. This
has the advantage that most of the operators in our later applications are
self-adjoint.

Basic facts about these spaces of pseudodifferential operators include the
composition law

(11) Ψµ,σ
KΘ ◦Ψµ′,σ′

KΘ ⊂ Ψµ+µ′,σ′′

KΘ , σ′′ = (σ10, σ
′
01, 0),

which holds provided σ01 +σ′10 > −1 (this condition is needed to ensure that
the integration defining the composition makes sense), and the existence of
a short exact symbol sequence

(12) 0→ Ψµ−1,σ
KΘ → Ψµ,σ

KΘ → Sµ(KΘT ∗M)→ 0.

The properties of this latter sequence, and the existence of a quantization
map from Sµ(KΘT ∗M) to Ψµ,σ

KΘ which is well-defined modulo operators of
order µ − 1, follows almost exactly as in the standard interior case. The
composition law (11) is substantially more subtle. Indeed, it could be re-
garded as the most technically difficult part of the KΘ-pseudodifferential
calculus. The proof is fairly involved, but can be reduced to some simple
geometric ideas involving the pullbacks and pushforwards of conormal distri-
butions with respect to special maps, called b-fibrations, between manifolds
with corners. This is described carefully when K = C in [9, Theorem 12.42],
and when K = R in [18, Theorem 3.15]. The proofs in the other two cases
follow exactly the same lines.

The other key facts we need concern the mapping properties of these
operators. To state these we first describe the appropriate function spaces.
Fix any smooth KΘ metric g on M . This determines the space L2(M ; dVg),

as well as the basic Hölder space Λ0,α
KΘ(M), which by definition is the closure

of bounded C∞ functions with respect to the norm

||u||0,α = sup
p∈M
|u(p)|+ sup

p6=q
distg(p,q)≤1

|u(p)− u(q)|
distg(p, q)α

.

Next, for any s ∈ N, set

Hs
KΘ(M) = {u : V1 . . . V`u ∈ L2(M ; dVg) : Vj ∈ VKΘ ∀ j ≤ `, ` ≤ s}.



A NONLINEAR POISSON TRANSFORM 19

Λs,αKΘ(M) = {u : V1 . . . V`u ∈ Λ0,α
KΘ : Vj ∈ VKΘ ∀ ` ≤ s},

and finally, for any defining function x for ∂M and δ ∈ R,

xδHs
KΘ(M) = {u = xδv : v ∈ Hs

KΘ(M)},
xνΛs,αKΘ(M) = {u = xνv : v ∈ Λs,αKΘ(M)}.

There is a somewhat loose relationship between certain of these weighted
Sobolev and Hölder spaces. This is based on the fact that xa ∈ xδHs

KΘ
(locally near x = 0) if and only if a > δ+(n+d−1)/2; similarly, xa ∈ xνΛs,αKΘ

near x = 0 if and only if a ≥ ν. Because of this we say that xδHs
KΘ and

xνΛs,αKΘ are commensurable when ν = δ + (n+ d− 1)/2.

Proposition 10. Fix µ ∈ N, σ10, σ01, δ ∈ R such that σ01 + δ > 0, σ10 > δ.
Let A ∈ Ψ−µ,σKΘ (M). Then the maps

A : xδHk
KΘ(M) −→ xδHk+µ

KΘ (M)

A : xδ+(n+d−1)/2Λk,αKΘ(M) −→ xδ+(n+d−1)/2Λk+µ,α
KΘ (M)

are bounded.

We sketch a few points in the proof. First note that since these spaces are

defined relative to KΘ derivatives, and since VKΘ ◦ Ψj
KΘ ⊂ Ψj+1

KΘ , we may

immediately reduce to the case µ = 0. Furthermore, conjugating by x−δ in
the first case and x−(δ+(n+d−1)/2) in the second, and observing that x̃/x lifts
to a conormal function on M2

KΘ which is smooth (and nonvanishing) up to
B11 reduces us further to the unweighted case. Finally, the boundedness of
Ψ0

KΘ(M) on L2(M ; dVg) may be deduced via Hörmander’s method of using
the symbol calculus to find B ∈ Ψ0

KΘ satisfying A∗A + B∗B = C2 Id + R

for some C > 0 and R ∈ Ψ−∞KΘ and then using Cauchy-Schwarz to prove L2

boundedness for operators of order −∞. The boundedness of Ψ0
KΘ on Λ0,α

KΘ
is also deduced in two steps. Decompose A into a sum A′ + A′′ where the
Schwartz kernel of A′ vanishes to infinite order at B10 and B01 and that of
A′′ is smooth across the diagonal. The boundedness of A′ on Hölder spaces is
equivalent to the standard local boundedness of pseudodifferential operators
(of order 0) on a neighbourhood in Rn, cf. [26]. This argument is discussed
in detail in [18] for the case K = R.

Proposition 11. Suppose that A ∈ Ψµ,σ
KΘ(M), where σ = (σ10, σ01, σ11)

indicates conormal order of vanishing at each of the three boundary faces
B10, B01, B11. If µ < 0 and σ11 > 0, and if σ01 + δ > 0, σ10 > δ, then A is
compact on xδL2 and on xδ+(n+d−1)/2Λ0,α

KΘ.

This follows directly from the Arzela-Ascoli theorem.

The parametrix construction for fully elliptic operators. We finally
apply the theory of KΘ operators outlined above to prove that under cer-
tain hypotheses, the linearized gauged Einstein operator Laplacian Lg is
an isomorphism on certain weighted L2 and Hölder spaces. We state the
result in slightly greater generality for an arbitrary generalized Laplacian
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P = ∇∗∇+R ∈ Diff2
KΘ(M ;E), associated to a KΘ metric g. The symmetry

of this operator with respect to the volume form dVg simplifies some of the
numerology below, but all of these results have direct analogues for more
general fully elliptic KΘ operators.

Definition 12. The generalized Laplacian P g is fully elliptic if its KΘ sym-
bol is invertible as a section of C∞(KΘT ∗M ; Hom(E)), and if, in addition,
its normal operator N(P g), which is identified via Proposition 7 with the cor-
responding operator P g0 on the model hyperbolic space KHm, is invertible
as an unbounded operator on L2(KHm;E0).

Before stating the main theorem of this subsection, let us explore the
relationship of this full ellipticity condition with the indicial root structure
of P g. The indicial roots of P g are the roots of the indicial polynomial for
P g, and give the rates of vanishing of formal solutions of this operator. If ζ is
an indicial root, then there exists some φ(y) such that P (xζφ(y)) = O(xζ+1).
The indicial roots of P g and of its normal operator N(P g) are the same. The
indicial roots are arranged symmetrically around (n + d − 1)/2 in C. The
complement in R of the set of real parts of all indicial roots of P is a union
of open intervals and half-lines, again symmetric around (n+ d− 1)/2. The
significance of these intervals is as follows. First, if δ + (n+ d− 1)/2 is the
the real part of some indicial root, hence at the boundary of two contiguous
intervals, then neither of the mappings

P : xδH2
KΘ(M,E; dVg) −→ xδL2(M,E; dVg)(13)

P : xδ+(n+d−1)/2Λ2,α
KΘ(M,E) −→ xδ+(n+d−1)/2Λ0,α

KΘ(M,E)(14)

have closed range. This is straightforward to check from basic definitions.
Significantly deeper is the

Theorem 13. Let P g ∈ Diff2
KΘ(M,E) be a fully elliptic generalized Lapla-

cian. Define δ0 by the condition that (n + d − 1)/2 ± δ0 are the real parts
of the indicial roots of P closest to (n + d − 1)/2. If δ0 > 0 and |δ| < δ0,
then (13) and (14) are both Fredholm, and are isomorphisms if and only if
the nullspace of P g on L2(M ; dVg) is trivial.

Proof. The fact that these mappings are Fredholm when |δ| < δ0 will fol-
low immediately if we can establish the existence of a parametrix G ∈
Ψ−2,σ,0

KΘ (M ;E) for P with the property that PG − I = GP − I = Q ∈
Ψ−∞,σ,∞KΘ (M ;E). Here for convenience we set τ = (n + d − 1)/2 + δ0 and
σ = (σ10, σ01) = (τ, τ). The final index (here 0 or ∞) corresponds to σ11.

This parametrix is constructed in stages. We first choose an element G0 in
the small calculus, i.e. G0 ∈ Ψ−2

KΘ(M ;E), so that PG0 = I−Q0, Q0 ∈ Ψ−∞KΘ .
This uses only the symbol calculus and the symbol ellipticity of P , and
proceeds exactly as in the usual (local) elliptic parametrix construction.

For the second step we seek a correction term G1 ∈ Ψ−∞,σ,0KΘ chosen so that

the remainder term Q1 = I − P (G0 +G1) lies in Ψ−∞,σ,1KΘ , and in particular
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is compact. For this we must solve the normal problem N(P )N(G1) =
N(Q0) ∈ C∞0 (KHm;E). By the second part of the full ellipticity hypothesis
there is a unique solution to this equation in L2(KHm, E) and (since the
right hand side is C∞0 ) it is a simple matter to check that the solution is
conormal at the boundaries of the quarter-sphere fibres of the front face.
Indeed, using the analysis from [2, Proposition I.2.2] giving the decay of the
Green function of P on KHm, we obtain that N(G0) ∈ A σ(Sn−1

++ ), where
σ = (τ, τ) gives the orders of conormal vanishing at the two boundaries of
the quarter-sphere fibres.

Using |δ| < δ0, we see from Proposition 10 that G1 and Q1 are bounded
between these weighted spaces; from Proposition 11 we obtain also that Q1

is compact. This already shows that P g is Fredholm. However, it is useful
to refine this parametrix further.

Using the composition formula for KΘ pseudodifferential operators, we
see that the iterated compositions of this error term with itself vanish to

increasingly high order at the front face, specifically Qj1 ∈ Ψ−∞,σ,jKΘ . We can

therefore take an asymptotic sum of the series R ∼
∑∞

j=1Q
j
1 as an element

of Ψ−∞,σ,1KΘ . Now multiply P (G0 +G1) = I −Q1 on the right by I +R. We

see that G′ = (G0 +G1)(I +R) satisfies PG′ = I −Q′ where Q′ ∈ Ψ−∞,σ,∞KΘ .
This error term lies in the very residual space of smoothing operators

with Schwartz kernels which are conormal on M2. One consequence is that
elements of the nullspace of L in either of these function spaces are conormal
and vanish like xτ . Furthermore, since these very residual operators form a
semi-ideal (on one of these weighted L2 spaces, say), a standard argument
(cf. [18], proof of Theorem 6.1) shows that the true generalized inverse G
of any of the maps between weighted spaces, which a priori is only defined
as a bounded operator, is actually an element of Ψ−2,σ,0

KΘ ; the error term
PG − I = GP − I = Q is the projector onto the nullspace and is still very
residual. If the nullspace is trivial, then Q = 0 and hence P is invertible. �

We remark, but do not prove, that if δ lies in any of the other open
intervals or half-lines described above, then these maps have closed range but
are not Fredholm since either the kernel or cokernel is infinite dimensional.

With not much more effort, we can prove that the Schwartz kernel of G
has a polyhomogeneous expansion at all boundary faces of M2

KΘ (as well as
a polyhomogeneous expansion along the lifted diagonal of this space which
is smoothly extendible across the front face). This implies that G maps
polyhomogeneous sections to polyhomogeneous sections, and also shows that
any section κ which satisfies Lκ = 0 (even just in a neighbourhood of infinity)
must have a complete polyhomogeneous expansion there.

The resolvent family. The invertibility of the linearized gauged Einstein
operator Lg on weighted Hölder spaces, which is a direct consequence of
Theorem 13 and Proposition 10, is the key ingredient in the deformation
theory of AKH Einstein metrics. For the analogous result on products of
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AKH spaces, we shall use a spectral synthesis formula for the inverse of
this operator which expresses it in terms of the resolvent families of the
corresponding operators on each factor. In preparation for this, we now
recall the basic theory of these resolvent families in terms of the KΘ calculus
and prove some estimates on their Schwartz kernels which are uniform in
the spectral parameter.

First let us recall some results from [2, § I.4]. Define δ0 = δK0 for the
operator Lg as in the statement of Theorem 13; then

(15)
δ0 = (n+ d− 1)/2 for K = R or C,
δ0 > (n+ d− 1)/2 for K = H or O.

This means that the interval of weights δ for which Lg is Fredholm is exactly
(0, n+d−1) in the real and complex cases, and is larger in the quaternionic
and octonionic cases.

By definition, the resolvent of Lg is the family of L2 bounded operators
(Lg−λ)−1, which exists precisely when λ /∈ spec (Lg). We wish to recognize

these operators as elements of Ψ−2,∗
KΘ (M), depending holomorphically on λ

in an appropriate sense. This will follow from Theorem 13, which in turn
requires the

Lemma 14. The operator Lg − λ is fully elliptic (as a KΘ operator) if and
only if λ /∈ [δ2

0 ,∞).

Proof. First note that
KΘσ2(Lg − λ) = KΘσ2(∇∗∇) = |ζ|2 Id,

which is obviously invertible. In addition, N(Lg − λ) = Lg0 − λ, so we
conclude that Lg − λ is fully elliptic if and only if λ /∈ spec (Lg0).

The indicial operator of Lg0 is a second order matrix-valued ordinary
differential operator, and the indicial roots correspond to solutions of the
form xζκ0, where κ0 is a constant symmetric two-tensor. By reducing to
the various irreducible components in Sym2, we obtain them as the roots
of a finite number of quadratic polynomials ζ2 − (n + d − 1)ζ + α, where
α is a constant depending on dimension and the irreducible component of
the decomposition. The roots from any one of these polynomials are (n +

d− 1)/2± 1
2

√
(n+ d− 1)2 − 4α. For some α0 we obtain the roots with real

part closest to (n + d − 1)/2, that is (n + d − 1)/2 ± δ0. So we see that
each α ≤ α0. Now, the indicial roots of Lg0 − λ are the roots of the various
polynomials ζ2 − (n+ d− 1)ζ + α+ λ, hence are equal to

(n+ d− 1)/2± 1

2

√
(n+ d− 1)2 − 4α− 4λ.

Define

δ0(λ) = min
α

1

2
Re
√

(n+ d− 1)2 − 4α− 4λ = Re
√
δ2

0 − λ.

By Theorem 13, Lg0 − λ is at least Fredholm on L2 provided

δ0(λ) > 0,
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or equivalently, if λ /∈ [δ2
0 ,∞).

So far we have proved that if λ is outside this half-line, then Lg0 −λ is at
least Fredholm. This shows that spec (Lg0) is the union of [δ2

0 ,∞) and finite
point spectrum of multiplicity in the half-line (−∞, δ2

0). However, this point

spectrum must be empty, since otherwise, if Lg0φ = λ̂φ, for some λ̂ < δ2
0 and

with φ ∈ L2, then the subspace spanned by all translates of φ by isometries

of KHm would be infinite dimensional, contradicting the fact that Lg0 − λ̂
is Fredholm. This finishes the proof. �

The same reasoning leads to the

Theorem 15. Let Lg be the linearized gauged Einstein operator on the
manifold M with KΘ metric g. Then Lg − λ is Fredholm if and only if
λ /∈ [δ2

0 ,∞). More precisely,

spec (Lg) = [δ2
0 ,∞) ∪ {λi}Ni=1,

where λi lies in (−∞, δ2
0) and is an L2 eigenvalue of finite multiplicity.

An AKH Einstein space (M, g) is nondegenerate if and only if 0 is not in
this point spectrum.

We shall need to know slightly more about the dependence of the inverse
on λ.

Proposition 16. Fix ε > 0 and define Ωε ⊂ C \ [δ2
0 ,∞) to consist of the set

of all λ for which δ0(λ) > ε. Let τε = (n+ d− 1)/2 + ε and σε = (τε, τε, 0).
Then for each ε > 0, the resolvent family

Ωε 3 λ 7→ R(λ) = (Lg − λ)−1 ∈ Ψ−2,σε
KΘ (M ; Sym2(KΘT ∗M))

is meromorphic in the sense that the Schwartz kernels of these operators,
as elements of a fixed space of distributions, depends meromorphically on λ.
The poles occur only at each λi and these are all simple; the residues are the
finite rank orthogonal projections onto the corresponding eigenspaces.

The proof is based on the fact that the model resolvent (Lg0 − λ)−1 is
itself holomorphic, which can be checked by direct ODE analysis, and the
analytic Fredholm theorem. This is the direct generalization of [24] and [9],
cf. also [12].

We conclude this section by proving uniform estimates for the off-diagonal
Schwartz kernel of this resolvent when λ = iµ lies on the imaginary axis.

Proposition 17. Let (M, g) and Lg be as above. When µ ∈ R, the indicial
root of Lg − iµ which has the smallest strictly positive real part is equal to

ζ(µ) =
n+ d− 1

2
+
√
δ2

0 − iµ.

In particular γ(µ) := Re ζ(µ) ≥ n+ d− 1 with equality if and only if µ = 0.
Furthermore,

ζ(µ) ∼
√
|µ|/2 (1± i) as µ→ ±∞.
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Let K(z, z′, iµ) be the Schwartz kernel of the resolvent of this operator. Then
there exists µ0 > 0 such that for any c > 0 and ε ∈ (0, 1), if z, z′ ∈M satisfy
d(z, z′) ≥ c > 0 and |µ| ≥ µ0, we have

|K(z, z′, iµ)| ≤ Cµ−1x(1−ε)γ(µ)d(z,z′)

where the constant C is independent of µ. A similar estimate holds for all
b-derivatives of K.

Proof. The calculation of the indicial root and the statements about its
asymptotics are straightforward, based on the remarks in the proof of Lemma
14. As for the main assertion, first suppose that f ∈ C∞0 (M), |f | ≤ 1, and
define u = uµ = R(iµ)f . We claim that for any ε > 0, there exists a constant
Cε > 0 such that for |µ| ≥ µ0,

|u| ≤ Cµ−1x(1−ε)γ(µ).

In particular, C is independent of µ (and in addition, sup |u| depends linearly
on sup |f |).

To prove this, first recall that since R(iµ) ∈ Ψ
−2,γ(µ),γ(µ)
KΘ (M), it is im-

mediate that |u| ≤ Aµx
γ(µ); the issue is to prove the uniformity in µ of

the constant A. Suppose this fails, i.e. suppose there exists a sequence of µ
tending to infinity so that

sup
z∈M

µ|u(z)|x−(1−ε)γ(µ) = Aµ →∞.

This supremum is attained at a point qµ ∈M , so if we define

w(z) =
(
µx(qµ)−(1−ε)γ(µ)/Aµ

)
u(z),

then

(16) |w(z)| ≤ (x/x(qµ))(1−ε)γ(µ),

with equality at z = qµ and

(17) (µ−1L− i)w(z) =
(
x(qµ)−(1−ε)γ(µ)/Aµ

)
f(z).

We shall consider various cases depending on whether or not qµ remains in
a compact set of M .

Suppose first that x(qµ) ≥ c > 0. Then the right hand side of (17) tends
to zero uniformly. Let B be a geodesic ball of radius 1 centered at qµ, fix a
trivialization of the bundle over B and suppose that z are Riemann normal
coordinates in this ball. Set ξ =

√
µz, so that ξ lies in a ball of radius

√
µ

in Rn+1. In terms of these coordinates,

µ−1L = −
n+1∑
j=1

∂2

∂ξ2
j

+ O(µ−1/2).

The remainder term is a second order operator with coefficients which con-
verge to 0 uniformly on compact sets in these expanding balls in Rn+1.
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Using standard local elliptic theory, we can take a limit in (17), and obtain
a function w∞ defined on the entire Euclidean space, such that

(∆ξ − i)w∞ = 0, |w∞| ≤ 1, |w∞(0)| = 1.

However, no such function exists. To see this, take Fourier transform (for w
as an element of S ′(Rn+1)) and use that the full symbol |ξ|2 − i is nowhere
vanishing. Hence this case cannot occur.

Now suppose that x(qµ)→ 0. Pass to a subsequence so that qµ → q̄ ∈ ∂M ,
and then apply a sequence of parabolic dilations Dµ based at appropriate
points converging to q̄ and with strength x(qµ))−1 so that Dµ(qµ) = (1, 0)
in a fixed coordinate system z̃. We now proceed much as before. Let B be
a unit geodesic ball centered at (1, 0), and define ξ =

√
µz̃. The sequence of

operators µ−1D∗µL converge to ∆ξ as before. The bound on w̃ = D∗µw now
takes the form

|w̃| ≤ e(1−ε)γ(µ)/
√
µ

with equality at the origin; here t = log(x/x(qµ)), and we can assume this
is the first coordinate ξ1 in the ξ system. We again pass to a limit. The
limiting function w̃∞ satisfies |w̃∞(0)| = 1,

(∆ξ − i)w̃∞ = 0, |w̃∞| ≤ e(1−ε)t/
√

2.

To analyze whether this is possible, note that this exponential bound on
w̃∞ implies that its Fourier transform is well defined as an element of S ′ on
the subspace {ξ ∈ Cn+1 : Im ξ1 = (1 − ε)/

√
2, ξj ∈ R, j > 1}. The symbol

ξ · ξ − i is again invertible here, which precludes the existence of this limit;
hence this case is also impossible. This proves that the function u = R(iµ)f
satisfies the stated bound uniformly in µ.

An essentially identical argument proves that a similar bound holds re-
gardless of the location of the support of f . In other words, suppose that
supp (f) ⊂ B1(pµ) and sup |f | ≤ 1. Then for the L2 solution to (L− iµ)u =
f , we have |u(q)| ≤ Cµ−1 exp(−(1− ε)γ(µ)d(q, pµ)). The only modification
needed is that if there a sequence uµ for which the constant increases with-
out bound, and if the center qµ of the support of fµ tends to infinity, then we

parabolically rescale so as to obtain a sequence of problems (Lµ−iµ)ũµ = f̃µ,
where the rescaled operators Lµ converge to the limiting model operator for
the KΘ structure. The validity of the bound in this case follows by what we
have done above.

We have now proved that K(z, z′, iµ) decays like e−(1−ε)γ(µ)d(z,z′)µ−1 for
d(z, z′) ≥ c > 0 in a weak sense. More precisely, let U be any neighbourhood
in M ×M with compact closure which does not intersect the diagonal; then
if σ > 2n + 2, the H−σ norm of the restriction of Schwartz kernel to U
satisfies this bound. Using that (Lz−iµ)K = (Lz′−iµ)K = 0 away from the
diagonal, we can estimate any C k norm of K in U at the cost of introducing
an extra factor µk+σ into the estimate. This in turn may be absorbed into
the exponential by decreasing the factor ε slightly. This completes the proof
of the C 0 bound, and indeed also of bounds with respect to any C k norm
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in the interior. In fact, it gives slightly more, namely that this bound holds
even after applying any sequence of KΘ vector fields to K on the left and
right; this is because KΘ derivatives are controlled by powers of L, which
as above are equivalent to powers of µ.

To finish, we also need to check the conormal bounds, i.e. that the same
estimates remain true if we apply any sequence of b vector fields to K on
the left and right. For this we point out the following facts: first, since
K(z′, z, iµ) = K(z, z′,−iµ)∗, we need only the case where all b derivatives
are applied to the left – z – factor; next, K itself is conormal, so these
b-derivatives behave well locally uniformly in µ, i.e. it is only the large µ
behaviour that might be problematic; finally, we can repeat the same proof
as for K itself, using at the final step to convert the weak bounds to strong
ones that if V is any b-vector field, then [L, V ] is a KΘ-operator of order 2,
hence is bounded by multiplication by µ. �

Remark 18. We have stated the results on the resolvent family for the
linearized Einstein operator, but the results remain true for any geometric
Laplacian, provided we choose δ0 as in Theorem 13. For example, on an
asymptotically quaternionic hyperbolic space, Theorem 15 gives the spec-
trum of the Hodge Laplacian acting on differential forms (except when the
degree equals half the dimension, then there is a zero eigenvalue of infinite
multiplicity).

4. Einstein deformation theory

We now present some basic facts about the (Bianchi gauged) Einstein
operator and its linearization. Using results from the last section, we review
how this yields the deformation theory for the rank one hyperbolic spaces
in the class of AKH Einstein spaces. This is contained in [2] for all K, see
also [11] and [15] for the result when K = R, so the only novelty here is
showing how this follows immediately through the use of the KΘ calculus.
These same arguments are used again in § 6 for a coupled generalization of
these same equations, and in the product case in § 8.

4.1. The Einstein equation and the Bianchi gauge. The Einstein
equation Ricg + λg = 0 is not elliptic because of its diffeomorphism invari-
ance. Amongst many viable gauge choices, the Bianchi gauge introduced in
[2] is particularly convenient. Define the map from symmetric 2-tensors to
1-forms, relative to the fixed background metric g,

(18) k 7−→ Bg(k) = δgk +
1

2
d tr g k.

Note that Bg(g) = 0, so the subspace of metrics g̃ near to g which are in
Bianchi gauge (i.e. so that Bg(g̃) = 0), is identified with the set of tensors k
near 0 such that Bg(k) = 0. The system

(19) Ricg̃ + λg̃ = 0, Bg(g̃) = 0,
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which is elliptic in the sense of Agmon-Douglis-Nirenberg, can be rolled up
into the single elliptic equation

(20) Ng(k) := Ricg+k + λ(g + k) + (δg+k)∗Bg(k) = 0.

As proved in [2, chapter 1],

Proposition 19. Suppose that Ng(k) = 0, and in addition that |Bg(k)|
tends to 0 at the boundary and the Ricci curvature of g + k is nonpositive
and strictly negative somewhere. Then g + k satisfies (19), i.e. is Einstein
and in Bianchi gauge.

The proof follows from the Weitzenböck formula

Bg+kNg(k) = δg+k(δg+k)∗Bg(k) =
(
(∇g+k)∗∇g+k − Ricg+k

)
Bg(k)

and the Bochner technique.
From the same Weitzenböck formula, the converse follows almost imme-

diately, that is, any Einstein metric g̃ close to g can be put in the Bianchi
gauge to satisfy the system (19). More precisely, let Diff denote the set of
all diffeomorphisms on the AKH space M which are close to the identity
and exponentials of vector fields X ∈ xνΛ3,α

KΘ(M), M the set of all metrics

g̃ = g + k with k ∈ xνΛ2,α
KΘ(M), and S ⊂ M the set of metrics g̃ which

satisfy Bg(g̃) = 0. Then one has the following slice statement [2, chapter 1]:

Proposition 20. If Ricg < 0, then the natural map

Diff ×S −→M , (g̃,Φ) 7−→ Φ∗(g̃)

is a local homeomorphism.

An advantage of this gauge is that the linearization takes the simple form

(21) Lgκ := 2DNg|0 (κ) = ∇∗∇ κ− 2
◦
Rκ + Ric ◦ κ+ κ ◦ Ric + 2λκ;

here

(
◦
Rκ)ij = Ripjq κ

pq, (Ric ◦ κ)ij = Ric p
i κpj , (κ ◦ Ricij = κ p

i Ricpj ,

and all curvatures and covariant derivatives are computed relative to g. Note
in particular that if Ricg = −λg, then

(22) Lg = ∇∗∇− 2
◦
R.

4.2. Deformation theory for AKH Einstein spaces. We now review
the basic deformation theory for AKH Einstein spaces, proved originally in
[11] when K = R, and in [2] in the other two cases. We do not discuss the
more subtle aspects of this deformation theory, but restrict attention to the
simpler case of perturbations of nondegenerate AKH Einstein metrics.

Definition 21. An AKH Einstein metric g is said to be nondegenerate if
the L2 nullspace of the linearized Bianchi-gauged Einstein operator Lg is
trivial.
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Recall that g is nondegenerate if for any ν > −δK0 , the nullspace of Lg on

xν+(n+d−1)/2Λ2,α
KΘ(M,S2(T ∗M)) is trivial. This follows from the regularity

theorem stating that if Lgκ = 0 and |κ| ≤ Cxν′ for some ν ′ > (n+d−1)/2−
δ0, then κ ∈ A

(n+d−1)/2+δ0
phg , and in particular κ ∈ L2.

The significance of this nondegeneracy condition is contained in the

Proposition 22 ([11], [2], [15]). Let g be a nondegenerate AKH Einstein
metric with C∞ conformal infinity c. Then every C∞ conformal infinity
datum c′ sufficiently close to c in the C 2,α topology is the conformal infinity
of an AKH Einstein metric g′ such that g′ − gc′ ∈ xνΛ2,α

KΘ for some ν > 0.
(Here gc′ is an AKH metric with conformal infinity c′ constructed below in
the proof). This metric g′ is unique amongst AKH metrics with the specified
conformal infinity and such that ||g′ − gc′ ||2,α,ν is small.

Proof. First define an extension operator which associates to the conformal
infinity c′ an AKH metric gc′ . If c = ([γ], η), then we choose a product
decomposition (0, ε) × X of a collar neighbourhood of ∂M and a radial

coordinate x so that g has the form dx2+γ
x2

+ η2

x4
+ k, with k ∈ xνΛ2,α

KΘ.
(We can take the weight ν to equal 1 when c is smooth, but could also
use any smaller positive value.) Fixing a cutoff function χ(x) which equals
1 for x ≤ ε/3 and vanishes for x ≥ 2ε/3, then for any conformal infinity
c′ = ([γ′], η′), set

gc′ = (1− χ(x))g + χ(x)

(
dx2 + γ′/4

x2
+

(η′)2

4x4
+ k

)
.

(In the quaternionic case, the function spaces xνΛ2,α
KΘ vary with c′ so one has

also to choose k varying continuously with c′). Write fc′ = Ngc′ (0) = Ricgc′+
λgc′ , then from the form of the metric gc′ (it is asymptotically hyperbolic in
the sense of Definition 2) it is clear that it is an asymptotic solution of the
Einstein equation: fc′ = O(xν), and more precisely

‖fc′‖0,α,ν ≤ C
(
‖γ′ − γ‖2,α + ‖η′ − η‖2,α

)
.

The second step is then to deform gc′ into an exact solution gc′ + k of the
Einstein equation. Taylor expansion gives

Ngc′ (k) = fc′ + Lc′k +Q(c′, k),

where the second term on the right is the linearized Bianchi-gauged Einstein
operator at gc′ . The nondegeneracy of Lg implies that Lc′ is also invertible
if c′ is close enough to c; we denote its inverse by Gc′ . When c′ is C∞, this
operator is a KΘ pseudodifferential operator of order −2, and for 0 < ν ≤ 1,

Gc′ : xνΛ0,α
KΘ(M,S2(T ∗M)) −→ xνΛ2,α

KΘ(M,S2(T ∗M))

is bounded. Furthermore, the norm of this operator is bounded indepen-
dently of c′ in a neighbourhood of c. When K = H, the function spaces vary
with η′ (i.e. with the distribution D ′).
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Now write the equation to be solved as

k = −Gc′
(
fc′ +Q(c′, k)

)
.

This makes sense since for our initial approximated solution gc′ the error fc′

is in the domain of Gc′ . Now the right side defines a contraction mapping
when c′ is sufficiently close to c, and from this we immediately obtain a
unique solution k. The metric gc′ + k is an AKH metric which solves the
gauged Einstein equation. By Proposition 19, it is in fact an AKH Einstein
metric in Bianchi gauge. �

Remark 23. A precise statement about the regularity of g and g′ near ∂X
has been omitted, and indeed this is a subtle issue. There is a substantial
difference between understanding the dependence of the asymptotic regu-
larity for an arbitrary AKH Einstein metric on that of its conformal infinity
data, and the same question for such a metric obtained by perturbation from
one which is a priori known to be polyhomogeneous. The reason is that in
the former case one needs to deal explicitly with the gauge conditions, while
in the latter, the gauge choice is part of the setup and the perturbation term
automatically satisfies a KΘ elliptic equation. Here is a summary of what
is known.

For the nonperturbative case, when K = R and the conformal infinity
data c of the ARH Einstein metric g is C∞, then g is polyhomogeneous,
and in fact, in even dimensions has a smooth conformal compactification,
[5], [13]. The corresponding result has not been proved in the other cases
(except when K = C and g is Kähler-Einstein, [16]), but is surely true by
essentially the same method as in [5].

As for the perturbative case, a simple adaptation of the argument in
[19], which depends only on the commutation properties of Ψ∗KΘ with b
vector fields on X, proves that if the perturbed conformal infinity data c′

is C∞, then the solution k, and hence the metric g′, constructed above is
polyhomogeneous.

These issues will not be emphasized here, and we shall tacitly assume the
polyhomogeneous regularity of AKH metrics with C∞ conformal infinities.
To ease the reader’s conscience, however, since we will not supply the full
proof of that fact, note that this issue only arises in § 7, and one can easily
adapt the arguments to accommodate metrics with lower regularity, as we
discuss briefly there.

5. Asymptotically product hyperbolic metrics and their
conformal infinities

Let Mni+1
i = Gi/Ki be an AKiH space, i = 1, 2. The boundary at infinity,

Sni = Ki/Hi, is equipped with the standard Ki-contact distribution Di,
which has a conformal Hi structure inducing a compatible conformal class
[γi]. The product hyperbolic space M = M1 ×M2 is a (reducible) rank two
symmetric space with Furstenberg boundary X = Sn1 × Sn2 . Let gi be the
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standard metric on each factor, so that Ricgi + λigi = 0. Then

g = λ1g1 + λ2g2

is Einstein with

Ricg + g = 0.

We begin this section by describing a class of boundary structures on
X, called (G1 × G2)-conformal structures, which constitute the conformal
infinity data for the class of Einstein metrics we eventually construct. The
problem of extending one of these boundary structures to a metric on M
which is asymptotically Einstein in an appropriately strong sense is far from
immediate. The ‘obvious’ extension has Einstein tensor vanishing in some
sector near X, but not uniformly near infinity. The main goal of this section
is to explore the geometry of asymptotically product hyperbolic metrics
in order to find the correct compatibility conditions for metrics which are
asymptotically Einstein in this stronger sense. Their construction is carried
out in the next section.

5.1. (G1×G2)-conformal structures. Using the notation above, we make
the

Definition 24. A (G1 × G2)-conformal structure on X consists of a pair
of distributions, each equipped with a conformal class of metrics, (Di, [γi]),
i = 1, 2, such that

(1) the distributions Fi = Di + [Di,Di] are integrable;
(2) F1 ⊕F2 = TX;
(3) the pair (Di,Fi/Di) with induced bracket

[ , ] : Di ×Di → Fi/Di

is isomorphic to the graded Ki-Heisenberg algebra;
(4) Di is equipped with a conformal Hi structure, compatible with the

bracket, and inducing the conformal metric [γi];
(5) [D1,D2] ⊆ D1 + D2.

The basic example, of course, is a product structure on X = X1 × X2:
here D1 ⊂ F1 = TX1 ⊕ {0} and D2 ⊂ F2 = {0} ⊕ TX2, and each (Di, [γi])
is the pullback of a Gi-conformal structure from Xi. Our main focus in this
paper is with perturbations of these product structures. As we now indicate,
there is substantial rigidity in the deformation theory, and nearby structures
retain many vestiges of the product case.

Lemma 25. For i = 1, 2, let Xi be a compact simply-connected manifold
with Gi-conformal structure (Di, [γi]). Then any small deformation of the
product (G1 × G2)-conformal structure on X = X1 × X2 has the following
properties:

(1) the pairs of distributions (D1,D2) and (F1,F2) remain of product
type;
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(2) if Ki = R or C, then for that i, Di remains fixed (up to a global
diffeomorphism), but the deformation of [γi] may depend on both
factors in X1 ×X2;

(3) if Ki = H, then the distribution Di varies amongst quaternionic
contact structures, but since the conformal class [γi] is determined
by Di, any deformation of [γi] depends only on the factor Xi;

(4) if Ki = O, then both Di and [γi] remain fixed in the deformation
(and in fact Xi = Sni and the structure is standard).

In particular, the distribution Di can change (modulo diffeomorphisms) only
in the quaternionic case, and the conformal metric [γi] may depend on both
factors X1 and X2 only if Xi is real or complex.

Proof. At the initial product structure, the leaves of the foliation corre-
sponding to Fi are just the parallel copies of Xi. After a small deformation,
the leaves are covering spaces for Xi, and since both X1 and X2 are simply-
connected, these leaves must remain diffeomorphic to Xi. In particular,
the perturbed distributions Fi are still equal to the tangent bundles of the
respective factors.

Now observe that as an immediate consequence of conditions (3) and (5),

[F1,D2] = [D1 + [D1,D1],D2] ⊆ F1 + D2

(by the Jacobi identity), and hence D2 is invariant along the leaves of the
foliation corresponding to F1; similarly D1 is invariant along the leaves of
the foliation for F2.

When Ki = R, Di remains equal to the tangent bundle TXi, while if
Ki = C, then by Darboux’s lemma, we may still assume that Di remains
fixed in the deformation.

In other words, in this deformation theory, we may as well assume that the
distributions Di and Fi remain of product type. The remaining assertions
follow directly from this. �

When X1 or X2 are not simply connected, we shall impose this product
structure as a separate hypothesis:

Definition 26. A deformation of a product (G1×G2) -conformal structure
on X = X1 × X2 is called globally integrable if (modulo diffeomorphism)
the foliations F1 and F2 remain the tangent spaces of the two factors of
X = X1 ×X2.

It is possible to define (G1×G2)-conformal structures on any closed man-
ifold X of the appropriate dimension. Looking ahead to the main goals of
this paper, one could then try to extend this to an asymptotically Einstein
metric on some manifold M with two boundary hypersurfaces F1 and F2

and X as its corner of codimension 2. However, we have already noted that
this extension problem is not at all easy; in fact, the main difficulty seems
to be the extension from X to the boundary faces Fi. For this, it appears to
be almost necessary that X and M be products, and that the metrics and



32 OLIVIER BIQUARD AND RAFE MAZZEO

boundary structures are globally rather similar to the ones considered here.
Thus, in all that follows, we shall assume for simplicity that X, M and the
distributions Di and Fi are products.

5.2. Asymptotically product hyperbolic metrics. It is always possible
to construct a complete metric on the interior of M which is ‘weakly’ product
hyperbolic and with any given (G1 × G2)-conformal structure on X as its
prescribed conformal infinity. In fact, we can just write down a formula
which directly generalizes (4): let xi be defining functions for the boundary
hypersurfaces Xi ⊂ Mi, and choose ImKi-valued 1-forms ηi defining Di

and compatible metrics γi representing the given conformal classes. In a
neighbourhood of X of the form (0, ε)x1 × (0, ε)x2 ×X, set

(23) gγ1,η1,γ2,η2 = λ1

(dx2
1

x2
1

+
γ1

4x2
1

+
η2

1

4x4
1

)
+ λ2

(dx2
2

x2
2

+
γ2

4x2
2

+
η2

2

4x4
2

)
.

Slightly more generally:

Definition 27. A metric g on M is weakly asymptotically product hyperbolic
if

(24) g = gγ1,η1,γ2,η2 + k, k ∈ (x1 + x2)νΛ2,α

for some ν > 0. (The norms and covariant derivatives are with respect to the
metric (23).) Then we say that (D1,D2, [γ1], [γ2]) is the conformal infinity
of g.

Just as in the rank one setting, g determines its conformal infinity. Con-
versely, replacing γi and ηi in (24) by any other conformal representatives

γ̃i = fiγi, η̃i = fiηi,

where the fi are strictly positive smooth functions on X, yields a new metric

g̃ = λ1

(dx2
1

x2
1

+
f1γ1

4x2
1

+
f2

1 η
2
1

4x4
1

)
+ λ2

(dx2
2

x2
2

+
f2γ2

4x2
2

+
f2

2 η
2
2

4x4
2

)
.

We claim that up to a diffeomorphism Φ, g̃ is asymptotically equivalent to
g. Indeed, if Φ∗x̃i = xi√

fi
and Φ|X = id, then

dx̃i
x̃i

=
dxi
xi
− dfi

2fi
, and

∣∣∣∣dx̃ix̃i − dxi
xi

∣∣∣∣
g

= O(x1 + x2),

and hence

|Φ∗g̃ − g|g = O(x1 + x2).

A weakly asymptotically product hyperbolic metric g is sometimes also
called weakly asymptotically Einstein, because of the

Lemma 28. The metric (23) satisfies the estimate

|Ricg + g|g = O(x1 + x2).
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The proof is deferred to the next subsection, where the formalism for the
necessary calculations is developed.

The definition 27 fixes the behaviour of the metric g in regular asymptotic
directions (when both x1 and x2 tend to 0). As indicated earlier, we shall
also define a narrower class of strongly asymptotically Einstein metrics, for
which the Einstein tensor decays uniformly near the entire boundary of M ,
i.e. where x1 or x2 but not necessarily both tend to 0. The goal in the
next few subsections is to find the equations which the limiting values of the
metric g must satisfy at x1 = 0 and at x2 = 0, in order that g lie in this
smaller class.

Later in the paper, in § 7.3, we shall also define a class of ‘near product
hyperbolic’ metrics; these will be defined by slightly different conditions, but
we show there that any strongly asymptotically Einstein metric is of near
product type.

This profusion of similar names is indicative of the fact that for metrics
which are modelled by symmetric spaces of rank greater than one, it is
by no means clear what the precise conditions are under which a metric
should really be considered ‘asymptotically symmetric’; each of the classes
of metrics above has some claim to this moniker in the product hyperbolic
setting.

5.3. Asymptotic curvature calculations. We now calculate the asymp-
totics of the Ricci curvature for a weakly asymptotically product hyperbolic
metric (24) on M1 × M2. In the course of this the proof of Lemma 28
will emerge, as well as motivation for the extra conditions imposed on g to
warrant the name strongly asymptotically Einstein.

As before, assume that M , X and the distributions Di ⊂ Fi are all of
product type. The main calculations are local near the boundary faces; to
be definite we work in the region where x2 → 0, and write g in the form

(25) g = g1 + λ2

(
dx2

2

x2
2

+
γ2

4x2
2

+
η2

2

4x4
2

)
,

where the two terms are metrics along horizontal and vertical slices, M1 ×
{p2} and {p1} ×M2, respectively. We assume that

• the x2 dependence is only what is written explicitly; in other words,
g1, η2 and γ2 are defined and smooth onM1×X2 and are independent
of x2;
• η2 is the pullback of a contact form from X2, hence is independent

of M1;
• γ2 is a family of metrics on D2 compatible with η2 (and hence gives

a G2-conformal structure on each slice {p1} ×X2).

The precise form of g1 is not so important for the moment, but in order to
maintain consistency with (24), we also impose that in analogous coordinates
near the boundary of M1, g1 ∼ λ1(dx2

1/x
2
1 + γ1/4x

2
1 + η2

1/4x
4
1) as x1 → 0,

and that γ2 converges to a representative of the specified conformal class [γ2]
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as x1 → 0. However, these last conditions do not enter into the immediate
considerations.

Well-known formulæ due to O’Neill, cf. Proposition 9.36 in [1], express the
Ricci curvature of a Riemannian submersion in terms of the Ricci curvatures
of the base and fibres and two additional tensors: the second fundamental
form T of the fibres and another tensor which measures the deviation of the
horizontal subspaces from being integrable. To adapt this to our setting,
we regard M as a fibration M1 ×M2 → M1. The two factors are orthogo-
nal, and the horizontal subspaces are integrable (with leaves the M1 slices,
i.e. the submanifolds M1 × {q2}), but this is still not quite a Riemannian
submersion because g1 depends also on M2. In the curvature computations
below, however, it behaves asymptotically as x2 → 0 like a Riemannian sub-
mersion: the negative powers of x2 in all terms in g2 add an extra x2 factor
to all derivatives in the M2 directions.

We continue by defining the various quantities which appear in the O’Neill
formulæ, and developing some of their properties. The first is the second
fundamental form for γ2. This is the section T of T ∗M1⊗Sym2(D∗2 ) defined
by

(26) 〈T (ξ2, ζ2), ξ1〉 = −1

2
(Lξ1γ2)(ξ2, ζ2)⇔ T = −1

2
dM1γ2.

(Here and later, a subscript 1 or 2 of a vector indicates the factor to which
it is tangent.) For either of these expressions we regard γ2 as a section of
Sym2(D∗2 ), which in turn is a trivial bundle over each M1 slice. For each
ξ2 ∈ D2 we also set

(27) Tξ2 ∈ End(D2, TM1), T ∗ξ2 ∈ End(TM1,D2),

where the metrics g1 and γ2 are used to dualize.
There is still a freedom in the choice of the representative γ2 ∈ [γ2], but

we now fix the normalization that the volume form dV γ2 is constant in the
M1 directions. Consequently, the mean curvature vector vanishes:

Trγ2 T = 0.

The trivial connection dM1 on D2 is not compatible with the metric, but
in order to find one which is, it suffices to add the second map in (27); thus

(28) ∇ = dM1 + T,
(

i.e. ∇ξ1ξ2 = dM1
ξ1
ξ2 + T ∗ξ2ξ1

)
defines a unitary connection on D2 over M1. The divergence of T with
respect to this connection is the bilinear form on D2,

(δM1T )(ξ2, ζ2) = −
∑
〈(∇eαT )(ξ2, ζ2), eα〉,

where {eα} is an orthonormal frame for TM1. The final ingredient we need
is the bilinear form Q on TM1 defined by contracting the product of T with
itself in the Sym2(D∗2 ) component with respect to γ2,

(29) Q(ξ1, η1) := 〈Tξ1 , Tη1〉γ2 .
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Before proceeding, we derive the crucial first-order properties of T .

Lemma 29. Let dM1
∇ denote the exterior derivative on M1 coupled to the

connection ∇ on D2. Then
dM1
∇ T = 0.

Proof. By (28), dM1
∇ T = dM1T + T ∧ T , where in the last term we regard

the two factors as elements of T ∗M1 ⊗ End(D2) and T ∗M1 ⊗ Sym2(D2),
respectively. The second expression for T in (26) gives dM1T = 0, hence it
suffices to prove

T ∧ T = 0.

This identity in turn is a direct consequence of the symmetry of the action

(u · q)(x, y) = q(ux, y) + q(x, uy) = γ2((uv + vu)x, y),

of a symmetric endomorphism u on a quadratic form q(x, y) = γ2(vx, y) in
the pair (u, v). �

Lemma 30. On each slice M1×{z2} there is a Bianchi identity of the form(
δM1Q+

1

2
dTrQ

)
ξ

= 〈δM1T, T ∗ξ〉, ξ ∈ TM1.

Proof. Choose an orthonormal frame {eα} for TM1 and extend ξ to a vector
field on M1 which is parallel with respect to ∇ at some point z1. Then,
calculating at z1,

(δM1Q)(ξ) = −
∑
α

∇eαQ(eα, ξ)

= −
∑
α

〈(∇eαT ∗)eα, T ∗ξ〉+ 〈T ∗eα, (∇eαT ∗)ξ〉

= 〈δM1T, T ∗ξ〉 −
∑
α

〈T ∗eα, (∇ξT ∗)(eα)〉

= 〈δM1T, T ∗ξ〉 − 1

2
dTrQ(ξ).

The second equality uses that dM1
∇ T = 0. �

There is also a second fundamental form Ii and corresponding mean cur-
vature vector Ni = TrgiIi for each Mi slice, i = 1, 2. Note that N2 is different
from Trγ2T (which we are assuming is equal to 0), since in the latter one
only takes the trace in the D2 directions.

We can now state an exact formula for the Ricci curvature.

Lemma 31. Let (M = M1×M2, g = g1 +g2) be a metric on M keeping the
factors M1 and M2 orthogonal. Let Ii be the second fundamental form of Mi

and Ni the mean curvature vectors. Then the Ricci tensor of g is given by:

•
Ricg(ξ1, ζ1) =Ricg1(ξ1, ζ1)− (δM2 I1)(ξ1, ζ1)− 〈I1(ξ1, ζ1), N1〉

+ (δM1)∗N2(ξ1, ζ1)− 〈I∗2 ξ1, I∗2 ζ1〉,
(30)
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with an analogous expression for the restriction of Ricg to TM2.
Here δ∗ is the symmetrization of the covariant derivative.
•

Ricg(ξ1, ξ2) =〈δM1I1(ξ1), ξ2〉+ 〈∇ξ1N1, ξ2〉
+〈δM2I2(ξ2), ξ1〉+ 〈∇ξ2N2, ξ1〉.

(31)

Here δMiIi is the divergence of Ii regarded as a symmetric 2-tensor
along Mi.

The derivations of these two formulæ are left to the reader.
As a first application, we have the

Proof of Lemma 28. We will be applying (30) and (31) with Mi = (0, 1)xi ×
Xi. The second fundamental form of the slices M1 × {p2} is

〈I1, ξ2〉 = −1

2
Lξ2g1 = −λ1

2
(

1

4x2
1

Lξ2γ1 +
1

4x4
1

Lξ2η
2
1).

If ξ2 is a unit vector in TX2, then

1

4x2
1

Lξ2γ1 +
1

4x4
1

Lξ2η
2
1 = O(x2),

since D1 does not depend on M2. Hence on each slice M1×{x2}, I1 = O(x2),
and the same is true for all its derivatives. On these same slices one also has

Ricg1 = −λ1g1 + O(x1).

Analogously, on the slices {p1} ×M2, we have

I2 = O(x1), and Ricg2 = −λ2g2 + O(x2).

Inserting these in (30) and (31) gives Ricg = −g+O(x1 +x2), as desired. �

The main result of this subsection is the

Lemma 32. Let g be defined by (25), and suppose that

(32)

{
δM1T = 0

Ricg1(ξ1, ζ1) + λ1〈ξ1, ζ1〉g1 = 〈T ∗ξ1, T
∗ζ1〉γ2

for all vectors ξ1, ζ1 ∈ TM1. Then

Ricg = −g + O(x2).

The point in this lemma is that the error term O(x2) does not depend on
x1, so the metric g is asymptotically Einstein not only in regular directions,
but also when one goes to the face x2 = 0. Doing the same along the other
face will lead to the notion of ‘strongly asymptotically Einstein’.

Remark 33. Note that the right hand side of the Bianchi identity in Lemma
30 vanishes when the first equation in (32) is satisfied.
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Proof. We apply (30) and (31) as follows. First, just as before, I1 = O(x2),
and hence N1 = O(x2) too. On the other hand, the normalization on the
volume form implies that N2 = 0, thus

Ricg(ξ1, ζ1) = Ricg1(ξ1, ζ1)− 〈I∗2ξ1, I∗2ζ1〉+ O(x2),

Ricg(ξ1, ξ2) = O(x2),

Ricg(ξ2, ζ2) = Ricg2(ξ2, ζ2)− (δM1I2)(ξ2, ζ2) + O(x2).

From the formula (25) and the fact that η2 is constant along M1 slices, we
get

I2 =
T

x2
2

,

and since the connection (28) on D2 along M1 is exactly the one induced by
the Levi-Civita connection of g, the result follows. �

To conclude the section, observe that the formulæ in the lemma corre-
spond exactly to the standard formulæ obtained for a Riemannian submer-
sion with integrable horizontal distribution [1, proposition 9.36], as expected
from our claim that the asymptotic behaviour when x2 → 0 is that of a Rie-
mannian submersion.

6. Extending the approximate solution to the codimension one
boundary faces

Let (M = M1 ×M2, g = g0
1 + g0

2) be a product of AKH Einstein metrics,
with conformal infinity c0 = (D0

1 ,D
0
2 , [γ

0
1 ], [γ0

2 ]) on X = X1 × X2. As in
the last section, we consider deformations c of c0 (assumed to be globally
integrable in case either X1 or X2 is not simply connected). According to
Lemma 25, the pair of distributions D1,D2 remains of product type on X,
and we then extend these by pullback to a pair of transverse distributions
of product type on all of M . Choose metrics γi representing each of the
conformal classes [γi]. In the real or complex case, these may depend on
both factors of X, but we maintain the normalization so that, still just over
X, dV γ1 is independent of X2, and similarly dV γ2 is independent of X1.
Based on the calculations of § 5.3, we now address the problem of how to
extend (γ1, γ2) over the faces M1×X2 and X1×M2 to obtain a metric which
is strongly asymptotically Einstein.

6.1. Extension along boundary faces. We focus on the extension of γ1

over M1 ×X2, since the other case is treated exactly the same.
Let us restate the problem more carefully. On the face M1 ×X2, we seek

metrics g1 on TM1 and γ̃2 on D2 which solve the system (32). The solutions
are constrained by the requirements that dV γ̃2 is independent of M1, and
that (g1, γ̃2) is asymptotic atX = ∂M1×X2 to the given (G1×G2)-conformal
structure in the sense that

g1 ∼ λ1

(dx2
1

x2
1

+
γ1

4x2
1

+
η2

1

4x4
1

)
, γ̃2 ∼ γ2,
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as x1 → 0 (with an error term O(xν1) for some ν > 0).

Lemma 34. Suppose that K2 = H or O. Then (32) reduces to a single
uncoupled equation on M1 which is simply the usual Einstein equation.

Proof. Under this hypothesis, γ2 is independent of the X1 factor. Hence
T ≡ 0 and the first equation in (32) is satisfied. The second equation reduces
to the uncoupled Einstein equation on M1. By Proposition 22 we can extend
the conformal class [γ1] on X1 to an AK1H Einstein metric g1 on M1; note
that this is actually done parametrically, depending on q2 ∈ X2. �

When M2 is real or complex, (32) cannot be reduced in this way, but
fortunately, solutions can still be obtained near to the standard one by per-
turbation methods.

We can now state and prove the main result of this section.

Theorem 35. Suppose M = M1×M2 is a product of AKH Einstein spaces
such that the L2 nullspace for the linearized gauged Einstein operator on M1

vanishes. Then, for any small globally integrable perturbation of the product
(G1 × G2)-conformal structure on X, the system (32) has a global solution
(g1, γ̃2) on the face M1×X2 with the prescribed asymptotic behaviour at X,
more precisely on each slice M1 × {q2},

g1 − λ1

(dx2
1

x2
1

+
γ1

4x2
1

+
η2

1

4x4
1

)
∈ xν1Λ2,α, γ̃2 − γ2 ∈ xν1Λ2,α,

with smooth dependence with respect to q2.

Proof. This proof is similar to that for Proposition 22. Consider the slice
M1×{q2}, and begin with the conformal structures γ1, γ2 on X1×X2, with
dV γ2 independent of X1. Fix a smooth extension map assigning to γ1 a
metric g1 on M1 with

g1 = λ1

(dx2
1

x2
1

+
γ1

4x2
1

+
η2

1

4x4
1

)
+ k, k ∈ xν1Λ2,α

as x1 → 0. Here Λ2,α is the geometric Hölder space on M1 × {q2}. The
weight ν is positive; we can fix ν = 1, but any smaller value is possible.
Recall that we already have

Ricg1 + g1 = O(x1).

As before, extend γ2 by pullback on M1, so that the corresponding second
fundamental form T = −1

2d
M1 γ̃2 satisfies also

T = O(x1).

When K = R, we consider perturbations φ of γ2 which fix dV γ2 , so the
tangent space consists of trace-free symmetric two-tensors, i.e. sections of

S = Sym2
0(TX2).

When K = C, γ̃2(·, ·) = dη2(·, J ·), where J is an almost complex struc-
ture; the perturbation φ must also remain compatible with dη2 on D2, or
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equivalently is a deformation of J , so the tangent space consists of trace-free
J-skew-Hermitian symmetric two-tensors, i.e. sections of

S = Sym−0 (D2).

Consider elements

h ∈ Λ2,α
ν (M1 × {q2},Sym2(TM1)), φ ∈ Λ2,α

ν (M1 × {q2},S ),

and assume that both h and φ have sufficiently small norm. Suppose that
(g1 + h, γ̃2 + φ) is a solution of the system (32) along M1.

Denote by T φ and Qφ the second fundamental form and corresponding
quadratic form defined by γ2 + φ. To break the diffeomorphism invariance
of the equation, we add the Bianchi gauge condition

Bg1(h) =
(
δg1 +

1

2
dTrg1

)
h = 0.

Thus we consider the system

Φg1,γ̃2(h, φ) :=
(
Ricg1+h − λ(g1 + h)−Qφ + (δg1+h)∗Bg1(h), δg1+h,φT φ

)
= 0.

By Lemma 30, any solution of this equation must also satisfy

Bg1+h(δg1+h)∗Bg1(h) = 0.

By the same argument as in the uncoupled case, cf. Proposition 19, we
conclude that Bg1h = 0. Hence a solution of Φg1,γ̃2(h, φ) = 0 is also a
solution of the original system (32).

As in the proof of proposition 22, it suffices to check that

Φg1,γ̃2 : Λ2,α
ν (M1 × {q2},Sym2(TM1)⊕S )

−→ Λ0,α
ν (M1 × {q2}, Sym2(TM1)⊕S )

is a C 1 mapping of Banach spaces, for (h, φ) of sufficiently small norm, and
furthermore, that its linearization

DΦg1,γ̃2
∣∣
(0,0)

: Λ2,α
ν (M1 × {q2},Sym2(TM1)⊕S )

−→ Λ0,α
ν (M1 × {q2}, Sym2(TM1)⊕S )

is an isomorphism at the product metric. Since the linearization of the

Bianchi-gauged Einstein equation is ∇∗∇ − 2
◦
R, and T = 0 at the product

metric, this linearization decouples as

DΦ|(0,0) (ḣ, φ̇) =
(
(∇∗∇− 2

◦
R)ḣ,∇∗∇φ̇

)
for the metric g0

1. By the hypothesis on the vanishing of the L2 nullspace
for (M1, g1), the first component is an isomorphism. The second component
∇∗∇ is the rough Laplacian, and this is an isomorphism for weights ν ∈
(0, n+ d− 1).

The last statement comes from the smooth dependence of the solution
constructed by the inverse function theorem with respect to the parameter
q2. �
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Corollary 36. With the same hypotheses as in Theorem 35, let (g1, γ̃2) be
the solution of the system (32) on the face M1 ×X2. Then the metric

h = g1 + λ2

(
dx2

2

x2
2

+
γ̃2

4x2
2

+
η2

2

4x4
2

)
,

defined in some neighbourhood of the face M1×X2 where x2 � 1 on M1×M2

satisfies:

(1) Rich + h = O(x2) uniformly on the closure of this face, and more
precisely Rich + h ∈ x2Λα;

(2) when x1 → 0, then h − h0 ∈ x1Λ2,α, where h0 is the model metric
(23) given by the formula

h0 = λ1

(
dx2

1

x2
1

+
γ1

4x2
1

+
η2

1

4x4
1

)
+ λ2

(
dx2

2

x2
2

+
γ2

4x2
2

+
η2

2

4x4
2

)
.

Proof. This is a direct consequence of the formulæ (30) and (31) for Ricg,
since the solution (g1, γ2) depends smoothly on the parameter q2 ∈ X2. �

We conclude this section with a comment about regularity. Exactly as in
Remark 23 at the very end of § 4, the solutions obtained in Theorem 35 are
polyhomogeneous at the boundaries of the codimension one faces provided
the (G1×G2)-conformal infinity data on X is smooth. The proof is identical
to the one for the uncoupled AKH Einstein equations.

6.2. Strongly asymptotically Einstein metrics. We are now ready to
define, given any small deformation c of the given G1×G2-conformal struc-
ture c0 on X, a global, approximately Einstein metric g on M . By The-
orem 35 and Corollary 36, we extend the data (γ1, γ2) on the two faces
F1 = M1 ×X2 and F2 = X1 ×M2 to get pairs (g1, γ̃2) and (γ̃1, g2) solving
the system (32) on each face. Therefore, the two metrics on M ,

h1 = g1 + λ2

(
dx2

2

x2
2

+
γ̃2

4x2
2

+
η2

2

4x4
2

)
, h2 = λ1

(
dx2

1

x2
1

+
γ̃1

4x2
1

+
η2

1

4x4
1

)
+ g2

defined in the neighbourhoods x2 � 1 and x1 � 1 of F1 and F2, respectively,
satisfy

h1 − h0 ∈ x1Λ2,α, h2 − h0 ∈ x2Λ2,α,

where

h0 = λ1

(
dx2

1

x2
1

+
γ1

4x2
1

+
η2

1

4x4
1

)
+ λ2

(
dx2

2

x2
2

+
γ2

4x2
2

+
η2

2

4x4
2

)
is the initial model metric (23). It remains to glue h1 and h2 in the region
{x1 � 1, x2 � 1} where they both exist. Choose some cut-off function χ
such that χ(x) = 1 for x < 1/2 and χ(x) = 0 for x > 2, and consider the
metric

h = χ
(x2

x1

)
h1 +

(
1− χ

(x2

x1

))
h2,

now defined in a neighbourhood of the whole boundary F1 ∪ F2. In the
region 1/2 < x2/x1 < 2, all the derivatives of χ(x2/x1) remain bounded for



A NONLINEAR POISSON TRANSFORM 41

the metric
dx21
x21

+
dx22
x22

, hence in that region h− h0 ∈ x1Λ2,α (or equivalently

x2Λ2,α), and therefore Rich+h = O(x1), or more precisely Rich+h ∈ x1Λ2,α.
Globally, in a neighbourhood of F1 ∪ F2,

(33) Rich + h ∈ xν1xν2Λα, ν =
1

2
.

We now generalize this model. Fix 0 < ν ≤ 1/2.

Definition 37. A metric g on M is strongly asymptotically Einstein if it
differs from the metric h defined above by a term in xν1x

ν
2Λ2,α.

In particular, the Ricci curvature of any such metric satisfies (33). Note
too that any other reasonable method of patching h1 and h2 together near
the corner yields a metric h′ which is strongly asymptotically Einstein in
this same sense.

7. Generalized Laplacians on near-product hyperbolic spaces

We now discuss the construction of a parametrix for Lg when g is a
strongly asymptotically Einstein perturbation of a product hyperbolic met-
ric. Our goal is to show that Lg is invertible between two weighted Hölder
spaces. We do this in the following steps. First, we analyze the Schwartz
kernel of the inverse of Lg when (M, g) is exactly product hyperbolic using
a contour integral representation; we go on to obtain conormal bounds for
this Schwartz kernel on the ‘product hyperbolic double space’ M2

ph. This
serves as an ansatz for the parametrix of Lg when the metric g is weakly
asymptotically product hyperbolic. We introduce a stronger condition on g
of being near product hyperbolic, and show that under this hypothesis we
can construct a parametrix with Schwartz kernel conormal on M2

ph which is
an inverse of Lg up to a compact error term. The final step is to show that
each of these operators are bounded between weighted Hölder spaces, which
implies that Lg is Fredholm on these spaces. The fact that when g is a prod-
uct we have an exact inverse for Lg on L2 which is bounded between these
Hölder spaces shows that Lg is invertible between these spaces then. The
parametrix construction varies continuously with g, so we conclude that Lg

remains invertible when g is near-product hyperbolic and sufficiently close
to a product metric.

7.1. The inverse of L when g is a product. We begin with an examina-
tion of the structure of the inverse of Lg on L2(M) when (M, g) is a product
of AKH spaces. This is mostly a review of the analysis in [20]. We first
present a contour integral representation for the L2 inverse G of Lg involv-
ing the resolvent families of the operators Lgj on each factor; from this we
deduce estimates for the pointwise off-diagonal behaviour of the Schwartz
kernel of G using the analogous estimates for the Schwartz kernels of the
two constituent resolvents. We do not make an effort to obtain the most
precise pointwise estimates on G here, but see [20] and [14] for more on this.
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A representation formula for the Green function. Let (M, g) be a
product of two AKH Einstein spaces, with linearized gauged Einstein oper-

ator Lg = ∇∗∇− 2
◦
R, acting on sections of

Sym2 T ∗M = Sym2 T ∗M1 ⊕ (T ∗M1 ⊗ T ∗M2)⊕ Sym2 T ∗M2.

The operator Lg preserves the three summands and acts by

Lg1 + (∇M2)∗∇M2 , (∇M1)∗∇M1 + (∇M2)∗∇M2 , (∇M1)∗∇M1 + Lg2 ,

respectively. In each of these three cases, it has the form

Lg = L1 ⊗ IB2 + IB1 ⊗ L2,

where Li acts on a Banach space Bi of sections of a bundle Ei on Mi, and
Lg acts on the completed tensor product B1⊗̂B2 of sections of E = E1⊗E2

on M .
For the moment, let Bi = L2(Mi, Ei; dVgi). Denote by Ri(µ) the resolvent

family (Li−µ)−1. This is a holomorphic family of bounded operators on Bi
for µ in the resolvent set C \ spec (Li); according to Theorem 15,

spec (Li) = {λij}Nij=1 ∪ [αi,∞)

for some αi > 0, with λij ∈ R, λij < αi. Nondegeneracy of (Mi, gi) for the
Einstein problem is the assumption that 0 /∈ {λij}.

The resolvent family of the product operator, R(λ) = (L − λ)−1, can be
expressed as a sort of convolution of the resolvents on the two factors. More
precisely, it is proved in [20] that

(34) R(λ) = − 1

2πi

∫
Γλ

R1(µ)R2(λ− µ) dµ,

where Γλ is a contour lying in the common region of holomorphy of the
two factors in the integrand with ends converging linearly to ±i∞ and such
that the spectrum of L1 lies entirely on one side and the spectrum of L2 lies
entirely on the other side. For us it suffices to take λ = 0. In the simplest
situation, neither L1 nor L2 have any negative eigenvalues, and in this case
we take Γ0 = iR. The general case, where one or the other does have such
eigenvalues, requires a slight modification to this formula.

Setting R(0) = L−1, and G its Schwartz kernel, if f ∈ C∞0 (M), then
u = Gf is the unique L2 solution to the equation Lu = f .

Estimates on G. Fix local coordinates zj = (xj , yj) near a boundary point
of Mj , and denote by Kj(zj , z

′
j , µ) the Schwartz kernel of Rj(µ). Also, re-

place µ by iµ. Then (assuming neither operator Lj has negative eigenvalues),
the Schwartz kernel of G equals

(35) G(z1, z2, z
′
1, z
′
2) =

1

2π

∫ ∞
−∞

K1(z1, z
′
1, iµ)K2(z2, z

′
2,−iµ) dµ.

We now obtain pointwise estimates for G using the bounds on Kj(zj , z
′
j , iµ)

in Proposition 17. Our goal is to prove that G lifts to a conormal distribution
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on a certain blowup of M2 which is conormal at all boundaries, polyhomo-
geneous along the lifted diagonal, and has a leading polyhomogeneous term
at the front faces with conormal remainder.

First observe that the integral (35) converges in the Banach space of
bounded operators on L2(M ; dVg). This follows from the elementary esti-
mate

||Rj(iµ)||B(L2(Mj)) ≤
1

|µ|
,

which is a direct consequence of the spectral theorem for the selfadjoint
operator Lj . This already uniquely specifies G as an element of D ′(M2).

Next, introduce the product-hyperbolic double space

M2
ph = (M1)2

K1Θ × (M2)2
K2Θ;

this manifold with corners is simply the product of the KjΘ double spaces
of the two factors. It has six codimension one boundary faces: the two front
faces, which are the boundary hypersurfaces intersecting the lifted diagonal
diagph:

ff1 = ff((M1)2
K1Θ)× (M2)2

K2Θ and ff2 = (M1)2
K1Θ × ff((M2)2

K2Θ),

and the four side faces, which are the products of the side faces of one factor
with the interior of the other factor. We denote the side faces by B10,j and
B01,j , j = 1, 2, and for uniformity also write ffj = B11,j ; the j signifies
that the face in question comes from a boundary face in the Mj factor.
Defining functions for any one of these faces will be written ρpq,j , j = 1, 2
and pq = 10, 01, 11.

Continuing on with this notation, an index set σ on M2
ph is a tuple of

real numbers (σpq,j), where σpq,j indicates a rate of conormal decay at the
boundary face Bpq,j .

We shall prove that G is conormal at all boundary faces of M2
ph and along

the lifted diagonal. The conormal estimates here are not quite sharp; there
is a subtle cancellation in (35), explored more carefully in [20], which leads
to vanishing rates which are slightly better (by a logarithmic factor), but
this is not needed here.

Proposition 38. The lift of the Schwartz kernel G to the space M2
ph is

an element of A σ
ff (M2

ph, diagph), where σ = (σpq,j) is the index set with
σ10,j = σ01,j = nj + dj − 1, σ11,j = 0, and where ff = ff1 ∪ ff2.

Proof. To separate out the contributions from the near-diagonal parts of
each factor, we use standard results concerning the symbol calculus with
spectral parameter, cf. [25]. Write Kj = Aj +Bj where Aj contains the full
diagonal singularity, is supported near the lifted diagonal in (Mj)

2
KjΘ, and is

smooth across the front face of this double-space, while Bj ∈ A
σj

ff ((Mj)
2
KjΘ),

σj = ((nj + dj − 1)/2 + δ
Kj
0 , (nj + dj − 1)/2 + δ

Kj
0 ).

We first analyze the integral of A1(iµ)A2(−iµ). Recall from [25] that the
norm of Aj as a map on any fixed weighted Sobolev or weighted Hölder space
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decays like 1/|µ|. In that source, this result is only stated in the compact
case, but applies here equally well because of the support properties of Aj .
In any case, this shows that this integral converges in the operator norm on
any one of these spaces. It is also clear that its Schwartz kernel is supported
in a neighbourhood of diagph which intersects the front faces of M2

ph but

not the side faces. This distribution may be estimated directly (just as for
the analogous computation on a product of two compact manifolds) using
the oscillatory integral representations in the conormal bundle of diagph,
and from this we see that it is smooth up to the front faces and has a
pseudodifferential singularity of order −2 along the diagonal, as required.

Using similar arguments, we deduce that the integrals of A1(iµ)B2(−iµ)
and A2(iµ)B1(−iµ) are smooth on the interior of M2

ph. By taking any num-
ber of derivatives with respect to b-vector fields on the B factor, we obtain
the appropriate conormal estimates too.

As for the integral of B1(iµ)B2(−iµ), divide the contour Γ0 into a compact
portion, where |µ| ≤ µ0, and its remaining noncompact ends |µ| ≥ µ0. The
conormal estimates on Bj hold locally uniformly in µ, so in particular∫

|µ|≤µ0
B1(z1, z

′
1, iµ)B2(z2, z

′
2,−iµ) dµ ∈ A σ

B11
(M2

ph).

On the other hand, using the exponential bounds on Kj from Proposition
17 we immediately deduce that the integral over |µ| > µ0 satisfies the same
C 0 bound. The estimates for higher tangential derivatives required to check
conormality are obtained in exactly the same way, using the corresponding
pointwise bounds for the higher tangential derivatives on each of the two
factors.

This completes the estimation of the Schwartz kernel G. �

Modifications when either factor has negative point spectrum. If
inf spec (L1) or inf spec (L2) are negative, then (35) needs to be altered
slightly. To understand this, begin by noting that (34) remains valid when
λ = iε and the contour separates the sets iε− spec (L1) and spec(L2) in two
different half-planes. In fact, we take the contour to be the union of the
vertical rays [2iε, i∞), (−i∞,−iε] and two long thin half-ellipses, one in the
first quadrant with minor axis connecting 1

2 iε and 2iε, and the other in the

third quadrant, with minor axis connecting −1
2 iε and 1

2 iε. Now let ε ↘ 0;

we arrive at the formula that (L1 + L2)−1 is equal to the sum

− 1

2πi

∫ i∞

−i∞
R1(−µ)R2(µ) dµ

+
∑
µ
(1)
j <0

P1(−µ(1)
j )R2(µ

(1)
j ) +

∑
µ
(2)
j <0

R1(−µ(2)
j )P2(µ

(2)
j ).

Here µ
(i)
j are the (negative) eigenvalues of Li, and Pi(µ

(i)
j ) is the orthogonal

projection onto the corresponding eigenspace in the ith factor.
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The main result in the last subsection, that the Schwartz kernel of (Lg)−1

is conormal on M2
ph, clearly remains valid. The analysis of the main term,

which is the first summand in this expression, is exactly the same as before.
The remaining terms are much simpler to analyze since each is a simple
tensor product of one term which is polyhomogeneous on one factor and a
finite rank polyhomogeneous term on the other factor.

7.2. Function spaces and mapping properties. We now introduce the
natural geometric Hölder spaces on the product space M with respect to
a weakly product hyperbolic metric and describe the mapping properties
for the types of pseudodifferential operators encountered in the last subsec-
tion. These mapping properties are needed to conclude that Lg is actually
invertible when g is an approximate Einstein metric sufficiently close to a
product. Indeed, the arguments in the rest of this paper are complicated by
the fact that if K1 = H, then the Hölder spaces corresponding to two differ-
ent weakly product hyperbolic metrics g and g′ are not quasi-isometric to
one another, unless the corresponding distributions D1 and D ′1 on ∂M1×M2

are diffeomorphically equivalent. This failure of the Darboux lemma is the
reason we must study the inverse of Lg for g near to but not exactly equal
to a product metric.

Closely following § 3, the class of geometric Hölder spaces xν11 x
ν2
2 Λk,αph (M)

is defined relative to differentiations by locally finite combinations of smooth
multiples of elements of VK1Θ(M1) + VK2Θ(M2), and by Hölder difference
quotients adapted to the distance relative to the weakly product hyperbolic
metric g.

Proposition 39. Let H have Schwartz kernel in A σ
ff (M2

ph, diagph), where

σ is the usual weight family with σ11,j = 0 and all other σpq,j = (nj + dj −
1)/2 + δ

Kj
0 , and with pseudodifferential order −r < 0 along diagph. Then,

provided 0 < νj < (nj + dj − 1)/2 + δ
Kj
0 , j = 1, 2, the map

H : xν11 x
ν2
2 Λk,αph (M) −→ xν11 x

ν2
2 Λk+r,α

ph (M)

is bounded. If Q has Schwartz kernel in A σ̃(M2
ph) (hence no interior singu-

larities), where σ̃11,j > 0 but all other weights are the same as for σ, then
Q is a compact mapping between these same spaces.

Proof. As in Proposition 10, decompose H = H ′ + H ′′. The boundedness
of H ′ follows from the classical interior boundedness of pseudodifferential
operators on Hölder spaces and the fact that the Schwartz kernel of H ′ is
supported in a tube of finite radius around the diagonal of M1 ×M2.

The proof of the weighted C 0 bound for H ′′f when f is in the weighted ph-
Hölder space proceeds by a direct and elementary estimation of this integral.
Any higher derivative of H ′′u with respect to a K1Θ vector field on the first
factor or a K2Θ vector field on the second factor, or an iterated combination
of such vector fields, is handled by noting that any of these vector fields
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applied to H ′′ gives a Schwartz kernel of exactly the same form, with the
same orders of vanishing at all the side faces.

Finally, to prove that Q is a compact operator, by Proposition 10 again,
the fact that it has order −∞ and vanishes to some positive order at the
front faces gives

Q : xν11 x
ν2
2 Λs1,αph (M) −→ xν1+ε

1 xν2+ε
2 Λs2,αph (M)

for any s1, s2 ∈ N. This range space on the right includes compactly into
the domain space on the left (provided s2 > s1), using the Arzela-Ascoli
theorem. �

In the course of the parametrix construction, we shall need a refined ver-
sion of this result which allows us to conclude that a solution u to Lgu = f
has as much tangential regularity as f does, and in particular that u is
conormal if the same is true of f . In order to measure tangential regu-
larity, we introduce a class of hybrid ‘product hyperbolic-b’ Hölder spaces
which allow some of the VK1Θ(M1) + VK2Θ(M2) derivatives to be replaced
by Vb(M1 ×M2) derivatives. For want of a better name, we denote such

a space by xν11 x
ν2
2 Λk,`,αph−b(M) for any 0 ≤ ` ≤ k; it consists of functions

u ∈ xν11 x
ν2
2 Λk,αph (M) such that V1 . . . , Vju ∈ xν11 x

ν2
2 Λk−j,αph (M) for any b-vector

fields V1, . . . , Vj ∈ Vb(M) and any j ≤ `. The index ` denotes the degree of
full tangential regularity and⋂

k≥`≥0

xν11 x
ν2
2 Λk,`,αph−b(M) = A ν1,ν2(M),

the space of conormal functions on M vanishing like xν11 at ∂M1 ×M2 and
xν22 at M1 × ∂M2.

Corollary 40. Let H and ν1, ν2 be exactly the same as in Proposition 39.
Then for any k ≥ 0 and 0 ≤ ` ≤ k,

H : xν11 x
ν2
2 Λk,`,αph−b(M) −→ xν11 x

ν2
2 Λk+r,`,α

ph−b (M)

is bounded.

Proof. The key idea relies on a commutation relationship: if V is any b-
vector field on M and VL and VR denote its lifts to M2 from the left and right
factors, respectively, then the Schwartz kernel of the composition (VL+VR)H
has exactly the same regularity properties and index sets on M2

ph as H itself.
This is established by straightforward calculation. The subtlety concerns its
behaviour near the two front faces since VLH and VRH individually blow
up to first order there, but these leading singular terms cancel and the sum
is again bounded here. This follows from the cancellation for the analogous
computation on (Mj)

2
KjΘ, which can be found in [18, Proposition 3.30] when

Kj = R, and can be proved in exactly the same way in the other cases. �
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7.3. Near product hyperbolic metrics and the parametrix construc-
tion. If g = g1 + g2 is a nondegenerate product hyperbolic metric, then we
proved in §7.1 that the Schwartz kernel of the L2 inverse of Lg is conormal
on the product hyperbolic double space. Consequently, by the results of
§7.2, this inverse is bounded on certain weighted Hölder spaces, hence Lg is
also invertible on those spaces. Our goal is to establish that Lg is invertible
on these weighted Hölder spaces when g is strongly asymptotically Einstein
and sufficiently close to a product metric. For this it suffices to establish a
similar structure theorem for a parametrix H for (Lg)−1; more precisely, we
construct H and show that it has Schwartz kernel in Ψ−2

ph (M) + A σ
ff (M2

ph),

where σ is the index family from Proposition 39, which implies that it is
bounded and the error terms LgH − I and HLg − I have small norm, and
hence finally that Lg is invertible on these same spaces.

The parametrix construction is much the same as in the AKH case. The
Schwartz kernels of general ph pseudodifferential operators are by definition
distributions on M2

ph which are conormal at the boundaries and polyhomo-
geneous at the diagonal. There is a small calculus of operators with Schwartz
kernels supported near the lifted diagonal, and a large calculus which also
includes operators with Schwartz kernels conormal up to all faces, and with
positive vanishing order at the front faces. The corresponding decomposition
of the parametrix H is written H ′ +H ′′.

Let g be a weakly asymptotically product hyperbolic metric on M . The
initial approximation H ′ to (Lg)−1 is obtained via the standard elliptic
parametrix construction using the symbol calculus on the conormal bun-
dle of diagph ⊂ M2

ph. This is done exactly as in the AKH setting, and

simply uses the uniform invertibility of the ph-symbol of Lg on M2
ph up to

the two front faces (this is valid for any weakly asymptotically product hy-
perbolic metric). If g is only polyhomogeneous at the boundaries of M , then
H ′ ∈ A τ

ff (M2
ph,diagph), where τ10,j = τ01,j =∞ and τ11,j = 0, j = 1, 2.

Set I − LgH ′ = Q0; this is an element of A τ
ff (M2

ph). The correction term

H ′′ is chosen so that Lg(H ′+H ′′) = I−Q1, or equivalently, LgH ′′ = Q0−Q1,
where H ′′ ∈ A σ

ff (M2
ph,diagph) and Q1 ∈ A σ̃(M2

ph); here σ11,j = 0, σ̃11,j > 0,
and all other σpq,j = σ̃pq,j = nj + dj − 1 for pq 6= 11. The Schwartz kernel
of Q1 vanishes to some positive order at the front faces so it is compact on
weighted Hölder spaces.

To determine H ′′, restrict the equation LgH ′′ = Q0 − Q1 to each of the
two front faces. Set

Nj(L
g) = Lg|ffj , Nj(Q0) = Q0|ffj , j = 1, 2.

We must first solve the two equations Nj(L
g)H ′′j = Nj(Q0) and then choose

some H ′′ which has normal operators at ffj equal to these H ′′j . Note that

Nj(Q0) is smooth on the interior of ffj , vanishes to infinite order at the
intersection with the side faces, and is smooth up to the other front face, or
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at least, the dependence in this direction is exactly as regular as the metric
g near the corner.

We begin by analyzing the structure of Nj(L
g) when g is weakly product

hyperbolic. Fixing j = 2 to be definite, the front face ff2 is a product
(M1)2

K1Θ×ff(M2). The second factor, which is the front face of (M2)2
K2Θ, is

a fibration with base space the diagonal of (∂M2)2 and each fibre identified
with the hyperbolic space K2H

m2 . As we explain below, the identification
is not completely natural, however, when K2 = R or C, but is natural in
the remaining two cases K2 = H or O. The lift Lg from the left factor of
M to M2

ph acts on the ‘left factor’ of Mj in each KjΘ double space. It acts

tangentially to all boundary faces on M2
ph, and in particular, its restriction

to ff2 is a sum of products of derivatives of two types: some which act
on the left factor of M1 in (M1)2

K1Θ and others which act on the K2H
m2

fibres of ff(M2). A priori, there could be ‘mixed’ terms of second order,
which differentiate once in each of these directions. On the other hand, the
dependence on all other variables – namely, in the right factor of M1 and in
the diagonal of (∂M2)2 (i.e. the base of the fibration of ff(M2)) – is purely
parametric.

Definition 41. We say that a weakly asymptotically product hyperbolic met-
ric g on M1×M2 is near product hyperbolic if the normal operators N1(Lg),
N2(Lg) have the following special form:

N1(Lg) = L1,1 + L1,2, and N2(Lg) = L2,1 + L2,2,

where, for example, in the second decomposition L2,1 is an operator acting
on the left factor of M1 (with coefficients depending parametrically on the
right factor of M1 and the diagonal of (∂M2)2) and L2,2 is an operator acting
on the front face ff(M2).

Let us investigate when this condition holds. Focussing again on N2(Lg),
use interior coordinates z1 on M1 and z2 = (x2, y2) near the boundary of
M2. Then, near x2 = 0, Lg is a sum of products of various of the ∂z1 ,
and of x2∂x2 , x2Y and x2

2Z, where (Y1, . . . , Yd2(m2−1)) and (Z1, . . . , Zd2−1)
are bases of sections of D2 and its complement, respectively, in TX2. Now
lift to M2

ph and near ff2 replace (z2, z̃2) with projective coordinates; thus

y2 = ỹ2 +O(x̃2) and at x̃2 = 0, the derivatives with respect to x2, Yi and Zj
take the form s∂s, sY

0
i , s2Z0

j , where s = x2/x̃2 and the Y 0
i and Z0

j are a basis

of left-invariant forms on K2Heism2−1, all as explained in §3. In particular,
these vector fields are tangent to the fibres of ff(M2). This restriction to
x̃2 defines N2(L), so we see that g is near product hyperbolic provided that
there are no cross-terms, i.e.

N2(Lg) =
∑

a(1)
α (z1, ỹ2)∂αz1 +

∑
a

(2)
j,β,γ(z1, ỹ2)(s∂s)

j(sY 0)β(s2Z0)γ ,

and in addition, as noted before, the endomorphism coefficients have no off-
diagonal components with respect to the splitting into the two factors. Note
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that the coefficients a
(1)
α depend on (z1, ỹ2), but not on the ‘active’ variables

in the second factor. On the other hand, the coefficients a
(2)
j,β,γ potentially

depend on all active variables on ff2. (To be clear, the non-active variables
are z̃1 and ỹ2; these parametrize the base of the fibration of ff2.)

The fibres of ff(M2) are identified with K2H
m2 , and it is clear that the sec-

ond summand above, which in our previous notation is L2,2, is left invariant
on this hyperbolic space. By the naturality of the geometric operators we
are considering, we expect that L2,2 is simply the linearized gauged Einstein
operator or the rough Laplacian on K2H

m2 . This is indeed true, but only
after a choice of basis of left invariant vector fields (adapted to the boundary
contact structure) on this space, and it is an important but not immediately
obvious fact that this choice may depend smoothly on z1. More clearly,
the identification of ff(M2) with K2H

m2 is determined only up to a linear
isomorphism which preserves the model contact structure on K2Heism2−1.
When K2 = H or O, this determines the isomorphism completely since in
these cases the contact structure determines the metric fully. However, when
K2 = R or C, there are different linear identifications which are isometric,
but not identical. For example, in the real case, this corresponds to the fact
that any metric of the form

dx2 +
∑n−1

i,j=1 aijdy
idyj

x2
,

where (aij) is a constant positive definite symmetric matrix, is isometric to
real hyperbolic space, but the isometry is defined in terms of the coefficients
aij . In our setting, when K2 = R, these coefficients will depend smoothly on
z1, and for metrics which are very close to being a product globally, they will
be very close to constant. Thus altogether, when K2 = R or C, L2,2 must be
thought of as a family of generalized Laplacians on K2H

m2 which depend
smoothly on the variable z1. Hence N2(Lg) is not a product operator as
studied in §7.1. The fact which saves us in the setting of this paper is that
since g is a small perturbation of a product metric, the deviation of L2,2

from an operator which does not depend on z1 is very small.

Lemma 42. Let g be a strongly asymptotically Einstein metric, as in Defi-
nition 37. Then g is near product hyperbolic.

Proof. By the global rigidity assumption for the conformal infinity data, we
are fixing the product structure on each boundary hypersurface of M1×M2.
Consider the construction of g at M1× ∂M2. The preliminary extensions of
the conformal infinity data (γ1, η1) and γ2/x

2
2 + η2/x

4
2, regarded as metrics

on the bundle TM1 ⊕ K2ΘT∂M2M2 over this face, make these subbundles
orthogonal to one another. The correction terms h and φ preserve this
orthogonality. The Lemma follows directly from this. �

Having established this, we now proceed with the parametrix construction
by solving the two normal equations, say the one on ff2 again to be definite.
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The equation N2(Lg)N2(H ′′) = N2(Q0) depends parametrically on the right
factor of M1 in (M1)2

K1Θ and on ∂M2; thus there is a separate equation to
solve for each (x̃1, ỹ1, ỹ2). When x̃1 > 0, this is an equation on M1×ff(M2),
and N2(Q0) is smooth and compactly supported. When x̃1 = 0, there are
two cases: one is for the induced equation on the product of the right face
of (M1)2

K1Θ (which is a copy of M1 blown up at the boundary point ỹ1)
with ff(M2), and the other is for the induced equation on ff(M1) × ff(M2).
Noting that N2(Q0) vanishes identically on space appearing in the middle
case here, we setN2(H ′′) = 0 there, so we are left to understand this equation
on M1 × ff(M2) and on ff(M1)× ff(M2), with N2(Q0) ∈ C∞0 in either case.

The latter case, on the product of the front faces, is the more elementary
one since at this face, N2(Lg) is always an exact product operator, hence
can be analyzed directly using the results of § 7.1. More specifically, the
restriction of N2(Lg) to this corner is the sum of model generalized Lapla-
cians on K1H

m1 × K2H
m2 ; since it is of product type, the results of § 7.1

show that N2(H ′′) = N2(Lg)−1N2(Q0) is conormal on ff(M1) × ff(M2). Of
course, N2(Q0) depends smoothly on the parameters (ỹ1, ỹ2), and the solu-
tion depends smoothly on these parameters.

The same analysis can be applied directly for the other case, i.e. for the
equation on M1 × ff(M2), when K2 = H or O, since in these cases N2(Lg)
is still of product type for each (z̃1, ỹ2). Taking into account the smooth
dependence on these parameters and the conormal structure of N2(Lg)−1,
we see that N2(H ′′) is conormal on ff2, at least away from the corner ff1∩ff2.
We discuss the behaviour at this corner momentarily.

It remains to understand this family of problems on M1 × ff(M2) when
K2 = R or C. As we have described, N2(Lg) is no longer necessarily of prod-
uct type; instead, when the near product hyperbolic metric g is sufficiently
close to a product (which is certainly the case for the strongly asymptot-
ically Einstein metrics we have constructed), it can be decomposed as a
sum A + B where A is of product type and B is a second order opera-
tor with small coefficients. The product analysis of §7.1 shows that A−1

exists and that its Schwartz kernel has conormal structure. Now write
(A + B)A−1 = I + BA−1. We now invoke the mapping properties from
Corollary 40 to see that BA−1 is bounded and has very small norm on

any one of the spaces xν11 s
ν2
2 Λk,`,αph−b(M1 × ff(M2)), hence I +BA−1 is invert-

ible here. This implies that if f ∈ C∞0 , then the solution u to the equation
(A+B)u = f lies in the intersection over all k and ` of these hybrid weighted
Hölder spaces (for fixed weights ν1, ν2), hence is conormal up to the bound-
aries, at least away from ff1 ∩ ff2. In a similar way, we can find the solution
N1(H ′′) on the interior of ff1 which is conormal up to the boundaries, at
least away from ff1 ∩ ff2.

The final step is to analyze how these solutions fit together at the corner
ff1 ∩ ff2. For this, first note that there is an obvious compatibility between
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the two normal operators at this corner:

N1(Lg)|ff1∩ff2
= N2(Lg)|ff1∩ff2

.

By uniqueness of the inverse, we see that

N1(H ′′)
∣∣
ff1∩ff2

:= N1(Lg)|−1
ff1∩ff2

N1(Q0)|ff1∩ff2
=

N2(Lg)|−1
ff1∩ff2

N2(Q0)|ff1∩ff2
:= N2(H ′′)

∣∣
ff1∩ff2

.

The fact that Nj(H
′′) is conormal up to this corner is a consequence of the

fact that the parametric dependence of Nj(Q0) is conormal, and the inverses
preserve conormality in these parameters.

Now extend the two functions Nj(H
′′) on ff1 ∪ ff2 to a Schwartz kernel

H ′′ ∈ A σ
ff (M2

ph) which restricts to Nj(H2) at ffj .

We have now constructedH = H ′+H ′′ which satisfies LgH = I−Q1, Q1 ∈
A σ̃(M2

ph). By Proposition 39, Q1 is a compact operator on the weighted
ph Hölder spaces. A left parametrix is obtained by taking adjoints. This
completes the parametrix construction when g is near product hyperbolic
and polyhomogeneous, and proves that Lg is Fredholm.

As explained earlier, we can certainly restrict to studying polyhomoge-
neous metrics with smooth conformal infinity data but we comment briefly
on how to extend this proof to the case where g is the sum of a polyho-
mogeneous AKH metric and a perturbation term k ∈ xν11 x

ν2
2 Λ2,α

KΘ, where
0 < νj < nj + dj − 1. (Note that this is the regularity for the strongly
asymptotically Einstein metrics.)

The symbol calculus step goes through immediately for symbols with this
regularity. Indeed, the perturbation term k appears only in the parametric
dependence along the diagonal and does not occur in the leading terms near
the front faces, so H ′ decomposes as a principal polyhomogeneous term and
another, vanishing to some positive order at these faces but which is only
bounded in Hölder norm. The restriction to the front faces of the error
term Q = I − LH ′ does not depend on these lower order terms, and the
normal operators Nj(L) are independent of them too, except as above in
their dependence on parameters, which means that the second step carries
through exactly as before.

We have proved

Proposition 43. Let g be a strongly asymptotically Einstein metric as con-
structed in § 6.2. Then there is a parametrix H = H ′+H ′′ for Lg, with H ′ ∈
A σ

ff (M2
ph,diagph) and H ′′ ∈ A σ

ff (M2
ph). The error term Q1 = I−L(H ′+H ′′)

is in A σ̃
ff (M2

ph).

Theorem 44. Let g be a near product hyperbolic metric which is sufficiently
close to a nondegenerate product hyperbolic metric g0 on M1 ×M2. Then

Lg : xν11 x
ν2
2 Λ2,α

ph (M,S2T ∗M) −→ xν11 x
ν2
2 Λ0,α

ph (M,S2T ∗M)

is an isomorphism.
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Proof. If g is any near product hyperbolic metric, then we have constructed
a parametrix Hg for Lg so that LgHg = HgLg = I − Qg. We have also
proved that Hg is a bounded operator between the space on the right and
the space on the left above, and that Qg is compact between these same
spaces. This proves that the map Lg is Fredholm.

The construction of Hg depends continuously on the metric (with respect
to some sufficiently strong topology). Since Qg = 0 when g = g0, we can
make the norm of Qg as small as desired when g is sufficiently close to g0,
which implies that Lg is invertible then. �

8. Solving for the Einstein metric

The remainder of the proof of the Main Theorem proceeds very much as
in the analogous arguments in § 4 and § 6.

Let (M = M1 ×M2, g = g1 + g2) be a product of AKH Einstein metrics.
Let Lg and Lgi be the linearized gauged Einstein operators for g and the
two component metrics gi. We assume that

0 /∈ spec (Lg) ∪ spec (Lg1) ∪ spec(Lg2),

and that at least one of K1 or K2 is not equal to H or O. Denote by c the
(G1 ×G2)-conformal infinity data on X = X1 ×X2 = ∂M1 × ∂M2.

Theorem 45. Under all these conditions, let c′ be any globally integrable
(G1 ×G2)-conformal infinity data on X which is C∞ and sufficiently close
(in C 2,α norm) to c. Then there is a unique strongly asymptotically Einstein
metric g′ which is close to the strongly asymptotically Einstein metric g̃′ with
conformal infinity data c′ constructed in § 6.2.

Proof. Let g̃′ be the strongly asymptotically Einstein metric constructed in
§ 6.2 with conformal infinity data c′. Write g′ = g̃′ + k, where

k ∈ xν1xν2Λ2,α
ph (M, Sym2(T ∗M)).

Write the gauged Einstein equation as

N g̃′(k) = Ricg̃
′+k + (g̃′ + k) + (δg̃

′+k)∗Bg̃′(k) = 0.

The linearization at k = 0 is the generalized Laplacian Lg̃
′
.

We have that

N g̃′ : xν11 x
ν2
2 Λ2,α

ph (M,Sym2(T ∗M)) −→ xν11 x
ν2
2 Λ0,α

ph (M, Sym2(T ∗M))

is a C 1 map from a neighbourhood of 0 in the domain space, and that Lg̃
′

is
a bounded linear map between these same two spaces. Moreover, from our
construction of the metric g̃′, one has

N g̃′(0) ∈ xν11 x
ν2
2 Λ0,α

ph (M,Sym2(T ∗M)).

According to Theorem 44, if c′ is sufficiently close to c, the linearization
Lg̃
′

is an isomorphism. Furthermore, the norm of its inverse is bounded
away from zero, uniformly as c′ → c, and the norm of N g̃′(0) tends to 0.
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The inverse function theorem implies that there is a unique solution k to
N g̃′(k) = 0 with k near 0. �

Appendix A. Osculating quaternionic coordinates

In this brief appendix we prove Lemma 6. This uses an idea close to that
used to find normal coordinates in Riemannian geometry, and should be a
general fact for all the so called “parabolic geometries”.

Fix a quaternionic contact structure on Y 4m−1 and any metric in this con-
formal class on the distribution D . We use the Tanaka-Webster type con-
nection ∇ from [2, chapter 2], see also [6, 7] for the special case of dimension
7. The contact distribution D is the kernel of three 1-forms (η1, η2, η3), and
has a privileged supplementary subspace generated by three “Reeb vectors
fields”R1, R2, R3 which are uniquely specified by the conditions ηi(Rj) = δij
and (iRidηj + iRjdηi)|D = 0 (in dimension 7 a weaker condition is placed on
these). This connection satisfies:

• ∇ preserves the distribution D and the quaternionic structure on D ;
• the torsion T∇ of two horizontal vectors X1, X2 ∈ D is given by

T∇X1,X2
=

3∑
1

dηk(X1, X2)Rk.

However, since these conditions only place restrictions on the derivatives in
horizontal directions, the connection is not unique and different extensions
are possible.

Now fix a point p ∈ Y . We may assume that the Ri, and hence also the
ηi, are parallel at p, i.e.

∇Ri(p) = 0, i = 1, 2, 3.

The connection determines the exponential map in horizontal directions,

expp : Dp −→ Y,

by solving the differential equation ∇ċċ = 0, c(0) = p, ċ(0) = X, and setting
expp(X) = c(1). Linear coordinates (y1, . . . , y4m−4) on Dp give a coordinate
system on the image S of a small ball by expp. Then, at p one has

∇∂yi∂yj +∇∂yj ∂yi =
1

2

(
∇∂yi+∂yj (∂yi + ∂yj )−∇∂yi−∂yj (∂yi − ∂yj )

)
= 0,

and hence

∇∂yi∂yj =
1

2

(
∇∂yi∂yj −∇∂yj ∂yi

)
=

1

2
T∇∂yi ,∂yj

=
1

2

3∑
1

dηk(∂yi , ∂yj )Rk.

In particular, still at p,

∂yiηk(∂yj ) = ηk(∇∂yi∂yj ) =
1

2
dηk(∂yi , ∂yj ),
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from which we deduce that for y ∈ S, the projection Xi of ∂yi on D parallely
to the Reeb vector fields R1, R2 and R3 satisfies

Xj = ∂yj −
1

2

3∑
1

yidηk(∂yi , ∂yj )Rk +O(|y|2).

This can be interpreted as saying that if we write the standard quaternionic
contact structure Θ0 in coordinates (σj , yi) on the Heisenberg group, and
denote by X0

i the standard horizontal vector fields as in (9) and (10), then
along S one has

η = Θ0 +O(|y|2), Xi = X0
i +O(|y|2).

Choosing transverse coordinates (σ1, σ2, σ3) so that ∂σi = Ri along S, we
get the same result in a neighborhood of p with an error term O(|y|2 + |σ|).
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