
HAL Id: hal-02928848
https://hal.science/hal-02928848

Submitted on 21 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From G� geometry to quaternionic Kähler metrics
Olivier Biquard

To cite this version:
Olivier Biquard. From G� geometry to quaternionic Kähler metrics. Journal of Geometry and Physics,
2015, 91, pp.101-107. �10.1016/j.geomphys.2015.02.002�. �hal-02928848�

https://hal.science/hal-02928848
https://hal.archives-ouvertes.fr


FROM G2 GEOMETRY TO QUATERNIONIC KÄHLER METRICS

OLIVIER BIQUARD

Abstract. We review a construction of quaternionic Kähler metrics

starting from a rank 2 distribution in 5 dimensions. We relate it to a

more general theory about Einstein deformations of symmetric metrics.

Finally we ask some questions on complete metrics and relate them to

a Zoll phenomenon.

Dedicated to Paul Gauduchon for his 70th birthday.

Introduction

It is now a classical fact that the possible holonomy groups of non sym-

metric Riemannian metrics form a short list: SO (n) (general Riemannian),

U (m) (Kähler), SU (m) (Ricci �at Kähler), Sp (m) (hyperKähler), Sp (m)Sp (1)
(quaternionic Kähler), and the two exceptionalG2 and Spin(7). It is an im-

portant problem to have a general understanding of the four last holonomies.

In this paper, I survey the following local construction of quaternionic Käh-

ler metrics, which was done in the PhD thesis of my student Quentin Du-

four [Duf14]:

TheoremA. LetD be a generic real analytic rank 2 distribution inX 5. Then
to (X ,D) is canonically associated a quaternionic Kähler metric of dimension
8, and one can recover the initial distribution in �ve dimensions from the
asymptotic behaviour of the quaternionic Kähler metric.

Here the distribution D is generic if the brackets of vector �elds in D
generate distributions of the highest possible rank:

• [D,D] has rank 3 at each point;

• [D, [D,D]] has rank 5 at each point, that is

[D, [D,D]] = TX .

One can describe precisely the behaviour of the quaternionic Kähler

metric: the 8-dimensional manifold is obtained as M8 = F 7 × (0, ϵ ), where

F 7 is a disc bundle

p : F → X

over X . If s is the projection on the second factor of F 7 × (0, ϵ ), then the

metric has the following behaviour:

(1) д ∼
ds2

s2
+
γ3
s3
+
γ2
s2
+
γ1
s
+ γ0.

The γi are symmetric 2-tensors on TF . More accurately, γ3 is a symmetric

2-tensor onTF , but γ2 is de�ned only on kerγ3 (this is the only part which

1
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is independant of a choice of the equation s for F ), γ1 is de�ned only on

kerγ2 and �nally γ0 on kerγ1, which turns out to be exactly the vertical

tangent bundle of p. These kernels are given by:

kerγ3 = p
∗
[D,D] ⊃ kerγ2 = p

∗D ⊃ kerγ1 = kerp∗.

All the γi are explicit in terms of the initial data: one can identify the �ber

p−1(x ) of p : F → X with the space of conformal metrics on Dx , and then,

after �xing a determinant of D ⊂ TX :

• γ0 is the hyperbolic metric on the disc p−1(x ), identi�ed with the

space of conformal metrics on Dx ;

• γ1 is the tautological metric on p∗D;

• γ2 and γ3 can also be described explicitly in terms of D.

Changing the determinant of D amounts to multiplying the coordinate s
by a nonvanishing function on X , so the asymptotic behaviour (1) is un-

changed.

Theorem A �ts in a long list of similar constructions:

(1) the �rst result of this kind [LeB82] is LeBrun’s construction of a

4-dimensional selfdual Einstein metric from a 3-dimensional con-

formal metric;

(2) later [LeB89] LeBrun associated a 4(k+1)-dimensional quaternionic

Kähler metric to a conformal metric of signature (3,k );
(3) to a quaternionic contact structure in dimension 4k−1 is associated

a 4k-dimensional quaternionic Kähler metric [Biq00];

(4) to a CR structure in dimension 3 is associated a 4-dimensional self-

dual Einstein metric [Biq07].

All these constructions have a homogeneous model of the following

kind: let G be a real semisimple group such that the associated symmet-

ric space of noncompact type G/H is quaternionic Kähler (so is a Wol�

space), and P ⊂ G a parabolic subgroup. Then all the previous construc-

tions have a model where X = G/P is the initial manifold and M = G/H
the quaternionic Kähler metric. Let us list here the corresponding groups:

(1) G = SO (4, 1), H = S (O (4) × O (1)), G/P = S3 and G/H is the 4-

dimensional hyperbolic space;

(2) G = SO (4,k + 1), H = S (O (4) × O (k + 1)), G/P is the quadric of

isotropic lines in R4,k+1 and G/H is the grassmannian of spacelike

4-planes;

(3) G = Sp (k + 1, 1), H = Sp (k + 1)Sp (1), G/P = S4k−1 and G/H is the

4k-dimensional quaternionic hyperbolic space;

(4) G = SU (2, 1), H = S (U (2) ×U (1)), G/P = S3 and G/H is complex

hyperbolic 2-space.

Theorem A corresponds to a new addition to this list: the group is not

obvious a priori, but it is well known since Élie Cartan [Car10] that the

geometry of rank 2 distributions in 5 dimensions is related to the noncom-

pact form Gr
2

of G2 and to the stabilizer P ⊂ Gr
2

of an isotropic line (this
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makes sense because Gr
2
⊂ SO (4, 3)); the corresponding symmetric space

is Gr
2
/SO (4).

Of course this list suggests the following open question:

Question 1. Let G/H be a quaternionic Kähler symmetric space of non-

compact type. Can one �nd a similar general construction of quaternionic

Kähler metrics starting from any G/P , where P ⊂ G is any parabolic sub-

group ?

Each time one expects that the quaternionic Kähler metric admits a de-

velopment similar to (1). Such a development is well-known for the sym-

metric metric itself, and relates the asymptotic behaviour of the metric to

the geometric structure of the boundary G/P , which is the homogeneous

model for the so-called “parabolic geometry” of type (G, P ). For parabolic

geometries we will refer to the book [ČS09].

The various G/P when P varies among parabolic subgroups of G are

known in the literature are “Furstenberg boundaries” of G/H and are re-

lated to the Poisson transform: in particular, if Pmin denotes the minimal

parabolic subgroup of G, it is a classical fact of harmonic analysis (see for

example [Hel94, §V.3]) that bounded harmonic functions on the symmet-

ric space M = G/H are in 1:1 correspondence with their “value at in�nity”,

which is a (generalized) function on the maximal Furstenberg boundary

G/Pmin; the map taking the boundary value to the harmonic function is

the Poisson transform.

The question above would �t in the program of Rafe Mazzeo and I on

the construction of a “nonlinear Poisson transform” [BM06]: one expects

that a certain type of deformation of the parabolic geometry of G/Pmin re-

mains the value at in�nity of a deformation of an Einstein metric on M .

Sometimes, such a geometry can be obtained from a lifting of a parabolic

geometry on G/P via the projection G/Pmin → G/P , so one may hope to

start from any boundary G/P . The asymptotic behaviour (1) is typical of

the compatibility expected between the Einstein metric and the geometry

on the boundary. The nonlinear Poisson transform is established for rank

1 spaces [GL91, Biq00] and reducible rank 2 spaces [BM11]. The author

hopes to come back to the general problem at some point in the future. The

simplest example is that of the real hyperbolic spaceRH 4
, whose boundary

at in�nity is the 3-sphere S3: any small deformation of the conformal met-

ric on S3 is the boundary at in�nity of a complete Einstein metric which is

a small deformation of the symmetric metric of RH 4
.

Theorem A can then be interpreted as a local version of this transform,

where the resulting metric is better than Einstein: it is quaternionic Käh-

ler. When the hypothesis of the nonlinear Poisson transform is satis�ed,

one can hope that the local quaternionic Kähler metric coincides with the

global Einstein metric, and therefore extends into a complete quaternionic

Kähler metric. There is no reason to think that this shoud always be true,

as shows the example of the Positive Frequency phenomenon, predicted
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by LeBrun [LeB91] and proved in [Biq02]: not all conformal metrics on S3

(close to the round one) are conformal in�nities of selfdual Einstein metrics

on the 4-ball, this is true only for a “half-dimensional” subspace. We will

state later a more precise question about plane distributions in dimension

5.

In the �rst two sections of this article, we give some indications on the

proof of the theorem. In the last section, we state some questions related

to these metrics, and explain how they are related to a question on Zoll

metrics.

1. Geodesic flow for plane distributions in dimension 5

To understand the proof of theorem A, it is useful to remind the homo-

geneous situation. Recall that the group Gr
2

is de�ned as the stabilizer of a

certain 3-form Φ on R7 and is contained in SO (4, 3). It has three parabolic

subgroups, P1 (stabilizing an isotropic line), P2 (stabilizing a plane such that

for some basis (e, f ) of the plane one has (e ∧ f )yΦ = 0), and the minimal

parabolic Pmin = P1 ∩ P2 if the plane de�ning P2 contains the line de�ning

P1 (so Pmin is the stabilizer of the corresponding partial �ag). Then one has

a double �bration, as is common in twistor theory (see [BE89])

Gr
2
/Pmin

Gr
2
/P1 Gr

2
/P2

p q

Here both Gr
2
/P1 and Gr

2
/P2 are 5-dimensional, and p and q are circle bun-

dles.

It turns out that the complexi�ed space GC
2
/PC

2
is the twistor space of

the symmetric space Gr
2
/SO (4). Recall that a quaternionic Kähler metric

in dimension 4k is completely determined by its twistor space [Sal82], a

(2k + 1)-dimensional complex manifold carrying

• a holomorphic contact distribution;

• a family of rational curves, transverse to the contact distribution,

and with normal bundle O (1) ⊗ C2k ;

• a real structure preserving all the other structures.

Conversely, such twistor space determines a quaternionic Kähler metric.

Coming back to our problem, the homogeneous picture suggests, start-

ing from a generalX 5
with a rank 2 distribution, to construct the following

diagram:
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BC

XC N

p q

where the maps p and q have 1-dimensional �bers, and N will be the

twistor space of the expected quaternionic Kähler metric.

The space B is de�ned as the RP1
-bundle over X of directions in the

distribution D:

(2) B = P (D).

Proposition. The spaceB carries a canonical “geodesic �ow”, that is a canon-
ical rank 1 distribution D̃ such that for any x ∈ B one has p∗D̃x = Dp (x ) .

From the proposition, one will take N to be the space of geodesics in B,

after complexifying the whole picture (then BC is a CP1
-bundle over XC).

The proof of the proposition is not a priori obvious. A powerful tool

to handle the geometry of X is the parabolic geometry machinery [ČS00,

ČS09], which says that such X admits a canonical normal Cartan connec-

tion

ω ∈ Ω1(G , gr
2
),

where

π : G → X

is the P-principal bundle induced by the plane distribution D (here and in

the following, we note P = P1 to simplify notation). Without giving details

let us just say that:

• for the homogeneous model, G = Gr
2

and ω is the Maurer-Cartan

form;

• in general, ωд : TдG → gr
2

is an isomorphism, sending the vertical

directions of G to p, and therefore identifying a tangent space TX
with gr

2
/p modulo the action of P .

This Cartan connection is used to de�ne the distribution D̃ on B: actually

the principal bundle π : G → X factorizes as

G

B

X

π2

p

π
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where π2 is a Pmin-principal bundle. Given д ∈ G , we can now de�ne a lift

of a vector ξ ∈ Dπ (д) in the following way: decompose

g
r
2
= p ⊕ p−

where p− is an opposite nilpotent algebra (some compatibility with the

choice of Pmin is required), then ξ = π∗A for a unique A ∈ TдG such that

ω (A) ∈ p−, and we can choose

(3)
˜ξ = (π2)∗A.

It turns out that
˜ξ does not depend on the various choices involved here,

and this gives the distribution expected on B.

A more sophisticated proof of the proposition consists in lifting the par-

abolic geometry of X to a parabolic geometry on B for the parabolic group

Pmin (this implies the existence of the rank 1 distribution, because gr
2
/pmin

has a Pmin invariant line). There exists an algebraic criterion for this to

be possible [Čap05, ČS09], and one can check that it is satis�ed here. This

remark can also be used to prove that the space N of geodesics (which is at

least locally de�ned) carries a contact structure, which is the projection of

the distribution given at a point b ∈ B by p∗(b⊥), where b is considered as

a line in Tp (b)X and the orthogonal is taken with respect to the conformal

structure of signature (3, 2) on X induced by the (Gr
2
, P ) structure.

Of course one can complexify the whole structure if (X ,D) is real ana-

lytic. Summarizing, we then obtain

(1) a CP1
-bundle p : BC −→ XC;

(2) a rank 1 complex distribution on BC;

(3) a space of leaves N which carries a holomorphic contact structure.

It is an interesting question to understand when a parabolic geometry

of type (G, P ) admits a natural �ow de�ned on some bundle with �ber

P/Q , where Q ⊂ P is some smaller parabolic group. We call such a �ow a

“generalized geodesic �ow”. We have just seen that the (Gr
2
, P ) geometry

indeed admits such a generalized geodesic �ow. Of course all the confor-

mal pseudo-Riemannian metrics admit a geodesic �ow (the null geodesics).

In [Duf14] is obtained a classi�cation of the parabolic geometries which:

• are not rigid, so admit local deformations which are not isomorphic

to the model;

• admit a generalized geodesic �ow.

The answer is that there is only one additional example: the geometry of

type (SO (4, 3), P ) where P is the parabolic group �xing a totally isotropic

3-space. This means there might be a further extension to that case of

the construction of quaternionic Kähler metrics using generalized geo-

desic �ow, the only other examples being LeBrun’s constructions and the

present construction for the group Gr
2
.
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2. Rational curves

We have now constructed a space N which has all the properties of the

twistor space of a quaternionic Kähler metric, except the family of rational

curves that we now consider.

Recall we have a diagram

BC

XC N

p q

For each x ∈ X the �ber p−1(x ) is a rational curve with trivial normal

bundle C5, so the projection

(4) Cx = q(p
−1(x ))

is again a rational curve, now with normal bundleC3⊕O (1) (because along

each curve p−1(x ) we quotient by the tautological bundle O (−1) ⊂ p∗D =
C2). So we get in this way a 5-dimensional family of rational curves.

We want to extend this 5-dimensional family to a 8-dimensional family.

The normal bundle C3 ⊕ O (1) seems to indicate that the space of defor-

mations is 5-dimensional, therefore we already have all the deformations

of the curves Cx . This is contrast with usual twistor construction, where

usually one �nds other directions of deformation. Fortunately, this prob-

lem is solved when one looks at the homogeneous model: it turns out that

the curves Cx are not reduced. They are actually given by equations with

a multiplicity 2 in the O (1) direction.

As a toy model to understand the deformations of a non reduced curve,

we can consider a line CP1 ⊂ CP2
with multiplicity 2, that is a degenerate

quadric. The space of quadrics is 5-dimensional, when the space of lines is

2-dimensional, so deforming a CP1
as a quadric gives 3 extra dimensions

of deformations, and these are exactly the 3 missing dimensions above.

More precisely, suppose the

CP1 = {z2
0
= 0},

where we have chosen homogeneous coordinates (z0, z1, z2). Then a 3-

dimensional family of reduced deformations is given by

(5) z2
0
= az2

1
+ 2bz1z2 + cz

2

2
.

If b2 − ac = 0 we get singular curves; for b2 − ac , 0, the curve is smooth.

Coming back to our curves Cx in N , one can now prove that, if we con-

sider them as non reduced curves, with multiplicity 2 in the O (1) direction,

then the space of deformations is actually 8-dimensional (the local param-

eters being (x ,a,b, c )). One still needs these deformations to have normal

bundle O (1) ⊗ C4. There is no abstract reason why this should be true,
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because if we deform the above CP1 ⊂ CP2 × CP3
lying in the �rst factor,

the deformations have obviously a normal bundle O (4) ⊕ C3.
So one has to use the geometry of the situation to understand the normal

bundle. Here we use a feature of all parabolic geometries: the model ho-

mogeneous geometry has a family of dilations at each point; the pull-back

of a curved geometry by this family of dilations converges to the model

geometry. (This is similar to the pull-back of a Riemannian metric by ho-

motheties converging to the �at metric). The meaning is that if we look at

the geometry at larger and larger scale, it becomes closer and closer to the

model geometry. The dilations can be lifted to the twistor space N , and

this means that after parabolic dilations the twistor space converges to the

twistor space of the model; in particular the rational curves converge to

the rational curves of the model, so must have normal bundle O (1) ⊗ C4

when they converge to a smooth curve of the model (since these have nor-

mal bundle O (1)⊗C4). The same argument shows that they are transverse

to the holomorphic contact structure.

Let us see more precisely what it means in the parameters (x ,a,b, c ): it

turns out that the action of the dilations on (a,b, c ) is homogeneous. So

near x , the transverse directions with

b2 − ac , 0

correspond to a nonsingular rational curve in the model, so one can deduce

that for each (a,b, c ) such that ∆ , 0, and for small enough t , the curve

indexed by (x , ta, tb, tc ) is a nonsingular rational curve with normal bundle

O (1) ⊗ C4, which is transverse to the holomorphic contact distribution of

N .

We have now all the ingredients of a quaternionic Kähler metric: a

twistor space with a family of transverse rational curves with normal bun-

dle O (1) ⊗ C4. Therefore, there is a quaternionic Kähler metric de�ned on

the parameter space of real curves. Let us see where exactly this metric is

de�ned.

It turns out that the real structure acts on the parameters (a,b, c ) by

usual complex conjugation. The metric is then de�ned (positive) in the

direction of the (a,b, c ) such that b2 − ac < 0. We can write

(6) (a,b, c ) = s (a0,b0, c0), b2
0
− a0c0 = −1.

The space of (x ,a0,b0, c0) such that b2
0
− a0c0 = −1 is the 7-dimensional

manifold F mentioned in the introduction, we recover the bundle

(7) p : F −→ X

by projection on the �rst factor, and the �bers are discs (and the equation

b2
0
−a0c0 = −1 already suggests that these will be hyperbolic discs). The as-

ymptotic behaviour (1) is then obtained performing inverse twistor trans-

form. The precise calculations require the use of “normal coordinates”

adapted to the parabolic geometry (see [ČM13, §1], or [Duf14] for precise
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statements on the order of approximation of the parabolic geometry by the

model).

It is interesting to understand more precisely the region on which the

quaternionic Kähler metric is constructed, by comparing to the homoge-

neous model Gr
2
/SO (4). Recall that Gr

2
/SO (4) has three boundaries, two

5-dimensional boundaries (Gr
2
/P1, G

r
2
/P2) and one 6-dimensional maximal

boundary (B = Gr
2
/Pmin). There are two 7-dimensional faces F1 and F2

associated to the two 5-dimensional boundaries, which are disc bundles

over the corresponding boundary. Both F1 and F2 have B as a common

boundary, and the Furstenberg compacti�cation is obtained by adding to

the symmetric space these three faces: the union

(8) Gr
2
/SO (4) ∪ F1 ∪ F2 ∪ B.

From the above point of view, the boundary B = G/Pmin is obtained as the

circle bundle over X obtained at the boundary of the disc bundle, that is

the projectivized bundle of the null cone

(9) b2 − ac = 0.

These are exactly the directions which correspond to reduced, but singu-

lar, curves in the twistor space. This means that we get a metric in the

neighbourhood of the face F1 which does not cover a neighbourhood of

the codimension 2 face B: this domain is illustrated by the following dia-

gram:

F1 F2
B

In particular, one cannot expect to have a metric de�ned near any point of

F2. Obtaining a complete metric near the whole in�nity of the symmetric

space does not follow from this method.

3. Complete metrics and the Zoll condition

We end this paper by some speculations about the possible extension of

the quaternionic Kähler metrics constructed here to complete quaternionic

Kähler metrics.

As mentioned in the introduction, [BM06] proposes a general program

for constructing complete Einstein metrics from certain deformations of

the parabolic geometry of B = G/Pmin. Let us restrict to the case of rank

2, where we have the same diagram as above: G/H has two codimension 1

faces F1 and F2, which intersect in the codimension 2 face B. As above, each

face Fi is �bered over a boundary Bi = G/Pi by rank one symmetric spaces

Xi , and B is �bered over Bi by the boundaries of these symmetric spaces.

For rank one spaces the boundaries are spheres. Denote by Di ⊂ TB the

distribution induced by the �bers of ∂Fi → B.



10 OLIVIER BIQUARD

It is proposed in [BM06] that a deformation of the parabolic geometry

of B which remains regular will still be the boundary at in�nity of a com-

plete Einstein metric, provided an additional assumption is satis�ed: the

distributions Di should be deformed to distributions which remain tangent

to the boundary of a �ber space

(10) pi : Fi → B.

Indeed the construction requires an extension of the initial data on B on

the faces Fi along the �bers of pi , to obtain an approximate metric in all

directions going to in�nity.

When dimDi > 2, this condition is equivalent to the distribution Di re-

maining integrable, because the spheres Sk (k > 2) are simply connected,

so that any integrable deformation of the underlying distribution will inte-

grate to spheres. But this is no more the case if k = 1, so that an important

assumption here is that, if dimDi = 1, the trajectories of Di should remain

closed. Filling them by discs will then reconstruct the disc �bration (10).

Let us now see what this means in the geometric example that we have

studied in this paper. We started from the boundary B1 = G
r
2
/P1. The par-

abolic geometry on B1 amounts to giving a generic rank 2 distribution on

B1, and we have constructed the �ber bundle B → B1, which carries a de-

formation of the model parabolic geometry of Gr
2
/Pmin. For this deformed

geometry, the distribution D1 is the vertical space of the �bration B → B1,

but the distribution D2 is exactly the distribution tangent to the general-

ized geodesic �ow that we constructed in section 1. From these data on B
there is a hope to construct a global Einstein metric if this �ow has closed

trajectories, so the following question is important:

Question 2. Call a generic rank 2 distribution in dimension 5 Zoll if its

generalized geodesics are circles.

The model Gr
2
/P1 is Zoll. Are there other Zoll rank 2 distributions ?

If the answer to the question is yes, then this leads to the next question:

Question 3. Which Zoll 2-distributions in dimension 5 are the boundaries

at in�nity of 8-dimensional complete quaternionic Kähler metrics ?

Recall from the introduction that there is no reason why the Einstein

metric in general should be automatically quaternionic Kähler.

Of course there are other cases where similar questions are open. A

particularly fascinating one is obtained from the group SO (4, 2): then a

boundary of the group is the compacti�ed Minkowski space with its �at

conformal Lorentzian structure. It is of course Zoll. Nothing seems to be

known on the Zoll problem for Lorentzian metrics in dimension 4, unlike

dimension 3 (see [Gui89]):

Question 4. Are there other 4-dimensional Zoll conformal Lorentzian met-

rics ?

If yes, which Zoll conformal Lorentzian metrics are the boundaries at

in�nity of a complete quaternionic Kähler metric in dimension 8 ?
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These questions can be written down purely in terms of twistor spaces.

It seems likely that in this case, a “Positive Frequency phenomenon” (see

the introduction) may appear.
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