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A KUMMER CONSTRUCTION FOR GRAVITATIONAL INSTANTONS

 for details). The metric is called ALF when the 'dimension at infinity' m is 3, ALG when m = 2, ALH when m = 1. These asymptotics are generalizations of the familiar ALE (Asymptotically Locally Euclidean) case, for which the model at infinity is the Euclidean four-space (in a nutshell: m = 4).
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Introduction

The aim of this paper is to give a direct and uniform construction for several Ricci-flat Kähler four-manifolds with prescribed asymptotics, 'ALF', 'ALG' or K3 surface should look like this Eguchi-Hanson metric near each exceptional divisor and resemble the flat metric (issued from T 4 ) away from them. Such an idea has been carried out rigorously by twistorial methods in [START_REF] Lebrun | A Kummer-type construction of self-dual 4-manifolds[END_REF][START_REF] Topiwala | A new proof of the existence of Kähler Einstein metrics on K3. I[END_REF]. N. Hitchin [START_REF] Hitchin | Twistor construction of Einstein metrics[END_REF] also pointed out a twistorial argument leading to a Ricci-flat metric on the (non-compact) minimal resolution of {x 2 -zy 2 = z} ⊂ C 3 .

In this short paper, we carry out a rather elementary deformation argument providing Ricci-flat Kähler metrics on the minimal resolution of numerous Ricciflat Kähler orbifolds. Here is the list of examples that can be constructed using this technique:

(1) ALF case: there are two classes of ALF gravitational instantons, A k and D k gravitational instantons, whose boundary is the quotient of the 3-sphere by a cyclic group (A k ) or a binary dihedral group (D k ). There are simple explicit formulas for the A k metrics, in terms of the Gibbons-Hawking ansatz. We give a construction of D k metrics: we start from the quotient X of the A 0 ALF gravitational instanton (this is the standard Taub-NUT metric on R 4 [START_REF] Hawking | Gravitational instantons[END_REF][START_REF] Lebrun | Complete Ricci-flat Kähler metrics on C n need not be flat. Several complex variables and complex geometry[END_REF]), by the binary dihedral group of order 4(k -2),

where k > 2. We note X the crepant resolution of the orbifold X: the singular point is replaced by a configuration of p = k (-2)-rational curves. (1') ALF D 2 case: this is the Hitchin metric, it can be constructed starting from X = R 3 × S 1 /Z 2 , with 2 orbifold points, so the desingularization X has p = 2 exceptional curves.

(2) ALG case: we start from the possible quotients of R 2 × T 2 , that is from a flat orbifold X = (R 2 ×T 2 )/Z k , for k = 2, 3, 4, 6. For k = 2, the action of Z k on T 2 exists only for special lattices (square lattice for k = 4, hexagonal lattice for k = 3 or 6). Then X is the crepant resolution of X, with a configuration of p exceptional curves (k -1 at each fixed point). (3) ALH hyperkähler case: we start from X = R × T 3 /±, this is an orbifold with 8 singular points, and the desingularization X contains p = 8 curves E j of selfintersection -2. The boundary is T 3 . (3') ALH Ricci flat Kähler case: we start from the orbifold

X 2 = R × F 2 /Z 2 ,
where F 2 is the flat 3-manifold F 2 = T 3 /Z 2 . Then X 2 is a Ricci flat Kähler (non hyperKähler) orbifold, it has p = 4 singular points of type C 2 /±, and the desingularization X2 has boundary F 2 . (3") ALH Ricci flat case: we start from X 2,2 = R×F 2,2 /Z 2 = X 2 /Z 2 , where F 2,2

is the flat 3-manifold with monodromy

Z 2 × Z 2 , that is F 2,2 = T 3 /Z 2 × Z 2 .
This is not Kähler because the last Z 2 action is antiholomorphic. The action extends to the desingularization X2 , so one gets a desingularization X2,2 = X 2 /Z 2 .

Theorem 0.1. Let (X, ω 0 ) denote any of the complex Kähler orbifolds in the list above (all examples but the last one), and X be its minimal resolution. We denote the exceptional -2 curves by E 1 , . . . , E p and the Poincaré dual of E j by P D[E j ].

Let a 1 , . . . , a p denote some positive parameters. Then for every small enough positive number , there is a Ricci-flat Kähler form ω on X in the cohomology class [ω 0 ] -a j P D[E j ]; it is moreover asymptotic to the initial metric ω 0 on X. Finally, ( X, ω) is hyperkähler if (X, ω) is hyperkähler.

The last desingularization X2,2 also carries Ricci flat metrics, obtained as quotients of X2 by an antiholomorphic involution.

The proof of the theorem relies on a simple gluing procedure and is essentially self-contained. Even though most of the metrics we build have already been constructed in the literature by other ways (cf. paragraph below), we believe that our construction is interesting, because it is very simple and gives a very good approximation coming from the desingularization procedure. More precisely, the construction described in this paper provides a way to build members of nearly all known deformation families of ALF gravitational instantons, by starting from the explicit Taub-NUT metric and Kronheimer's ALE gravitational instantons [START_REF] Kronheimer | The construction of ALE spaces as hyper-Kähler quotients[END_REF]. The 'nearly' accounts for the Atiyah-Hitchin metric [START_REF] Atiyah | The geometry and dynamics of magnetic monopoles[END_REF], which seems to play a special role. And more generally, apart from the Atiyah-Hitchin metric, we have the striking fact that this construction yields members of all known deformation families of gravitational instantons with positive injectivity radius. So we somehow get a global and concrete understanding of all these families.

Let us detail the relations with the existing constructions. In case [START_REF] Anderson | L 2 harmonic forms on complete Riemannian manifolds[END_REF], the metrics that we obtain probably coincide with the D k gravitational instantons of [START_REF] Cherkis | Singular monopoles and gravitational instantons[END_REF][START_REF] Cherkis | Gravitational instantons of type D k[END_REF]. The same procedure using an action of a cyclic group instead of D k would lead to the ALF gravitational instantons of cyclic type, that is multi-Taub-NUT metrics, given by the Gibbons-Hawking ansatz [START_REF] Minerbe | Rigidity for Multi-Taub-NUT metrics[END_REF]. In case (1'), we obtain a direct PDE construction of the Hitchin metric mentioned above [START_REF] Hitchin | Twistor construction of Einstein metrics[END_REF], complementing the twistorial initial description; this is a D 2 ALF gravitational instanton of dihedral type (in the sense of [START_REF] Minerbe | Rigidity for Multi-Taub-NUT metrics[END_REF]). Together, cases (1) and (1') give constructions of ALF gravitational instantons in all known ALF deformation classes, except D 0 (the Atiyah-Hitchin metric) and D 1 (its double cover), that cannot be obtained in this way because they have 'negative mass'.

The ALG and ALH examples (2) and (3) have been constructed recently in a general Tian-Yau framework on rational elliptic surfaces in [START_REF] Hein | Complete Calabi-Yau metrics from P 2 #9 P 2[END_REF] (see also [START_REF] Kovalev | Ricci-flat deformations of asymptotically cylindrical Calabi-Yau manifolds[END_REF][START_REF] Santoro | Existence of Kähler Ricci-flat metrics on crepant resolutions[END_REF]); in [START_REF] Hein | Complete Calabi-Yau metrics from P 2 #9 P 2[END_REF], they correspond to isotrivial elliptic fibrations. Here we obtain exactly all the classes with positive injectivity radius, but we miss the classes where the injectivity radius goes to 0 at infinity.

Finally, the non hyperkähler examples (3') and (3") are just global quotients of a previous ALH space, but can be obtained by desingularization of a flat orbifold space, as shows theorem 0.1. They are asymptotic to R + ×F 2 and R + ×F 2,2 , where F 2 and F 2,2 are the compact flat orientable 3-manifolds arising as flat T 2 bundles over S 1 with monodromy Z 2 and Z 2 × Z 2 . It is natural to ask whether there are ALH Ricci-flat Kähler metrics with an end asymptotic to R + × F , where F is one of the other orientable flat 3-manifolds: F = F 3 , F 4 , F 6 , where F j (j = 3, 4, 6) is the flat 3-manifold with monodromy Z j . We answer positively to this question: Theorem 0.2. For each orientable flat 3-manifold F , there exists an ALH Ricci flat manifold with one end asymptotic to R + × F . It is Kähler except in the case F = F 2,2 , where it is only locally kähler.

The new metrics do not arise as desingularizations of flat orbifolds, but as global quotients of ALH hyperkähler manifolds. The proof of the theorem consists therefore in constructing ALH hyperkähler manifolds admitting actions of finite groups: the examples come from certain elliptic fibrations, and the metric arises from the solution of a Monge-Ampère equation, invariant under a finite group action (solving the Monge-Ampère equation in this setting is now more or less standard, so we just refer to the literature: the point here is the construction of examples admitting finite group actions).

Finally, the classification of gravitational instantons is an important open question. The ALE gravitational instantons were classified by Kronheimer, and the A k ALF instantons by the second author [START_REF] Minerbe | Rigidity for Multi-Taub-NUT metrics[END_REF]. The other possible class of ALF instantons is the class of D k ALF gravitational instantons, with boundary S 3 /D k , where D k is the binary dihedral group of order 4(k -2), for k > 2 (and we have proposed a new construction of these instantons in theorem 0.1). This gives all the possible topologies for the boundaries of an ALF gravitational instantons, but the possible orientations of the boundary are less clear (the two possible orientations correspond to 'positive mass' or 'negative mass'). For k = 0, the D 0 gravitational instanton (the Atiyah-Hitchin metric) has the same boundary as the D 4 one, endowed with the opposite orientation. The same is true for the D 1 instanton (the double cover of the D 0 one) and the D 3 instanton. Finally the flat space R 3 × S 1 /± admits an orientation reversing isometry, so the opposite orientation of the boundary of the D 2 instanton is realized by the same space. We prove that these are the only possible cases: Theorem 0.3. There is no dihedral ALF gravitational instanton with boundary equal to S 3 /D k with negative orientation for k > 4.

The theorem is a consequence of theorem 4.1, where we relate the Euler characteristic of an ALF gravitational instanton with the adiabatic η invariant of its boundary: this determines the b 2 of an ALF gravitational instanton in terms of its oriented boundary, since the η invariant is sensitive to the orientation.

The paper is organized as follows. In the first section, we have chosen to give a detailed proof of theorem 0.1 in the simplest case, that is X = R × T 3 /±. The necessary adaptations for the other cases are explained in the second section. In the third section, we give a construction of the other ALH Ricci-flat Kähler surfaces, proving theorem 0.2. The last section contains the proof of the formula on the η invariant, leading to theorem 0.3. Finally, an appendix briefly reviews some facts about the weighted analysis on ALF, ALG or ALH manifolds, needed for the construction.

A Kummer construction

In this section, we carefully build an ALH gravitational instanton asymptotic to R×T 3 . First, we consider the quotient X := R×T 3 /±. This is a complex orbifold with eight singular points, corresponding to the fixed points of minus identity on T 3 = R 3 /Z 3 . These are all rational double points and we may blow them up to get a non-singular complex manifold X. We will build an approximately Ricci-flat metric on X by patching together two type of metrics : the flat metric away from the exceptional divisors and the Eguchi-Hanson metric near the divisors.

1.1. The approximately Ricci-flat Kähler metric. The Eguchi-Hanson metric can be described as follows. Take C 2 /± and blow up the origin to get the minimal resolution π : T * CP 1 -→ C 2 /±. Outside the zero section CP 1 = π -1 (0) in T * CP 1 , this map π is a biholomorphism. Let z = (z 1 , z 2 ) denote the standard complex coordinates on C 2 . The formula

φ EH (z 1 , z 2 ) := 1 2 1 + |z| 4 + 2 log |z| -log 1 + 1 + |z| 4 ,
defines a function on C 2 /± and therefore on T * CP 1 \π -1 (0). Then ω EH := dd c φ EH extends on the whole T * CP 1 as a Kähler form, which turns out to be Ricci-flat. Moreover, the Kähler form ω EH is asymptotic to the flat Kähler form

ω EH,0 = dd c φ EH,0 , with φ EH,0 (z) = |z| 2 2 : ∇ k (φ EH -φ EH,0 ) = O(|z| -2-k ) and ∇ k (ω EH -ω EH,0 ) = O(|z| -4-k ).
For future reference, let us point that the Eguchi-Hanson metric admits a parallel symplectic (2, 0) form, extending (the pull-back of) dz 1 ∧ dz 2 . Now pick a smooth non-increasing function χ on R + that is identically 1 on [0, 1] and vanishes on [2, +∞). Given a small positive number , we introduce the cut-off function χ (z) := χ( √ |z|), on T * CP 1 , and we define

(1) φ EH, := χ φ EH + (1 -χ )φ EH,0 .
Then ω EH, := dd c φ EH, is a (1, 1)-form on T * CP 1 which coincides with the Eguchi-Hanson Kähler form for |z| ≤ 1 √ and coincides with the flat Kähler form on C 2 /± for |z| ≥ 2 √ . In between, we have the following controls:

∇ k (φ EH, -φ EH,0 ) ≤ c(k) √ 2+k and ∇ k (ω EH, -ω EH,0 ) ≤ c(k) √ 4+k .
In particular, for small , ω EH, is a Kähler form on the whole T * CP 1 . (The letter c will always denote a positive constant whose value changes from line to line and we sometimes write c(. . . ) to insist on the dependence upon some parameters.)

We can now describe precisely our approximately Ricci flat Kähler metric ω on X. Let ρ denote the distance to the singular points in the flat orbifold R × T 3 /±. The function ρ can also be seen as the ω 0 -distance to the exceptional divisors in X. We will denote the connected components of N := ρ ≤ 1 8 by N j , 1 ≤ j ≤ 8, and the remaining part of X by W . Each N j contains an exceptional divisor E j and N j \E j is naturally a punctured ball of radius 1 8 and centered in 0 in

C 2 /± ∼ = T * CP 1 \CP 1 .
Thanks to a 1 -dilation, we may therefore identify N j with the set N ( ) := |z| ≤ 1 in T * CP 1 and then define ω on N j by ω := 2 ω EH, . On W , we then let ω coincide with the flat ω 0 . Owing to the shape of ω EH, , this defines a smooth Kähler metric on the whole X. By construction, ω is the flat ω 0 for ρ ≥ 2 √ , a (scaled) Eguchi-Hanson metric for ρ ≤ √ and obeys

(2)

∇ k (ω -ω 0 ) ≤ c(k) 2-k 2
between these two areas (beware the scaling induces a nasty -k-2 factor). The Ricci form Ric vanishes outside the domain { √ ≤ ρ ≤ 2 √ } and obeys |Ric | ≤ c : it is small. We now wish to deform this approximately Ricci-flat Kähler metric into a genuine Ricci-flat Kähler metric.

1.2. The nonlinear equation. In view of building a Ricci-flat Kähler form ω = ω + dd c φ in the Kähler class of ω , we wish to solve the complex Monge-Ampère equation

(3) (ω + dd c ψ) 2 = e f ω ∧ ω ,
where f is essentially a potential for the Ricci form Ric of ω : Ric = 1 2 dd c f . This is the classical approach of Aubin-Calabi-Yau (cf. [START_REF] Joyce | Compact manifolds with special holonomy[END_REF] for instance). Our framework gives an explicit function f , which we can describe as follows. Let ζ 1 , ζ 2 denote the complex coordinates on C 2 and consider the (2, 0) form 3 . It is still defined on X = R × T 3 /± and then lifts into a holomorphic (2, 0) form Ω on X. Since X is a crepant resolution of X, this (2, 0) form Ω does not vanish along the exceptional divisors, providing a genuine symplectic (2, 0) form. We can then choose the following function f :

dζ 1 ∧ dζ 2 on R × T 3 = C 2 /Z
(4) f := log Ω ∧ Ω ω ∧ ω .
In other words, the right-hand side of (3) is simply Ω ∧ Ω. Observe f is compactly supported inside { √ ≤ ρ ≤ 2 √ } and obeys:

(5)

∇ k f ≤ c(k) 2-k 2 .
1.3. The linear estimate. The linearization of the Monge-Ampère operator is essentially the Laplace operator ∆ . We need to show that it is an isomorphism between convenient Banach spaces and that its inverse is uniformly bounded for small . Let us introduce the relevant functional spaces. We denote the R-variable in R × T 3 by t and let r := |t|. We may choose a smooth positive function r with the following properties:

• it is equal to r wherever r is larger than 1;

• it coincides with the distance ρ to the exceptional divisors wherever 2 ≤ ρ ≤ 1 8 ; • it is identically wherever ρ ≤ ;

• it is a non-decreasing function of ρ in the domain where ≤ ρ ≤ 2 ;

• it remains bounded between 1 8 and 1 on the part of X where ρ > 1 8 and r < 1.

Let k be a nonnegative integer and α be a number in (0, 1). Given positive real numbers a and b, we let w ,i denote the continuous function which coincides with r a+i on W and r b+i on N . Then we define the Banach space C k,α ,a,b as the set of C k,α functions u for which the following quantity is finite:

u C k,α ,a,b := k i=0 sup w ,i ∇ i u + sup d (x,y)<inj min(w ,k+α (x), w ,k+α (y)) ∇ k u(x) -∇ k u(y) d (x, y) α .
This formula provides the norm. The subscripts mean that everything is computed with respect to the metric g ; in particular, inj denotes the positive injectivity radius of g . In this definition, since d (x, y) < inj , we can compare the values of ∇ k u at x and y through the parallel transport along the unique minimizing geodesic from x to y.

On the exterior domain W , a C k,α ,a,b control on u means it decays like r -a (with a corresponding natural estimate on the derivatives). As expected, the parameter only matters near the exceptional divisors. Recall each N j is identified with the domain N ( ) := |z| ≤ 1 8 in T * CP 1 . Accordingly, we may carry any function

u on N j to a function u on N ( ). A C 0 ,a,b control on u basically means |u | ≤ c -b |z| -b for 2 ≤ |z| ≤ 1 8 and |u | ≤ c -b
where |z| ≤ 2. Note that standard (scaled) Schauder estimates imply the following control:

(6) u C k+2,α ,a,b ≤ c(k, ) u C 0 ,a,b + ∆ u C k,α ,a+2,b+2
.

In this asymptotically cylindrical setting, we may have used exponential weights instead of polynomial weights. We have made this choice because 1) these weights suffice for our purpose here and 2) they will be adapted to the other settings (ALG, ALF, cf. appendix). The relevant Banach spaces for us will turn out to be

E a,b := Rr ⊕ C 2,α ,a,b
and F a,b := C 0,α ,a+2,b+2 . The notation r stands for the function φ•r, where φ is any smooth non-decreasing function on R + which is identically 1 on [0, 1] and coincides with the identity on [2, +∞). We fix the norm on Rr by setting r := 1 and we endow E a,b with the sum of the norms of the two factors. Note we have dropped the dependence on α, which will not play a major role. The Laplacian ∆ defines a bounded operator between E a,b and F a,b and we need to invert it. When u is harmonic, integration by part yields for large R:

0 = B R ∆ u = - ∂B R ∂ r u = -λ + O(R -a-1 ),
with B R = {r ≤ R}. So λ = 0 and u goes to zero at infinity, hence vanishes. This proves injectivity. Let us turn to surjectivity. Given f ∈ F a,b , weighted analysis (cf. appendix) provides a solution u to ∆ u = f , with

u = λr + η + v
for some constants λ and η, and some C 2,α loc function v bounded in C 2,α ,a,b (this estimate follows from (A.3) and ( 6)). Of course, the constant η can be dropped (for there is only one end) and we have proved the surjectivity. Note the parameter b is not relevant here. It enters the picture only when one seeks uniform bounds, which is the next topic we tackle. Lemma 1.2. Let a and b be positive numbers, with b < 2. Then there is a constant c such that for every small and every u ∈ E a,b ,

u E a,b ≤ c ∆ u F a,b .
Proof. Assume this statement is false. Then there is a sequence of positive numbers i and a sequence of functions u i such that:

( i ) i goes to zero, u i E a,b i = 1 and ∆ i u i F a,b i goes to zero. Then u i = λ i r + v i , with (λ i ) bounded in R and (v i ) uniformly bounded in C 2,α i ,a,b .
In particular, we may assume that (λ i ) goes to some λ ∞ and, with Arzela-Ascoli theorem, that (v i ) converges to v ∞ on compact subsets of X minus the exceptional divisors. Moreover, u ∞ := λ ∞ r + v ∞ is a harmonic function on the regular part of R × T 3 /± (with its flat metric) and is bounded by a constant times ρ -b near each singular point, which is less singular than the Green function on R 4 , for b < 2. It follows that u ∞ can be lifted into a smooth harmonic function û∞ on the whole R × T 3 . Moreover, r a v ∞ is bounded so û∞ = λ ∞ r + O(r -a ). Integration by part yields for large R:

0 = B R ∆û ∞ = - ∂B R ∂ r û∞ = -2λ ∞ + O(R -a ).
So λ ∞ = 0 and û∞ goes to zero at infinity, hence vanishes: v ∞ = 0. It follows that v i C 0 (K) goes to zero for every compact set K outside the exceptional divisors. Using Lemma A.3, we then see that, for any smooth and compactly supported function τ which is identically 1 near the exceptional divisors, the functions

w i := (1 -τ )v i satisfy r a w i L ∞ = r a G R 0 ∆ 0 w i L ∞ ≤ c r a ∆ 0 w i L ∞ i→∞ -→ 0.
With the scaled Schauder estimate

v i C 2,α a (B c 2R 0 ) ≤ c r a v i L ∞ (B c R 0 ) + ∆ 0 v i C 0,α a (B c R 0
) (where we dropped the irrelevant and b) and the convergence over compact subsets, we therefore obtain that v i C 2,α a (W ) goes to zero; and more generally, this remains true when W is replaced by the complement of any compact neighbourhood of the exceptional divisors.

Next, we focus on what happens around the jth exceptional divisor. We consider the function

V i := b i (v i ) i , defined on N ( i ). The bound on v i C 2,α i ,b (N j ) makes it
possible to extract a subsequence V i which converges to a function V ∞ on every compact subset of T * CP 1 . Moreover, this function V ∞ is harmonic and uniformly bounded by a constant times (1 + |z|) -b . Since b is positive, we deduce that V ∞ = 0, as above. Now assume that V i C 0 b remains bounded from below (up to subsequence). Then we can find a sequence of points p i such that R i := |z(p i )| goes to infinity and

R b i |V i (p i )| is bounded from below. Let us rescale the metric into ξ i := R -2
i ω i and consider the functions

W i := R b i V i .
Since ω i is closer and closer to the Eguchi-Hanson metric and blowing down the Eguchi-Hanson metric results in the orbifold R 4 /±, we see that ξ i converges to the flat metric on the orbifold R 4 /±. Each W i is defined on a ball of radius 1 8 i R i with respect to ξ i and we may assume that i R i goes to zero, in view of the convergence of v i to zero away from the exceptional divisors (proved in the first step). Since (W i ) is uniformly bounded in C 2,α b (defined with respect to ξ i ), we can again make it converge to a harmonic function W ∞ on R 4 /± minus the origin. Let us denote by |x| the distance to the origin in

R 4 /±. By construction, W ∞ (x ∞ ) > 0 for some point x ∞ with |x ∞ | = 1. But one can check that |x| b W ∞ (x)
is uniformly bounded, so that the harmonic function W ∞ is bound to vanish, as above. This is a contradiction, so

V i C 0 b goes to zero. Scaled Schauder estimates imply that V i C 2,α b and therefore v i C 2,α
i ,b (N j ) go to zero. Playing the same game around each component of the exceptional divisor, we obtain a contradiction.

1.4. The deformation. We will use the following version of the implicit function theorem, whose proof is an immediate application of Banach's fixed point theorem.

Lemma 1.3. Let Φ : E -→ F be a smooth map between Banach spaces and define Q := Φ -Φ(0) -d 0 Φ. We assume there are positive constants q, r 0 and c such that

(1) Q(x) -Q(y) ≤ q x -y ( x + y ) for every x and y in B E (0, r 0 ) ;

(2) d 0 Φ is an isomorphism with inverse bounded by c. Pick r < min(r 0 , 1 2qc ) and assume Φ(0) ≤ r 2c . Then the equation Φ(x) = 0 admits a unique solution x in B E (0, r).

We apply this to the operator

Φ : ψ → (ω + dd c ψ) 2 ω ∧ ω -e f ,
between the Banach spaces E a,b and F a,b for some positive number a and a positive number b, with b < 2. The linearization of Φ is -∆ so condition (2) stems from Lemmata 1.1 and 1.2, with a constant c independent of . We need some smallness on Φ (0) = 1-e f . In view of the shape of f , including (5), we have [START_REF] Dahl | The positive mass theorem for ALE manifolds[END_REF] f

C 0,α ,a+2,b+2 ≤ c 3+ b 2 , which leads to (8) Φ (0) F a,b ≤ c 3+ b 2 .
In view of condition (1), observe the non-linear term is the quadratic map given by:

Q (ψ) = dd c ψ ∧ dd c ψ ω ∧ ω For every ψ 1 and ψ 2 in C 2,α
,a,b , we have the following estimate:

Q (ψ 1 ) -Q (ψ 2 ) C 0,α ,a+2,b+2 ≤ c -b-2 ψ 1 -ψ 2 C 2,α ,a,b ψ 1 C 2,α ,a,b + ψ 2 C 2,α ,a,b
, where c does not depend on . This uniform C 0,α ,a+2,b+2 control is pretty clear on W , without any in the constant, indeed. Near the divisors, we need to compensate the (small) weight, hence this unpleasant -b-2 . It is straightforward to extend to the case where ψ 1 and ψ 2 in E a,b :

Q (ψ 1 ) -Q (ψ 2 ) F a,b ≤ q ψ 1 -ψ 2 E a,b ψ 1 E a,b + ψ 2 E a,b , with (9) q = c -b-2 .
In order to use Lemma 1.3, we compare Φ (0) F a,b to 1 q : in view of ( 8) and ( 9), we have

(10) Φ (0) F a,b ≤ c 1-b 2 q -1 .
Then, since b < 2, we see that for small , Φ (0) F a,b is much smaller than 

to R + × T 3 : ω = ω 0 + O(r -∞ ).
The notation O(r -∞ ) denotes a function decaying faster than any (negative) power of r (cf. appendix, after Lemma A.2). By working with exponential weights, we may prove that the decay rate to the flat metric is indeed exponential.

Proof. We can apply Lemma 1.3 to solve the Monge-Ampère equation (3) for small enough , which provides a (1, 1)-form ω = ω + dd c ψ, with ψ ∈ E a,b . Since ω is asymptotic to ω , it is positive outside a compact set. From (3), we know that ω is everywhere non-degenerate, so it must remain positive on X : it is a Kähler form. Moreover, its Ricci form is given by ρ -1 2 dd c f , which vanishes in view of our choice of f , so ω is Ricci-flat. Finally, a Ricci-flat Kähler structure on a simply-connected four-dimensional manifold is the same as a hyperkähler structure, so we only need to check that X is simply connected. First, observe that X = R × T 3 /± retracts onto T 3 /±, which is covered by two open sets U 1 and U 2 with connected intersection, such that U 1 and U 2 are homeomorphic to [0, 1 2 )×T 2 / ∼ where, for any x ∈ T 2 , (0, x) ∼ (0, -x). Since [0, 1 2 )×T 2 / ∼ retracts onto T 2 /±, which is homeomorphic to the 2-sphere, we eventually see that X, and therefore X, is simply-connected.

2. Other similar constructions 2.1. New ALH Ricci-flat manifolds. In the previous example, it is natural to try and replace T 3 = R 3 /Z 3 by another compact flat orientable three-manifold.

Let F 2 and F 2,2 denote the smooth flat three-manifolds obtained as F 2 := T 3 /σ and F 2,2 := T 3 / σ, τ , where σ and τ are the two commuting involutions

σ(x, y, z) = (x + 1 2 , -y, -z + 1 2 ), τ (x, y, z) = (-x, -y + 1 2 , z + 1 2 ).
Then R×F 2 is naturally a complex flat Kähler manifold-a quotient of C 2 , indeed. More specifically, if t is the coordinate along R, we take t+ix and y+iz as complex coordinates.

We then consider the complex flat Kähler orbifold X 2 := R × F 2 /±. The reader may check that this involution is well defined and has four fixed points, yielding rational double points. We blow them up to obtain the complex manifold X2 . In this statement, ω 0 denotes again the pull-back of the flat Kähler form on X 2 and r = |t|. Actually the proposition is a direct consequence of theorem 1.4, since one can perform first the quotient by ± and then by σ. Indeed the involution σ acts freely on R × T 3 /± and on its desingularization, say X1 ; if the Kähler class in theorem 1.4 is invariant, then it is obvious that the whole construction can be made σ invariant, so the resulting metric descends on X2 .

It follows that the fundamental group of X2 is Z 2 . The metrics are not hyperkähler because the holomorphic symplectic form Ω on X1 satisfies σ * Ω = -Ω, so there is only a multivalued symplectic form on X2 . (This is also apparent on the flat model R × F 2 , whose holonomy is not in SU (2).)

Finally the involution τ is real with respect to the above choice of complex structure, and acts freely on X 2 and X2 , on which it exchanges the four curves E j , say for example τ E 1 = -E 2 and τ E 3 = -E 4 . This leads to: Proposition 2.2. With the same notations as above, if a 1 = a 2 and a 3 = a 4 then the metric of proposition 2.1 is τ invariant so descends to a Ricci flat, locally Kähler metric on X2,2 := X2 /τ . This is an ALH metric with an end asymptotic to R + × F 2,2 .

Again the whole construction can be made σ and τ invariant (in particular, looking for a τ invariant potential), so the proposition is immediate.

ALG gravitational instantons.

In order to build ALG examples with the same technique, we may start from R 2 × T 2 and consider 'crystallographic' quotients. The basic example is X 2 = R 2 × T 2 /±, which is a complex flat Kähler orbifold with four rational double points. When T 2 is obtained from a square lattice in R 2 , we may also consider X 2 = R 2 × T 2 /Z 4 , where the action of Z 4 is induced by the rotation of angle π 2 on both factors. In this case, there are two C 2 /Z 4 singularities and one C 2 /Z 2 singularity. Similarly, starting from a hexagonal lattice and using rotations of angle π 3 and π 6 , we may work with X k = R 2 × T 2 /Z k for k = 3 or 6. The orbifold X 3 has three C 2 /Z 3 singularities, while X 6 has one C 2 /Z 6 singularity, one C 2 /Z 2 singularity and one C 2 /Z 3 singularity. In any case, we may blow up the singularities to get the smooth complex manifold Xk , k = 2, 3, 4, 6. Every C 2 /Z k singularity can be endowed with an asymptotically locally Euclidean (ALE) Ricci-flat Kähler metric: the Gibbons-Hawking or multi-Eguchi-Hanson metrics [START_REF] Gibbons | Gravitational multi-instantons[END_REF][START_REF] Joyce | Compact manifolds with special holonomy[END_REF]. We may use them in the gluing procedure. We do not have an explicit Kähler potential φ but for instance Theorem 8.2.3 in [START_REF] Joyce | Compact manifolds with special holonomy[END_REF] gives a potential φ = |z| 2 2 + O(|z| -2 ), which is what we need. Theorem 2.3. Pick k = 2, 3, 4, 6 and let a 1 , . . . , a p denote some positive parameters (p is the number of singularities). Then for every small enough positive number , there is a Ricci-flat Kähler form ω on X in the cohomology class

[ω 0 ] - a j P D[E j ]. These provide ALG gravitational instantons asymptotic to R 2 × T 2 /Z k : ω = ω 0 + O(r -k-2+δ
), for every positive δ. Proof. The proof follows the same lines as that of theorem 1.4, so we just point out the necessary adaptations. To begin with, we may check that Xk is simply connected: this follows from the fact that T 2 /Z k is homeomorphic to the twosphere (it is for instance a consequence of the Gauss-Bonnet formula for closed surfaces with conical singularities). In view of weighted analysis, we can work with 0 < a < k (because there is no harmonic function on R 2 /Z k that decays like r -a ) and in the definition of E a,b , the Rr summand has to be replaced by R log r (a smooth function equal to log r outside a compact set).

Hitchin's ALF gravitational instanton.

In [START_REF] Hitchin | Twistor construction of Einstein metrics[END_REF], N. Hitchin built a hyperkähler structure on the desingularization X of R 3 × S 1 /± through twistor theory. Beware S 1 is again seen as R/Z (so the involution is not an antipodal map). Our direct analytical approach gives another construction of this hyperkähler manifold. Theorem 2.4. Let a 1 , a 2 denote some positive parameters. Then for every small enough positive number , there is a Ricci-flat Kähler form ω on X in the cohomology class [ω 0 ] -a j P D[E j ]. These provide ALF gravitational instantons asymptotic to R 3 × S 1 /±: ω = ω 0 + O(r -3+δ ), for every positive δ.

Proof. Again, it is a simple adaptation of the proof of theorem 1.4. We work with 0 < a < 1, so that weighted analysis ensures the Laplacian is an isomorphism. In the definition of E a,b , the Rr must therefore be dropped. The analysis can then be done similarly and we just need to check that X is simply connected: this is immediate, for R 3 × S 1 /± turns out to be contractible.

ALF gravitational instantons of dihedral type.

In this section, we start from the Taub-NUT metric g T N on R 4 . It is given by the following explicit formulas. We refer to [START_REF] Lebrun | Complete Ricci-flat Kähler metrics on C n need not be flat. Several complex variables and complex geometry[END_REF] for details. To begin with, we identify R 4 with C 2 , with complex coordinates w 1 , w 2 . The Hopf fibration π = (x 1 , x 2 , x 3 ) : C 2 -→ R 3 is given by

x 1 = 2 Re(w 1 w2 ), x 2 = 2 Im(w 1 w2 ), x 3 = |w 1 | 2 -|w 2 | 2 .
Let us fix a positive number m and define

(11) V = 1 + 2m |x| , θ = 4m Im( wdw) |w| 2 .
Then θ 4m is a connection one-form on the Hopf fibration, with curvature * R 3 dV 4m , and the Taub-NUT metric is given by ( 12)

g T N = V (dx 2 1 + dx 2 2 + dx 2 3 ) + 1 V θ 2 .
It turns out to be a complete Kähler metric, with respect to the complex structure I mapping dx 1 to dx 2 and dx 3 to θ V . The corresponding Kähler form is

ω T N = V dx 1 ∧ dx 2 + dx 3 ∧ θ.
Moreover, it is endowed with a parallel symplectic (2, 0) form:

Ω = (V dx 2 ∧ dx 3 + dx 1 ∧ θ) + i(V dx 3 ∧ dx 1 + dx 2 ∧ θ).
This holomorphic symplectic structure is in fact isomorphic to the standard one on C 2 [START_REF] Lebrun | Complete Ricci-flat Kähler metrics on C n need not be flat. Several complex variables and complex geometry[END_REF]. The Taub-NUT metric is therefore hyperkähler.

This hyperkähler structure is preserved by an action of the binary dihedral group D k (of order 4(k -2)) for every k > 2. Explicitly, we see D k as the group generated by the following diffeomorphisms τ and ζ k of C 2 :

τ (w 1 , w 2 ) = ( w2 , -w1 ), ζ k (w 1 , w 2 ) = (e iπ k-2 w 1 , e iπ k-2 w 2 ).
And the reader may check that this action preserves the whole hyperkähler structure.

We then let X be the orbifold obtained as the quotient of the Taub-Nut manifold by this action of D k . It has one complex singularity, isomorphic to the standard C 2 /D k (with D k in SU (2)). Let us denote the minimal resolution of X by X. Again, we need approximately Ricci-flat metrics on X. Near the exceptional divisor, it is natural to glue one of the D k ALE gravitational instantons introduced by P. B. Kronheimer in [START_REF] Kronheimer | The construction of ALE spaces as hyper-Kähler quotients[END_REF]. This yields a potential φ ALE = |z| 2 2 + O(|z| -2 ). If we implemented the same gluing as above, we would be in trouble, basically because g T N is not flat. Technically, we would end up with f = O( ) (instead of 2 in (5)); therefore, we would lose an in [START_REF] Dahl | The positive mass theorem for ALE manifolds[END_REF] and ( 8) and the exponent in (10) would beb 2 instead of 1 -b 2 ; since b has to be positive, this exponent would be negative and we would never find a ball where to perform the fixed point argument. So we need to refine the gluing.

Near the origin, we can find complex coordinates s = (s 1 , s 2 ) in which ω T N is the standard flat Kähler form ω 0 = dd c |s| 2 2 up to O(|s| 2 ) and, more precisely, we can find a potential φ T N for ω T N with the expansion [START_REF] Hein | Complete Calabi-Yau metrics from P 2 #9 P 2[END_REF] φ

T N = |s| 2 2 + θ 4 (s) + O(|s| 5 ),
where θ 4 (s) is a D k -invariant quartic expression in s (and s). Moreover, since ω T N is Ricci-flat, we have the Monge-Ampère equation

dd c log ω 2 T N ω 2 0 = 0, which can be expanded into dd c ∆ ω 0 θ 4 = O(|s|). Since ∆ ω 0 θ 4 is a quadratic form,
it is bound to vanish, so θ 4 is harmonic. We then identify a neighbourhood of 0 in X with a large domain in the D k ALE gravitational instanton, in the same manner as previously, with an -dilation s → z. Then θ 4 (s) = 4 θ 4 (z). Since θ 4 is harmonic with respect to the flat metric, we see that

∆ ALE θ 4 = O(|z| -2 ).
From weighted analysis, we may then find a ∆ ALE -harmonic function h 4 with h 4 = θ 4 (z) + O(|z| -2 ). Instead of gluing the Taub-NUT metric with the (scaled) ALE metric, we will patch the Taub-NUT potential φ T N together with 2 (φ ALE + 2 h 4 ), namely the approximately Ricci-flat metric ω we use in this context is given by the potential

φ := χ 2 (φ ALE + 2 h 4 ) + (1 -χ )φ T N ,
with a cutoff function χ like in [START_REF] Anderson | L 2 harmonic forms on complete Riemannian manifolds[END_REF]. The (1, 1)-form ω loc, = dd c (φ ALE + 2 h 4 ) therefore plays the role of the Eguchi-Hanson metric ω EH in this context. Beware it depends on and defines a Kähler metric (a priori) only on some ball |z| ≤ c , owing to the estimate ( 14)

|ω loc, -ω ALE | = 2 dd c h 4 ≤ c 2 |z| 2 .
We need a control on the function f given by ( 4). Since Taub-NUT is Ricci flat, f vanishes for ρ ≥ 2 √ . On {ρ ≤ √ }, we may use the Ricci-flat ω ALE and observe

e -f = ω 2 loc, ω 2 ALE = 1 + 2 2 ∆ ALE h 4 + 4 (dd c h 4 ) 2 ω 2 ALE = 1 + 0 + 4 O(|z| 4 ) = O(ρ 4 ), which results in ∇ k f ≤ c(k) 2-k 2 .
Finally, on the transition area { √ ≤ ρ ≤ 2 √ }, we use the expansions [START_REF] Hein | Complete Calabi-Yau metrics from P 2 #9 P 2[END_REF] and

φ ALE = |z| 2 2 + O(|z| -2 ) = -2 |s| 2 2 + 2 O(|s| -2 ) to obtain ω -ω T N = dd c 4 χ O(|s| -2 ) + χ O(|s| 5
) . Note that without the trick consisting in plugging this function h 4 into the potential, the last exponent would have been 4 instead of 5, resulting in the bad estimate f = O( ). Instead, here, we find

∇ k (ω -ω T N ) ≤ c(k) 3-k 2
and eventually

∇ k f ≤ c(k) 3-k 2 .
If we follow the proof detailed above, this leads to an exponent 1-b 2 in [START_REF] Gibbons | Gravitational multi-instantons[END_REF], which is good enough since we can choose any b in (0, 1). The other arguments can be adapted. In particular, the proof of Lemma 1.2 still works, because ω loc, gets closer and closer to the ALE metric on larger and larger domains, cf. ( 14). These ALF gravitational instantons are of dihedral type in the sense of [START_REF] Minerbe | Rigidity for Multi-Taub-NUT metrics[END_REF]. For k = 3 (resp. k = 4), they have the same asymptotics as the Atiyah-Hitchin metric, that is the D 0 ALF gravitational instanton (resp. its double cover, the D 1 ALF gravitational instanton), with the difference that they have positive mass: their metric is asymptotic to g T N with a positive parameter m, in contrast with the Atiyah-Hitchin metric where the model at infinity is Taub-NUT with a negative parameter m. As we shall see in the next section, these are the only two cases where this can happen. Also note that the examples we build presumably coincide with the D k ALF metrics of Cherkis-Dancer-Hitchin-Kapustin [START_REF] Cherkis | Gravitational instantons of type D k[END_REF][START_REF] Cherkis | Singular monopoles and gravitational instantons[END_REF][START_REF] Dancer | Dihedral singularities and gravitational instantons[END_REF].

Remark. The class of ALF gravitational instantons of cyclic type (whose boundary is fibered over S 2 ) is completely classified [START_REF] Minerbe | Rigidity for Multi-Taub-NUT metrics[END_REF]: it is the class of multi-Taub-NUT metrics, with boundaries at infinity S 3 quotiented by the cyclic group A k (k ≥ 0, the k = 0 case is the Taub-Nut metric on R 4 described above). One should add one special case, the flat space R 3 × S 1 which can be numbered A -1 (this fits well with several formulas in § 4).

As mentioned to us by S. Cherkis, one can also construct D k ALF gravitational instantons starting from an A 2k-5 ALF gravitational instanton (a multi-Taub-NUT metric associated to a symmetric configuration of 2k -4 points), and taking the quotient by an involution with two fixed points. The same technique applies and provides a hyperkähler metric on the desingularization. The special case k = 2 leads to the construction of a D 2 ALF gravitational instanton (conventionally the Hitchin metric) from a A -1 one, that is from R 3 × S 1 : this is the construction in section 2.3.

Other ALH Ricci-flat Kähler examples

There are six oriented compact flat 3-manifolds [START_REF] Wolf | Spaces of constant curvature[END_REF]: the torus T 3 , four quotients F j = T 3 /Z j for j = 2, 3, 4, 6 and a quotient T 3 /Z 2 × Z 2 . In § 2.1, we constructed by quotient a Kähler Ricci-flat metric with one ALH end asymptotic to R × F 2 . In this section we will exhibit similar examples with one end asymptotic to R × F j for j = 3, 4, 6. This amounts to construct suitable rational elliptic surfaces with finite group action.

Choose ζ j = exp(2πi/j) and a flat 2-torus T 2 with an action of Z j . Then the flat manifold F j is obtained as the quotient of T 3 = S 1 × T 2 by the diagonal action of Z j obtained by multiplication by ζ j on both factors. The flat metric [START_REF] Joyce | Compact manifolds with special holonomy[END_REF] dt 2 + dx 2 + dy 2 + dz 2 on R × T 3 descends to a flat Kähler metric on R × F j , but the holomorphicsymplectic form Ω = (dt + idx) ∧ (dy + idz), which has a simple pole at infinity in the compactification P 1 × T 2 , becomes j-multivalued in the quotient: the metric is not hyperkähler since the monodromy at infinity is not a subgroup of SU (2).

(For the last flat 3-manifold the monodromy is not a subgroup of U (2) so one can not hope to construct Kähler examples, but one can still hope to construct actions leading to ALH Ricci flat examples.)

We start from a rational elliptic surface X j with:

• if j = 3, three singular fibres of type IV ;

• if j = 4, four singular fibres of type III;

• if j = 6 six singular fibres of type II.

A glance at the table in [24, p. 206] shows that such surfaces exist. One can construct them in a concrete way using the Weierstrass model: if L = O P 1 (1), and g 2 and g 3 are holomorphic sections of L 4 and L 6 , then the surface ( 16)

y 2 z = 4x 3 -g 2 xz 2 -g 3 z 3 in P(L 2 ⊕ L 3 ⊕ O P 1 )
is a rational elliptic surface. In case g 3 = 0 and g 2 has four simple zeros, one gets X 4 ; if g 2 = 0 and g 3 has six simple zeros, one gets X 6 ; if g 2 = 0 and g 3 has three double zeros one gets X 3 . Moreover we can choose g 2 and g 3 so that X j has an action of Z j over P 1 which permutes the singular fibres. For example we take the standard action of Z j on P 1 by z → ζ j z and we use g 2 (u) = u 4 -1 for j = 4, g 3 (u) = u 6 -1 for j = 6 and g 3 (u) = (u 3 -1) 2 for j = 3. Given any fibre, there is a holomorphic symplectic form on X j with a simple pole along this fibre, giving a section of K(F ). We choose Ω ∈ H 0 (X j , K(F )) the symplectic form with a simple pole over the fibre at infinity, so that near infinity one has Ω ∼ dz z ∧ dv, where v is a coordinate on the fibre at infinity. The action of Z j on P 1 has fixed points 0 and ∞. The action can be chosen so that it is free on the fibre over the origin (translation), but has fixed points on the fibre at infinity, giving Kleinian singularities of type C 2 /Z j on the quotient X j /Z j . The minimal desingularization Xj is again an elliptic surface over P 1 , with a multiple fibre of order j over the origin, a singular fibre of type IV * (j = 3), III * (j = 4) or II * (j = 6) over the point at infinity, and similarly a singular fibre of type IV , III or II over u = 1. Moreover, the section Ω j descends as a section Ω ∈ H 0 ( Xj , K j (F )) which does not vanish on Xj and has a simple pole over ∞ (in other words, Ω1 j is a multivalued holomorphic symplectic form outside the fibre over ∞).

Given a Kähler form ω which is asymptotic to [START_REF] Joyce | Compact manifolds with special holonomy[END_REF], an ALH Kähler Ricci flat metric on Xj is given by a solution of the Monge-Ampère equation [START_REF] Kronheimer | The construction of ALE spaces as hyper-Kähler quotients[END_REF] (ω + i∂ ∂f ) 2 = Ω

1 j ∧ Ω 1 j ,
where f has exponential decay on the end R × F j . One can either solve directly on Xj or find a Z j -invariant solution on X j : this amounts to solving the Monge-Ampère equation for cylindrical ends, and we refer to [START_REF] Tian | Complete Kähler manifolds with zero Ricci curvature[END_REF][START_REF] Joyce | Compact manifolds with special holonomy[END_REF][START_REF] Kovalev | Ricci-flat deformations of asymptotically cylindrical Calabi-Yau manifolds[END_REF]. More specifically the case of X j is done in [START_REF] Hein | Complete Calabi-Yau metrics from P 2 #9 P 2[END_REF].

Using the same construction, one can recover the ALH example X2 of § 2.1 for j = 2, starting from a rational elliptic surface with two singular fibres of type I * 0 with an action of Z 2 . In that case, our desingularization procedure of the flat metric R × T 3 /Z 2 × Z 2 gives a good approximation of certain solutions of ( 17). This flat model is no more available for j = 3, 4, 6.

Remark. It might seem disappointing that these non-hyperkähler examples occur as finite quotients of hyperkähler manifolds. It turns out to be a general fact: any Ricci-flat Kähler four-manifold with ALE, ALF, ALG or ALH asymptotics is bound to have a hyperkähler finite cover. To see why, observe that such a manifold M has a flat canonical bundle (because Ric = 0), determined by a representation ρ of π 1 (M ) in C. Building a hyperkähler finite cover amounts to finding a subgroup G of π 1 (M ) of finite index and on which ρ is trivial. Now, since Ric = 0, the Weitzenböck formula ensures the L 2 cohomology vanishes in degree 1. In terms of standard De Rham cohomology, this implies [START_REF] Anderson | L 2 harmonic forms on complete Riemannian manifolds[END_REF] that the image of the natural map

H 1 c (M ) → H 1 (M ) is trivial.
Since the complement of a compact set in M is diffeomorphic to R + × S for some compact 3-manifold S, this means H 1 (M ) injects into the cohomology space H 1 (S) of the 'boundary at infinity' S or in other words H 1 (S, R) surjects onto H 1 (M, R). In all ALE,F,G,H asymptotics, H 1 (S, R) is generated by a finite number of loops γ i for which some iterate γ k i i acts trivially on the canonical bundle of M . So the subgroup G of π 1 (M ) generated by the derived subgroup [π 1 (M ), π 1 (M )] and the γ k i i 's has the required properties.

A formula for the Euler characteristic

Let X be an ALF gravitational instanton of dihedral type or cyclic type. Near infinity, one has X (A, +∞) × S, where S has a circle fibration over Σ = RP 2 (dihedral case) or Σ = S 2 (cyclic case). Moreover the metric g has the following asymptotics:

g dr 2 + r 2 γ + θ 2 ,
where θ is a connection 1-form on the circle bundle (or its double covering in the dihedral case), and γ is the horizontal metric lifted from the standard metric on Σ. We have the following behavior for the second fundamental form I and the curvature R:

(18) |I| = O( 1 r ), |R| = O( 1 r 3 ).
There are well known formulas giving the Euler characteristic and signature of X in terms of the integrals of characteristic classes on a large domain D ρ = {r ≤ ρ} ⊂ X and boundary terms: for a gravitational instanton, there remains only

χ = 1 8π 2 Dρ |W -| 2 + 1 12π 2 ∂Dρ T(I ∧ (I ∧ I + 3R)), τ = 1 12π 2 Dρ -|W -| 2 + 1 12π 2 ∂Dρ S(I(•, R(•, •)n)) + η(∂D ρ ).
Here n is the normal vector, T and S are linear operations which we do not need to write down explicitly, since from the control [START_REF] Lebrun | Complete Ricci-flat Kähler metrics on C n need not be flat. Several complex variables and complex geometry[END_REF] and the fact that the volume of ∂D ρ is O(ρ 2 ), we obtain that all boundary integrals go to zero when ρ goes to infinity. Finally this implies the following form of the Hitchin-Thorpe inequality:

(19) 2χ + 3τ = lim ρ→∞ η(∂D ρ ).
For the gravitational instanton X, if X = R 3 ×S 1 we have b 1 (X) = b 3 (X) = 0, and the intersection form is negative definite (see [START_REF] Hausel | Hodge cohomology of gravitational instantons[END_REF], this follows immediately from the fact that the relevant cohomology classes can be represented by L 2 harmonic forms), so it follows that τ = -(χ -1). On the other hand, since the η-invariant is conformally invariant, the limit in [START_REF] Lebrun | A Kummer-type construction of self-dual 4-manifolds[END_REF] is the adiabatic limit:

η ad (S) := lim r→∞ η(γ + 1 r 2 θ 2
). Therefore we obtain the following result: Theorem 4.1. For an ALF gravitational instanton X = R 3 × S 1 , with boundary S, one has [START_REF] Maz'ja | Estimates in L p and in Hölder classes, and the Miranda-Agmon maximum principle for the solutions of elliptic boundary value problems in domains with singular points on the boundary[END_REF] χ(X) = 3 1 -η ad (S) .

The calculation of the adiabatic limit of the η-invariant is well known, but we can also deduce it from the theorem: in both cyclic and dihedral cases, we have examples obtained by desingularizing the quotient of C 2 with the Taub-NUT metric by the cyclic group A k (this gives the multi-Taub-NUT metrics), or the dihedral group D k (the metrics coming from theorem 2.5). This results in a k-dimensional 2-cohomology and therefore χ = k + 1 and ( 21)

η ad = 2 -k 3 .
In the dihedral case, the formula extends immediately to the D 2 case, which is Hitchin's metric on the desingularization of R 3 × S 1 /±. In this way the values of (21) for k ≥ 2 give the adiabatic η invariant for all possible boundaries S of an ALF gravitational instanton. Nevertheless observe that the sign of the η-invariant is changed if the orientation of S is changed.

From the theorem 4.1, since one must have χ ≥ 1, one deduces the constraint

(22) η ad (S) ≤ 2 3 .
From the values obtained in [START_REF] Melrose | The Atiyah-Patodi-Singer index theorem[END_REF], we see that the only three cases where the boundary S of a dihedral ALF gravitational instanton, endowed with the opposite orientation, can be filled by another gravitational instanton, are k = 2, 3 or 4. Indeed, for k = 4, the D 0 gravitational instanton (the Atiyah-Hitchin metric) has the same boundary as the D 4 instanton, but with the opposite orientation; observe that since it retracts on a RP 2 it has χ = 1 and η ad = 2 3 , so the formulas ( 20) and ( 21) remain true. For k = 3, we have the same phenomenon with the D 1 ALF gravitational instanton (the double cover of the D 0 one) which has the same boundary as the D 3 one up to orientation. Finally for k = 2, one has η ad = 0 and the opposite orientation is obtained by the same space, since the flat space R 3 × S 1 /± admits an orientation reversing isometry.

We have proved:

Corollary 4.2.
There is no dihedral ALF gravitational instantons with boundary equal to S 3 /D k with negative orientation for k > 4.

Let us observe from the ansatz (11) [START_REF] Hawking | Gravitational instantons[END_REF] for the Taub-NUT metric that the orientation of the boundary S depends on the sign of the mass m. Specifying the sign of the mass is therefore the same as specifying the orientation of the boundary S. In the cyclic case, all ALF gravitational instantons but R 3 × S 1 have positive mass [START_REF] Minerbe | A mass for ALF manifolds[END_REF][START_REF] Minerbe | Rigidity for Multi-Taub-NUT metrics[END_REF]. In the dihedral case, the corollary implies that all ALF gravitational instantons have positive mass, with the only exceptions of D 0 or D 1 asymptotics (negative mass), or D 2 asymptotics (zero mass).

Finally, remind that, if in the cyclic case the ALF gravitational instantons are completely classified [START_REF] Minerbe | Rigidity for Multi-Taub-NUT metrics[END_REF], the classification is still an open problem in the dihedral case: at least the corollary tells us that there is no possible new class with negative mass in the D k case for k > 4.

Appendix A. Analysis in weighted spaces

Our construction relies on a few facts about the behaviour of the Laplacian on functions in complete non-compact Riemannian manifolds (M, g) with prescribed asymptotics. Let us sum up the theory.

Basically, we assume here the existence of a compact domain K in M such that M \K has finitely many connected components which, up to a finite covering, are diffeomorphic to the complement of the unit ball in R m × T 4-m , for m = 1, 2, 3, 4. We will further assume that the metric g coincides with the standard flat metric g 0 = g R m + g T 4-m at infinity in each end. The notation g T 4-m is for the flat metric obtained as a quotient of R 4-m by any lattice. The case m = 3 will include slightly more sophisticated situations, like in [START_REF] Minerbe | A mass for ALF manifolds[END_REF]. Basically, the Hopf fibration π : S 3 → S 2 can be extended radially into π : R 4 \ {0} → R 3 \ {0} and we may assume that M \K is the total space of (a restriction of) this circle fibration. Then we define the model metric at infinity to be g 0 := π * g R 3 + η 2 , where η is any constant multiple of the standard contact form on the three-sphere ( [START_REF] Minerbe | A mass for ALF manifolds[END_REF]). Note also that all we will say will remain true if g is only asymptotic to g 0 , thanks to perturbation arguments (cf. [START_REF] Minerbe | A mass for ALF manifolds[END_REF] for instance). The analysis on such spaces is somehow understood, so we will drop the proofs. The reader interested in the details of this analytical material is referred to [START_REF] Melrose | The Atiyah-Patodi-Singer index theorem[END_REF][START_REF] Hausel | Hodge cohomology of gravitational instantons[END_REF] for the Mazzeo-Melrose approach or to [START_REF] Maz'ja | Estimates in L p and in Hölder classes, and the Miranda-Agmon maximum principle for the solutions of elliptic boundary value problems in domains with singular points on the boundary[END_REF][START_REF] Minerbe | A mass for ALF manifolds[END_REF] for softer arguments.

We will denote by r the Euclidean distance to the origin in R m . In what follows, we will always write A R for the "annulus" defined by R ≤ r ≤ 2R and A κ R for 2 -κ R ≤ r ≤ 2 κ+1 R (κ ≥ 0). Similarly, the "balls" K ∪ {r ≤ R} will be denoted by B R .

A.1. The Sobolev theory. Given a real number δ and a subset Ω of M , we first define the weighted Lebesgue space L 2 δ (Ω) as the set of functions u ∈ L 2 loc (Ω) such that the following norm is finite:

u L 2 δ (Ω) := Ω∩K u 2 + Ω\K u 2 r -2δ 1 2 
.

We will often write L 2 δ for L 2 δ (M ). The following should be kept in mind:

r a ∈ L 2 δ (M \K) ⇔ δ > m 2 + a.
Any function u on M \K can be written u = Π 0 u+Π ⊥ u where Π 0 u is obtained by computing the mean value of u along T 4-m . In other words, Π 0 u is the part in the kernel of the Laplacian on T 4-m while Π ⊥ u lies in the positive eigenspaces of this operator. The point is these projector commute with the Laplacian and elliptic estimates will be different for Π 0 u and Π ⊥ u. We therefore introduce the Hilbert space L 2 δ, (Ω) of functions u ∈ L 2 loc (Ω) such that Π 0 u L 2 δ (Ω\K) and Π ⊥ u L 2 (Ω\K) are finite. The good Sobolev space for us is the Hilbert space

H 2 δ of functions u ∈ H 2 loc such that ∇ k Π 0 u ∈ L 2 δ-k and ∇ k Π ⊥ u ∈ L 2 δ-2 for k = 0, 1, 2.
To state the main a priori estimate, we need a definition. We will say that the exponent δ is critical if r δ-m 2 is the (pointwise) order of growth of an harmonic function on R m \ {0}. More precisely, the critical values correspond to δ -2 ∈ Z\ {-1} when m = 4, δ -3 2 ∈ Z when m = 3, δ -1 ∈ Z when m = 2, δ -1 2 = 0 or 1 when m = 1. When m = 2, the value δ = 1 is doubly critical, owing to the constants and the harmonic function log r. When m = 1, there are only two critical values because the Laplacian on R is also (minus) the Hessian, so that harmonic functions are affine ; in this case, exponential weights are usually used, but we will not really need them and we prefer to give a general framework including faster than linear volume growths. Note also that when one of the ends of M is a non-trivial finite quotient of the model, some critical values (as defined above) may turn irrelevant: for instance, there is no harmonic function with exactly linear growth on R 2 /±, which makes δ = 0 and δ = 2 non-critical.

We are interested in the unbounded operator

P δ : D(P δ ) -→ L 2 δ-2,δ-2 u → ∆u whose domain D(P δ ) is the dense subset of L 2 δ,δ-2 whose elements u have their Laplacian in L 2 δ-2,δ-2 . The usual L 2 pairing identifies the topological dual space of L 2 δ,δ-2 (resp. L 2 δ-2,δ-2 ) with L 2 -δ,2-δ (resp. L 2 2-δ,2-δ ). For this identification, the adjoint P * δ of P δ is P * δ : D(P * δ ) -→ L 2 -δ,2-δ u → ∆u
where the domain D(P * δ ) is the dense subset of L 2 2-δ whose elements u have their Laplacian in L 2 -δ,2-δ . The following proposition can be proved for instance along the lines of Proposition 1 in [START_REF] Minerbe | A mass for ALF manifolds[END_REF].

Proposition A.1. If δ is non-critical, then P δ is Fredholm and its cokernel is the kernel of P * δ . The following property is classical in this context and makes it possible to understand precisely the growth of solutions to our equations (cf. Lemma 5 in [START_REF] Minerbe | A mass for ALF manifolds[END_REF]).

Proposition A.2. Suppose ∆u = f with u in L 2 δ (B c R 0 ) and f in L 2 δ -2 (B c R 0 ) for non-critical exponents δ > δ and a large number R 0 . Then in each end of M , we may write u = h + v, where h is a harmonic function on R m \ {0} and v is in

L 2 δ ,δ -2 .
For instance, if m = 1 and f is a smooth and compactly supported function, we obtain that, in each end of M , v lies in L 2 δ for every δ. Since ∆v = f , we can use standard elliptic estimates such as Lemma 24 (below) to see that v = O(r -a ) for every a (together with its derivatives, indeed). We will abbreviate this by v = O(r -∞ ). So a solution u of ∆u = f behaves in each end like an affine function on R, up to O(r -∞ ).

This proposition also implies that P δ is injective as soon as δ -m 2 < 0 and, by duality, surjective as soon as δ -m 2 > 2 -m (cf Corollary 2 in [START_REF] Minerbe | A mass for ALF manifolds[END_REF]). As a consequence, when m ≥ 3 and 2 -m < δ -m 2 < 0 , P δ is an isomorphism and, if f is in L 2 δ-2 , we can find a solution u to the equation ∆u = f with the expected asymptotic behviour, i.e. u ∈ L 2 δ . When m = 1 or 2, there is no such value of δ. In practice, this can be easily circumvented in the following way. Assume f is in L 2 δ-2 with δ -m 2 ≤ 2 -m. Define δ m by δ m -m 2 = 2 -m + 1 2 . Then there is a function u in D(P δm ) such that P δm u = f . Proposition A.2 then ensures that the solution can be written as u = h + v, where v is in L 2 δ and h is a smooth function which is harmonic outside a compact set and belongs to L 2 δm \L 2 δ . In fact, such a function h can be chosen in a finite dimensional space depending only on δ so we still get some control on the asymptotics of the solution. We refer to Lemma 1.1 for a concrete example.

Finally, as a by-product of the theory (cf. Lemma 4 in [START_REF] Minerbe | A mass for ALF manifolds[END_REF]), we are given, for every (large) number R 0 , and every non-critical δ < m 2 , a bounded operator [START_REF] Minerbe | Rigidity for Multi-Taub-NUT metrics[END_REF] G R 0 : L 2 δ-2 (B c R 0 ) -→ H 2 0,δ (B c R 0 ) which is an inverse for the Laplacian. Its domain H 2 0,δ is the space of functions u ∈ H 2 δ such that Π ⊥ u vanishes along ∂B R 0 . On ker Π 0 , G R 0 is defined by first solving the equation on the domains B R \B R 0 with Dirichlet boundary condition and then letting R go to infinity. On ker Π ⊥ , it is given by an explicit formula. For instance, when m = 1, we set for each f ∈ ker Π ⊥ :

G R 0 f := r R 0 (ρ -r)f (ρ)dρ.
A.2. From integral to pointwise bounds. In view of handling (weighted) Hölder norms, more adapted to nonlinear analysis, the following Moser inequality is useful:

(24) u L ∞ (A R ) ≤ c 1 √ R m u L 2 (A 1 R ) + R 2 ∆u L ∞ (A 1 R )
A way to obtain this consists in lifting the problem to a square-like domain of size R in R 4 and applying the standard elliptic estimate on R 4 ; the behaviour of the constants with respect to R follows from scaling and counting fundamental domains. As a consequence of this inequality, the inverse G R 0 for the Laplacian on exterior domains (cf. 23) obeys an L ∞ estimate. The proof relies on an idea that can be found in [START_REF] Maz'ja | Estimates in L p and in Hölder classes, and the Miranda-Agmon maximum principle for the solutions of elliptic boundary value problems in domains with singular points on the boundary[END_REF][START_REF] Biquard | Fibrés de Higgs et connexions intégrables : le cas logarithmique (diviseur lisse)[END_REF].

Lemma A.3. Given positive numbers R 0 and a, there is a constant c = c(R 0 , a) such that for every continuous function f on B R c 0 with f = O(r -a-2 ),

r a G R 0 f L ∞ ≤ c r a+2 f L ∞ . Proof.
First, write f = Π 0 f +Π ⊥ f and observe that Π 0 f is obtained as an integral along the T 4-m factor, so that the sup norms of both terms can be estimated by the sup norms of f . We may therefore tackle them separately. The case f = Π 0 f consists in using the explicit formula used to define G R 0 on ker Π ⊥ , so we assume f = Π ⊥ f . Then G R 0 f vanishes along ∂B R 0 . Let us put R i := 2 i R 0 . Using a partition of unity, we may write f = i f i with supp f i ⊂ A R i and |f i | ≤ |f |. Then 24 yields:

R a i G R 0 f j L ∞ (A i ) ≤ c R a+2 i f j L ∞ (A 1 R i ) + c R -δa i G R 0 f j L 2 (A 1 R i ) ,
where δ a = m 2 -a (note that A 1 R 0 should be understood as B 4R 0 \B R 0 and that the corresponding Moser-type estimate near the boundary is standard). Picking any δ close to δ a , we get

R -δa i G R 0 f j L 2 (A 1 R i ) ≤ c R δ-δa i G R 0 f j L 2 δ (A 1 R i ) ≤ c R δ-δa i f j L 2 δ-2 ≤ c R i R j δ-δa r a+2 f j L ∞ .
Now, given i and j, we choose δ so that δ -δ a is times the sign of j -i for some small positive number (and zero if i = j). Then we find

R a i G R 0 f j L ∞ (A R i ) ≤ c 2 -|j-i| r a+2 f L ∞ .
Summing over j leads to:

R a i G R 0 f L ∞ (A i ) ≤ c r a+2 f L ∞
and the result follows at once.

Lemma 1 . 1 .

 11 The map ∆ : E a,b -→ F a,b is an isomorphism. Proof. Any function u in E a,b has the following asymptotics: u = λr + O(r -a ).

Proposition 2 . 1 .

 21 Let a 1 , . . . , a 4 denote some positive parameters. Then for every small enough positive number , there is a Ricci-flat Kähler form ω on X2 in the cohomology class [ω 0 ] -a j P D[E j ]. These provide ALH manifolds asymptotic to the flat metric on R + × F 2 : ω = ω 0 + O(r -∞ ).

Theorem 2 . 5 .

 25 For every small , there is a Ricci-flat Kähler form ω on X in the cohomology class [ω T N ] -2 P D[E], where P D[E] denotes the Poincaré dual of the exceptional divisor. These provide ALF gravitational instantons : ω = ω T N + O(r -3+δ ), for every positive δ.
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