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SMOOTHING SINGULAR CONSTANT SCALAR CURVATURE
KAHLER SURFACES AND MINIMAL LAGRANGIANS

OLIVIER BIQUARD AND YANN ROLLIN

ABSTRACT. Given a complex surface X with singularities of class 7" and no
nontrivial holomorphic vector field, endowed with a Kéhler class 2o, we consider
smoothings (My, ), where ©; is a Kéhler class on M; degenerating to Q.
Under an hypothesis of non degeneracy of the smoothing at each singular point,
we prove that if X admits a constant scalar curvature Kdhler metric in g, then
M, admits a constant scalar curvature Kahler metric in ; for small ¢.

In addition, we construct small Lagrangian stationary spheres which repre-
sent Lagrangian vanishing cycles when ¢ is small.

1. INTRODUCTION

Let & be a normal compact complex surface with singularities of class T. Such
singularities are isolated and of orbifold type C2/T" for some finite group I' C Us.
The possible singularities are either rational double points (I' C SUsg) or cyclic
quotient singularities of type djl—Q(l, dna—1), for positive integers d, n, a such that
a and n are relatively prime.

Since there is no general answer to the existence problem of constant scalar cur-
vature Kéhler metrics (CSCK for short), numerous constructions relying on gluing
techniques have been made (cf. for instance [10, 1, 2]). In the case of canonical
singularities (rational double points), the idea is to start from a CSCK orbifold
metric on X and to deduce a smooth CSCK metric on the minimal resolution X
by perturbation theory. The exceptional divisor of X — X is a union of holo-
morphic —2 spheres, whose configuration is described by the Dynkin diagram of a
complex semisimple Lie algebra gc determined by I" (this is a part of the McKay
correspondence).

In this work we consider smoothings of singularities rather than resolutions.
We prove, under natural hypotheses, that Q-Gorenstein smoothings admit CSCK
metrics.

In the special case of Kéhler-Einstein metrics, the desingularizations cannot
carry Kéhler-Einstein metrics unless ¢1(X) = 0, since they contain holomorphic
—2 spheres. But smoothings may carry Kéhler-Einstein metrics, and our result
gives a construction of those Kéahler-Einstein metrics close to the singular ones.
Also it is interesting to note that for singularities of class T which are not rational
double points, the smoothings are not diffeomorphic to the minimal resolution.
We give an explicit example starting from a quotient of CP! x CP' by Z,.

If a —2 sphere collapses in the singular limit, and if its homology class is La-
grangian in the smoothing, we prove that it can be represented by a small Hamil-
tonian stationary sphere. This gives a concrete construction of the Lagrangian
minimizer, whose existence is proved by Schoen and Wolfson [11].

1



2 OLIVIER BIQUARD AND YANN ROLLIN

1.1. CSCK metrics. We now give precise statements. Let X be a normal com-
plex surface with quotient singularities. We consider a Q-Gorenstein smoothing
of X, denoted p : M — A, where A is an open disc centered at the origin in C.
This means that a multiple of the canonical divisor of M is Cartier and M is
Cohen-Macaulay. Moreover, the central fiber is the given X', and the general fiber
M; is smooth.

Kéllar and Shepherd-Barron [7] proved that the singularities which appear must
be of class T'; this class subdivides into two classes:

e canonical singularities of type C2/I" for a finite subgroup I' C SUy; one
gets the list Ay (d > 1), Dy (d>4), E4 (d=6,7,8);
e cyclic quotients obtained by a quotient of a Ag,_1 singularity by Z,.

The local theory of smoothings of such a singularity is well understood: there
is an (explicit) hypersurface J) € C? x C¢, such that the projection p: Y — C% is
a Q-Gorenstein smoothing of Yy ~ C2/T". Moreover, any Q-Gorenstein smoothing
of )y is isomorphic to the pull-back of p under a germ of holomorphic maps
f:C — C% The fibers Y, = p~1(t) over the discriminant locus D C C? are
singular. This leads us to introduce a non degeneracy condition in the following
way. As recalled below, there is a particular ramified covering map 7 : C* — C¢
associated to the singularity. This map is ramified exactly above D, and moreover
the ramification locus 7~!(D) turns out to be a union of linear hyperplanes:

YD) = UH,.
Up to taking a ramified covering (Whlch we choose of smallest posmble degree), the
germ f : C — C% can be lifted to f : C — C% such that f = 7o f. The following
definition is a way to say that the deformation is transversal to the discriminant
locus:
Definition 1. We say that a smoothing X < M — A is non degenerate at the
singular point z € X if the corresponding f satisfies at( ) ¢ UH,.

Example. Consider the Aj-singularity w**! = zy, with its family of deformations
Ty = whtt + ak_lwk_l + ak_gwk_Z + -+ ap.

A deformation is given by a map f(z) = (ap(z),...,ax—1(2)). It is easy to check
that if % # 0 then the deformation is non degenerate.

To state the theorem, we need to fix a Kéhler class. Along a ray to the origin
in A, the GauB-Manin connection identifies H?(M;, R) with a fixed vector space;
going to the origin, we identify this vector space with

Horb(X7 R) ® D Rezv
z singular
where e, is the dimension of the real H? of the local smoothing of the singularity
at x. As we shall see later, if d, is the dimension of the space of smoothings of
the singularity at x,

dy for a canonical singularity,
e —
v dy — 1 for other singularities.

(One cannot get such an identification on the whole disk, because of the mon-
odromy of the GauBl-Manin connection; but since the data of a Kéhler class is
real, it is natural to give it only on a ray).
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The simplest form of our results can now be stated:

Theorem A. Suppose that we are given

e a normal complex surface X, with no holomorphic vector fields, and a Q-
Gorenstein smoothing X — M — A, which is non degenerate at each
singular point;

e along the ray t € Ry N A, a Kdhler class Q; € H?(My,R), depending
smoothly on t, such that Qg is an orbifold Kihler class on X, containing

an orbifold CSCK metric.
Then for small t > 0 the class € contains a CSCK metric on Mj.

By the classification results mentioned above, the QQ-Gorenstein condition is
equivalent to the degeneration of the complex structure near the singularities being
modelled by Ricci-flat Kédhler ALE spaces. Given this, the main work in the proofs
is to carry out a gluing construction of metrics in the spirit of Arezzo-Pacard [1].

In particular, the behavior of the CSCK metric for ¢ small is well understood:
outside the singularities it converges to the orbifold CSCK metric on X, but near
a singularity x some rescaling converges to an ALE Ké&hler Ricci flat space, which
appears as the ‘bubble’ at x.

One special case is when the smoothing is given with a polarization {2, resulting
in a constant €2;. This covers in particular the Kahler-Einstein case: when €; =
+c1(M;) our result gives a construction of the Kéhler-Einstein metric on the
smoothing of X', as well as a concrete description of its degeneracy to an orbifold
Kéhler-Einstein metric. This Kéhler-Einstein picture is recently obtained in the
case of A; singularities by Spotti [12].

Complex orbifold singularities of codimension at least 3 are rigid by a result of
Schlessinger. However, it would be interesting to extend our results in dimension 3
or more, allowing orbifold singularities of codimension 2. A natural problem would
be to remove the triviality assumption of the automorphism group: one may expect
the existence of the CSCK metric to be related to a K-stability property, like in

[14].

One can replace the non degeneracy hypothesis on the smoothing M; by a
weaker non degeneracy hypothesis on the data (My, Q) of the smoothing with
the Kéhler class. This requires slightly more material that we now explain.

Let us come back to the Q-Gorenstein smoothing Y — C¢ of a canonical singu-
larity. The parameter space C? can be identified with hc/W, where h¢ is a Cartan
subalgebra of the Lie algebra gc¢ associated to I" by the McKay correspondence (gc
is exactly the Ay, Dy or E4 simple Lie algebra), and W is the Weyl group. Here
the canonical projection he — C¢ is ramified over the discriminant locus D C C¢.
The real 2-cohomology is isomorphic to the real Cartan subalgebra hr (actually,
the smoothing is diffeomorphic to the minimal resolution, whose —2 spheres give
a basis of (hgr)*). But there is some ambiguity in this identification, because the
monodromy of the Gaufl-Manin connection is given by the action of W.

In the smoothing ) — C? = hc /W, the general fiber is smooth, but there are
singular fibers, given by the walls of the Weyl chambers of hc. Nevertheless, there
exists a simultaneous resolution of singularities J — hc (Brieskorn, Slodowy).
Then all the fibers are smooth and their real 2-cohomology can be identified to hg.

The case of the other T singularities is similar: they are quotients of Ag,_1
singularities by a Z, action, and one obtains the same structure by taking the
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Z,, fixed points of the Ag,_1 simultaneous resolution: the space of parameters is
therefore h%" ~ C4, and the real 2-cohomology is bﬁ" ~ R4-1,

Now come back to our setup of a smoothing M — A with a family of Kahler
classes €);. At a singular point x € X, the smoothing is induced from the standard
smoothing ) by a map (we denote the dependence in x by an index x)

fo i Ar — ((hC)I/Wx)Gx7

where GG, = 1 for a canonical singularity, and A, C A is a smaller disk of radius
c. Up to a finite ramified covering A, — A, we can lift this map into a map into

(he)G=:
(€)= Dy — (he)Se.

Up to taking a higher degree covering, we can take the same covering Ap — A,
say of order d, for all singular points. Adding the data (¢,), of the Kahler class
in a neighborhood of the singularity, we obtain at each singularity a map

Cot Ay —> (hR)gz @ (h((:)gz7 Ce = ((Cr)xa (Cc):c):

which represents the deformation of both the Kéhler parameter and the complex
parameter. We consider the Kéhler class as depending smoothly on the parameter
on Ay (since Ay is a covering, this is more general than the setting of Theorem A).
Then at the origin we have for some integer p

Ca(t) = G + O(tHY).
We can now define an extended notion of non degeneracy:

Definition 2. We say that (M, €2) is non degenerate at the point x if p < d and
(, does not belong to a wall of a Weyl chamber.

The above definition is clearly a generalization of Definition 1. The two condi-
tions have different meanings: if ¢, is inside a wall of the Weyl chamber, then the
local model for M; near the singularity is a degenerating family of ALE spaces
with cycles shrinking at different scales of time, and the smoothing would require
an iterated construction and the use of orbifold ALE spaces; this looks possible
but much more technical, so we prefer to restrict to the simplest case. On the
other hand, the first condition guarantees that the order of deformation far from
the singularity (which is d) is not smaller than the order of deformation at the
singularities; this is natural because one can imagine that in that case, one would
first deform M keeping the singularities fixed, and then smooth the deformation.

Another comment on the definition is that the non degeneracy is stated in terms
of the pair (¢, (.), which means that a smoothing may be degenerate in the sense
of definition 1, but non degenerate in the sense of definition 2 thanks to a non
trivial variation of the Kéhler class. This means that the Ricci flat Kéhler ALE
space which models the degeneration may be, for example, a desingularization of
C?/T rather than a smoothing.

We now extend Theorem A under the form:

Theorem B. Suppose that we are given
e o normal complex surface X, with no holomorphic vector fields, and a
Q-Gorenstein smoothing X — M — A;
e along the ray t € Ry N Ay, a Kdihler class Q; € H*(My,R), such that Qg
s an orbifold Kdhler class on X, containing an orbifold CSCK metric.
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If (My, Q) is non degenerate at each singular point in the sense of Definition 2,
then for small t > 0 the class )y contains a CSCK metric on M.

There is a final extension of the results in the case of canonical singularities:
then we do not need the initial family M to be a smoothing. Indeed suppose
that X — M — A is any deformation of a surface with rational double points;
this means that now the fibers may be singular. Then near each singularity =z,
the family is still induced by some map A. — (hc)./ W, (because this is a semi-
universal deformation), which can again be lifted to (¢c)z : Ay — (bc)z. Pulling
back 57\ — (bhc), near each singular point, we obtain a simultaneous resolution
M = Ay of the singularities of M — A and we can apply our method in this
setting to obtain:

Theorem C. Suppose that we are given

e o normal complex surface X, with no holomorphic vector fields, with only
rational double points, and a deformation X — M — A; let then M= Ay
the simultaneous resolution of singularities as above;

e along the ray t € Ry N Ay, a Kdhler class €y € H2(M\t,R), such that Qg
is an orbifold Kdhler class on X, containing an orbifold CSCK metric.

If (M\t, Q) is non degenerate at each singular point in the sense of Definition 2,
then for smallt > 0 the class )y contains a CSCK metric on M.

This result covers the known case of minimal resolutions, but also the case of
partial resolutions which are not smoothings. The difference here between the
case of rational double points and the other cases is that any small deformation
of C?/T" with I' C SU; is Q-Gorenstein, but this is not true if I' ¢ SUs, see an
example of a non Q-Gorenstein smoothing in [9]; our methods do not apply in
that case.

1.2. Hamiltonian stationary spheres. Suppose we are under the hypothesis
of Theorem B. As we have seen,

H2 (Mt7 R) = ngb(X7 R) SRS singular(hR)fz .

Fix a singular point x, and a system R C (hc)% of positive roots. If x is a rational
double point (G, = 1), a root 6 € R represents an integral homology class on
My; in general, 6 represents a homology class in the local G,-covering, so after
projection still represents a (possibly zero) homology class in M.

Remind that the deformation (My,€;) is given near the singular point x by
amap (= (()z + (C)e : Ay — (hr)S* @ (he)G=, in which (¢,).(t) represents
the class of the restriction of €; near the singularity. Therefore the homology
class defined by 6 is ;-Lagrangian if (6, (¢;);(t)) = 0, which implies in particular
<97 (Cr)x> =0.

Theorem D. Suppose that we are under the hypothesis of Theorem B or C. Fix a
singular point © € X and a root 6 € R, such that (0, (C.)z) = 0, and 0 is primitive
for this property (that is cannot decompose as 01 + 02 with 0; € R} satisfying the
same property). Finally suppose that for all t > 0, one has (0, (¢;)z(t)) =0, that
is the homology class represented by 0 remains ;-Lagrangian. Then:

(1) If x is a rational double point, then the homology class in My (or M, in
the setting of Theorem C) corresponding to 6 is represented by a smooth
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Hamiltonian stationary sphere Sy, which is also a global Lagrangian mini-
mizer of the area in its homotopy class.

(2) If Gy = Zy, and if the homology class defined by 0 is nonzero, then it is
represented by a smooth Hamiltonian stationary sphere St.

The theorem is obtained by a simple deformation argument from the corre-
sponding sphere in the Ricci-flat Kidhler ALE space. This implies (see section 5)
that one gets an explicit description when ¢ — 0: after dilations, the Hamiltonian
stationary representative of 6 converges to a special Lagrangian sphere in the ALE
Kéhler Ricci flat space obtained at the limit.

In the second case (G, = Zy,), if the homology class defined by 6 in the quotient
vanishes, one can still get in some cases a Hamiltonian stationary embedded S?
or RP?, see section 6.2. We do not state a minimizing property which is less clear,
because the models in the ALE Kahler Ricci flat space are not calibrated.

For example, from Theorem A we recover Kéahler-Einstein metrics on certain
4-point blowup of CP? constructed by Tian [15], and Theorem D provides a con-
struction of stationary Lagrangian spheres (cf §7.1).

1.3. Organization of the paper. In most of the article, we suppose that X
has only canonical singularities and we prove directly Theorem C, which implies
Theorem A, Theorem B) and Theorem D. At the end, we explain the case of
general singularities of the class T: there is not much change, because they are
obtained as cyclic quotients of canonical singularities and all our constructions
pass to the quotient.

One of the main point in the paper is the construction of ‘good’ Kéhler metrics
on the deformations: this is not obvious, because the complex structure changes. It
turns out that what is needed is an extension to the singular setting of the theorem
of Kodaira on the stability of the K&hler condition under complex deformations.
This is done in section 3, after the introduction of the ‘tangent graviton’ in section
2. Rather than adapting Kodaira’s argument using a fourth order operator, we
follow the method in Voisin’s book [16, §9.3] which requires only the use of a second
order operator. In section 4, we extend arguments in the literature to produce the
CSCK metrics, so we only point out the new features in our situation. In section
5, we produce the Hamiltonian stationary Lagrangian spheres. The case of general
singularities is explained in section 6, and some applications are given in section 7.
In particular, we study the smoothing of the Del Pezzo orbifold (CP* x CP')/Zy4,
thus obtaining a family of smooth Kéhler-Einstein surfaces degenerating to a limit
with singularities of the form C? JT with T' C U but I ¢ SUs.

1.4. Acknowledgements. The authors would like to thank Claude Le Brun for
some stimulating discussions, and the referee for useful comments.

2. DEFORMATIONS OF SINGULAR SURFACES AND KAHLER CLASSES

In this section, X will always denote a compact complex surface with canonical
singularities endowed with an orbifold K&hler metric g with Kéhler form w and
Kéhler class 9. We consider a flat deformation X < M — A of X.

2.1. Complex deformations near singularities. Our first goal is to under-
stand a simultaneous resolution X — M — A, of the deformation, focusing near
the singular points. For this purpose, we choose a set of adapted isomorphisms
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U; ~ Agi /T'; near each singularity z; € X'. Actually, for simplicity of notations we
will suppose that there is only one singular point xy, and we will point out from
place to place what changes for several singular points. So near zg, one can choose
local coordinates z with values in A2 defined modulo I, such that the pullback of
w on the disc is expressed as

dde(|z|* +n) (2.1)

where |z| is the Euclidean distance to the origin in C2 and 7 is a smooth T-invariant
real function such that n = O(]z|?). Up to scaling the metric, and shrinking the
open set U, we may assume that e = 1. In the sequel, we shall always assume that
the identification U ~ A2 /T is chosen in such a way.

By restricting M to a suitable neighborhood of the singular point xg, we deduce
a flat deformation

AT = N — A,

of the singularity U = Ny. The singularity U admits a semi-universal flat family
of deformations by a result of Kas-Schlessinger [0]: there is a deformation

C3T = Y = bhe/W,

where h¢ is a Cartan subalgebra of the complex semisimple Lie algebra associated
to the Dynkin diagram of the singularity (this is the Lie algebra associated to
the finite group I" by the McKay correspondence), and W is the Weyl group.
Then, A is induced by some holomorphic map ¢ : A, — hc/W. Thus, there is a
holomorphic commutative diagram

A?2)T ——=C?/T
|
N Y

.
Ae —=be/W

such that the restriction ¥ : Ny — V() is an embedding for every ¢t € A..
A remarkable feature of canonical singularities is that C2/T" < Y — hc/W

admits a simultaneous resolution C2/T" — Y- hc given by a diagram

C2)T — C2)T (2:2)

P
]

he — b /W

where the map hc — he/W is the canonical projection (Brieskorn, Slodowy).
A priori, one cannot lift the map ¢ : A, — hc/W to hc. The obstruction is the
monodromy of 1, which lies in W. By taking a ramified cover, with order d equal
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to the order of the monodromy of ¥, we obtain a lifting

¥

Ald bc (2.3)
Ac i} b(C/W

If there are several singular points, one has to take the order to be the least
common multiple of the orders at each point.
Thus, the family of deformations N7 = Ay x,, N admits a simultaneous reso-

lution A — N and we have a commutative holomorphic diagram

y v (2.4)
\/\7—>N
.
A A
b v
hc/ . \)C/W

where the maps ¥ an U restrict to fiberwise embeddings. Here we should point
out that the maps also commute with the embeddings A2/T" < A, A2/T — N,
C2/T — j)\, (CQ/I‘ <3 Y and the canonical inclusion A% < CZ2.

Remark 3. The fact that deformations of simple singularities do admit simul-
taneous resolutions after passing to a sufficiently high ramified cover, as recalled
above, is the essential ingredient used in [(] to construct a simultaneous resolution
for deformations of compact complex surfaces with canonical singularities.

Remark 4. Conversely, if the simultaneous resolution X M= Ay is already

given as a data, the preimage N of N via the map M= M provides a simul-
taneous resolution of the deformation of the singularity for free. However, by
a universal property of simultaneous resolutions of canonical singularities [1], it

turns out that A2/T — N = Ay must be given by the above construction.

2.2. Kronheimer’s gravitons. The simultaneous resolution JA/ — B of the semi-
universal family of deformations ) — hc/W is explicitly constructed by Kron-
heimer. At this point, we need more details. Kronheimer actually constructs a
family Y: of hyperKéhler manifolds, parameterized by a triple ¢ = ((1,(2,(3) €
h ® R3. To explain its properties, we choose a positive root system 8T C h*, and
for a root 6 € RT we define a hyperplane of by

D@ = ker@.

Then the family (Y;) has the following properties:
(1) Y¢ is a smooth manifold if

¢ ¢ D = Upen+ R* @ Dy; (2.5)
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(2) all (Y¢)¢¢p are diffeomorphic to the minimal resolution @ of C2/T; the
diffeomorphism

Fe:C2)T = Y;

can be chosen so that the metric is asymptotic to the Euclidean metric:
actually there is an asymptotic development at any order

k—1

FggC — geuc + Zng—% + O(R_2k),

i=2
where gé is a homogeneous polynomial in ¢ of degree i; in the sequel, we
will suppose that such a diffeomorphism is chosen (this is possible smoothly
in the ¢ parameter because h ® R — D is simply connected);

(3) H%(Y¢,R) is identified with b in such a way that the homology classes of the
—2 curves of the resolution get identified with the simple roots of b (and so
Hy(Yc,7Z) is identified with the root lattice of h); under this identification,
the cohomology classes of the three Kéahler forms (wq,ws,ws) of Y¢ are (i,

G2 and (3;
(4) there is a SO3 action which for u € SOs identifies isometrically

Yo — Y,

permuting (w1, w2, ws) to u(wr,ws, ws);

(5) when we want to underline the holomorphic symplectic structure (I, w2 +
iws) of Y, we use the notation Y¢, ¢, where ¢, = (; and (. = (2+i(3 € bc;
then there is a C*-action, giving for A € C* an isomorphism of holomorphic
symplectic manifolds, which is actually also an isometry,

1
H)\ : YC’I‘7<C — WY")\|QCT7>\2CC; (26)

Here the leading fraction means that the metric has been rescaled by a
factor ﬁ

(6) if ¢ & Uper, Dy, then there is a map Y¢, ¢, — Yj ¢, which is a minimal
resolution of singularities, actually Y¢, ¢ and Yy, are the fibers )A}Cc and
V¢, of the simultaneous resolution (2.2).

Remark 5. In this paper, the notation O(RF) for a function f on C2, or more
generally a tensor, means that when R goes to oo, then for any integer Il = 0,1,.. .,
one has V!f = O(RF).

We now point out the statement which will be central in this paper: it gives
the geometric meaning of the walls Dy.

Lemma 6. Suppose 0 is a root and ( ¢ D, so 6 corresponds to some homology
class in Ho(Y¢,Z).

1) If ¢ € ker @, then 6 is a Lagrangian homology class for Y¢, ¢..

2) If ¢ € ker @, then 6 is represented by a holomorphic cycle in Y¢, ¢,; moreover
if 0 is primitive for this property (that is cannot be written as 01 + 0o, with 0; € R
and (. € ker §; ), then 6 is represented by a holomorphic sphere.

The condition ¢ ¢ Dy can now be understood in terms of this lemma: indeed, if
¢ € Dy, then both (., (. € ker @ which means that § would represent at the same
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time a Lagrangian class and a holomorphic cycle, which is impossible, so Y, .
has to be singular.

The first part of the lemma is obvious from (iii). The second part is basically
contained in the work of Brieskorn and Slodowy on Kleinian singularities. By
property (vi), the holomorphic map Y¢, ¢, = Yo ¢, = Y, is a minimal resolution of
singularities, but the semi-universal deformation ) is explicit and its singularities
are completely understood: the discriminant locus D C C* =} /W, that is the set
of v € C* such that ), is singular, is exactly the branch locus of the projection
hc — be/W, i.e. the projection of the kernels of the roots. (And the monodromy
representation m (C* — D) — Aut H?(),,, C) is the standard representation of W
on he).

If ¢, € ker § for only one root 6 (this is the generic case), then ), has a singular
point with a singularity of type C?/Zs, giving a —2 holomorphic sphere in the
minimal resolution Y¢, ¢, in the homology class corresponding to 6. For a general
Ce € ker 6, then of course 6 is still represented by a holomorphic cycle in Y ¢,
which might be a union of several curves if it can be decomposed as a sum of roots
0 =61+ ---+ 6y such that (. € ker6;.

Remark 7. The Ag-gravitational instantons are known explicitly (multi-Eguchi-
Hanson metrics given by the Gibbons-Hawking ansatz). In that case one can see
explicitly the holomorphic cycles of Lemma 6.

2.3. The tangent graviton. We come back to our setting of a flat deformation
X < M — A of a Kihler orbifold surface X with a simultaneous resolution X' <
M = Ay after passing to a ramified cover. We deduce a family of deformations
of the singularity A?/T" < N — A, and a simultaneous resolution m S N =
Ay. As explained in §2.1 we have a morphism

Nty

|,

Aqg—bc

The cohomology class €2 defined for ¢ € Ay NIRRT, restricted to N, defines a class
on Yy, identified to an element ¢r(t) € b. So that the whole data Yoy ¢r(t)) is

exactly that of the Kronheimer graviton Y, 4 ¢.(¢) with the definition (.(t) = U(t).
In view of Lemma 6, it is clear that the parameters ({,(t), (.(t)) satisfy condition
(2.5), 80 Ye (1) c.(t) is smooth.

The fact that €; converges to an orbifold Kihler class €y means that (.(¢)
converges to 0, and we suppose that it depends smoothly on the parameter ¢,
including at ¢ = 0.

We assume that the map

C:ANRT = h@be
t = (G (1), Ce(1))

qloes not vanish at infinite order at ¢ = 0 and introduce the first nonzero derivative
¢ for some order p > 0. This means that

C(t) = tP¢ + Ot (2.7)
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for some p > 0 and ¢#0.
The domain N; identifies to a small domain of Y¢(r)- Zooming by a factor

e~! = ¢P/2_ and multiplying the Kihler class by a factor e =2 = t7, we obtain by
(2.6) that this domain is identified via H, ,/» with a larger and larger domain in
Y.-2¢(), which converges to Y¢ on compact subsets.

This discussion motivates:

Definition 8. The Kronheimer space YC is called the tangent graviton to the
deformation (N, €| )

Remark 9. There are choices in the construction of C :

e the choice of lifting to the simultaneous resolution is done up to the action
of the Weyl group W, acting on the parameter (.(¢): but this does not
change the space Y, () c.(1);

e the choice of a coordinate in the disc: since we have chosen a real ray,
the ambiguity is the rescaling by a real A > 0, but in view of (2.6), this
amounts to rescale the graviton.

Remark 10. If the restriction of € to A is identically zero, then (.(¢) = 0. In
this case, as ¢ is a holomorphic map and the nonzero derivative ¢ can be defined
without restricting to a particular ray in Ay. Thus, all the above definition make
sense if we allow t € Ay. This property is of special interest in the case of polarized
smoothings.

3. REPRESENTING KAHLER CLASSES

The one point blowup of a complex manifold endowed with a Kéihler metric w,
carries a family of Kéhler metric w.. This is a very nice argument due to Kodaira
in which the metric w. can be constructed almost explicitly. The construction
of w. is done by cut and paste, where the Burns-Simanca metric defined on a
neighborhood of the exceptional divisor is glued with the original metric. As
€ — 0, the metrics w. converge smoothly away from the exceptional divisor toward
the original metric w.

The aim of the current section is to prove a similar result for families of defor-
mations of a Kéhler orbifold surface with isolated singularities. In particular, we
shall prove the following proposition.

Proposition 11. Let X — M — A be a family of deformations of a compact
complex surface with canonical singularities. Let @ be an orbifold Kdhler metric on
X with Kdhler class Qo and  a family of Kdhler classes supported by a simultane-
ous resolution X — M — Ay degenerating toward Qq, such that the variation of
Kahler class and complex structure is non degenerate in the sense of Definition 2.
Then, there exists a family of Kdhler metrics g with Kdhler forms wy on M\t
defined for t € Ag N (0,400) and a smooth trivialization ¢ : Ay X X > M
identifying all the fibers My with the property that
[ ] [wt] = Qt,’
e the family of metrics g; converges in the C%-sense toward the orbifold met-
ric g on every compact set of X = ??\E, where E is the exceptional divisor
of X - X.
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Remark 12. The above proposition also holds if Q is only assumed to be a
family of (1, 1)-classes (instead of Kéhler). As a corollary, under the assumptions
of admissibility, Q; must be a Kihler class for ¢ € (0, +00) sufficiently small.

The rest of the section will be devoted to prove the proposition as well as giving
more accurate results about the behavior of w; as t — 0.

3.1. Summary of the setup. We use the notations introduced at §2. Asin §2.1,
we shall assume to keep the notations simple that there is exactly one singularity
in X with a neighborhood U identified to A2?/T". The minimal resolution of the sin-
gularity will be denoted U — U and X — X. The case when several singularities
occur is a straightforward generalization of the constructions explained below.

The smooth manifold or orbifold deduced from X and X will be denoted X and
X, and X will denote the complement of the singularity in X, or equivalently, the
complement of the exceptional divisor in )?

Using a smooth trivialization ¢ : Ag X X — M of the simultaneous resolutlon
X < M — Ay, we have a family of complex structures J; defined on X deduced
from /\/lt and ¢. The degenerating family of Kéhler classes €; on (X ,Ji) also
provides a cohomology class (|5 € H 2([? ,R) ~ H 2(CQ//\F ,R). As explained in
§2.3, this is the Kéhler class of a Kéhler Ricci-flat metric g¢(;) compatible with the
complex structure I¢(;) on @ provided by Kronheimer’s construction.

If the variation of the deformation is non degenerate, there is a scaling parameter
e = tP/2 defined for some p > 1, and homotheties H_-1 by a factor P2 = g1

o —

such that we have the following properties: H,-1 induces a map U— A§_1 /T such
that the image of the Kihler structure (I¢(), g¢(r)) is (Is_zc(t),52g€_2<(t)). Up to
rescaling the metric by a factor e 2, the family of Kihler structure converges to
to the tangent graviton graviton YC which is smooth (not in Kronheimer’s wall).
Thus by 2.2 (ii), we have uniform estimates in t as R — 400 of the form

ge—2cy = 97+ & with & = O(R™Y)

where ¢°° is the Euclidean metric on C?/T', and R is the Euclidean distance to
the origin. The function R is related to r by the scaling factor r = ¢R. Similar
estimates hold for the complex structures

IE_QC(t) = euc + O(Riﬁl),

uc

where euc is the canonical complex structure of C?/T.

3.2. Background Hermitian metrics. Let g be the orbifold Kéahler metric on
(X, Jo) with Kihler form @. Recall that the isomorphism between U and A?/T is
chosen so that the Kéhler form can be written as (2.1). We modify g so that it is
flat near the the singularity. For this purpose, we need to choose a gluing scale of
the form

b= 55 — tpﬁ/ 2

where 3 is a constant very close to % and such that 1 > 8 > % The precise value
of this constant will be decided later on (cf. (3.4)).

We also need to define suitable cut-off functions. We fix a standard bump
function x : R — R, that is a smooth non decreasing function such that x(z) =0
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for # < 0 and x(z) = 1 for x > 1. Then we choose a pair of real parameters
(21, x2) such that 0 < z1 < 2 and define

Konale) =x (221) (3.1)

T2 — I

Let r be the function on U corresponding to the Euclidean distance to the origin
via the isomorphism U ~ A?/T". Then we define

wpy=w away from the domain r < 4b of U and
wp,t = dd, (r? + X(2b,40) (7)) on the domain r < 4b of U

so that wp is the Kéhler form of a Kéhler orbifold metric on (X, Jy) for ¢ small
enough.

Similarly, we modify the model metric g.-2, ;) on @ as follows:
gat = 8e—2¢(+) on the domain R <b/e
gar = g™ on the domain 2b/s < R,
gar = 9™ + (1 = X(p/e,26/e)(R))&  on the annulus b/e < R < 2b/e.
Hence g4, defines a Riemannian metric on (&ﬁ“ for ¢ small enough.

The homothety H_-1 identifies the annuli b < r < 4b and b/e < R < 4b/e. By
construction gp; is Euclidean at r = 2b and so is g4, near R = 2b/e. Identifying

the annuli via H,-1, we define a Riemannian metric on X by
hy = 52H:,19A,t on the domain r < 2b of U
= gpt outside the domain r < 2b of U

By definition, the metric A; is J-Hermitian on the domain r < b of U and
Jo-Hermitian on the complement of » < 2b. We construct a globally Ji-Hermitian
metric on X by introducing its projection

1 - -
hi(u,v) = i(ht(u,v) + hy(Jyu, Jpv)). (3.2)
Similarly, one can construct I.-2(;)-Hermitian metrics hig; on @ deduced from
gAt-

3.3. Holder spaces. Elliptic operators, Laplacians for instance, may not be Fred-
holm on a singular or noncompact manifold. At this point, we ought to introduce
suitable weighted Hoélder spaces to deal with this issue.

Hélder spaces for ALE spaces. We consider a radius function p4 on C2/T". That
is a smooth function such that p4 > 0 with the property that p4 = R, say on the
domain R > 2. For § € R, we define the weighted Holder C'Z;’O‘—norm given by

k
j—0vj j—0—a
171l g gz gy = D50 Lol "V F1+ 1 VE fla
j=0

where (79 > 0 being fixed and chosen smaller than the injectivity radius)

_ |f(z) — f(y)]
1 flla = d(;;l)r;io R
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Here, f can be any tensor, and the pointwise norms are taken with respect to the
metric ge—2¢(p) (or alternatively ga¢).

—

Remark 13. All the norms on C?/I" obtained in such a way are commensurate
uniformly in ¢. Thus, any of these norms could be used in the estimating process.

Hélder spaces on orbifold. Similarly, we define a radius function pp on X, that is
a smooth function such that pp > 0 and pp = r on U. We define the C(I;’O‘(Y)
with the same formula as above, using instead the metric g (or alternatively gp ;).

Holder spaces on the gluing. Finally a third weighted norm can be defined on X
itself. For this purpose, we define a weight function p (dependmg on the parame-
ters t) on X as follows: put p = pp on the complement of U p = r on the domain
b<r<1of U and p = sHE_lpA on the rest. Using the same formula as above
on X.

with metrics h; (or alternatively hy), we define a norm || f Hck,a( <.
6 b

Given a m-form f on X , we can interpret a C?’a(t)-estimate on f as an estimate
on each piece of the manifold. We decompose f = f4 + fp where fq = (1 —
X(v,26)(p))f and fB = X(p20)(p) f- Then f4 is supported on the domain p < 2b and
fa = f on the domain p < b. Similarly fp is supported in the domain p > b and
f = fp on the domain p > 2b. Then ”fHC(’;‘“()?,t) is uniformly commensurate with

the norms
HfBHO(I;’Q(YJ)—i_Eim 5”( o 1) fAH ka((CQ/Ft) (33)

where m is the degree of the form f and H.-1 is used to identify the domain p < 2b
with the domain py < 2b/e.

Remark 14. The asymptotics of the metrics g, g.-2¢(;) and complex structures
L.-2¢(1), together with the naturality of the constructions of the metrics g4, g5, ha,
he, hy and the fact that the functions X(c¢,2¢) are uniformly bounded in C’{f—norm
imply that the Holder norms defined using any of these metrics lead to uniformly
commensurate norms. Therefore, we could use any of these metrics for estimating
the C(I;’a—norms.

3.4. Background Laplacian. The Cauchy-Riemann operator on ()A( ;Jt) is de-
noted Jy, or 0. Its adjoint deduced from the Hermitian metric h; is denoted ;.
Then the Dolbeault Laplacian is given by

0, = 5:515 + 5,55:
for (p, q)-forms on ()A(, Jt).

Error terms. It should be pointed out that the Dolbeault Laplacian O; need not
agree with the Riemannian Laplacian A; of h;. Indeed, the metric h; is not
necessarily Kéhler. Thus, h; is Hermitian, by construction, but its Kéhler form
w; = hi(J;+,+) is not a priori closed. In this section, we investigate how close h; is
to be Kahler. In particular, we prove the following lemma:

Lemma 15. For every k > 0, there exist a constant Cy, > 0 such that for every

0 < 0 sufficiently close to =2, t > 0 and 8 = %, we have

Hdwt”C{?ﬁ(t) < Ck52.



SMOOTHING SINGULAR CSCK SURFACES 15

Similarly, we have an estimate

|VLC g, < Che?.

oz
Proof. On the compact domain X \ﬁ , the family of complex structure J; converges
smoothly to Jo, and |J; — Jo| = O(t4) where d is the order of the covering (2.3).
By assumption, the variation is non degenerate (d > p), hence |J; — Jo| = O(g?)
on the compact domain. It follows that w; converges smoothly to w, the Kéhler
form of the orbifold metric g. Since dw = 0, the estimate ||dw¢||c1.0 = O(g2) on
this domain follows.

On the domain r < b, the metric izt is Ji-Hermitian. In fact it agrees with
the model metric g.-2(¢(;) up to a scaling factor 2. Therefore hy = hy and the
Ji-Hermitian metric is Kéhler on this domain. In particular dw; = 0.

On the domain 2b < p < 1, we have hy = gt and Jp = Iey = Hil.-2¢@)-
However L2 = euc + O(R™*). It follows that J; = Jo + O(e*r~*). Since gp,
is Kahler w.r.t. the complex structure Jy, we have hy = gp; + O(e*r=*) and
wi = wp s+ Oe*r™4). Thus, dw; = O(e*r~°) hence 7' dw; = O(*#6+9)) on
the domain 20 < r < 1. That is to say ||alwt|]0§-,a1 = O(e*P5+9)) on the annulus
2b < r < 1. We see that if delta is sufficiently close to —2 then the error term is
a O(g?).

On the domain b < p < 2b, we can rescale via the ho/m\othety H; and look
at the construction on the annulus b/e < R < 2b/e of C2/T. Up to a scaling
factor €2, the metric iNLt corresponds to g4 On the other had, we have g4; =
Be—2¢(t) T+ O(R™). Tt follows that the I.—2¢(y)-Hermitian metric ha ¢ deduced from
ga satisfies the estimate ha ¢t = g.—2¢(y) + O(R™*) and we have a similar estimate
for the corresponding Kéhler forms w4 ; and w?l%%( ? defined using I.-2¢(;). Hence
dwas = O(R™®). Using the homothety again, we obtain the estimate dw; =
O(e*r=?) (there is an factor € coming from the fact that we are taking the norm
of a 3-form for the rescaled metric) on the annulus b < r < 2b. As in the previous
case, we deduce an estimate Hdwt||q;;,a1 = O(e*A6+9) on the annulus b < r < 2b

as well. ]

From now on, we shall fix the gluing scale b = ¢”, with the convention
B =52 (3.4)

as in the above lemma. The point is that for § € (—2,0), we have 8 € (3,1),

lims, o8 = %
Then we deduce that the Kéhler form zo; is almost harmonic in the sense of the
following corollary:

Corollary 16. For § < 0 sufficiently close to —2 there exists a constant C' > 0
such that for allt >0
2
Htht”C?f‘Q(t) < Ce7,
and

HAtwt”C?f‘z(t) S 082.
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Proof. Using Lemma 15, together with the fact that xw; = w; we deduce an
estimate

2
Hd*’thC;f‘l(t) S CIE .

Therefore we have an estimate on dd*w; and d*dw; in Cgf;(t)—norm and the result
follows for Aswy.

The same proof works with the Dolbeault Laplacian. We merely use the fact
that the norm of *0;ww; is controlled by the norm of dw,. The next step to deduce
a control on 0; * Oyww;. The pointwise norm of this tensor is controlled by the
pointwise norm of V{"™ x 0,0, The metric being Hermitian, we only have
vhern — vEC 4 T where T is a tensor such that T' = O(VFCJ;). Using again 15,
we conclude that

(VERr s oy |p° 72 < |V EC % Oy p° 2 + (| Tp) (| * Oy p*~0).

The estimate follows and we have the control on O;wo; with the Cg’f‘z—norm. Il

The Laplacian and gravitons. The space C2?/T" is endowed with a complex structure
I.-2¢(;) and Kéhler metric g.—2¢(;). The parameter ¢ = 0 corresponds to the tangent
graviton. Each of these spaces has a corresponding Laplacian DA 1AA If 6 is
not an indicial root, the operator

;4 : Cz’a — C'Q’_a2

defined on (p, g)-forms with respect to g.-2¢() is Fredholm.
Indicial roots are well understood for such operators

Lemma 17. Every § € (—2,0) is not an indicial root. In the case of 1-forms
every 6 € (—3,1) is not an indicial root.

Proof. For the first part, see [10]. For the second part, one has to check that 0 is
not an indicial root. This boils down to check that there are no I'-invariant parallel
1-forms on C2. By duality, it follows that —2 is not an indicial root either. U

Harmonic forms on ALE spaces. The space of Harmonic forms of type (p,q) on
the ALE space, denoted H% At is defined as the kernel of DfC’g’a — Cgf;, for
d € (—2,0). Since there are no indicial root in the interval, it follows that the
definition for ’Hi’?t in independent of the choice of § € (—2,0). For 1-forms we
could also choose § € (—3,1) as there are no indicial roots in this interval by
Lemma 17.

If we choose ¢ sufficiently close to —2, we see that harmonic forms are in L2.
In fact, the decay is even better according to the following lemma

Lemma 18. Any harmonic form v € HY satisfies v = O(R™3).

Proof. 1t suffices to understand the case of a harmonic function v € 02 @ The
standard theory for Laplacian on ALE spaces shows that v = cR™2 —I—O(R 3) since
there are no indicial roots in (—3, —2). The coefficient ¢ is a constant multiple of
[ Ofvol = 0 (cf. [5, Theorem 8.3.6]) and the lemma follows. O

We recall some standard results for Hodge theory on ALE spaces (cf. [5] for
instance): The canonical map H%% — HPT4(C2/T',C) is injective with image



SMOOTHING SINGULAR CSCK SURFACES 17

denoted H}*?. In addition
H*(C2/T,C) @HM F

for all 0 < k < 4. In particular we see that HA’t = 7-[?4’1,5 =0.
We also have the following result

Lemma 19.
20 _ 1,02 _

HA,t - HA,L‘ =0
and

1,1 5

M, ~ H*(C?/T,C)

for all t sufficiently small.
Proof. If t is sufficiently small, ¢’ = e72((¢) does not belong to the wall D since the
variation is assumed to be non degenerate. Similarly, let (" = ((¢,)", ((.)") € D
be a parameter such that Y, )~ is isomorphic to C2? /T with its canonical complex
structure. We have H2%(C2/T) = H%?(C2/T') = 0 (cf. [5, Theorem 8.4.2]). The

semi-continuity of the dimension of the kernel for Fredholm operator forces this
property to hold along the path from ¢” to ¢’ and we deduce the lemma. O

Laplacian and orbifold. One can consider the Kihler orbifold (X, Jy,g) together
with its Laplacian. Alternatively, we can look at the manifold X, the smooth locus
of X and the Laplacian defined between weighted Holder spaces

o8 .0y — 2,

acting on (p, ¢)-forms with respect to Jp.

Like on the ALE space, this operator is Fredholm for § € (—2,0), and for
¢ € (—3,1) in the case of 1-forms. Moreover, its kernel H%? corresponds to smooth
harmonic forms on X.

3.5. Approximate kernel. One can construct an approximate kernel of the op-
erator Oy on (X, J;, hy) as follows. The spaces ’Hilt are the fibers of a smooth

(trivial) vector bundle over the base ¢t € [0,d). Given vy, € 7-[1141,5 and v € HY?
we construct a form 7, on X by requiring that ; = H* ;v on the domain p <b,
v; = B on the domain p > 4b and
= (1= X.20) (") HZ- 1748 + X(2b,40) (T)VB
Then we call v; the projection of 7, onto forms of type (1,1) for the complex
structure J;. Thus we have constructed a linear map
o HYy e Mg = oY(X) (3.5)
For every t > 0 small enough, the linear map (3.5) is injective and its image will
1,1
be denoted K’
Alternatively, using the isomorphisms H?(C2/T',C) =~ H}L‘lt and HY(X) ~

7—[]131, the map ®; can be though of as an isomorphism

U, : HX(C2/T,C) & HY(X) — KM
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In the case of 1-forms, we have ’Hi{% =0 and Hgl’lt = 0. A similar construction
gives linear maps

0,1 0,1, % 1,0 1,0, ¢
(I)t:HB _>QJ,5(X)7 (Pt:HB _>QJt<X)
These maps are injective for ¢t small enough and their images are denoted IC,E) 1 and
K. Then, we define isomorphisms ¥, : HON(X) — K, @, : HYO(X) — K.

Let || - |4 be an arbitrary norm on the cohomology H*(C?/T',C) and || - ||5 an
arbitrary norm on the cohomology H®(X,C). We introduce a family of norms

|- ls2 on H2(C?/T,C) @ H*(X,C) ~ H*(X,C) given by
124 ® Qpllse = €7>7°l|Qall + 125

Lemma 20. Given k > 0, there are constants ci1,co > 0 such that for every
d € (—2,0) sufficiently close to —2 and every t > 0 sufficiently small, we have for

all © € H2(C2)T,C) & HY(X)

c1]|Qlse < 1P (€2) ) < cal|Qls e

HC(’;’D‘()?,t
For cohomology classes = € H%'(X), we have a similar result with the estimate

all=lls < 1% E gk 24 < c2l=ls

Proof. The injection 7—[]13’1 — K;"' induced by ®; allows to pull-back the Cg’a(f( ,t)
norm. It is readily checked that this norm is uniformly commensurate with the

k,a
Cy™(X)-norm.
Similarly, the injection HlA’}t — ICt1 1 induced by ®; allows to pull-back the

C?’a(@,t) norm. This norm is uniformly commensurate with the C’f’a(Y)—
norm up to a factor e 0~2 by (3.3).

The proof of the second part of the statement goes along the same lines, except
that we do not have to deal with harmonic forms on the ALE space. O

Uniform elliptic estimates. A key step in order to construct Kéhler forms is Hodge
theory. More precisely, we should control the first eigenvalues of the Dolbeault
Laplacian between weighted Holder spaces:

Proposition 21. There exists a constant ¢ > 0 such that for allt > 0 sufficiently
small and every (1,1)-form v on (X, Ji), we have

Al gzagy < Illgoag + 1Tl coe -

If in addition ~ is L?*-orthogonal to the space IC,}’1 and § € (—2,0) sufficiently
close to —2, we have

CH'YHC?Q(t) < ||Dt'7’|ogf2(t)'
Similarly, if v is a (0,1)-form orthogonal to lC?’l, we have an estimate
CH'YHC?fl(t) < HDWHC?’j‘l(t)‘

Proof. The first part of the proposition is standard. For the second part, let us
argue by contradiction. If the proposition is not true, there are weights § € (—2,0)
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arbitrarily close to —2 with and families of parameter ¢; — 0 and (1, 1)-forms ~;
on (X, J;) such that

H'Yj||cg,a(tj) = ]_, and HDtj’}/jHC((s),_aQ(tj) — 0. (36)

The first part of the proposition provides a uniform C’g’a estimate on ;.

Then, up to extraction of a subsequence, we may assume that ; converges
in the C%“ sense on every compact set of X toward a form v on X which is g-
harmonic and in Cg’a(Y, tj). This implies that v extends as a smooth orbifold
form on the orbifold X. Since each 7; is orthogonal to K; and § > —3, it follows
that ~ is orthogonal to Hgl. This forces v = 0.

Similarly, we can transport 7; on the domain R < 4b;/e; of C2/T" using the
homothety H; = H_-1. Put p; = 6*2*5H;’yj. By definition of the norm we obtain
J

a uniform C% bound on ;. Up to extraction, we may assume that p; converge on
—_—

every compact set of C2/T" to a harmonic form p € C’g’a on the tangent graviton.
Again, the fact that harmonic forms must have a strong decay forces u € CE?
by Lemma 18. Then, the fact that «; is orthogonal to KU1t implies that g is
orthogonal to ICZ;. We conclude p = 0.

Let m; be a point where the function | p;‘sfyj] is maximal equal to 1 (cf. as-
sumption (3.6)). Up to extraction of a converging subsequence, we have either

(1) pj(m;) < 20b;
(2) pj(m;) = 2b;
for all j.

Case (ii): If p;(m;) is bounded away from zero we clearly have a contradiction.
Indeed, after further extraction, we may assume that m; converges to a point in
X. But we know that «y; converges to 0 on every compact set of X hence hence
|p;‘5'yj[(mj) — 0 which is impossible.

So we may assume up to extraction that lim p;(m;) = 0. Using homotheties and
rescaling for v; again, we can extract a converging subsequence on every compact
set of the cone C2?\ 0)/T such that the limit is nonvanishing, harmonic and in C?’a
on the cone. This is not possible for § is not an indicial root of the Laplacian.

Case (i): If pj(m;)/e; is bounded, we have a contradiction. The proof is the
same as in the first case, using the rescaled forms p; instead.

If it is not bounded, we may assume that it goes to infinity after extraction.
Then we use rescaling to extract a harmonic limit on the cone, exactly as in the
first case. 0

From approximate kernel to harmonic forms. The spaces K; consist of forms which
are approximately harmonic in the sense of the following lemma.

Lemma 22. Fix —2 < § < 0 sufficiently close to —2. There is a constant ¢ > 0
such that for all Q4 € H?(C2/T,C), Qp € HY(X) and Q = Q4 © Qp, we have

()| < 2P 244

and

|0 (Q2p) < E_B(SHQBHB

legs,
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In particular
e[ P (D) o < eM12l5.

where 1 = min(—£0,4+ § — B(d +4)) is very close to 1, by definition.
Similarly, if £ € H%Y(X), we have

c[[B:¥4(2) < e PO|E|p

leg-,
Proof. The proof is similar to the one for Lemma 15 and Corollary 16. Let v4,; €
Hi"}t be a family of harmonic (1, 1)-forms on the family of ALE representing 4.
Then, we have uniform estimates v4,; = O(R_4) on the annulus b/e < R <
4b/e. Using the rescaled metric, we deduce an estimate |W;(Q4)| = O(e2r=4) on
the annulus b < r < 4b. Hence |0;U;(Q4)] = O(2r76) so [r2700,T4(Qa)| =
O(e2r~479), that is to say |r200,W;(Q4)| = O(e2~P#+9)) on the annulus. The
first part of the lemma follows.

For the second part of the statement, we start with the uniform estimate
T (Qp) = O(1) on the annulus b < r < 4b. It follows that |r>~00,¥,Qp| =
O(e7) on the annulus.

On the annulus 4b < r < 1 we have the estimate |.Jo—J;| = O(R™*) = O(e*r—%).
It follows that |0;%,(Qg)| = O(¢*r~°) on this annulus. Thus |[r?~°0,¥,(Qp)| =
O(e*P(4+9)) on the annulus 4b < < 1. We see that 4 — (4 + §) goes to 3 as
is close to —2 and S close to 1/2.

On the compact part, we have an estimate Jo — J; = O(¢?). So the estimate
|0:9:(Qp)| = O(g?) on the compact domain follows.

The second part of the lemma follows. The third inequality is obvious.

For the last statement, we just notice that the same estimates hold in the case
of 1-forms. We merely have to replace § by § + 1). So we have the estimate
(9(5_5(5+1)) on the annulus b < r < 4b, the estimate (9(54_5(5”)) on the annulus
4b < r <1 and O(£?) on the compact domain. O

Let P, : HYY(X, J,) — K, be the L%-orthogonal projection (deduced from hy)
on the space lCtl’l. Similarly, we denote P; : HY' (X, J;) — IC?’I. This projection
is very close to the identity in the sense of the following corollary.

Corollary 23. Suppose —2 < § < 0 with § sufficiently close to —2. There exists
a constant ¢ > 0 such that for all v € HYY(X, Jy)

I = Pyl gze < e 1Pi(y0)l 2o
Similarly, if v denote a family ~v; € ’Ho’l()?, Ji) we have
—B(0+1
llve — Pt(%)Hcgfl < e ))HPt(%)Hcgfl-
Proof. We write Py(v;) = W4(€) and consider the form 7, = P;(v) — 1. By
definition 7 is orthogonal to KC; and Oyn, = OP(y) = O;W4(Q). Lemma 22
applied to W () followed by Lemma 20 and Proposition 21 give the result. O

In conclusion, P; is an isomorphism and the operator norm [P — id|| 2.« is
8

O(e?1) (and O(e~P+1D) in the case of 1-forms) and the proposition below follows.
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Proposition 24. For all k > 0 there exists a constant ¢ > 0 such that for all
d € (—=2,0) sufficiently close to —2, t > 0 and every (1,1)-form [ orthogonal to
harmonic forms on (X, Jy, ht) , and we have

CHIBHC(?‘HC,a(t) < ||Dt5”c§fé2(t)-

In the case of (0,1)-forms orthogonal to harmonic forms, we have a similar esti-
mate with

Bl zrr < 10Bllcpa oy

3.6. Background Kihler structure. Recall that (Jy, ht) is a Hermitian struc-
ture on X. However hy is not a priori Kéhler. We shall look for a nearby Hermitian
metric which is Kéhler.

For ¢t > 0, the Kéhler form wo; of h; admits a decomposition of the form

H 1
wr = Wy + Wi

where @ is a O;-harmonic (1,1)-form on (X, J;) and @i is L?-orthogonal to

Os-harmonic forms.
>From this point, one can prove that the following proposition

Proposition 25. Assuming that § € (—2,0) and sufficiently close to —2, we have
||’(Dt — wfIHC?,a()?’t) = 0(52).

Proof. By definition, w; — @}’ = wj* and Oyw;- = Oyw;. by Proposition 24, we
have

H
|t — HC{?’“()?J) = O(Hmtwtncgv_%()?,t))'

The proposition follows from Corollary 16. O

By definition d;w! = 0 but it is not a priori d-closed. We remedy to this
problem with the following lemma

Lemma 26. There exists a (1,1)-form ~ on ()?, Ji) in the cohomology class of
wf! such that dy; =0 and ||y — w{IHCz,a(t) = 0(e?).
5

Proof. We now have the technical ingredients to apply the method in [16, §9.3.3].
Since ()A( , Ji) is Kéhler, the Frolicher exact sequence degenerates at the first page.
In particular &gwfl = Oy, for ay a (2,0)-form w.r.t J;. Here we may choose a
form such that 5;" oy = 0 and oy is orthogonal to O;-harmonic forms.

So 0, = 0 because we are working in complex dimension 2. So &; defines a class
in H0’2()?, Ji) and we can write &y = fig + O3, where y; is a holomorphic (2,0)-
form, B; is a (0,1)-form orthogonal to harmonic forms which satisfies 9} 3; = 0.
Put v = w{{ + 0. Then Oyy; = (%Dfl =0 and Oy = 8tw{{ + 0:05: = 0.

The next step is to estimate ;. Using the identities 5? &gwfl = 52* Oy; and
Of oy = 0 we obtain aifatth = Oyoy.

Now

|’az<8t(wf - wt)HCg,_az = 0(52)

according to Proposition 25. Therefore

19; 0zt e, < 10 Oreo g + O
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Using Lemma 15 we obtain the estimate |0} 9@ || 0. = O(e?) and we deduce
6—2
O a — 2 .
1Bl oo = O(7)
Proposition 24 provides the estimate
2
el 2o = O(). (3.7)
Eventually, we would like to estimate the (0,1)-forms 8;. We have 0foy =

07 08¢ = 04 B; using the fact that fi is harmonic and 9; 3; = 0.
The estimate (3.7) provides an estimate ||0f oy || ;.. = O(e?) and it follows that
6—1

HDtﬂtHc;fcl =0(?).

Using the fact that S; is orthogonal to harmonic forms and Proposition 24, we get
the estimate

_ 2
Billgse = O()
In particular this implies
18l g2 = O)

which proves the lemma. (|

Thus we define the real closed form wj of type (1,1) on ()? ,J¢) by taking
w; = Re(y)
were 7, is given by Lemma 26.

Corollary 27. Fiz —2 < § < 0 sufficiently close to —2. Define w; to be the real
part of v¢. Then for all t > 0 sufficiently small, w; defines a Kdhler metric g, on

(X, Jy) such that || — w£||cg,a(t) = 0(£?).

Proof. By definition we have ||w; — w{HCQ,a(t) = O(£?). So we only need to check
é

that the estimate is good enough to ensure that the real (1,1)-form w; defines a
metric. N
On the domain p < 4b of U, using the homothety H.-1, we find an estimate

— O(€2+5)

mod —2 /
Hwa—Qn(t) —¢ (Hefl)*wtncg,a(pflgéle—%’t)

Since 2 4+ ¢ > 0 the form wj is definite positive for ¢ sufficiently small. A similar
estimate on the domains 4¢3 < p<1and X \U proves the lemma. O

Although they need not agree, the Kihler class [wj] is very close to ; according
to the following result:

Lemma 28. The cohomology class [w)] € H2(X,R) satisfies
192 = [willls,e = O(e?).

Proof. We have the decompositions € = Q4 + Q¢ p and [w;] = [wi]a + [wi]B
together with the estimate ||w; — wt||cz,a(t) = O(£2). On the ALE part, the form
§

@, is closed and represents Q4 ;. From |w] — @;| = O(¢?1?) and the fact that the
spheres representing the homology classes have w;-volume O(£2), we deduce that

[wila — Qua| = O(*).
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On the compact part, we have |w] — ;| = O(g?) and by assumption [Q; 5 —Qo| =
O(£?). Therefore
lwilp — Qupl = O(e?).

These two estimates together prove the lemma. O

3.7. Harmonic forms and K&hler form. We shall now use the family of Ké&hler
metrics g; with Kéhler form w] on ()? , Ji) provided by Corollary 27 as our favorite
background metric for some 6 € (—2,0) sufficiently close to —2. Its Laplacians
will be denoted as well O; and A; = 20;. -

The Mayer-Vietoris isomorphism H2(X) — H2(X) & H2(C2/T), gives a cor-
responding decomposition Z4 @ Zpg for each cohomology class Z € H 2()? ). The
family of norms |24 @ Zp||s; defined at §3.3 provides a norm on H? (X) denoted
|1E]|s, as well.

Then we have the following result

Proposition 29. There are constants ci,ca > 0 such that for every family v of
gi-harmonic 2-forms on X with cohomology class ¢, we have

Cl”%”(jgva(t) > [|Eelles > cQ”%”(jgva(t)‘

Proof. The proof is done by contradiction. If the second inequality does not hold,
there exists a family ¢; — 0 and g; -harmonic 2-forms ;; such that [|Z,[|s¢; — 0
and H%J‘HC(?’“(tj) =1
Elliptic regularity gives a uniforms C’g’o‘ estimate on <, by Proposition 21.
Arguing exactly as in the proof of of the second part of Proposition 21 by extracting
converging subsequences, we show that either
(1) Zp,t,; converges to a non vanishing cohomology class in H 2 ()? ,R)
(2) or 83-_2_55 At; converges to a non vanishing cohomology class in H?(X,R).
This contradicts the fact that lim [|Z ||s;, = 0.
For the first part of the inequality, a similar proof gives the result. O

We do not control exactly the Kéhler class [wj] of the Kihler metric g; that was
just constructed. We will construct a nearby Ké&hler metric g, with the Kéhler
class Q; by perturbing g;.

Proposition 30. For every t > 0 sufficiently small, the g;-harmonic representa-
tive wy of the Kdhler class € defines a Kdhler metric g¢, satisfying the estimate

Hwt — wé”Cg‘“(t) = 0(52).

Proof. According to Lemma 28

192 = lwillls,e = O(?). (3.8)
Then by Proposition 29 one has |lw; — WtHCQ,a(t) = O(£?). The worst value of the
§
weight is €79, so it implies e7%|w] — w;| = O(e?), that is

jwp — wi| = O(*+°).

Since —2 < ¢ < 0, this goes to zero and wj is a Kihler form for ¢ small enough.
The proposition follows. O

We summarize the results of the current section in the following theorem
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Theorem 31. Let X — M — A be a family of deformations of a compact complex
surfaces with canonical singularities. Let @ be an orbifold Kdhler metric on X with
Kihler class Qo and Q a family of Kdhler classes supported by a simultaneous
resolution X — M — Ay degenerating toward Qqy, such that the variation of
Kdhler class and complex structure non degenerate.

Let ¢ : Ag X X — M be a smooth trivialization of the family and hy the family
of Hermitian metrics on ()?, Ji) with Kdhler form w; constructed at §3.2 for all
t € AgNRY sufficiently small.

Then, there exists a family of Kdhler metrics g. with Kdhler form wy on ()?, Jt)
defined for t € AgNRT for all t sufficiently small with the property that

° [wt] = Qt
e forall o € (—2,0) sufficiently close to —2, we have ||w; —wt||0§,a = 0(£?).

Proof of Proposition 11. Since h; converges smoothly toward g on every compact
set of X, the proposition is an immediate corollary of Theorem 31. O

4. CSCK METRICS

Let X < M — A be a flat deformation and X < M — Ay a simultaneous
resolution after passing to a ramified cover. Suppose that X is endowed with
a CSCK orbifold metric g with Kéhler class €g. Let € be a family of Ké&hler
classes supported by the simultaneous resolution degenerating toward 2o, with
non degenerate variation at each singularity.

Let g; be the family of Kédhler metrics on M; with Kéhler class 2; obtained in
§ 3. In this section, we show that g; can be perturbed into a CSCK metric. This
kind of result is now well-known by the work of Arezzo-Pacard, see also Székelyhidi
whose proof is closer to ours. Our setting is slightly different, because we vary the
complex structure as well. Therefore we shall give quickly some steps of the proof,
but omit most technical proofs since they are similar to that in the literature.

4.1. Scalar curvature estimates. We begin by the following estimate on the
scalar curvature of the Kéhler metric g;.

Proposition 32. Let k be the (constant) scalar curvature of the orbifold Kdihler
metric on X. For all § € (—2,0), the Kdhler metric g, with Kdihler class
satisfies the estimate

Iscal(gh) — Allgoe 4 = OE2).
5-2(t)

Proof. As an immediate consequence of Proposition 30 and Corollary 27, we have
the estimate

|scal(g)) — scal(ht)||cg,_a2(t) = 0(e?).
Then the proposition will be the consequence of the estimate

HSC&l(ht) - HHC{?%@) = 0(52)7 (4'1)

that we now prove.

By construction scal(¢gp) = x on the domain pp > 4b and scal(gg) = O(1) on
the annulus 2b < r < 4b. On the other hand scal(g4,+) = 0 on the domain R < b/e
and scal(ga:) = O(e%°) on the annulus b/e < R < 2b/e. Hence the metric

h; obtained by gluing together g4 and gp satisfies |scal(h;)| = O(e*b~%) + O(1)
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on the annulus b < r < 2b. Therefore r2~%|scal(hy)| = O(e*b*~%) + O(h?%) =
O(e* P2+ + 0(#(2-9)) on the annulus. By definition 35 = 2, hence
p?Oscal(hy) — k| = 0P L O(?)
on the annulus b < p < 4b which give an estimate
[scal(hy) — /1”02,?2@) G

on X for & sufficiently close to —2.

The metric hy is obtained by projecting h; onto its Jy-invariant component. The
estimate (4.1) follows from the estimates on J; — Jy with a proof along the same
lines of Lemma 22. O

4.2. Construction of the metrics. It is convenient to work with the family of
complex structure J; on a fixed smooth manifold X as in § 3. Then, we consider

Wi = Wt + ddCJtd)

where ¢ is a function on X. If ¢ is small enough, w; 4 is also the Kéhler form

of a Kéhler metric g; 4 on ()? , Ji) representing ;. More specifically, we have the
following result:

Lemma 33. Let C be a positive constant and ¢ € (—2,0) sufficiently close to —2.
Then for every t > 0 sufficiently small and every function ¢ such that ||p|| a0 <
5+2

Ce2=P+2)  the form wy 4 is definite positive.

Proof. We deduce an estimate ||w; — wy gl 2.« = O(e27P0+2)) The worst value
5

of the weight is £ 7% so we have an estimate e ~%|w; — wy o] = O(e27P0F2)) hence

|wi — wi p| = O(=A0+2)) Since (1 — B)( +2) > 0, wg, is definite positive for ¢
sufficiently small. O

We want to solve the equation
scal(gt,¢) = cst (4.2)

where scal(g: ) is the scalar curvature of the metric g; . The linearization of this
equation at ¢ = 0 is given by a fourth order elliptic operator L;, the Lichnerowicz
operator. The idea is to apply a suitable version of the implicit function theorem
in order to solve (4.2).

Proposition 34. Suppose that X does not carry any nontrivial holomorphic vector
field. If =2 < 6 < 0, then for sufficiently small t > 0 the operator

PR x C3l(X,t) — CP% (X, 1)
(Ua (;5) = v+ Ltd)

admits a right inverse Q; with norm satisfying || Q|| < ce=PO+2) for some constant
¢ independent of t.

>From that and the initial control on the scalar curvature, it follows:

Corollary 35. Suppose that X does not carry any nontrivial holomorphic vector
field. For all§ € (—2,0) sufficiently close to —2, there exists a constant C > 0 such
that for allt > 0 sufficiently small, there is a unique solution ¢, up to a constant,
to the equation scal(g: 4) = cst with the condition that H¢t||0§f2 < Ce2B0+2),
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Proof. We solve the problem via the fixed point method. The equation we are
interested in can be written scal(g; ) + v = ko, which can be written

Pi(v,¢) + N(v,¢) = k — scal(hy) (4.3)

where N is the non linear term of the equation.
We are looking for a solution of the form (v, ¢) = Q;(f) and the equation reads

[ =r—scal(hy) — Ny o Q(f) =: T(f). (4.4)

Applying the fixed point theorem, the Corollary is a consequence of the following
claim.
Claim. There exists C' > 0, such that for all £ > 0 sufficiently small, the operator
T; maps the ball || f|| 0o < Ce® to itself and is 1-contractant.

5—2

Let us now prove the claim. The map Ny(v, ¢) depends only on ¢ so we can write
it Ny(¢). Then there exists ca, Cy > 0 such that if

H(bHcgvaa kucga < ¢,

then

V(@) — N, < Collldllgpn + Wl gaall6 — Ul e (45)
(cf. [14, Lemma 19] and notice that the condition 6 < 0 required there is not
needed).

By Proposition 32,
Lo
|lscal(h;) — /i||C§,_a2 < 505
for some constant C' > 0. Using Proposition 34, the bound || f|| 0. < Ce? gives
5—2
on ¢ = Qf a bound [|¢[| 4,0 < Ce2-80+2) and we deduce that
5+2

Pl e < Ce2H0-B(0+2) _ o (6+2)(1-5)

Since § +2 > 0 and 1 — 3 > 0, we conclude that ||¢[| 4. = o(1). Using (4.5),
2

we deduce that for ¢ > 0 small enough, the map 7} is 1/2-contractant on the ball
[fllgo.e < Ce?. The map Ty preserves the ball since
6—2

IT(F)llcos, < IT(F) = TeO)lgae + IT:O) o

1
< 1 flleoe, + lscal(he) = ol coe
< C&%.
O

Proof of Proposition 3/. This proposition is close to [14, Proposition 20], with the
difference that the complex structure is deformed and the sign of the weight §+2 is
opposite to that of [14]. The change of complex structure just gives an additional
error term in the estimates so is not a substantial change. The choice of opposite
sign of the weight is more important, and we explain briefly how to deal with it.

In this kind of problem, one obtains a right inverse for P; by gluing a right
inverse on the ALE space Y; with a right inverse on the orbifold part X. The
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point is that we consider the weight d + 2 > 0. This immediately implies that on
the ALE space Y7, the operator

(e}
C5+2 ? 05—2

is surjective (by duality the cokernel is the kernel of L in ot 59, Which is 0 because
—6—2<0).

Dually, the same operator L : C’glfQ — C§' 5 on the orbifold has no kernel since
d + 2 > 0 rules out the constants near the punctures, and X has no holomorphic
vector field. But L has a cokernel: since L is selfadjoint, index theory in weighted
spaces gives that the index of L is the opposite of the number of punctures k.
Define a space C’;jr 5 +2 @ R” of functions of the form

u+ZA2X2, ue 0y, (N) € RE, (4.6)

where y; is a cutoff function which vanishes outside a small ball around the punc-
ture xz;. For example, we can equip the space 05 o with the norm

> Il + 147l (47)
1

Then saying that L has index —k translates to the fact that
L:RF@ Oyt — O3y

has index 0. Since its kernel is now reduced to the constants, its cokernel is also
reduced to the constants.

Now an inverse for this operator (orthogonally to the constants), combined
with the inverses of the operators at the punctures, can be used to construct an
approximate right inverse for P;. One deduces that P, has a right inverse (J;. The
only tricky point is to estimate the norm |Q¢]|, because of the constants at the
punctures which appear in the space Che 5+2- These constants are bounded in the

space che 5.0, but on the glued manifold, they blow up in the CglfQ norm. Since they

+27
are cut around the radius r = &7, they contribute at most by a factor (¢7)=27% =
£7P+2) which explains the norm estimate given for @ in the statement of the

proposition. (|

5. HAMILTONIAN STATIONARY SPHERES

We now construct the Hamiltonian stationary spheres and prove Theorem D
in the case of canonical singularities. The spheres are obtained as deformations
of a Lagrangian sphere in the tangent graviton, which is holomorphic for another
complex structure in the hyperKéhler family, so is Hamiltonian stationary.

5.1. Deformation theory. As we shall now see, the deformation theory of Hamil-
tonian stationary spheres is our case is very simple. Let us remind some basic facts
about Hamiltonian stationary surfaces in a Kédhler 4-manifold (X,w). A Hamil-
tonian stationary surface is a Lagrangian surface which is a critical point of the
area for Hamiltonian deformations. This gives an equation that can be written
in the following way: given an embedded surface tg : S C X, let H be its mean



28 OLIVIER BIQUARD AND YANN ROLLIN

curvature vector and o = H_w, then ag = (g is a 1-form on S satisfying the
equation dag = tgRic. Then S is Hamiltonian stationary if on S one has

dag = 0.

In the hyperKéhler case, one has ag = —df, where 6 is the phase defined
from the holomorphic symplectic form € by /5 = eiedVolgS, and the equation
is equivalent to Af = 0. If S is holomorphic for another complex structure in
the hyperKéhler family, then .S is minimal so obviously Hamiltonian stationary.
Moreover, in that case, one obtains readily that the linearization of the equation
is given by f — A?g f, where the infinitesimal deformations are parameterized by
a function f on S (the graph of df in T™*S giving the infinitesimal Lagrangian
deformation). The important point here is that this linearization is automatically
an isomorphism

CEA(S)/R — Cg7(9),
where C( denote the functions f on S such that |, g fdVolys =0, and the quotient
by R is natural since constants give trivial deformations. From this we deduce
immediately the following lemma:

Lemma 36. Suppose S is a Lagrangian sphere in a hyperKdhler 4-manifold
(X,w), which is holomorphic with respect to one of the complex structures of X.
If (Y,€) is a Kdhler manifold, sufficiently close to (X,w) in C*% norm, such that
[S] remains a Lagrangian homology class for & ([€][S] = 0), then in (Y,€), in a
small C3% neighborhood of S, there exists a unique Hamiltonian stationary sphere
T such that [T] = [5].

Proof. The proof relies on two facts: if the homology class remains Lagrangian, it
can be represented by a nearby Lagrangian surface ; and the linearization under
Hamiltonian deformations is an isomorphism (see above). So the proof is standard,
but we give a short argument where the two aspects are treated simultaneously.

We look at maps f : S — X which are deformations of the given inclusion
ts : S C X, and consider the operator

O(f,€) = (f*& b peg (HpgS)),
for £ a nearby Kéhler structure (the complex structure is also deformed), and Hj ¢
denotes the mean curvature vector of f(.S) for the metric £. It is clear that f(.5)
is Lagrangian stationary if and only if ®(f) = 0.

A tangent vector to the space of maps f : S — X is a section n of the normal
bundle of S, but we find more convenient to represent it by the 1-form o = n_w
on S. Then at the inclusion ¢g one has

0P

of
To avoid the difference of the orders of the differential operators, we consider
instead of ® the operator

U(f,€) = (f'€ AF) Opg, (HpesE)),

(o) = (dav, 0Acv).

so that
ov

af
Then V¥ is a smooth operator C37 x C?" — Cg’” X C’g’", where each time the
index 0 means with zero integral over S (for the metric f*ge¢); here we have used

(@) = (do, A™'6A0) = (da, 6v).
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the hypothesis that ¥ remains Lagrangian, so fS f*¢ = 0. The differential 86—?
is obviously an isomorphism at (f,&) = (ts,w), since it identifies with d + § :
QL(S) — Q2(9)o + Q°(S)o. The result is a consequence of the implicit function
theorem. O

This lemma is useful because of the following remark:

Lemma 37. If Y; is a gravitational instanton for some ¢ = (C1,(2,(3) € h @ R3,
and 0 is a positive root such that (4 € ker 0, then the Lagrangian homology class
corresponding to 0 is represented by a holomorphic cycle for a complex structure
orthogonal to Iy (and therefore Lagrangian for Iy).

Proof. Because 0((1) = 0, there exists an angle ¢, such that

0 —cosp sing
u= |1 0 0 €SO3
0 sing cose

sends ¢ to £ = (&1,&) such that 0(&.) = 0. By the second statement in Lemma 6,
the homology class corresponding to # is represented by a holomorphic cycle for
the complex structure u=!(I1) = — cos @l + sin pl3. O

Together with Lemma 36 we deduce:

Corollary 38. Under the hypotheses of Theorem C, fix a singular point v € X,
with tangent graviton Y¢, .. Let 0 be a positive root, such that ¢ € kerf and 6
is primitive for this property, so that ¥ is represented in Y, ¢. by a Hamiltonian
stationary sphere Sy (Lemma 6). Finally suppose that the 2-homology class ¥ €
Hg(ﬂt, Z) defined by 6 remains Lagrangian, that is Q- X = 0.

If wy is the CSCK metric on Xy in the class €, then for t small enough, ¥ can
be represented by a Lagrangian stationary sphere, close to Sy.

Here we use that w; is a CSCK metric only through the estimates that it satisfies.
The conclusion holds also for every metric in the class ; satisfying the same
estimates; the CSCK metric is a canonical example of such a metric.

Proof. We blow up the metrics wy: from Corollary 35, on every compact, the

Kéhler metrics % converge to the gravitational instanton Y, ¢ in C* (actually

in C*°). Then we apply Lemma 36. O

5.2. Minimizing property. We now prove the minimizing property of the spheres
that we constructed, which is stated in Theorem D. The idea is that a sequence
of minimizers in the homotopy class must converge to a minimizer in the tangent
graviton Y¢, .. But since our minimizer So C Y¢, ¢, is calibrated, it is unique, so
the sequence of minimizers must converge to Sy. But then in a neighborhood of Sy
we have a uniqueness statement for our Lagrangian stationary sphere. Of course
the whole process relies strongly on the fundamental results of Schoen-Wolfson
[11].

Let us now give more details. For each ¢ > 0, by [I1] the free homotopy class
of X can be represented by a w; Hamiltonian stationary, weakly conformal map
s; 1 S = X;, each being area minimizing in the homotopy class.

Of course the same map works for w; = 3, which we now choose as the metric

on ./\//\lt. Since the area of the Hamiltonian stationary sphere that we constructed
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is O(t) for wy, it is bounded for w;, and so is the area of the collection s; which is
not bigger. - -

The local geometry of (M, wy) is controlled: indeed, on the ALE part, (My, w;)
converges to Y¢, ¢, while on the rest of the manifold, the curvature of w; = %
goes to zero. Moreover the injectivity radius of w; remains bounded below. It
follows that the local regularity results in [11] apply uniformly in ¢, in particular
[11, Theorem 2.8] there is a uniform Holder bound on the s;. Since X2 # 0, the
image of s; must cut Sp, and it follows that for ¢ small enough, the image of s; is
completely included in a bounded domain of the ALE part.

Now we again claim that the compactness theorem [! 1, Theorem 5.8] applies in
our context, because the geometry is controlled. This implies that some sequence
st; for tj — 0 converges to a Lagrangian stationary, weakly conformal W12 map
s0: 8% = Y¢, ., still representing the same homotopy class. Since Sy is calibrated,
the family must identify to the sphere So C Y¢, ¢.. Since all s; are Lagrangian
stationary, by regularity [11, Theorem 4.10] the convergence is smooth. Therefore

—

for each t > 0 small enough, s;1 : S — M; is an embedding converging to the
standard embedding Sy — Y¢, .. By the uniqueness statement in Lemma 36 it
must coincide with the Hamiltonian stationary sphere that we constructed.

6. T-SINGULARITIES AND Q-GORENSTEIN SMOOTHINGS

6.1. CSCK metrics. We extend our results in the setting of Q-Gorenstein smooth-
ings. The singularities that can appear are rational double points on one hand,
on the other hand cyclic singularities of type dn%(l, dnm — 1), where n and m are
coprime integers. The last one is actually a Z, quotient of the rational double
point %(1, —1) by the action generated by (&, £m=1), for & = ein? .

We now explain why the results of the previous sections extend. Roughly speak-
ing, the deformation theory of Q-Gorenstein smoothings is the Z,, invariant part of
the deformation theory for Ay, 1 singularities, and the models we glue are the Z,
quotients of Ay, 1 gravitational instantons. These models (the tangent gravitons)
are no more hyperKéahler ALE spaces, but only Kéhler Ricci flat ALE spaces, and
are given explicitly the Gibbons-Hawking ansatz, see [13]. Nevertheless everything
done in sections 2-5 extends just by quotienting the local models by the action of
Zy. This gives immediately Theorem A and Theorem B in the general case of T
singularities.

6.2. Hamiltonian stationary spheres. Here there are some interesting phe-
nomenons happening in the case of T singularities. The starting point is the
same: in the setting of Theorem D, near a singular point x € X — M — A, we
have, up to a covering of group Z,, a graviton Y¢, ¢, where (1 € bﬁ", (. € h%",
and the space M; is made by gluing Y¢, ¢ /Z, with the orbifold X. In particular,
given a large Z, invariant region V' C Y¢, ., one can identify V/Z, with some
region in U C M, such that the metric £ converges to the restriction to V/Z;, of
the ALE Ricci flat metric. Denote this projection p: V — U.

If we have a root § € ®T, such that (9,@ = 0 and 0 is primitive for this
property, and moreover ((;(t),0) = 0 for all £, then in the local Z,-covering V' the
root 6 represents a p*§2; Lagrangian class. Corollary 38 applies as well, and 6 can
be represented by a p*w; Hamiltonian stationary sphere S; C V, converging to a
sphere Sy of the graviton Y, ., which is holomorphic with respect to a complex
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structure, orthogonal to I;. Then p(S;) is a Hamiltonian stationary surface in
(M, wt), but p(S;) might be not embedded. This depends only on the model:
p(St) is embedded if p(Sy) is, so we have to analyze the model.

Denote 9 = % dezn g-6. We claim that, if ¢ # 0, then p(Sp) is embedded, and
we get a Hamiltonian stationary sphere in the homology class p,t. This will end
the proof of Theorem D. At the end of the section, we will also see some examples
of behaviors when 1 = 0, resulting in the construction of a RP? or a S? with a
double point.

Fortunately the possible spheres Sy are explicit in the Gibbons-Hawking ansatz,
so we merely have to check the above claim. Therefore we remind briefly what we
need [13, §5].

We consider k + 1 distinct points po,...,pr € R3, and the harmonic function
Viz)=1>, ﬁ. Then *dV is a closed 2-form on R\ {p;}, which is furthermore
integral (indeed, the integral of *dV on a small sphere around p; is 1). Therefore
*xdV = dn, where 7 is the connection 1-form on the total space of a circle bundle
L — R3\ {p;}. Because of the topology of L near each p;, the restriction of L to
a small 2-sphere around p; is diffeomorphic to a 3-sphere, and one can compactify
L into a smooth manifold M, equipped with a projection = : M — R3, by adding
just one point above each p;. Then it turns out that

g = V(de? + das + dz3) + Viy?

is a smooth hyperK&hler metric on M, whose three complex structures are given
by
Lidx; =V~ 'y, ILdxj = dxy,

where (4,7, k) is a circular permutation of (1,2,3). More generally, for any { =
(¢1,&2,&3) € S?, we have a complex structure I¢ such that I > &dx; = V 1y and
I¢ is a rotation of angle 7 in the plane () &dz;)t C (R3®)*; the corresponding
Kéhler form is we = Y, &(dx; A+ Vdxj Adxy). All the structures are invariant
under the circle action.

If the segment [p,,ps] does not contain another point p., then 77 1[a,b] is a
2-sphere, which is holomorphic for the complex structure I¢, where £ = Z%Z', and
Lagrangian for the Kéhler forms we for ¢ L £. It follows immediately that 7~ '[a, b]
is Hamiltonian stationary for the Kahler metric (M, I¢,w¢), where ¢ L £, and this
gives our model spheres in the case of A singularities.

It is also interesting to describe the cohomology in this model: define the 2-form
1
(1) = —————.
@) = e —p
It is easy to check that x; is a smooth closed antiselfdual 2-form on M, and > x; =

0. This is the only relation and one gets the representation of the cohomology of
M by harmonic forms:

Xi = dfi An+ *df,

H*(M,R) = {Zcixi,z:ci =0}. (6.1)

(This actually describes the L? cohomology of M, which turns out to be equal to
the ordinary cohomology.) The form x; evaluated on the 2-sphere 71 [p,, py] gives

(Xi» ™ [pas o)) = 27(fi(Pa) — fi(py)) = 27 (Bia — 6i)-
This formula justifies the equality (6.1).
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In the case of T singularities, we start from a Ag,_1 gravitational instanton,
given from the Gibbons-Hawking ansatz with k 4+ 1 = dn points. For a careful
choice of the points p,, there is a free isometric action of Z,, which is holomorphic
for one of the complex structures: denote z = x1 + iz (this a I3 holomorphic

function), we consider the action of a generator w = e n of Z, given by
w-z=wz, w-0=w"0,

where 0 is the angular coordinate, and n and m are coprime. Of course this
action is well defined only if the configuration of the dn points is invariant under
z — wz, that is if they are organized into a collection of d regular centered n-
polygons in planes orthogonal to the vector 0,,. This gives all the ALE Ricci flat
models that we need for singularities of class T'. Incidentally, the parameters are
a collection of d points (one in each polygon), that is 3d real parameters, modulo
the translation in the 0y, direction, so finally 3d — 1 parameters as expected (d
complex parameters and d — 1 real parameters). In particular, from (6.1), the Z,
invariant part of H2(M,R) has dimension d — 1.

We can now describe Hamiltonian stationary spheres: as we have seen, these
are given by 71 [p,, pp], where p, —py L 0.4, that is by the segments in the planes
of the polygons. Here there are two cases:

e a segment [p,,py] between two points of two distinct polygons (which is
possible only if the two polygons are in the same plane): if we change the
point pp in the same polygon, we do not change the homology class in the
quotient, because the sides of the polygon go to zero in the homology of
the quotient; therefore we can choose p, to be the closest vertex to py,
so that the images under Z,, of the segment [p,, py] are disjoint; therefore
in the quotient we still obtain a 2-sphere with nonzero class in homology
(indeed the pairing with % >gez, 9 (Xa — Xp) is nonzero);

e a segment [p,,pp] between two points of the same polygon: we consider
only the two following cases (the images of the other spheres have more
complicated crossings):

— [pa,pb] is an edge of the polygon; then in the quotient, the points p,
and pj represent the same point and we obtain an immersed 2-sphere
with one double point;

—n =2 and p, = —p,: then the image of 7 1[p,, pp] is an embedded
RP2.

The other segments [p,, pp] are more complicated since for a g € Zj, the
segment g - [pq,pp] might meet [py, pp] in an interior point, which means
that one gets a double circle.

7. APPLICATIONS

7.1. Del Pezzo surfaces. Our result is applied to produce extremal metrics on Q-
Gorenstein smoothings of singular extremal Del Pezzo surfaces with no nontrivial
holomorphic vector field.

More precisely, let X be a normal Del Pezzo surface. If X admits a Q-Gorenstein
smoothing, then all the singularities of X must be of class T. So it is natural to
assume that every singularity of X is of such type. Locally, we may pick a one
parameter Q-Gorenstein smoothing for each singularity of X. It turns out that
such local smoothing can always be globalized. In other words, one can find a
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Q-Gorenstein smoothing X — M — A such that the germs of deformations
of the singularities are the one we started with. This result is due to the fact
that H2(X,TX) = 0, hence there is no local to global obstruction to deformation
theory as proved in [3, Proposition 3.1]. This means that local deformations of the
singularities can always be integrated into global deformations of the surface X.

In particular, we can always construct in this way a one parameter Q-Gorenstein
smoothing X — M — A satisfying the non degeneracy condition in the sense of
Definition 1. Suppose that X admits an extremal K&hler metric and no nontrivial
holomorphic vector field (hence the metric must be CSCK) and that €, is a family
of Kéhler classes on M; that degenerates toward the orbifold Kéahler class. Then,
by Theorem A, the smoothing M; admits a CSCK metric with Kéhler class €
for all ¢ > 0 sufficiently small.

For instance, consider the Del Pezzo orbifold X = (CP* x CP')/Z4, where the
action of Z4 on the product is spanned by

([ug = v1], [ug,v2]) = ([tug : v1], [iug, va]).

The quotient contains exactly four singularities. Two of them are Ag singularities
whereas the two others are of type T', modelled on cyclic quotients of the form
%(1, 1). Let V; be the space C% of parameters for semi-universal deformations of
an As singularity and Vs be the space C% for the %(1, 1) singularity. We denote
by V/ ~ V; (for i = 1,2) the parameter spaces for deformations of the second
singularities of type A3 and %(1, 1) in X.

Any l-parameter flat family of deformations X < M — A induces a morphism

A—VieViehel, (7.1)

deduced from the deformations of each of the four singularities in X. Conversely,

by [3], any sufficiently small disc A C V1 & V] @V, @V around the origin contained

in a complex line gives rise to 1-parameter family of complex deformations X —»

M — A where the morphism (7.1) is the canonical inclusion map. Furthermore,

the deformation X — M — A is well defined up to isomorphism for there are no

nontrivial complex deformations of X preserving the four orbifold singularities.
There is another Z, action on CP! x CP! spanned by

([u1 : Ul], [UQ : UQ]) —> ([Ul : ul], [UQ : UQ])

This action descends to the quotient X = (CP! x CP!)/Z,. Such a Zs-action on
X extends as a Zo action on the space of semi-universal deformations of X that
sends fibers onto fibers. Since the Zy action flips the singularities of the same type
in X, the induced action on V1 & V] @ Vo @ Vy is clear : the action merely exchanges
the factors V; and V/ which are identified by a linear isomorphism. We choose a
complex line Cv C V; @ Vs corresponding to a smoothing of the underlying As
and 1(1,1) singularities. Let v’ € V{ & V3 be the image of v under the Zs-action.
Then v & v’ is an invariant vector under the Zs-action. The one parameter space
of deformation X < M — A induced by the choice A C C-v @ v’ is acted on by
Zo and the fibers are invariant under the action.

The product CP! x CP! can be endowed with a CSCK (or Kihler-Einstein)
metric by choosing a multiple of the standard Fubini-Study metric on each factor.
The group Z4 acts isometrically on the product, thus we obtain a CSCK orbifold
metric on X.
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Then we pick any family of Kéahler classes 2; on My for t > 0 that degen-
erates toward the orbifold Kahler class. At this point, we are ready to apply
Theorem A. Unfortunately, X does admit nontrivial holomorphic vector fields. To
get around this issue, we work equivariantly, modulo the additional Zo symmetry.
The key point here is that X does not carry any nontrivial holomorphic vector
field invariant under the Zsy action. The proof of Theorem A can be done in this
Zo-equivariant context. It follows that M; admits a CSCK metric with Kahler
class € for all ¢t > 0 sufficiently small.

Quite interestingly, a smoothing M for ¢ # 0 is not diffeomorphic to the mini-
mal resolution X of X'. In the example discussed above, M;, as a smooth manifold,
is obtained by removing a neighborhood of the —4 exceptional spheres in X and
gluing back two copies of the rational homology ball T*5%/Zy = T *RP2. Such
an operation is known under the name of rational blowdown. Thus, M, is the
rational blowdown of X for ¢ # 0. As X is an eight-point iterated blow-up of
CP! x CP!, one can show that M, is a six-point blow up of CP* x CP*.

Working with a Kihler-Einstein orbifold metric on X and ; = ¢1(M;) we
recover Tian’s metric for certain special Fano surfaces very close to the boundary
of the moduli space, diffeomorphic to CP! x CP! blown up six times. In addition
Theorem D applies in this setting. Let F the homology class of an exceptional
holomorphic sphere in the resolution X. Then E can be represented by a stationary
Lagrangian sphere in My for ¢ > 0 sufficiently small with respect to the Kéhler-
Einstein metric. It is also possible to prove that M; contains two stationary
Lagrangian RP? obtained by perturbing the zero section of the tangent graviton
T*RP?.

It was pointed out to us by the anonymous referee that the example X =
(CP! x CP')/Z,4 discussed above appears naturally in [¢, Example 5.7], where the
Gromov-Hausdorff compactification of the moduli space of Kéhler-Einstein Del
Pezzo surfaces is investigated.

Similar examples can be constructed by considering the CSCK orbifold X =
(CP' x CP')/Zs, an example considered by Spotti [12]. In this case X has four
Aj singularities and the smoothings are diffeomorphic to the minimal resolution
X. The construction above provides a construction of CSCK metrics on certain
four-point blowups of CP! x CP!. In particular, we can apply this to the Kihler-
Einstein case. Again, we prove that the —2 exceptional spheres can be deformed
to get stationary Lagrangian spheres in the smoothing endowed with its K&hler-
Einstein metric.

7.2. Geometrically ruled CSCK orbifold surfaces. A large class of geometri-
cally ruled CSCK orbifolds can be constructed via representation theory. The idea
is to consider an orbifold Riemann surface ¥ and a twisted product X = ¥ x o CP!
where p is a morphism p : 7"%(X) — SUs/Zs, where 7¢"°(%) is the orbifold fun-
damental group. Here we require that if p; is a singular point of order ¢; in ¥ and
l; is the homotopy class of a small loop around p;, then p(l;) is of order g;.

If ¥ has only orbifold points of order 2, then X has isolated singularities of type
Aj. Suppose that ¥ carries a CSCK metric (we just have to exclude the case of a
teardrop with exactly one singularity of order 2). Then the local product metric
provides a CSCK orbifold metric on X.
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orb

Under the assumption that 7§"%(X) acts transitively on CP! via p and that ¥ is
not the football, the orbifold X does not carry any nontrivial holomorphic vector
field [10].

In the next section, we show that is is always possible to find a nondegenerate
Q-Gorenstein smoothing of X'. In particular Theorem A and Theorem D apply
and we may construct some new CSCK metrics on blownup ruled surfaces with
stationary Lagrangian spheres.

7.3. Smoothing model for orbifold ruled surfaces. The example of ruled
orbifold X — ¥ given in the previous section has singularities that come by pair
above each orbifold point in .

More precisely, the local model is given by an orbifold surface Y — C/Zy where
Y = (C xCP')/Zs, the action of Zj is spanned by (u, [v : w]) = (—u, [~v : w]) and
the projection map Y — C/Zs is just induced by the first canonical projection.

Using the coordinates (u, [v : w]) on the ramified cover C x CP!, we see that
Zo-invariant polynomials in the chart w # 0 are generated by

xrT = u2
yo= (2)? (7.2)
z1 = %

and the equation of ) in this chart is given by
riyir = Z%,

which is the equation of an A; singularity. Similarly, in the chart v # 0, we have
the invariant polynomials

Ty = u2
y2 = (%)? (7.3)
_ uw
Z9 v
and the equation
xT2Yy2 = Z%?

giving a second A; singularity.
Putting together (7.2) and (7.3), we conclude that ) is the subvariety of C x CP?
given by the equation
zaf =7
where (z,[a: f:7]) € C x CP?, & = x1 = o, %:ylzy%, %:zl and 1 = 2.
We introduce a family of deformation Y < N — C? where A is the subvariety
with points (z, [ : B : 7], €1,62) € C x CP? x C? given by the equation

e102 4+ 28 + zaf = ~*

and the map V' — C? is induced by the canonical projection (z, [a : 3 : 7], e1,€2)
e = (e1,e2). The singular locus of N is contained in the hypersurface e1e9 = 0
and if neither €1 nor 9 vanish, then the fiber A is a smooth deformation of ).

Using affine coordinates, one can check that the parameters ¢; correspond to
the parameters of the semi-universal family of smoothings for the Ay singularity.
In particular, if we choose a line in C? distinct of the lines e; = 0 or g9 = 0, we
obtain a nondegenerate family of smoothings of (C x CP')/Z.

We have a canonical projection N — C given by the coordinate x. The restric-
tion of this map N; — C defines a ruled surface over C and it is smooth unless
€182 = 0. One can also check that the fibers of the ruling are all CP! except when
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12 = 4e1e9 where the polynomial e10? 4 €252 4 za 8 — 42 splits as a product of
two polynomials of degree 1 in (a, 8,7). If €169 # 0, there are two distinct fibers
that consist of a union of two CP! with normal crossing at one point. Topological
considerations imply that the curves have selfintersection —1. In conclusion, as-
suming €19 # 0, the ruled surface M. — C is a two point blowup of C x CP! at
two distinct fibers.

Let A%m be the ball of radius 1/2 is C2, so that |e1es| < 1/4 for ¢ € A%/Q. Let

N7 (resp. N) be the restriction of N to the domain |z| < 2 and ¢ € A%ﬂ (resp.
reA={1<|z|<2}and e € A%m). Accordingly, we shall denote )’ = Ajj and
y// — Né/

By definition, N’ is equipped with a projection N” — A x A%/z- This projection
is a geometric ruling (a submersive holomorphic map with fibers CP*) for reducible
curves appear only for 22 = 4¢1e5. Hence there exists a biholomorphism

¢: N" — A x A}, x CP!

which commutes with the projection maps to A x A% /2

The restriction of the map ¢ induces an isomorphism }” — A x CP'. Taking
the product with the identity, we deduce an isomorphism

¥ ATy x V' Ax AT, x CPL

We shall the maps ¢ and v to construct deformations of orbifold ruled surfaces in
the next section.

7.4. Construction of deformations. Let X be a compact complex orbifold sur-
face with a holomorphic embedding

j:y'<—>X

where ) = M. We shall construct a smoothing of X using the smoothing N’
described in the previous section.

Let X’ be the complement in X’ of the domain |z| < 1 of ). In particular, we
have the restriction j : Y < X’. We introduce

M — (A%/2 X X/)UN//N

The equivalence relation is given as follows: if (e,m) € A? o X X " is such that
m = j(y) for some y € Y, we identify the point (e,m) with 2 € N/ C N’
provided (e, m) = ¢(z).

The complex variety M endowed with the canonical maps X — M — A% /2 is
a flat deformation of X and it is non degenerate in the sense of Definition 1.

We deduce the following proposition by applying Theorem A and Theorem D
to the family of smoothings X — M — A.

Proposition 39. Let ¥ =% Xp CP! be a CSCK geometrically ruled surface with
singularities of type A1 and no nontrivial holomorphic vector fields as described in
§7.2

Then there exists one parameter families of nondegenerate smoothings X —»
M = A. In particular, X admits CSCK smoothings with stationary Lagrangian
spheres representing the vanishing Lagrangian cycles.
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