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PARABOLIC HIGGS BUNDLES AND REPRESENTATIONS OF THE
FUNDAMENTAL GROUP OF A PUNCTURED SURFACE INTO A

REAL GROUP

OLIVIER BIQUARD, OSCAR GARCÍA-PRADA, AND IGNASI MUNDET I RIERA

Abstract. We study parabolic G-Higgs bundles over a compact Riemann surface
with fixed punctures, when G is a real reductive Lie group, and establish a corre-
spondence between these objects and representations of the fundamental group of the
punctured surface in G with arbitrary holonomy around the punctures. This general-
izes Simpson’s results for GL(n,C) to arbitrary complex and real reductive Lie groups.
Three interesting features are the relation between the parabolic degree and the Tits
geometry of the boundary at infinity of the symmetric space, the treatment of the
case when the logarithm of the monodromy is on the boundary of a Weyl alcove, and
the correspondence of the orbits encoding the singularity via the Kostant–Sekiguchi
correspondence. We also describe some special features of the moduli spaces when G
is a split real form or a group of Hermitian type.

Dedicated with admiration and gratitude to Narasimhan and Seshadri
in the fiftieth anniversary of their theorem

1. Introduction

The relation between representations of the fundamental group of a compact Rie-
mann surface X into a compact Lie group and holomorphic bundles on X goes back to
the celebrated theorem of Narasimhan and Seshadri [57], which implies that the moduli
space of irreducible representations of π1(X) in the unitary group Un and the moduli
space of rank n and zero degree stable holomorphic vector bundles on X are homeo-
morphic. Of course, this generalises the classical case of representations in U1 = S1 and
their relation with the Jacobian of X. The Narasimhan–Seshadri theorem has been a
paradigm and an inspiration for more than 50 years now for many similar problems.
The theorem was generalised by Ramanathan [60] to representations into any compact
Lie group [60]. The gauge-theoretic point of view of Atiyah and Bott [1], and the new
proof of the Narasimhan–Seshadri theorem given by Donaldson following this approach
[25], brought new insight and new analytic tools into the problem.

The case of representations into a non-compact reductive Lie group G required the
introduction of new holomorphic objects on the Riemann surface X called G-Higgs bun-
dles. These were introduced by Hitchin [37, 38], who established a homeomorphism be-
tween the moduli space of reductive representation in SL2C and polystable SL2C-Higgs
bundles. This correspondence was generalised by Simpson to any complex reductive
Lie group (and in fact, to higher dimensional Kähler manifolds) [64, 66]. The corre-
spondence in the case of non-compact G needed an extra ingredient — not present in
Date: June 25, 2020.

1
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the compact case — having to do with the existence of twisted harmonic maps into the
symmetric space defined by G. This theorem was provided by Donaldson for G = SL2C
[26] and by Corlette [23] for arbitrary G. In fact Corlette’s theorem, which holds for
any reductive real Lie group, can be combined with an existence theorem for solutions
to the Hitchin equations for a G-Higgs bundle, given by the second and third authors
in collaboration with Bradlow and Gothen [19, 29], to prove the correspondence for any
real reductive Lie group G. In [66] Simpson gives an indirect proof of this by embedding
G in its complexification when such embedding exists.

There is another direction in which the Narasimhan–Seshadri theorem has been gen-
eralised. This is by allowing punctures in the Riemann surface. Here one is interested in
studying representations of the fundamental group of the punctured surface with fixed
holonomy around the punctures. These representations now relate to the parabolic vec-
tor bundles introduced by Seshadri [62]. The correspondence in this case for G = Un

was carried out by Mehta and Seshadri [50]. A differential geometric proof modelled on
that of Donaldson for the parabolic case was given by the first author in [6]. The case
of a general compact Lie group is studied in [4, 68, 3, 2] under suitable conditions on
the holonomy around the punctures. One of the main issues for general G is about the
appropriate generalisation of parabolic principal bundles.

The non-compactness in the group and in the surface can be combined to study
representations of the fundamental group of a punctured surface into a non-compact
reductive Lie group G. Simpson considered this situation when G = GLnC in [65]. A
new ingredient in his work is the study of filtered local systems. The aim of this paper
is to extend this correspondence to the case of an arbitrary real reductive Lie group G
(including the case in which G is complex). We establish a one-to-one correspondence
between reductive representations of the fundamental group of a punctured surface X
with fixed arbitrary holonomy around the punctures and polystable parabolic G-Higgs
bundles on X.

One of the main technical issues to prove our correspondence, already present in
[4, 68, 3], lies in the definition of parabolic principal bundles. If G is a non-compact
reductive Lie group and H ⊂ G is a maximal compact subgroup, we need to define
parabolic HC-bundles. This involves a choice for each puncture of an element in a Weyl
alcove of H — the weights. Here it is crucial to fix an alcove, whose clusure contains
0. If the element is in the interior of the alcove everything goes smoothly, but if the
element is in a wall of the alcove, its adjoint may have eigenvalues with modulus equal
to 1 (as opposed to the elements in the interior, whose eigenvalues has modulus strictly
smaller than 1), and this introduces complications in the definition of the objects, as
well as in the analysis to prove our existence theorems. However, we give a suitable
definition of parabolic G-Higgs bundle including the case in which the elements are in a
‘bad’ wall of the alcove, which is appropriate to carry on the analysis and to prove the
correspondence with representations. Of course the need of including elements in the
walls of the Weyl alcove is determined by the fact that we want to have totally arbitrary
fixed holonomy (conjugacy classes) around the punctures. Our approach for the bad
weights is rather pedestrian, using holomorphic bundles and gauge transformations
between them which can have meromorphic singularities, so that to a representation
corresponds not a single holomorphic bundle, but rather a class of holomorphic bundles
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equivalent under such meromorphic transformations. A more formal algebraic point of
view is that of parahoric torsors [3, 13, 36], but we preferred to stick to a more concrete
definition which is sufficient to state completely the correspondence (see Section 3 for
a comparison between the two points of view). The choice of an alcove whose closure
contains 0 is important in order to make the parahoric structures to become parabolic.
Our definition is also more natural from the differential geometry viewpoint which sees
holomorphic bundles only outside the punctures, and defines the sheaves of sections at
the singular points by growth conditions with respect to model metrics.

Our approach involves some features that we would like to point out. As in Simpson
GLnC-case [65], we need to consider a slight extension of representations to the more
general notion of filtered local systems, what we call parabolic G-local system. The
definition of parabolic degree for both, parabolic G-local systems and parabolic G-
Higgs bundles, involve the Tits geometry of the boundary at infinity of the symmetric
spaces G/H and HC/H, respectively. Another new feature is given by the fact that
relating the data at the punctures for the representation and the parabolic Higgs bundle
implies a relation between G-orbits in g (the Lie algebra of G) and HC-orbits in mC,
where mC is the complexification of m given by the Cartan decomposition g = h ⊕ m,
which in the case of nilpotent orbits is known as the Kostant–Sekiguchi correspondence
[63, 46, 47, 70]. For general orbits, this correspondence is proved in [5, 9].

We give now a brief description of the different sections of the paper. In Section
2 we define parabolic principal bundles and some important notions related to them,
like their sheaves of (sometimes meromorphic) local automorphisms, or their parabolic
degree. In Section 3 we explain the relation between parabolic and parahoric principal
bundles, and we discuss Hecke transformations; this gives a transparent interpretation
of the meromorphic local automorphisms of parabolic bundles. In Section 4 we intro-
duce parabolic G-Higgs bundles and define the stability criteria. Section 5 is one of
the technical sections where we carry out the analysis to prove the correspondence be-
tween polystable parabolic G-Higgs bundles and solutions of the Hermite–Einstein or
Hitchin equation. As pointed out above, one of the main difficulties here is in dealing
with parabolic structures lying in a ‘bad’ wall of the Weyl alcove. In Section 6 we
introduce the notion of parabolic G-local system, prove an existence theorem for har-
monic reductions and establish the relation with parabolic G-Higgs bundles completing
the correspondence. In Section 7 we consider the moduli spaces of parabolic G-Higgs
bundles, parabolic G-local systems and representations of the fundamental group of
the punctured surface, and their various correspondences among them. We also show
how they depend on the parabolic weights, residues, monodromy and conjugacy classes.
For example, we show that if G is complex, for weights and residues of the Higgs field
satisfying a certain genericity condition, all the moduli spaces of parabolic G-Higgs
bundles are diffeomorphic. This generalises the case of GL2C-Higgs bundles studied by
Nakajima [56]. In order to avoid too lengthy a paper, in this section we simply indicate
the main ingredients for the proofs of the results, and address the reader to the relevant
literature, where similar issues have been treated in detail.

In Section 8 we extend results of Hitchin [39] for split real forms and the theory
of maximal Higgs bundles [18, 30, 11] to the punctured set up. We finish with two
appendices containing Lie-theoretic background and some considerations on the Tits
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geometry of the boundary of our symmetric spaces, to define the relative degree of two
parabolic subgroups, needed for the definition of parabolic degree of Higgs bundles and
local systems.

We believe that the results in this paper are a starting point for applying Higgs bundle
methods to the systematic study of the topology of the moduli spaces of representations
of the fundamental group of a punctured surface in non-compact reductive Lie groups.
And, in particular, to exhibit the existence of higher Teichmüller components in the
punctured case, as we briefly show in Section 8. This has been extremely successful
in the case of a compact surface (see the survey paper [28]). For punctured surfaces,
Betti numbers have been computed for parabolic GL2C-Higgs bundles with compact
holonomy by Boden and Yokogawa [15], and Nasatyr and Steer [58] in the case of rational
weights, and in [31] for parabolic GL3C-Higgs bundles with compact holonomy. Some
partial results on representations in Up,q were obtained in [32] making some genericity
assumptions, although the relation between representations and parabolic Higgs bundles
which constitutes the main result in this paper was only sketched there. The results in
the present paper may also be used to translate the results on the topology of parabolic
U2,1-Higgs bundles obtained by Logares in [48] to the context of the moduli space of
representations of the fundamental group.

One direction that can also be developed from this paper is the inclusion of higher
order poles in the Higgs field, relating to wild non-abelian Hodge theory. This is a
problem on which we plan to come back in the future.

A substantial amount of the content of this paper appeared in the notes of a course
given by the first author at the CRM (Barcelona) in 2010 [10]. A survey on the subject
has been given by the third author in [54]. We apologize for having taken so long to
produce this paper.

We would like to thank the referees for their useful and helpful comments.

2. Parabolic principal bundles

2.1. Definition of parabolic principal bundle. Let X be a compact connected
Riemann surface and let {x1, · · · , xr} be a finite set of different points of X. Let
D = x1 + · · ·+ xr be the corresponding effective divisor.

Let HC be a reductive complex Lie group. We fix a maximal compact subgroup
H ⊂ HC and a maximal torus T ⊂ H with Lie algebra t.

Let E be a holomorphic principal HC-bundle over X.
If M is any set on which HC acts on the left, we denote by E(M) the twisted product

E ×HC M . If M is a vector space (resp. complex variety) and the action of HC on M
is linear (resp. holomorphic) then E(M) → X is a vector bundle (resp. holomorphic
fibration). We denote by E(HC), the HC-fibration associated to E via the adjoint action
of HC on itself. Recall that for any x ∈ X the fibre E(HC)x can be identified with the
set of antiequivariant maps from Ex to HC:

(2.1) E(HC)x = {φ : Ex → HC | φ(eh) = h−1φ(e)h ∀ e ∈ Ex, h ∈ HC }.
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We fix an alcove A ⊂ t of H such that 0 ∈ Ā (see Appendix A.1). Let αi ∈
√
−1Ā and

let Pαi ⊂ HC be the parabolic subgroup defined by αi as in Section B.1. By Proposition
A.2, for αi ∈

√
−1Ā the eigenvalues of ad(αi) have an absolute value smaller or equal

than 1, and pαi is the sum of the eigenspaces of ad(αi) for nonpositive eigenvalues of
adαi. We shall distinguish the subalgebra p1

αi
⊂ pαi defined by

p1
αi

= ker(ad(αi) + 1),
and the associated unipotent group P 1

αi
⊂ Pαi . Note that P 1

αi
is normal in Pαi .

We distinguish the subset A′ ⊂ Ā of elements α such that the eigenvalues of adα
have an absolute value smaller than 1 (see Appendix A.1). If αi ∈

√
−1A′ then P 1

αi
is

trivial.
Definition 2.1. We define a parabolic structure of weight αi on E over a point
xi as the choice of a subgroup Qi ⊂ E(HC)xi with the property that there exists some
trivialization e ∈ Exi for which Pαi = {φ(e) | φ ∈ Qi} (here we use (2.1) to regard the
elements of Qi as maps Ex → HC).

Note that the choice of Qi in the previous definition is equivalent to choosing an orbit
of the action of Pαi on Ex, because the normalizer of Pαi inside HC is Pαi itself.
Definition 2.2. A local holomorphic trivialization of E on a neighbourhood of xi is
said to be compatible with a parabolic structure Qi if, seen as a local section of E in the
usual way, its value at xi is an element e ∈ Exi satisfying Pαi = {φ(e) | φ ∈ Qi}.

If the parabolic structure is clear from the context, we will often simply say that a
given local trivialization is compatible.

Suppose that Qi ⊂ E(HC)xi is a parabolic structure of weight αi. Take any e ∈ Exi
such that Pαi = {φ(e) | φ ∈ Qi}. Define the following subgroup of Qi:

Q1
i = {φ ∈ E(HC)xi | φ(e) ∈ P 1

αi
}.

The subgroup Q1
i is intrinsic, i.e. it does not depend on the choice of e. Indeed, if

e′ ∈ Exi is another element satisfying Pαi = {φ(e′) | φ ∈ Qi} then e′ = eh for some
h ∈ Pαi because Pαi is its own normalizer inside HC. Since P 1

αi
is normal in Pαi , we

have
{φ ∈ E(HC)xi | φ(e) ∈ P 1

αi
} = {φ ∈ E(HC)xi | φ(eh) ∈ P 1

αi
}.

We denote by q1
i the Lie algebra of Q1

i .

Definition 2.3. Let α = (α1, · · · , αr) be a collection of elements in
√
−1Ā. A para-

bolic principal bundle over (X,D) of weight α is a (holomorphic) principal bundle
with a choice, for any i, of a parabolic structure of weight αi on xi.

We will usually not specify in the notation the parabolic structure, so we will refer to
them by the same symbol denoting the underlying principal bundle. Similarly we will
often avoid referring to the weight α.
Definition 2.4. Let E be a parabolic principal bundle. The sheaf PE(HC) of parabolic
gauge transformations is defined on X rD, as the subsheaf of the sheaf E(HC) of
holomorphic gauge transformations of the principal bundle, and near a marked point
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point xi, by the sections of the form g(z) exp(n/z) in some trivialization near xi, such
that n ∈ q1

i and g is holomorphic near xi with g(0) ∈ Qi (this is a group because Q1
i is

a normal abelian subgroup of Qi).

If αi ∈
√
−1A′ then PE(HC) is the sheaf of holomorphic sections of E(HC) such that

g(xi) ∈ Qi, because q1
i = 0.

Of course we have the Lie algebra version PE(hC), whose sections are the sections
u of E(hC) such that u is meromorphic with simple pole at xi, Resxi u ∈ q1

i and the
constant term u(xi) ∈ qi.

We next give a useful geometric interpretation of parabolic gauge transformations.
With respect to any compatible holomorphic trivialization of E on a neighbourhood of
xi containing a disk ∆, and any holomorphic coordinate z : ∆→ C satisfying z(xi) = 0,
the holomorphic sections of E(HC) (resp. E(hC)) are identified with maps ∆ → HC

(resp. hC). Denoting ∆∗ = ∆ r {x}, one can check immediately:
Γ(∆, PE(hC)) = {u : ∆∗ → hC | Ad(|z|−αi)u(z) is uniformly bounded on ∆∗},

Γ(∆, PE(HC)) = {g : ∆∗ → HC | |z|−αig(z)|z|αi is uniformly bounded on ∆∗}.
(2.2)

This means that parabolic transformations are holomorphic transformations on the
punctured disc ∆∗, which remain bounded with respect to the metric |z|−2αi . Recall
that a metric for an HC-bundle is a reduction of structure group to H (see discussion
before Definition 2.12).

Remark 2.5. If αi ∈
√
−1(Ā r A′) then there are local sections of PE(HC) which are

strictly meromorphic. These can be understood as transforming the bundle E into
another principal bundle of the same topological type but with a possibly different
holomorphic structure. In this case the holomorphic bundle underlying a parabolic
bundle is only defined up to such transformations, although the sheaves PE(HC) and
PE(hC) are unique (this admits a transparent interpretation in terms of parahoric
bundles, see Section 3 below).

Remark 2.6. The definition of parabolic bundle can be extended to arbitrary α’s, i.e.,
not necessarily in

√
−1Ā. However, this leads to more complicated objects that can be

interpreted in terms of parahoric subgroups (see for example [13]) for which our analysis
to prove the Hitchin–Kobayashi correspondence does not apply directly. But we do not
need to go to these objects since by taking α ∈

√
−1Ā we are able to parametrize

all conjugacy classes of H and also of a non-compact real reductive group G with
maximal compact H (see Appendix A.1) and hence obtain all possible monodromies at
the punctures.

Example 2.7. The basic example is H = Un and HC = GLnC, so an HC-bundle is in one-
to-one correspondence with the the holomorphic vector bundle V = E(Cn) associated
to the fundamental representation of GLnC. The parabolic structure at the point xi is
given by a flag Vxi = V 1

i ⊃ V 2
i ⊃ · · · ⊃ V `i

i , with corresponding weights 1 > α1
i > α2

i >
· · · > α`ii > 0. The matrix αi is diagonal, with eigenvalues the αji with multiplicity
dim(V j

i /V
j+1
i ), and the eigenvalues αji − αki of ad(αi) belong to (−1, 1). The parabolic

subalgebra consists of the endomorphisms of Vxi , preserving the flag: it is the sum of
the non positive eigenspaces of adαi. Of course, in this case P 1

αi
= {1}.
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Remark 2.8. It is important here to note that our convention for the parabolic weights is
different from the usual convention in the literature, since we take a decreasing sequence
of weights. This is somehow a more natural choice in the group theoretic context: in
Kähler quotients, it is natural to have an action of the group on the symmetric space on
the right; then, if αi lies in a positive Weyl chamber, it defines a point on the boundary
at infinity of the symmetric space H\HC, whose stabilizer is the parabolic subgroup
whose Lie algebra is exactly the one defined above. See Appendix B for details.

A consequence of our convention is that the monodromy corresponding to the para-
bolic structure is exp(2π

√
−1αi) instead of exp(−2π

√
−1αi). Also note later the change

of sign in the definition of the parabolic degree.

Remark 2.9. If we have a morphism between two reductive groups f : LC → HC, then
given a parabolic principal LC-bundle E, there is an induced principal HC-bundle Ef .
Suppose the parabolic structure of E has weight α at a point x, then the description
(2.2) shows that one can define parabolic transformations on Ef ; but it is not completely
obvious whether this comes from a parabolic structure on Ef at x with weight f∗α.

The simplest case (and the only one that we shall use) is that when f∗α ∈
√
−1Ā:

in that case we have standard parabolic groups Pα ⊂ LC and Pf∗α ⊂ HC; there is a
trivialization e ∈ Ex in which the parabolic structure is given by Pα, and we use the
same e seen as a trivialization of (Ef )x to define a parabolic structure given by the
group Pf∗α on Ef at x. It is not difficult to check that this does not depend on the
choice of e (as one may guess already from (2.2)).

We will not describe the general case, which requires to apply a Hecke transformation
to Ef in order to get back f∗α in the Weyl alcove, see also Section 3.

2.2. Parabolic degree of parabolic reductions. Let E be a parabolic principal
bundle over (X,D) of weight α and let Qi ⊂ E(HC)xi denote the parabolic subgroups
specified by the parabolic structure. For any standard parabolic subgroup P ⊂ HC, any
antidominant character χ of p (see Appendix B), and any holomorphic reduction σ of the
structure group of E fromHC to P we are going to define a number pardeg(E)(σ, χ) ∈ R,
which we call the parabolic degree. This number will be the sum of two terms, one global
and independent of the parabolic structure, and the other local and depending on the
parabolic structure.

Before defining the parabolic degree, let us recall that the set of holomorphic re-
ductions of the structure group of E from HC to P is in one-to-one correspondence
with the set of holomorphic sections σ of E(HC/P ) (the latter is the bundle associated
to the action of HC on the left on HC/P ). Indeed, there is a canonical identification
E(HC/P ) ' E/P and the quotient E → E/P has the structure of a P -principal bundle.
So given a section σ of E(HC/P ) the pullback Eσ := σ∗E is a P -principal bundle over
X, and we can identify canonically E ' Eσ ×P HC as principal HC-bundles. Equiv-
alently, we can look at Eσ as a holomorphic subvariety Eσ ⊂ E invariant under the
action of P ⊂ HC and inheriting a structure of principal bundle.

Now fix a parabolic subgroup P = Ps ⊂ HC, for s ∈
√
−1h (see Appendix B.1), an

antidominant character χ of P , and a holomorphic reduction σ of the structure group
of E from HC to P .
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The global term in pardeg(E)(σ, χ) is the degree deg(E)(σ, χ) defined in [30, (A.57)].
We introduce it here using Chern–Weil theory instead of the algebraic constructions of
[op. cit.].

Let Eσ be the P -principal bundle corresponding to the reduction σ. Given an an-
tidominant character χ : p → C, where p is the Lie algebra of P , the degree is defined
by the Chern–Weil formula

(2.3) deg(E)(σ, χ) :=
√
−1

2π

∫
X
χ∗(FA)

for any P -connection A on Eσ. Here, χ∗(FA) is the 2-form resulting from applying the
character χ to the p-valued 2-form FA. Since P ∩ H is a maximal compact subgroup
of P and the inclusion P ∩H ↪→ P is a homotopy equivalence, one can evaluate (2.3)
using a P ∩ H-connection, and it follows that deg(E)(σ, χ) is a real number. Recall
that, by definition, an antidominant character is real (see Appendix B).

At each marked point xi we have two parabolic subgroups of E(HC)xi equipped with
an antidominant character:

• one coming from the parabolic structure, (Qi, χαi), where χαi is the antidominant
character of qi, defined in Appendix B.1;
• one coming from the reduction, (Eσ(P )xi , χ).

In appendix B, we define a relative degree deg((Qi, αi), (Eσ(P )xi , χ)) of such a pair.
Then we define the parabolic degree as follows:
(2.4) pardegα(E)(σ, χ) := deg(E)(σ, χ)−

∑
i

deg
(
(Qi, αi), (Eσ(P )xi , χ)

)
.

When it is clear from the context we will omit the subscript α in the notation of the
parabolic degree.

The definition of parabolic degree of a reduction also makes sense if one takes as
parabolic subgroup the whole HC. In this case the set of antidominant characters is
simply HomR(z,

√
−1R), where z is the centre of h. Trivially, in this case there is a

unique reduction of the structure group, which we denote by σ0. We then define for any
χ ∈ HomR(z,

√
−1R)

pardegχE := pardegα(E)(σ0, χ).

Of course, a priori the parabolic degree of a reduction does not seem to be well
defined, because we can change the bundle by a meromorphic gauge transformation.
Actually we will see that:

• after a meromorphic gauge transformation, the parabolic reductions are the same
(proposition 3.7);
• there is an analytic formula for the degree (next section), which by its very

definition is invariant by meromorphic gauge transformation.
So the parabolic reductions and their degree make perfect sense.

2.3. Analytic formula for the degree. Let s ∈
√
−1h be any element, let P = Ps ⊂

HC be the corresponding parabolic subgroup and let χ : p → C be the antidominant
character defined as χ(α) = 〈α, s〉, where 〈·, ·〉 : hC × hC → C is the extension of an
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invariant scalar product on h to a Hermitian pairing. Note that the intersection of P
and H can be identified with the centralizer of s in H:
(2.5) P ∩H = ZH(s) = {h ∈ H | Ad(h)(s) = s}.
Let σ be a holomorphic reduction of the structure group of E from HC to P , and Eσ
the corresponding P -principal bundle. Let N ⊂ P be the unipotent part of P , and
choose the Levi subgroup L = ZHC(s) ⊂ P . Then there is a well-defined L-action on
Eσ/N which turns it into a principal L-bundle, which we denote Eσ,L. (In the vector
bundle case, the P -reduction is a flag of sub-vector bundles, and the L-bundle is the
associated graded bundle.) Note that since L = ZHC(s), the element s ∈

√
−1h defines

a canonical section
(2.6) sσ ∈ Γ(Eσ,L(l ∩

√
−1h)).

Let h be a smooth metric on E, defined on the whole curve X: this is a reduction
of the structure group of E from HC to H. We denote by E the resulting H-principal
bundle. Combining σ and h we obtain a reduction of the structure group of E from HC

to P ∩H, and we denote by Eσ the resulting bundle. But P ∩H is a compact form of
L, and the complexified bundle clearly identifies to Eσ,L, so we can also think of Eσ as
the bundle Eσ,L equipped with the metric hσ,L induced by h. From this point of view,
the section sσ above can be seen as a section
(2.7) sσ,h ∈ Γ(Eσ(

√
−1h)) ' Γ(E(

√
−1h)).

Note the difference between (2.6) and (2.7): the section sσ is canonical, while different
choices of h lead to different sections sσ,h of E(hC).

We now introduce some notation. Let V be a Hermitian vector space, let ρ : h→ u(V )
be a morphism of Lie algebras, and denote also by ρ : hC → EndV its complex extension.
Choose elements a ∈

√
−1h and v ∈ V . Then ρ(a) diagonalizes and has real eigenvalues,

so that we may write v = ∑
vj in such a way that ρ(a)(v) = ∑

ljvj. Now, for any
function f : R→ R we define f(a)(v) := ∑

f(lj)vj.

Lemma 2.10. Define the function $ : R → R as $(0) = 0 and as $(x) = x−1 if
x 6= 0. Applying the previous definition to the adjoint representation, and extending it
to sections of E(hC)⊗K, we have:

deg(E)(σ, χ) =
√
−1

2π

∫
X
〈Fh, sσ,h〉 − 〈$(sσ,h)(∂sσ,h), ∂sσ,h〉.

Here Fh is the curvature of the unique connection compatible with h and the holomor-
phic structure of E, the Chern connection [67]. The proof follows Chern–Weil theory
and from identifying the RHS of the formula with the curvature Fh,L of the Chern
connection of the metric hσ,L on Eσ,L defined by h. More precisely,

Lemma 2.11. 〈Fh,L, sσ,h〉 = 〈Fh, sσ,h〉 − 〈$(sσ,h)(∂sσ,h), ∂sσ,h〉.

Proof. We can think of E and Eσ,L as giving two holomorphic structures on the same
principal bundle obtained by complexifying E. Therefore the difference between the
corresponding ∂̄ operators is a E(hC)-valued (0, 1)-form: ∂̄E−∂̄Eσ,L = a with a ∈ Ω0,1(n)
since Eσ,L is a reduction of E.
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Let τ denote the involution of HC fixing H, and denote by the same symbol τ the
induced involution of hC fixing h pointwise. This induces a fiberwise involution of
E(hC), and via the identification E(hC) ' E(hC) obtained from the reduction h we can
transport this involution to an involution of E(hC) which we denote by τh.

Noting ∂̄Eσ,L + ∂
Eσ,L
h the Chern connection of Eσ,L, we have

Fh = Fh,L + ∂
Eσ,L
h a+ ∂̄Eσ,Lτh(a) + [a, τh(a)],

and therefore

〈Fh,L, sσ,h〉 = 〈Fh, sσ,h〉+ 〈[a, τ(a)], sσ,h〉 = 〈Fh, sσ,h〉+ 〈a, [a, sσ,h]〉.

The formula follows since ∂̄Esσ,h = [a, sσ,h] hence $(sσ,h)(∂sσ,h) is the projection of −a
on nonzero eigenspaces of ad sσ,h. �

Our aim in the next section is to state and prove an analogue of Lemma 2.10 giving
the parabolic degree. For that it will be necessary to replace the metric h (which was
chosen to be smooth on the whole X) by a metric which blows up at the divisor D at
a speed specified by the parabolic weights αi.

2.4. α-adapted metrics and parabolic degree. It may be useful here to remind in
a few words how we write local formulas for the metrics of principal bundles. There is a
right action h 7→ h · g of gauge transformations g ∈ Γ(E(HC)) on metrics h ∈ Γ(E/H),
which identifies in each fibre to the standard action of HC on the symmetric space
H\HC. In concrete terms, a choice of h ∈ Γ(E/H) is equivalent to a map χ : E →
H\HC satisfying χ(eγ) = χ(e)γ for e ∈ E and γ ∈ HC (any such χ corresponds to the
section h ∈ Γ(E/H) such that h(x) = {[e] | e ∈ Ex, χ(e) ∈ H ∈ H\HC}), and a gauge
transformation g ∈ Γ(E(HC)) is equivalent to a map ζ : E → HC satisfying ζ(eγ) =
γ−1ζ(e)γ. Then h · g is the section of E/H corresponding to the map χζ : E → H\HC.

Recall that τ denotes the involution of HC fixing H. A local trivialization e of
E defines a metric h0, such that e is h0-orthonormal. Any other metric is given by
h = h0 ·g for some g with values in HC; then h depends only on τ(g)−1g and we identify
h = τ(g)−1g. Of course it is always possible to move g by an element of H so that
τ(g)−1 = g and then h = g2.

Summarizing, we have two equivalent methods to write down metrics in a h0-orthonormal
trivialization e:

• h = h0 · g for some g ∈ HC, where the action is that of HC on H\HC; or
• h = τ(g)−1g, which simplifies to h = g2 if τ(g)−1 = g.

Moreover, if we consider another trivialization f = eγ for some γ ∈ HC, then in the
trivialization f the same metric becomes h · γ = h0 · (gγ) = τ(gγ)−1gγ.

The second method for writing metrics generalizes the local formula h = g∗g in a
complex vector bundle; in this way we will write formulas which are similar to the usual
formulas in the bundle case.

After this small digression, let us come back to a parabolic bundle E, and a metric
h ∈ Γ(X rD;E/H) defined away from the divisor D.
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Definition 2.12. We say that h is an α-adapted metric if for any parabolic point xi
the following holds. Choose a local holomorphic coordinate z and a local holomorphic
trivialization ei of E near xi compatible with the parabolic structure (see Definition 2.2).
Then in the trivialization ei one has
(2.8) h = h0 · |z|−αiec,
where h0 is the standard constant metric, Ad(|z|−αi)c = o(log |z|) and |Fh|h ∈ L1.

The definition of h and the conditions on c are clarified by observing that in the
trivialization ei · |z|αi (which is orthonormal for the metric |z|−2αi = h0 · |z|−αi), the
metric h can be written as

h0 · |z|−αiec|z|αi = h0 · eAd(|z|−αi )c,

where h0 still denotes the standard constant metric in the trivialization ei · |z|αi . If one
chooses c so that τ(Ad(|z|−αi)c)−1 = Ad(|z|−αi)c, then h can simply be written as

h = |z|−2αie2c.

Note that the L1 condition on Fh is conformally invariant.
Some discussion is in order on the role of the holomorphic gauge ei. If we replace ei by

g(ei), where g ∈ PE(HC) is a meromorphic gauge transformation near xi, then because
of the interpretation (2.2) of meromorphic gauge transformations as holomorphic gauge
transformations outside D which near each xi are bounded with respect to the metric
|z|−2αi , we can still write h under the form (2.8) in the new gauge g(ei), with the new c
satisfying the same condition: therefore the definition does not depend on any choice.

We are now ready to state and prove the analogue of Lemma 2.10 for the parabolic
degree.

Lemma 2.13. Let $ : R→ R be defined as in Lemma 2.10, and let h be an α-adapted
metric. Then:

(2.9) pardegα(E)(σ, χ) =
√
−1

2π

∫
XrD
〈Fh, sσ,h〉 − 〈$(sσ,h)(∂sσ,h), ∂sσ,h〉.

Proof. For any v > 0 let Xv = {x ∈ X | d(x,D) > e−v} and Bv = X rXv. Let hv be a
smooth metric on E (defined on the whole X) which coincides with h in a neighbourhood
of Xv ⊂ X. The metrics h and hv induce metrics hL and hL,v on Eσ,L, and we denote
by Eσ,v the resulting Hermitian holomorphic bundle. Denote the curvatures of hL and
hL,v by Fh,L and Fhv ,L. It follows from the definition of deg(E)(σ, χ) that

deg(E)(σ, χ) =
√
−1

2π

∫
X
〈Fhv ,L, sσ〉

=
√
−1

2π

(∫
Xv
〈Fhv ,L, sσ〉+

∫
Bv
〈Fhv ,L, sσ〉

)
.

By Lemma 2.11 we have

lim
v→∞

∫
Xv
〈Fhv ,L, sσ〉 =

∫
X
〈Fh,L, sσ〉

=
∫
XrD
〈Fh, sσ,h〉 − 〈$(sσ,h)(∂sσ,h), ∂sσ,h〉.
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Hence we need to prove that the remaining integral converges to the local terms in the
definition of the parabolic degree, i.e.:

(2.10) lim
v→∞

√
−1

2π

∫
Bv
〈Fhv ,L, sσ〉 =

∑
i

deg
(
(P, χ), (Qi, αi)

)
.

Observe that on a small ball, we can use a holomorphic trivialization of the bundle Eσ,
and the connection form becomes Av = h−1

L,v∂hL,v with curvature F = dAv. It follows
that the quantity we have to study is

lim
v→∞

√
−1

2π

∫
∂Bv
〈Av, s〉 = lim

v→∞

√
−1

2π

∫
∂Bv
〈h−1

L ∂hL, s〉,

since hL,v coincides with hL in a neighbourhood of Xv.
We can choose a holomorphic trivialization of E in which the reduction σ has constant

coefficients. This induces also a holomorphic trivialization of the L-bundle Eσ,L.
We begin by the case where the metric h on E in this trivialization can be written as

(2.11) h = τ(g)−1g, where g = |z|−αiec,
and using HC = HP = HLN we decompose

g = k(z)l(z)n(z), with k(z) ∈ H, l(z) ∈ L, n(z) ∈ N.
The pair (k(z), l(z)) is defined only up to the action of P ∩H, so we can as well suppose
that τ(l) = l−1. It then follows that h = τ(n(z))−1l(z)2n(z), so the induced metric on
Eσ,L is

hL = l(z)2.

Then, because s is L-invariant, the limit to calculate becomes

lim
v→∞

√
−1
π

∫
∂Bv
〈∂ll−1, s〉.

Now one has
∂ll−1 = Ad(k)−1(∂gg−1)− k−1∂k − Ad(l)(∂nn−1).

Observe that since s ∈
√
−1h and k ∈ H, the term

√
−1
π

∫
∂Bv
〈k−1∂k, s〉 reduces to

1
2π
∫
∂Bv
〈
√
−1k−1∂θk, s〉. Therefore the limit reduces to

(2.12) lim
v→∞

√
−1
π

∫
∂Bv
〈Ad(k)−1(∂gg−1)− 1

2k
−1∂θk, s〉.

On the other hand, decompose similarly etα = k̃(t)p̃(t) with k̃(t) ∈ H and p̃(t) ∈ P
then 〈s · e−tα, α〉 = 〈Ad(k̃(t))s, α〉, so we obtain:

(2.13) deg
(
(P, χ), (Qi, αi)

)
= lim

t→∞
〈s · e−tα, α〉 = lim

t→∞
〈s,Ad(k̃(t))−1α〉.

If we have exactly the model behaviour g = |z|−αi , then one has k(z) = k̃(− ln |z|) and
∂gg−1 = −αi

2
dz
z

, so ∂θk = 0 and
√
−1
π

∫
∂Bv
〈Ad(k(z))−1(∂gg−1), s〉 = 〈Ad(k̃(v)−1)αi, s〉,

so the two limits (2.12) and (2.13) are the same.



PARABOLIC HIGGS BUNDLES 13

In the case we have a perturbation c, so that g = |z|−αiec and c satisfies the conditions
in Definition 2.12, we will be brief here since the handling of the perturbation c is
essentially similar to that in [64, Lemma 10.5] for the vector bundle case. We have just
seen that the Lemma is true for a metric h which has exactly the behaviour h = h0·|z|−αi
in a holomorphic trivialization near each xi, and we consider another metric h′ = h · ec.
The α-adapted hypothesis is |c|h = o(log |z|) near each xi and |Fh|h ∈ L1. We consider
the family of metrics h′t = h · etc for 0 6 t 6 1 on the bundle E. For this calculation,
since we have to use norms, it is more convenient to fix the metric h and to actually
vary the holomorphic structure of the bundle E, this is a completely equivalent point
of view which leads to the same curvature integral in (2.9): so we fix the metric h (and
therefore the H-bundle E) and consider the holomorphic bundle structures Et defined
on X rD by gauge transforming E:

∂̄Et = (e−tu)∗∂̄E = ∂̄E − (∂̄Eetu)e−tu.

As above, we can decompose etu = k̂(t)l̂(t)n̂(t) with k̂(t), l̂(t), n̂(t) sections of E(H),
Eσ(L), Eσ(N), and τ(l̂(t)) = l̂(t)−1. The P -reduction σ of E gives a P -reduction σt of
Et, represented by the section sσt,h of E(

√
−1h) given by

sσt,h = Ad(k̂t)sσ,h.

Similarly we decompose for each t

u = uh,t + up,t with uh,t ∈ E(
√
−1h), up,t ∈ Eσt(p).

Write ωt =
√
−1(〈FEt,h, sσt,h〉 − 〈$(sσt,h)(∂

Et
sσt,h), ∂

Et
sσt,h〉) the integrand in the RHS

of (2.9), then a standard calculation gives that d
dt
ωt = 2

√
−1∂∂̄〈up,t, sσt,h〉, and therefore

ω1 − ω0 = 2
√
−1∂∂̄f, with f =

∫ 1

0
〈up,t, sσt,h〉dt.

Since sσ1,h provides a holomorphic P -reduction, ∂E1
sσ1,h takes its values only in the

negative eigenspaces of ad(sσ1,h) so we have ω1 >
√
−1〈FE1,h, sσ1,h〉 which is L1 since

by hypothesis |FE1,h|h ∈ L1; therefore

(2.14) 2
√
−1∂∂̄f > b with b ∈ L1.

Again from the hypothesis on u, we have near each puncture

(2.15) f = o(log |z|).

The conditions (2.14) (2.15) are enough to ensure that 2
√
−1∂∂̄f ∈ L1 and∫

XrD
2
√
−1∂∂̄f = 0.

(This was already used in [64], see Lemma 10.5, Proposition 2.2 and the remark following
it). Therefore 1

2π
∫
XrD ω1 = 1

2π
∫
XrD ω0 = pardegα(E)(σ, χ) and the Lemma is proved.

�
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3. Parahoric bundles

Our definition of parabolic bundles is suitable for prescribing the asymptotic be-
haviour near a divisor D ⊂ X of reductions, defined on X rD, of the structure group
of an HC-principal bundle to the maximal compact subgroup H ⊂ HC. But it has the
obvious inconvenient that in the situations when P 1

αi
is nontrivial the sheaf PE(HC)

contains meromorphic sections whose effect on E is somewhat unclear (see Remark 2.5
above), in that they transform E into a different bundle. This issue becomes transpar-
ent from the point of view of parahoric bundles introduced by Pappas and Rapoport
[59] (see also [13]), and whose moduli problem was studied by Balaji and Seshadri in
[3] in relation with local systems with compact structure group on punctured Riemann
surfaces. In this section we recall the definition of parahoric bundles and we relate it to
the objects we just defined. We would like to emphasize that this section is not strictly
necessary for our arguments, except for the definition of meromorphic equivalence given
in Definition 3.3 and the results in Section 3.4. The main purpose of most of this section
is to clarify the nature of the objects we are going to work with.

We also show how the notion of parahoric bundles is the natural context for Hecke
transformations. This is of course well known in the algebraic world (see e.g. [3, Section
8.2.1]), but our approach, much more analytic than that of [3, 13, 59], seems to be new
(see Subsection 3.3 below).

The existence of Hecke transformations implies that even restricting to the case αi ∈√
−1Ā we cover, up to isomorphism, all possible choices of weights α. This is one

reason for avoiding parahoric bundles in our approach. A second reason, not unrelated
to the first, is that taking weights in

√
−1Ā suffices to realize all possible monodromies

around the punctures in the correspondence between parabolic Higgs bundles and local
systems, as we prove in the paper. On the other hand one can use Hecke transformations
to identify, for any choice of weights α, the category of parahoric bundles of weight α
with the category of parabolic orbibundles on X for suitable choices of: weights in√
−1A′, orbifold structure on the divisor D, and topological type of orbibundles. This

can be done thanks to Proposition A.2.
The Hecke transformations are compatible with the reductions of the structure group

to standard parabolic subgroups, since they use only the action of the complexified max-
imal torus TC, which is contained in all standard parabolic subgroups. This, combined
with an easy computation of degrees, implies that Hecke correspondence is compatible
with the stability notions à la Ramanathan, see Subsection 4.2.

Finally, Hecke transformations can be used to extend the definition of parabolic Higgs
bundles for a choice of parabolic structure of weights in

√
−1Ā (see Section 4.1) to a

notion of parahoric Higgs bundles for an arbitrary choice of weights α.

3.1. Definition of parahoric bundles. Recall that we are fixing an alcove A ⊂ t
of H such that 0 ∈ Ā (see Appendix A.1). Let α = (α1, . . . , αr) be a collection of
arbitrary elements of

√
−1t. Let X∗ = X r D = X r {x1, . . . , xr} and for any open

subset Ω ⊂ X denote Ω∗ := Ω ∩X∗. Choose for each j a local holomorphic coordinate
zj on a neighbourhood of xj satisfying zj(xj) = 0.
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Let Gα be the sheaf of groups on X defined as follows: for any open subset Ω ⊂ X,
Gα(Ω) is equal to the set of all holomorphic maps φ : Ω∗ → HC with the property that
for every j such that xj ∈ Ω

|zj(p)|−αjφ(p)|zj(p)|αj = exp(− ln |zj(p)|αj)φ(p) exp(ln |zj(p)|αj)

stays in a compact subset of HC as p → xj. It is easy to check that this definition
is independent of the choice of local holomorphic coordinates. The sheaf Gα is the
holomorphic analogue of the Bruhat–Tits group scheme GΘ,X in [3].

A parahoric bundle over (X,D) of weight α is a sheaf of torsors over the sheaf of
groups Gα.

Let W denote the Weyl group of H and let WA′ = ⋃
w∈W wA′. We next prove that

if αj ∈
√
−1WA′ for every j then a parahoric bundle of weight α is equivalent to a

parabolic principal bundle in the sense of Definition 2.3. Define Gstd
α to be the sheaf

of groups on X such that, for any open Ω ⊂ X, Gstd
α (Ω) is equal to the set of all

holomorphic maps φ : Ω→ HC satisfying φ(xj) ∈ Pαj for each j such that xj ∈ Ω. We
now have

(3.1) Gα = Gstd
α ⇐⇒ αj ∈

√
−1WA′.

This is an immediate consequence of the characterisation of
√
−1WA′ as the subset of√

−1t consisting of those elements β such that all eigenvalues of ad(β) have absolute
value smaller than 1 (see (3) in Proposition A.2). To conclude our argument, one has
the following.

Proposition 3.1. A sheaf of torsors over Gstd
α is the same thing as a holomorphic

HC-principal bundle E and a choice of parabolic structures {Qj ⊂ E(HC)xj}j.

Proof. Suppose given (E, {Qj}). For each j define Rj ⊂ Exj to be the set of all e ∈ Exj
such that Pαj = {φ(e) | φ ∈ Qj}. Let E be the sheaf whose sections on an open
subset U ⊂ X are the holomorphic sections of E|U whose value at each xj belongs to
Rj. Then E is a sheaf of Gstd

α -torsors. For the converse, let G denote the sheaf of local
holomorphic maps to HC. Clearly Gstd

α is a subsheaf of G, so if E is a sheaf of Gstd
α -torsors

then E′ = E ×Gstd
α

G is a sheaf of G-torsors, which can be identified with the sheaf of
local holomorphic sections of a holomorphic principal HC-bundle E over X. Now, E is
naturally a subsheaf of E′, and defining for every j the subset Rj ⊂ Exj as the set of
images at xj of local sections of E contained in E we obtain an orbit of the action of
Pαj at Exj . Then setting Qj = {φ ∈ E(HC)xj | φ(Rj) = Pαj} we obtain a parabolic
structure at xj. This construction is clearly the inverse of the previous one. �

3.2. Parahoric bundles vs. parabolic bundles with weights in
√
−1Ā. Our next

aim is to understand the parabolic bundles defined in Subsection 2.1 (which may have
weights in

√
−1Ā) from the viewpoint of parahoric bundles.

For any α = (α1, . . . , αr), define a sheaf of groups Gwall
α over X by the prescription

that, for any open subset Ω ⊂ X, Gwall
α (Ω) is equal to the group of holomorphic maps

Ω∗ → HC such that for every xj ∈ Ω and any local holomorphic coordinate z defined
on a neighbourhood of xj and satisfying z(xj) = 0 we have φ = g exp(n/z), where g is
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holomorphic map from a neighbourhood of xj to HC satisfying g(xj) ∈ Pαj and n is an
element of p1

αj
. Similarly to (3.1), we have

(3.2) Gα = Gwall
α ⇐⇒ αj ∈

√
−1W Ā =

√
−1

⋃
w∈W

wĀ.

Let α = (α1, . . . , αr) be a collection of elements of
√
−1Ā. Let (E, {Qi}) be a

parabolic bundle of weight α, and let Estd be the corresponding sheaf of Gstd
α -torsors,

defined in the subsection above. Now, Gstd
α is a subsheaf of Gα (this is not true for

arbitrary values of α: in fact, it is equivalent to the condition that αj belongs to Ā for
each j). Hence, one can associate a parahoric bundle to (E, {Qi}) by extending the
structure group of Estd. Namely,

E = Estd ×Gstd
α

Gα.

Then equality (3.2) implies that the sheaf of groups PE(HC) is canonically isomorphic
to the sheaf of automorphisms of E.

It is interesting to understand how to go the other way round, since this explains
why we need to identify different principal bundles. Passing from E to Estd is the same
as reducing the structure group from Gα to Gstd

α , equivalently, choosing a section of
E/Gstd

α . The latter is supported on D, and the stalk over xj can be identified, using the
residue map (hence, non canonically), with (Gα)xj/(Gstd

α )xj ' p1
αj

. Hence the collection
of all reductions from E to Estd is parametrized by the vector space ∏j p

1
αj

. The set of
all reductions defines a holomorphic principal bundle over X × ∏j p

1
αj

, so all possible
reductions have topologically equivalent underlying principal HC-bundles. However,
they will usually be different as holomorphic bundles.

Example 3.2. Suppose that H = SU2, so that HC = SL2C and assume that V = L⊕L−1

for some line bundle L→ X. Such V defines in the usual way a principal SL2C-bundle
E. Take D = x, and choose α ∈

√
−1su2 to be the diagonal matrix with entries 1/2

and −1/2. Let Q be the group of automorphisms of Lx⊕L−1
x preserving the summand

Lx. Then (E,Q) is a parabolic principal bundle with weight α. Let Estd be the sheaf of
Gstd
α -torsors associated to (E,Q) and let E = Estd ×Gstd

α
Gα. We have

p1 =


 0 λ

0 0

 : λ ∈ C

 .
A choice of λ defines a reduction of E whose underlying principal SL2C-bundle corre-
sponds to a holomorphic vector bundle Vλ sitting in a short exact sequence

0→ L→ Vλ → L−1 → 0.
We claim that in general this sequence does not split. The relation between V and Vλ
can be described explicitly in terms of local trivialization; namely, passing from V to Vλ
consists on multiplying the patching map for suitable trivializations of V on X r {x}
and a disk ∆ centred at x by the map

∆ r {0} → SL2C, z 7→

 1 λz−1

0 1

 .



PARABOLIC HIGGS BUNDLES 17

Choosing L appropriately, the vector bundle Vλ is going to be (holomorphically) different
from V when λ 6= 0.

Definition 3.3. Let E0, E1 be two holomorphic HC-principal bundles and let {Qi,j ⊂
Ei(HC)xj}, be parabolic structures on Ei, i = 0, 1, defined along D. We say that
(E0, {Q0,i}) and (E1, {Q1,i}) are meromorphically equivalent if, denoting by Estd

0
and Estd

1 the corresponding sheaves of Gstd
α -torsors, there is an isomorphism

Ψ : Estd
0 ×Gstd

α
Gα → Estd

1 ×Gstd
α

Gα

of sheaves of Gα-torsors. We call Ψ a meromorphic equivalence between (E0, {Q0,i})
and (E1, {Q1,i}).

A choice of meromorphic equivalence between (E0, {Q0,i}) and (E1, {Q1,i}) is the
same thing as an isomorphism of principal bundles

ψ : E0|X∗ → E1|X∗
satisfying the following property, for every j. Let Ri,j ⊂ Ei,xj be defined as at the end
of the previous subsection. Let U ⊂ X be a small disk centred at xj and disjoint from
all other points of the support of D. Let σi ∈ Γ(U,Ei), i = 0, 1, be holomorphic sections
satisfying σi(xj) ∈ Ri,j. Consider the holomorphic map f : U r {xj} → HC defined by
the condition

ψ(σ0(y)) = σ1(y)f(y) for every y ∈ U r {xj}.
Then f ∈ Gα = Gwall

α .

3.3. Hecke transformations. Consider for each j an element λj ∈
√
−1t such that

2π
√
−1λ ∈ Λcochar (see Appendix A.1) and let λ = (λ1, . . . , λr). In this subsection we

define the Hecke transformation τλ, which is a natural 1—1 correspondence between
sheaves of Gα-torsors and sheaves of Gα+λ-torsors.

Choose an isomorphism T ' (S1)k and let θi : S1 → H be the composition of the
inclusion of the i-th factor S1 ↪→ T with the inclusion T ↪→ H. Let χi ∈

√
−1Λcochar be

defined by the condition that θi(e2π
√
−1u) = exp(uχi) and write

λj =
∑
i

√
−1

2π ajiχi,

where aji ∈ Z. Consider the invertible sheaf Li = O(∑j ajixj), and let σi ∈ H0(X,Li)
satisfy σ−1

i (0) = ∑
j ajixj. Let L∗i ⊂ Li be the subsheaf of local nowhere vanishing

sections and let L∗ = ∏
iL
∗
i . Let O∗ be the sheaf of local nowhere vanishing holomorphic

functions on X. Note that L∗ is in a natural way a sheaf of (O∗)k-torsors.
Denote the complexification of θi by θCi : C∗ → HC. The morphisms (θC1 , . . . , θCk ) give

a monomorphism of sheaves of groups
Θ : (O∗)k → G

(recall that G is the sheaf on X of local holomorphic maps to HC).
Fix some α = (α1, . . . , αr) with arbitrary components αj ∈

√
−1t. Define the sheaf

L∗ ⊗Ad Gα to be the quotient of L∗ × Gα by the relation that identifies
((l1ψ1, . . . , lkψk), φ) ∼ ((l1, . . . , lk),Θ(ψ1, . . . , ψk)φΘ(ψ1, . . . , ψk)−1)
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for every x ∈ X and elements li ∈ (L∗i )x, ψi ∈ O∗x and φ ∈ (Gα)x (the subindex x
denotes here as usual the stalk over x). We next define a structure of sheaf of groups on
L∗ ⊗Ad Gα. It suffices to describe the structure at the level of stalks. Given x ∈ X and
two elements ζ, ζ ′ ∈ (L∗ ⊗Ad Gα)x one can take representatives of ζ and ζ ′ of the form
ζ = [((l1, . . . , lk), φ)] and ζ ′ = [((l1, . . . , lk), φ′)], and then we set ζζ ′ = [((l1, . . . , lk), φφ′)].
This operation is well defined and endows L∗⊗AdGα with the structure of sheaf of groups.

Lemma 3.4. The sheaf of groups L∗ ⊗Ad Gα is isomorphic to Gα+λ.

Proof. We construct a morphism of sheaves of groups Ξ : L∗⊗AdGα → Gα+λ at the level
of stalks. Given ζ = [((l1, . . . , lk), φ)] ∈ (L∗ ⊗Ad Gα)x consider the expression

µ = Θ(l1σ−1
1 , . . . , lkσ

−1
k ) · φ ·Θ(l1σ−1

1 , . . . , lkσ
−1
k )−1.

Taking into account that each liσ−1
i is a germ of meromorphic function at x, we can view

µ as a germ of meromorphic map from a neighbourhood U of x to HC. We claim that
µ ∈ (Gα+λ)x. If x /∈ {x1, . . . , xr} then this is obvious, since µ is actually holomorphic.
Suppose now that x = xj. Let z = zj be the local holomorphic coordinate near x chosen
in Subsection 3.1. One checks that Θ(z−aj1 , . . . , z−ajk) = exp((ln z)λj) = zλj . Now:

µ ∈ (Gα+λ)x ⇐⇒ Θ(z−aj1 , . . . , z−ajk) · φ ·Θ(z−aj1 , . . . , z−ajk)−1 ∈ (Gα+λ)x
⇐⇒ zλjφz−λj ∈ (Gα+λ)x
⇐⇒ |zj|−(αj+λj)zλjφz−λj |zj|αj+λj uniformly bounded near x
⇐⇒ |zj|−αjφ|zj|αj uniformly bounded near x
⇐⇒ φ ∈ (Gα)x.

This proves that setting Ξ(ζ) = µ defines a morphism of sheaves from L∗ ⊗Ad Gα to
Gα+λ. One checks easily that Ξ is an isomorphism of sheaves of groups. �

Now let E be a parahoric bundle of weight α. We define its λ-Hecke transformation
to be

τλ(E) = E⊗(O∗)k L
∗,

where E⊗(O∗)k L
∗ denotes the quotient of E×L∗ by the relation that identifies, at any

point x,
(ε, (l1ψ1, . . . , lkψk)) ∼ (ε ·Θ(ψ1, . . . , ψk)−1, (l1, . . . , lk))

for every ε ∈ Ex, li ∈ (L∗i )x and ψi ∈ O∗x. This makes sense because Θ(ψ1, . . . , ψk) ∈
(Gα)x (in fact this holds for every α), and E is a sheaf of torsors over Gα. Now we define
on E⊗(O∗)k L

∗ a structure of sheaf of L∗ ⊗Ad Gα-torsors, by the condition that

(ε, (l1, . . . , lk)) · ((l1, . . . , lk), φ) = (ε · φ, (l1, . . . , lk)).

It is easy to prove that τ−λ(τλ(E)) is naturally isomorphic to E. Taking into account
Lemma 3.4, we obtain the following.

Theorem 3.5. The λ-Hecke transformation τλ establishes a natural 1–1 correspondence
between parahoric bundles of weight α and parahoric bundles of weight α + λ.



PARABOLIC HIGGS BUNDLES 19

3.4. Meromorphic maps to HC. Let ∆ be the unit disc in C centred at 0, and let
∆∗ = ∆ r {0}. A holomorphic map g : ∆∗ → HC is said to be meromorphic if for
any holomorphic morphism ρ : HC → SLNC ⊂ EndCN there exists some integer k such
that

∆∗ 3 z 7→ zkρ(g(z)) ∈ EndCN

extends to a holomorphic map ∆ → EndCN . By Riemann’s extension theorem the
sections of the sheaves Gα are meromorphic in the previous sense.

Lemma 3.6. Let P ⊂ HC be a parabolic subgroup. Let σ : ∆ −→ HC/P be a holo-
morphic map and let g : ∆∗ −→ HC be a meromorphic map at 0. Then the map
g · σ : ∆∗ −→ HC/P defined by g(z) · σ(z) can be extended to a holomorphic map
∆ −→ HC/P .

Proof. Choose an embedding ξ : H → SUN for some big N , and denote by the same
symbol both the holomorphic extension to the complexifications ξ : HC → SLNC and
the induced morphism ξ : hC → slNC of Lie algebras. Suppose that P = Pβ for
some β ∈

√
−1h and let P ′ = Pξ(β) ⊂ SLNC be the corresponding parabolic subgroup.

Identifying HC with ξ(HC) we may write P = P ′∩HC, which implies that the inclusion
ξ : HC ↪→ SLNC induces a (holomorphic) inclusion HC/P ↪→ SLNC/P ′ with closed
image. Hence it suffices to consider the case HC = SLNC. Then SLNC/P ′ is a partial
flag variety. Via the Plücker embedding, we may further reduce our statement to the
following one: if g : ∆∗ −→ SLNC is a map whose composition with the inclusion
SLNC ↪→ EndCN is meromorphic, if σ : ∆→ PN ′ is a holomorphic map, and if there is
a linear action of SLNC on PN ′ , then g · σ : ∆∗ → PN ′ extends to a holomorphic map
∆→ PN ′ . This last statement follows from an immediate computation, so the proof of
the lemma is complete. �

This has the following immediate consequence.

Lemma 3.7. Suppose that two parabolic principal HC-bundles (E, {Qi}) and (E ′, {Q′i})
are meromorphically equivalent in the sense of Definition 3.3. Then for any parabolic
subgroup P ⊂ HC the holomorphic reductions of the structure groups Γ(E/P ) and
Γ(E ′/P ) are in bijection. The bijection is given by extending across D the natural
holomorphic isomorphism E|XrD → E ′|XrD which exists in each of the two cases.

This statement can be summarized by saying that P -reductions are not affected by
meromorphic equivalence of bundles. It it interesting to note that if L ⊂ P is a Levi
subgroup, the same is not true for L-reductions. More precisely, if E and E ′ are as in
the lemma, then a L-reduction for E may not give a L-reduction to E ′ (it is easy to
construct an explicit example on a SL2C-bundle). This is because HC/P is compact
but HC/L is not so the reduction may ‘escape’ at infinity.

4. Parabolic G-Higgs bundles

4.1. Definition of parabolic G-Higgs bundle. Following the definition and notation
in Appendix A.2, let G = (G,H, θ, B) be a real reductive Lie group. Let X be a compact
connected Riemann surface and let {x1, · · · , xr} be a finite set of different points of X.
Let D = x1 + · · · + xr be the corresponding effective divisor. Let E be a parabolic
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principal HC-bundle over (X,D). Let E(mC) be the bundle associated to E via the
isotropy representation (see Appendix A.2).

As above, we fix an alcove A ⊂ t of H such that 0 ∈ Ā (see Appendix A.1). We now
define the sheaf PE(mC) of parabolic sections of E(mC) and the sheaf NE(mC)
of strictly parabolic sections of E(mC). These consist of meromorphic sections of
E(mC), holomorphic on X r D, with singularities of a certain type on D. More pre-
cisely, choose a holomorphic trivialization ei of E near xi compatible with the parabolic
structure. Let αi ∈

√
−1Ā be the parabolic weight at xi. In the trivialization ei, we

can decompose the bundle E(mC) under the eigenvalues of ad(αi) (acting on mC),

E(mC) = ⊕µmC
µ .

Decompose accordingly a section ϕ of E(mC) as ϕ = ∑
ϕµ, then we say that ϕ is a

section of the sheaf PE(mC) (resp. NE(mC)) if ϕ is meromorphic at xi, and ϕµ has
order

(4.1) v(ϕµ) > −b−µc (resp. v(ϕµ) > −b−µc).

This means that if a − 1 < µ 6 a (resp. a − 1 6 µ < a) for some integer a, then
ϕµ = O(za).

An equivalent way to define it is to say that a section of PE(mC) is a holomorphic
section of the bundle

⊕µmC
µ(b−µcxi).

Of course, in general, if we take a holomorphic bundle with some decomposition at
a point, this construction does not make sense, because the result depends on the
extension of the decomposition near the point. However, the following lemma proves
that, in our case, the definition does not depend on the choice of the trivialization.

Lemma 4.1. The action of a section g of the sheaf PE(HC) preserves the set of sections
of the sheaves PE(mC) and NE(mC).

Proof. We write the proof only for PE(mC). The first case is that of a section g =
exp(n/z) with n ∈ q1

i . Then, for ϕ ∈ E(mC),

Ad(g)ϕ = ead n
z ϕ

= ϕ+ [n
z
, ϕ] + 1

2[n
z
, [n
z
, ϕ]] + · · ·

Since [αi, n] = −n, one has [n,mC
µ ] ⊂ mC

µ−1, so Ad(g)ϕ satisfies (4.1) if ϕ does.
The second case is that of a constant g ∈ Qi: it is clear that nothing is changed if g

belongs to the Levi subgroup Lαi (see Section B.1), so we can suppose that g belongs
to the unipotent part of Qi: let us write g = exp(n) with

(4.2) n ∈ ⊕λ<0h
C
λ ,

where hC = ⊕λhCλ is the eigenspace decomposition of hC under the action of ad(αi).
Then, as above,

Ad(g)ϕ = ϕ+ [n, ϕ] + 1
2[n, [n, ϕ]] + · · ·
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Because of (4.2), if ϕ ∈ mC
µ then [n, ϕ] ∈ ⊕λ<0m

C
λ+µ, and more generally Ad(g)ϕ− ϕ ∈

⊕µ′<µmC
µ′ , so that Ad(g)ϕ again satisfies (4.1).

The third and last case consists in applying a holomorphic change of trivialization by
a g ∈ HC such that g(xi) = 1. Let us write g = exp(zu) with u ∈ hC holomorphic, and
decompose u = ⊕λuλ. Then, again,

Ad(g)ϕ = ϕ+ z[u, ϕ] + z2

2 [u, [u, ϕ]] + · · ·

Here the important point is that all the eigenvalues λ satisfy |λ| 6 1, so that if ϕ ∈ mC
µ ,

then ad(u)kϕ ∈ ⊕µ′6µ+km
C
µ′ and zk ad(u)kϕ again satisfies (4.1). This concludes the

proof that the sheaf PE(mC) is well defined. �

Remark 4.2. In terms of meromorphic equivalences (see Section 3.2), the previous lemma
can be stated as follows. If (E, {Qi}) and (E ′, {Q′i}) are two parabolic principal HC-
bundles, then any meromorphic equivalence ψ : E|XrD → E ′|XrD induces an isomor-
phisms of sheaves PE(mC)→ PE ′(mC) and NE(mC)→ NE ′(mC).

The sheaves PE(mC) and NE(mC) have a much simpler description when αi ∈√
−1A′g, where

(4.3) A′g = {α ∈ Ā such that the eigenvalues λ of ad(α) on g satisfy |λ| < 1}.

So the eigenvalues of ad(α) have modulus smaller than 1, not only on h, but on the
whole g, and in particular on m (one can often choose A so that this happens). To show
this, consider for α ∈

√
−1h the subspaces of mC defined by

mα = {v ∈ mC : Ad(etα)v is bounded as t→∞}
m0
α = {v ∈ mC : Ad(etα)v = v for every t}.

We have that m0
α ⊂ mα and we can choose a complement nα so that mα = m0

α ⊕ nα

Recall that when αi ∈
√
−1A′, the parabolic structure at xi is given by a parabolic

subgroup Qi ⊂ E(HC)xi isomorphic to Pαi . This determines an isomorphism of E(mC)xi
with mC. We can then define the subspaces mi, m0

i and ni of E(mC)xi corresponding
to mαi , m0

αi
and nαi , respectively. Then, when αi ∈

√
−1A′g the sheaf PE(mC) of

parabolic sections of E(mC) is the sheaf of local holomorphic sections ψ of E(mC)
such that ψ(xi) ∈ mi. Similarly, the sheaf NE(mC) of nilpotent sections of E(mC)
is the sheaf of local holomorphic sections ψ of E(mC) such that ψ(xi) ∈ ni. We then
have short exact sequences of sheaves

0→ PE(mC)→ E(mC)→
⊕
i

E(mC)xi/mi → 0,

and
0→ NE(mC)→ E(mC)→

⊕
i

E(mC)xi/ni → 0.

After these preliminaries, we can define a parabolic G-Higgs bundle to be a pair
of the form (E,ϕ), where E is a parabolic HC-principal bundle over (X,D) and ϕ —
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the Higgs field — is a holomorphic section of PE(mC) ⊗ K(D). We shall say that
(E,ϕ) is strictly parabolic if in addition ϕ is a section of NE(mC)⊗K(D).

Remark 4.3. It is worth point out that these definitions can be extended to more general
Higgs pairs, where we replace mC by an arbitrary representation of HC (see [29]).

We now define the residue of ϕ at the points xi. This is again much simpler if the
weights αi ∈

√
−1A′g. The Higgs field ϕ is then a meromorphic section of E(mC) ⊗K

with a simple pole at xi ∈ D and the residue of ϕ at xi is hence an element
Resxi ϕ ∈ mi.

We denote the projection of Resxi ϕ in m0
i by Gr Resxi ϕ. The space m0

i is invariant under
the action of Li ⊂ Qi, the subgroup corresponding to the Levi subgroup Lαi ⊂ Pαi . As
we will see, the orbit of this projection under Li is what is relevant in relation to local
systems and the construction of the appropriate moduli space.

More generally, if αi ∈
√
−1Ā, ϕ is a section of PE(mC) ⊗K(D), with PE(mC) '

⊕µmC
µ(b−µcxi) in a neighbourhood of xi. Choosing a holomorphic trivialization ofO(D)

at the point xi, we can identify the fibre of PE(mC) at xi with mC, and then project
the residue of ϕ at xi to the space m̃0

i ⊂ E(mC)xi corresponding to

(4.4) m̃0
αi

:= kermC(Ad(exp 2π
√
−1αi)− 1).

We denote again this projection by Gr Resxi ϕ. (In the case where αi ∈
√
−1A′g,

m̃0
i = m0

i , and this is just the projection on the Levi part m0
i as mentioned above.) Now

what will be relevant is the orbit of Gr Resxi ϕ under the group L̃i corresponding to

(4.5) L̃αi := StabHC(exp 2π
√
−1αi)

under the isomorphism of Qi with Pαi given by the parabolic structure of E.
In concrete terms, if we have a local coordinate z near xi and a holomorphic trivial-

ization of E near xi, we can write

ϕ =
∑
µ

ϕµ
zb−µc

dz

z
,

with ϕµ holomorphic, and then

Gr Resxi ϕ =
∑
µ∈Z

ϕµ(0).

If we change the coordinate, z′ = fz, then

ϕ =
∑
µ

f b−µc
ϕµ

(z′)b−µc

(
dz′

z′
− df

f

)
,

and ∑µ∈Z ϕµ(0) is changed into∑
µ∈Z

f(0)−µϕµ(0) = Ad(e−αi ln f(0))
∑
µ∈Z

ϕµ(0),

for any choice of logarithm of f(0). So we deduce that Gr Resxi ϕ is well defined up to
the action of the 1-parameter group generated by αi. Note that this ambiguity exists
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only in the case where ad(αi) has non zero integer eigenvalues on mC. In particular, the
orbit of Gr Resxi ϕ is well-defined under the action of L̃i.

We must also verify that the definition of Gr Resxi ϕ does not depend on the choice
of a gauge g ∈ PE(HC). The only significant case is that of a g(z) = exp n

z
with n ∈ q1

i .
Then

Ad(g(z))ϕ = ϕ+ 1
z

[n, ϕ] + 1
2z2 [n, [n, ϕ]] + · · ·

Since [n,mC
µ ] ⊂ mC

µ−1, it follows that Gr Resxi ϕ is transformed into
Ad(en) Gr Resxi ϕ.

The other cases are left to the reader.
Let us now see what the definition means in three simple cases.

Example 4.4. The first case is the one of Example 2.7, that is G = GLnC. Here a G-
Higgs bundle is just an ordinary Higgs bundle. In that case, the ambiguity on Gr Resxi ϕ
does not show up. The Higgs field ϕ is a meromorphic 1-form with simple poles at the
xi such that Resxi ϕ preserves the flag, and Gr Resxi ϕ is the endomorphism induced by
Resxi ϕ on the associated graded space (hence our notation Gr Resxi ϕ).

Example 4.5. The second example, in which the ambiguity shows up, is G = SL2R and
H = U1. A G-Higgs bundle in this case is given by an HC-bundle E, which is equivalent
to the data of the line bundle L = E(C), and a Higgs field ϕ which is a 1-form with
values in E(mC) = L2⊕L−2. The parabolic structure at a point x is given by a weight α
which we can take in the interval (−1

2 ,
1
2 ]. The eigenvalues of ad(α) on mC are ±2α, and

integer eigenvalues ±1 appear only for α = 1
2 . Let us examine this case more carefully.

If we represent α ∈
√
−1u1 as the matrix

(4.6) α =
1

2 0
0 −1

2

 ,
then we obtain, for holomorphic ϕ±,

(4.7) ϕ =
 0 zϕ+

1
z
ϕ− 0

 dz

z
, Gr Resx ϕ =

 0 ϕ+(0)
ϕ−(0) 0

 ,
and Gr Resxi ϕ is defined up to 0 ϕ+(0)

ϕ−(0) 0

 −→
 0 cϕ+(0)
c−1ϕ−(0) 0

 .
Of course there is another way to consider the same object: we can think of (E,ϕ) as
a GL2C-Higgs bundle, the underlying holomorphic bundle of which is L ⊕ L−1, with
parabolic weights (1

2 ,−
1
2). Actually, to get weights in a correct interval, it is better to

consider L⊕ L−1(D), with weights (1
2 ,

1
2). If (e1, e2) is a trivialization of L⊕ L−1, then

(e1, z
−1e2) is a trivialization of L⊕ L−1(D) and the Higgs field (4.7) becomes

ϕ =
 0 ϕ+

ϕ− 0

 dz

z
,
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so that Gr Resxi ϕ coincides with the one obtained in (4.7), with the same ambiguity
coming from the choice of a trivialization of O(D).

Example 4.6. The third and last example is just our second example considered for the
group G = SL2C, so H = SU2. Then HC = SL2C and mC = sl2C. The difference is now
that the weight (4.6) has nonzero integer eigenvalues on hC itself, so one must consider
gauge transformations which are meromorphic:

g =
O(1) O(z)
O(1

z
) O(1)

 .
This gauge transformation becomes holomorphic in the GL2C-gauge (e1, z

−1e2) con-
sidered above, and all the data of the G-Higgs bundle is equivalent to that of the
GL2C-Higgs bundle obtained after this Hecke transformation. Nevertheless, it is useful
to have a general definition which does not require to change the group.

4.2. Stability of parabolic G-Higgs bundles. The notion of stability, semistability
and polystability of a parabolic G-Higgs bundle depends on an element of

√
−1z, where z

is the centre of h. We will develop the theory here for any element in
√
−1z. However, in

order to relate parabolic G-Higgs bundles to G-local systems, one requires this element
to lie also in the centre of g, and actually to be 0. This is always the case in particular
if G is semisimple.

Let s ∈
√
−1h. We consider the parabolic subgroup Ps of HC, and the corresponding

Levi subgroup Ls as defined in Section B.1. Let χs be the corresponding antidominant
character of ps, where ps is the Lie algebra of Ps. We consider

ms = {v ∈ mC : Ad(ets)v is bounded as t→∞}
m0
s = {v ∈ mC : Ad(ets)v = v for every t}.

One has that ms is invariant under the action of Ps and m0
s is invariant under the

action of Ls. If G is complex, mC = g and hence the isotropy representation ι coincides
with the adjoint representation, then ms = ps and m0

s = ls.
We need to consider the subalgebra of h defined by

(4.8) h0 = h ∩ (∩χ character of g kerχ),
or, equivalently, by h0 = (h ∩ z(g))⊥.

Let (E,ϕ) be a parabolic G-Higgs bundle over (X,D). Let z be the Lie algebra
of Z(H), and let c ∈

√
−1z. We say that (E,ϕ) is c-semistable if for every s ∈√

−1h and any holomorphic reduction of the structure group of E to Ps, σ, such that
ϕ|XrD ∈ H0(X rD,Eσ(ms) ⊗K), where Eσ is the principal Ps-bundle obtained from
the reduction σ, we have
(4.9) pardegE(σ, χs)− 〈c, s〉 > 0.
If we always have strict inequality for s ∈

√
−1h0 we say that (E,ϕ) is c-stable. The

Higgs bundle (E,ϕ) is c-polystable if it is semistable and if, whenever equality occurs
for some s ∈

√
−1h0 and σ, there is:
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• a Higgs bundle (E ′, ϕ′) meromorphically equivalent to (E,ϕ); by Lemma 3.7,
(E ′, ϕ′) inherits from σ a holomorphic reduction to Ps of its structure group;
and
• a further holomorphic reduction σLs of the structure group of E ′ to Ls,

so that

(1) ϕ′|XrD ∈ H0(X rD,EσLσ (m0
s)⊗K);

(2) the bundle ELs has a parabolic structure at the points of D which is compatible
with that of E ′ in the sense that the parabolic bundle E ′ is induced from ELs
through the injection Ls ↪→ HC as in Remark 2.9; this implies in particular that
the parabolic weights αi of E at the punctures actually lie in ls.

In this definition, in contrast to parabolic reductions, it is important to allow the re-
duction to the Levi to exist on a meromorphically equivalent bundle, see Lemma 3.7
and the remarks following it. It then follows that our various stability conditions are
invariant by meromorphic equivalence.

We will refer to 0-stability simply as stability.

Remark 4.7. If the weights are in
√
−1A′g we can define the sheaf PEσ(ms) of parabolic

sections of Eσ(ms) as the sheaf of holomorphic sections ψ of Eσ(ms) such that ψ(xi) ∈
mi ∩ Eσ(ms)xi , and require that ϕ ∈ H0(X,PEσ(ms)⊗K(D)).

Remark 4.8. (Semi)stability can be formulated as above in terms of any parabolic sub-
group P ⊂ HC conjugated to a parabolic subgroup of the form Ps, and any antidominant
character χ of p, the Lie algebra of P .

5. Hitchin–Kobayashi correspondence

Let X be a compact Riemann surface and let D a divisor of X as above. Choose a
smooth 2-form ω on X rD. Suppose either that ω extends smoothly across D or that
it blows up near D less rapidly than the Poincaré metric in X rD (given by 5.17). In
any case we assume that

∫
ω = 2π. Let G = (G,H, θ, B) be a real reductive Lie group.

Let (E,ϕ) be a parabolic G-Higgs bundle on (X,D). Let c ∈
√
−1z, as in Section 4.2.

We are looking for a metric h on E outside the divisor D, i.e. h ∈ Γ(XrD,E(H\HC)),
satisfying the c-Hermite–Einstein equation:

(5.1) R(h)− [ϕ, τh(ϕ)] +
√
−1cω = 0,

where R(h) is the curvature of the unique connection A(h) compatible with the holomor-
phic structure of E and the metric h, and τh is the conjugation on Ω1,0(E(mC)) defined
by combining the metric h and the standard conjugation on X from (1, 0)-forms to
(0, 1)-forms. We shall denote

F (h) = R(h)− [ϕ, τh(ϕ)] +
√
−1cω.

5.1. Initial metric. We begin by constructing a singular metric h0 which gives an
approximate solution to the equations. This metric is α-adapted, in the sense of Section
2.4.
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We first construct a model metric near each singular point xi. We decompose
Gr Resxi ϕ into its semisimple part and its nilpotent part,

(5.2) Gr Resxi ϕ = si + Yi.

Let ei ∈ Exi be an element belonging to the Pαi orbit specified by the parabolic
structure. Choose a local holomorphic coordinate z, and extend the trivialization ei
into a holomorphic trivialization of E around xi, so we can identify locally the metric
with a map into H\HC. If Yi = 0, then the model metric is

(5.3) h0 = |z|−2αi(= e−2αi ln |z|).

If we change the trivialization by a gauge transformation g ∈ Γ(X,PE(HC)), the result-
ing metric will remain at bounded distance of h0 in H\HC, so h0 defines a quasi-isometry
class of metrics on E near xi.

If Yi 6= 0, then consider the reductive subalgebra

(5.4) ri = ker(Ad(e2π
√
−1αi)− 1) ∩ ker(ad si)

of gC. Recall that Gr Resxi ϕ is the projection of the residue of ϕ to m̃0
i the centralizer

of e2π
√
−1αi , defined in (4.4), and hence Yi belongs to ri. We can complete Yi into a

Kostant–Rallis sl2-triple (Hi, Xi, Yi) (see Appendix A.3) such that

(5.5) Hi ∈ hC ∩ ri, Xi, Yi ∈ mC ∩ ri.

Moreover, maybe after conjugation (which means that we change the trivialization), we
can assume that

(5.6) Hi ∈
√
−1h, Xi = −τ(Yi),

where τ is the conjugation of gC with respect to a compact form so that θ and τ
commute. Now the Higgs field has the form

(5.7) ϕ =
(
si + Ad(zαi)(Yi) + ψ

)dz
z
, ψ ∈ NE(mC).

This is well defined because Yi ∈ ker(Ad(e2π
√
−1αi) − 1) so that Yi decomposes on

eigenspaces of adαi corresponding to the integral eigenvalues. The model for the metric
is

(5.8) h0 = |z|−αi(− ln |z|2)Ad(e
√
−1θαi )Hi|z|−αi .

Again this is well defined because Hi ∈ ker(Ad(e2π
√
−1αi)−1). In the case where αi ∈ A′

(that is all eigenvalues of adαi in hC have modulus less than 1) then [αi, Hi] = 0 and
the formula simplifies to h0 = |z|−2αi(− ln |z|2)Hi . The general formula (5.8) is obtained
from the gauge zαi , which exists only on the universal cover of the punctured disc: in
that gauge the Higgs field writes (si + Yi)dzz and the metric h0 is simply (− ln |z|2)Hi .

Again, a different choice of trivialization leads to a metric which remains quasi-
isometric to h0. Also note that h0 is αi-adapted in the sense of definition 2.1.

Now extend the local model to some global metric h0 on E. The quasi-isometry
class of h0 is well-defined. We shall now prove that the metric h0 gives an approximate
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solution of the Hermite–Einstein equation near the marked point xi. Instead of working
in the holomorphic gauge e of E, we choose the unitary gauge

(5.9) e = eg0, g0 = |z|αi(− ln |z|2)−Ad(e
√
−1θαi )Hi/2,

so that the ∂̄-operator of E can be written locally as

(5.10) ∂̄E = ∂̄ + g−1
0 ∂̄g0 = ∂̄ +

(
αi −

Ad(e
√
−1θαi)Hi

ln |z|2
)dz̄

2z̄
and the associated H-connection is

(5.11) A0 = d−
√
−1
(
αi −

Ad(e
√
−1θαi)Hi

ln |z|2
)
dθ.

Here by a ∂̄-operator on E we mean a holomorphic structure on the underlying smooth
HC-bundle. The space of holomorphic structures on this smooth bundle is an affine
space modelled on the space of (0, 1)-forms with values in the adjoint bundle E(hC).
The ∂̄ appearing in (5.10) represents an origin in this affine space. After choosing a
faithful representation of HC, one obtains a true ∂̄-operator on the associated vector
bundle.

On the other hand, still in the unitary gauge e, we obtain the expression for the Higgs
field by the action of Ad(g−1

0 ), which gives

(5.12) ϕ =
(
si −

Ad(e
√
−1θαi)Yi

ln |z|2
)dz
z

+O(|z|ε)dz
z
.

As in formula (5.7) this is well defined. Therefore we obtain, using (5.6),

R(h0) = Ad(e
√
−1θαi)Hi

dz ∧ dz̄
|z|2(ln |z|2)2 ,

[ϕ, τh0(ϕ)] = Ad(e
√
−1θαi)Hi

dz ∧ dz̄
|z|2(ln |z|2)2 +O(|z|ε)dz ∧ dz̄

|z|2
,

(5.13)

and we clearly have an approximate solution of the Hermite–Einstein equation (5.1).
We can regard the unitary gauge e as defining a different extension of E near the

punctures, which is a unitary extension. The resulting H-principal bundle on X will be
denoted E.

5.2. The correspondence. We are now in a position to state the main theorem in this
section. First remark that if χ is a character of G, then χ([ϕ, θ(ϕ)]) = 0 and therefore
the Hermite–Einstein equation (5.1) implies pardegχE = χ(c). In particular, if c = 0,
pardegχE = 0. It is important to note that this is no longer true in general for a
character of H alone, so we cannot conclude that the total parabolic degree of E must
vanish. This justifies the topological condition in the following theorem.

Theorem 5.1. Let (E,ϕ) be a parabolic G-Higgs bundle, equipped with an adapted
initial metric h0. Let c ∈

√
−1 z(h) such that pardegχE = χ(c) for all characters χ

of g. Then (E,ϕ) admits a c-Hermite–Einstein metric h quasi-isometric to h0 and αi-
adapted at each puncture xi, if and only if (E,ϕ) is c-polystable. Moreover, any two
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such Hermite-Einstein metrics are related by an automorphism of (E,ϕ), that is, an
element of PE(HC) fixing ϕ.

It seems difficult to reduce Theorem 5.1 to the theorem of Simpson [65] for the case
G = GLnC by taking a faithful representation, since in particular it is not clear how the
stability conditions would relate. Instead, we prefer to give a direct proof by checking
that the proof in [8] still applies here.

We prove the Theorem in the next sections. For clarity, we restrict to the case c = 0
(it is well-known how to modify the proof to handle nonzero c, see for example [19]),
and we will refer to 0-polystability as polystability.

5.3. The polystability condition is necessary. Suppose that s ∈
√
−1h and we

have a holomorphic reduction σ of the structure group of E to the parabolic group Ps,
such that
(5.14) ϕ|XrD ∈ H0(X rD,Eσ(ms)⊗K).
Using the operator D′′ defined by D′′s = ∂s + [ϕ, s], we can rewrite the formula in
Lemma 2.13 as

pardegα(E)(σ, χ) =
√
−1

2π

∫
XrD
〈Rh − [ϕ, τh(ϕ)], sσ,h〉 − 〈$(sσ,h)(D′′sσ,h), D′′sσ,h〉.

(The additional terms involving the Higgs field cancel out). If h is a Hermite-Einstein
metric, then the first term in the sum vanishes and there remains

pardegα(E)(σ, χ) =
√
−1

2π

∫
XrD
−〈$(sσ,h)(D′′sσ,h), D′′sσ,h〉 > 0.

The inequality comes from the fact that for a holomorphic reduction satisfying (5.14),
then D′′sσ,h lives in the negative eigenspaces of ad sσ,h. Equality therefore occurs if and
only if D′′sσ,h = 0. Since s ∈

√
−1h, this implies that sσ,h is parallel:

∇hsσ,h = [ϕ, sσ,h] = [τh(ϕ), sσ,h] = 0.
It is now clear that sσ,h induces a reduction of the Higgs bundle (E,ϕ) to the Levi
subgroup Ls over XrD, and there remains to understand the behavior at the punctures
xi.

Take a local holomorphic trivialization of E near xi, such that the αi-adapted metric
h can be written h = h0 · |z|−αiec, where c satisfies the conditions of Definition 2.12.
Since sσ,h is parallel, it has constant norm, which implies that in the trivialization the
coefficients of sσ,h satisfy Ad(|z|−αi)sσ,h = O(|z|−ε) for every ε > 0, which implies that
actually sσ,h is a section of the sheaf PE(hC). Decomposing hC = ⊕λhCλ according to the
eigenvalues λ ∈ (−1, 1) of adαi, we therefore obtain that sσ,h = Ad(zαi)σ0+σ−+zσ++s1,
where σ0 ∈ ker(Ad(e2

√
−1παi) − 1) (so that Ad(zαi)σ0 makes sense), σ− ∈ ⊕−1<λ<0h

C,
σ+ ∈ ⊕0<λ<1h

C and s1
z

is a section of the sheaf PE(hC).
We can conjugate σ0 to a σ′0 ∈ ker(adαi) under an element u of the centralizer of

e2π
√
−1αi . Writing u = eυ with υ ∈ ker(Ad(e2

√
−1παi) − 1), the meromorphic gauge

transformation gi = eAd(zαi )υ is an element of PE(hC), and
Ad(gi) Ad(zαi)σ0 = Ad(zαi) Ad(eυ)σ0 = Ad(zαi)σ′0 = σ′0.
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If we decompose υ = υ1 + υ0 + υ−1, then Ad(zαi)υ = zυ1 + υ0 + υ−1
z

and Ad(gi) =
exp(ad(zυ1 + υ0 + υ−1

z
)); the same arguments as in Lemma 4.1 show that Ad(gi)(σ− +

zσ+ + s1) = σ′− + zσ′+ + s′1 with again σ′− ∈ ⊕−1<λ<0h
C, σ′+ ∈ ⊕0<λ<1h

C and s′1
z

a
section of the sheaf PE(hC). So finally we obtain that si = Ad(gi)sσ,h is holomorphic
and si(0) ∈ pαi . By conjugating further by an element of Pαi , we can suppose that the
semisimple element si(0) actually satisfies [αi, si(0)] = 0.

It follows that the collection of the local meromorphic gauges (gi) gives a holomorphic
HC-bundle E ′ over X which is meromorphically equivalent to E, in which sσ,h extends
holomorphically, and therefore defines a Ls-reduction of E ′, which is a parabolic bundle
over X with parabolic weights αi at xi. This finishes the proof of polystability.

5.4. Preliminaries: functional spaces. We now pass to the existence of the Hermite-
Einstein metric. The basic idea to prove that polystability is sufficient is common to a
whole collection of results extending the original Hitchin–Kobayashi correspondence on
existence of Hermite–Einstein metrics on holomorphic vector bundles. Recall that when
looking for Hermite–Einstein metrics one considers the Donaldson functional M(h, h′),
defined for two metrics h and h′ on E such that

M(h, h′′) = M(h, h′) +M(h′, h′′)(5.15)
d

dt
M(h, hets)

∣∣∣∣
t=0

=
∫
X
h(
√
−1F (h), s)(5.16)

(see Section 5.5 below for some details and references). In particular the critical points
of M are the Hermite–Einstein metrics. Roughly speaking, polystability enables to
prove C0-convergence of a sequence of metrics {hi} such that M(h, hi) converges to
infh′M(h, h′), and then convergence in stronger functional spaces follows. Finally the
limit is proved to be a solution of the Hermite–Einstein equation.

We shall not give full details of the argument in our situation since the proof follows
the one in [8], and we refer to this reference for details. We give only the general setup.

The equation to solve does not depend on the metric on the Riemann surface. Because
of the calculation (5.13), it is natural to work with a cusp metric near the punctures,
that is equal to

(5.17) ds2 = |dz|2

|z|2 ln2 |z|2

in some fixed local coordinate z near each puncture. Writing z = |z|e
√
−1θ and t =

ln(− ln |z|2), this can be written
ds2 = dt2 + e−2tdθ2.

Extend t by a smooth function in the interior of X. We define weighted C0 and Lp

spaces by
C0
δ = e−δtC0, Lpδ = e−(δ+ 1

p
)tLp.

The curious choice for Lp is motivated by the compatibility with C0: indeed, with this
choice, we have C0

δ ⊂ Lpδ′ as soon as δ > δ′, since vol = e−tdtdθ near the punctures.
The exponent p is thought as being very large—a replacement of ∞ because Ck spaces
are not suitable for elliptic analysis.
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Consider the H-connection ∇+ induced by h0 on E, and define
∇ = ∇+ ⊕ ad(ϕ) : E(gC)→ Ω1 ⊗ (E(gC)⊕ E(gC)).

Define now the weighted spaces Ck
δ (resp. the weighted Sobolev spaces Lk,pδ ) of sections

f of E(gC) such that ∇jf ∈ C0
δ (resp. Lpδ) for j 6 k. We will also use the refinement

Ĉk
δ (E(gC)) (resp. L̂k,pδ (E(gC))) of sections f of E(hC) such that ∇f ∈ Ck−1

δ (resp.
Lk−1,p
δ ), but we ask nothing on f itself.
Recall from (5.4) the subalgebra

(5.18) ri = ker(Ad(e2π
√
−1αi)− 1) ∩ ker(ad si),

and define furthermore r′i the commutator of the sl2-triple (Hi, Xi, Yi),
(5.19) r′i = ker(adHi) ∩ ker(adXi) ∩ ker(adYi).

For δ > 0, it is easy to see that, near a puncture, an element f of Ĉk
δ (resp. L̂k,pδ (gC))

can be decomposed as
f = Ad(e

√
−1θαi)f(0) + f1, f(0) ∈ ri ∩ r′i, f1 ∈ Ck

δ (resp. Lk,pδ ).
As before, this is well defined since f(0) ∈ ker(Ad(e2π

√
−1αi)−1). Therefore the elements

of Ĉ2
δ or L̂2,p

δ do not go to zero at the punctures. Furthermore one checks easily that
L̂2,p
δ (E(gC)) is a Lie algebra.
Finally the space of metrics in which we look for a solution of the Hermite–Einstein

equation is, for a small δ > 0 and a large p,
(5.20) H = {h = h0e

s, s ∈ L̂2,p
δ (E(

√
−1h))}.

From equation (5.13) it is clear that F (h0) ∈ Lpδ for any p and any δ > 0. We choose
any fixed δ ∈ (0, 1).

5.5. Donaldson’s functional. For a pair of metrics h0, h0e
s ∈ H let

(5.21) M(h0, h0e
s) =

∫
X
〈
√
−1ΛF (h0), s〉h0 +

∫ 1

0
(1− t)‖Ad(ets/2)D′′s‖2

L2(X) dt,

where D′′s = ∂
E
s + [ϕ, s]. Note that ∂Es belongs to Ω0,1(E(hC)) and [ϕ, s] belongs to

Ω1,0(E(mC)). Hence the two summands are orthogonal and we can write

‖Ad(ets/2)D′′s‖2
L2(X) = ‖Ad(ets/2)∂Es‖2

L2(X) + ‖Ad(ets/2)[ϕ, s]‖2
L2(X).

This allows to view M as a particular case of the functionals defined in [51, 19] using
a symplectic point of view (they are instances of integrals of a moment map), see in
particular [51, (4.10)]. The arguments given in [op.cit.] imply that M satisfies the
cocycle condition (5.15) and property (5.16).

The functionalM is also an analogue of Donaldson’s functional considered by Simpson
in [64]. Indeed, we have the following formula∫ 1

0
(1− t)‖Ad(ets/2)D′′s‖2

L2(X) dt =
∫
X

(
ψ(s)(D′′s), D′′s

)
h0
,

where we apply here the notation introduced in Section 2.3 to the adjoint and the
isotropy representations, and extend it to sections of twists of E(hC) and E(mC), for
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the function ψ(t) = (et− t− 1)/t2. This follows by decomposing D′′s on eigenspaces of
the adjoint action of s, and from the calculation

∫ 1
0 (1−t)etλdt = ψ(λ) for any eigenvalue

λ of ad s. Also, (., .) is distinguished from 〈., .〉: the latter is the Hermitian product on
the bundle only, while the former also includes the Hermitian product on forms, so the
result is a scalar (which is implicitly integrated against the volume form).

Hence Donaldson’s functional can be rewritten in the following form

(5.22) M(h0, h0e
s) =

∫
X
〈
√
−1ΛF (h0), s〉h0 +

∫
X

(
ψ(s)(D′′s), D′′s

)
h0
,

which makes evident the relation to Simpson’s definition.

5.6. Reduction to the stable and semisimple case. Before solving the equation,
we make two reductions.

Jordan–Hölder reduction. Using similar arguments to the ones used in the non-
parabolic case [29], one can prove that if a G-Higgs bundle (E,ϕ) is polystable there
is a canonical reduction (E ′, ϕ′) of structure group to a G′-Higgs bundle, up to iso-
morphism, such that the reduced Higgs bundle is stable. This is done by iterating the
process, mentioned in definition of polystability, of reduction to a Levi given by a par-
abolic reduction for which the degree vanishes. Moreover, this reduction also satisfies
pardegχE = 0 for all characters of g′. (Recall that we are in the case c = 0).

Therefore, to prove existence of the Hermite-Einstein metric, we can suppose that
(E,ϕ) is actually stable.

Central part. The second step is to reduce to the semisimple part of G. Indeed, as is
well-known, the Hermite-Einstein equation (5.1) decouples on the direct sum

h = (z(g) ∩ h)⊕ h0,

where h0 was defined in (4.8), into

χ(R(h)) = 0 for all characters χ of g,(5.23)
R(h)h0 − [ϕ, τh(ϕ)] = 0.(5.24)

We have a trivial subbundle E(z(g)) ⊂ E(h), and for a section s of E(
√
−1z(g)) one

has χ(R(hes)) = χ(R(h)) + ∂̄∂χ(s). Therefore, starting from the initial metric h0, the
equation (5.23) is achieved by h = h0e

s if one can solve the equation, for all characters
χ of g,

∆χ(s) = 2iΛχ(R(h)).
This is just the Laplace equation on the trivial bundle

√
−1z(g). Since by hypothesis∫

χ(R(h)) = 0 for all characters χ of g, this equation is solvable in the space L̂2,p
δ since

F (h0) ∈ Lpδ . (The non uniqueness of the solution of the Hermite-Einstein equation
comes from the non uniqueness of such s, since one can add any constant section of√
−1z(g)).
Finally we can suppose that we are in the case of a stable bundle (E,ϕ), and that our

initial metric h0 satisfies (5.23). We look for a solution of (5.24) of the form h = h0e
s

with s a section of E(
√
−1h0).
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5.7. Proof that polystability is sufficient. The method consists in minimizing the
Donaldson functional M(h0, h) for h ∈ H under the constraint ‖F (h)‖L2,p

δ
6 B for some

large B.
At the end, the solution h will satisfy an elliptic equation, so have additional regu-

larity:
(5.25) h ∈ H∞ = {h0e

s, s ∈ Ĉ∞δ (E(
√
−1h0))}.

Actually it can be shown that there is a stronger decay of the components of s which
are orthogonal to ri.

Take some big B and define
S∞(B) = {s ∈ Ĉ∞δ (E(

√
−1h0)), ‖F (h0e

s)‖Lp
δ
6 B}.

Stability implies the following C0-estimate:
Proposition 5.2. Suppose (E,ϕ) is given as in Theorem 5.1 and (E,ϕ) is stable. Then
there exist constant C and C ′ such that
(5.26) sup |s| 6 C + C ′M(h0, h0e

s) for any s ∈ S∞(B).

The technical results in [8] reduce the proof of existence of the solution h to Propo-
sition 5.2. Therefore in the rest of the subsection we only prove the Proposition.

Proof of Proposition 5.2. Assume that there do not exist any constants C,C ′ satisfying
(5.26). The bound on the curvature implies that

sup |s| 6 const.(1 + ‖s‖L1)
for some constant depending on B (see Lemma 8.4 in [8]). Hence our assumption implies
that there neither exist constants C,C ′ such that

‖s‖L1 6 C + C ′M(h0, h0e
s) for any s ∈ S∞(B).

It follows that we can take a sequence {si} ⊂ S∞(B) and positive real numbers Ci →∞
such that

‖si‖L1 →∞, CiM(h0, h0e
si) 6 |si|L1 =: λi.

Define ui = λ−1
i si, so that ‖ui‖L1 = 1. Now the arguments in Section 5 of [64] imply

that, up to passing to a subsequence, the sections ui converge (weakly and locally in
L1,2) to a nonzero and locally L1,2 section u∞ of E(

√
−1h0)|XrD. This section satisfies

the following properties:
• the L2 norm of D′′u∞ is finite, and the projection of D′′u∞ on eigenspaces of

adu∞ corresponding to nonnegative eigenvalues of adu∞ is zero;
• there exist locally L1,2 orthogonal projections (πj)j=1...k of End(E(hC)), satisfying

[πi, πj] = 0, such that ad(u∞) = ∑
ljπj, where l1 < · · · < lk are the eigenvalues

of adu∞ on E(hC);
• for each j let Πj = π1 + · · ·+ πj. Then Πj ◦ Πj = Πj and (1− Πj)D′′Πj = 0.

The regularity result of Uhlenbeck and Yau [69] for locally L1,2 subbundles implies that
the image of Πj is a holomorphic subbundle Ej ⊂ E(hC)|XrD (see Proposition 5.8 in
[64]). This implies that u∞ is a smooth section of E(

√
−1h)|XrD ⊂ E(hC)|XrD, since

h0 is smooth on X rD.
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Lemma 5.3. Take any x, y ∈ X r D, choose trivializations of Ex and Ey, and use
them to identify E(hC)x and E(hC)y with hC. Then the elements u∞(x), u∞(y) ∈ hC are
conjugate.

Proof. Denote by hC//HC the affine quotient of the adjoint action. Since semisimple
elements have closed adjoint orbits, two semisimple elements x, y ∈ hC are conjugate
if and only if their images by the projection map hC → hC//HC coincide. The later
is equivalent to showing that for any invariant polynomial p ∈ HomC(S∗hC,C)HC we
have p(x) = p(y). Let p be any such invariant polynomial. If u ∈

√
−1hC and n ∈

hC is concentrated on eigenspaces for negative eigenvalues of adu, then p(u + n) =
p(Ad(tu)(u + n)) = p(u + Ad(tu)n) →t→+∞ p(u), so p(u + n) = p(u) and dup(n) = 0.
Applying this to u∞ and D′′u∞, we obtain

(5.27) ∂̄p(u∞) = du∞p(D′′u∞) = 0.

Hence p(u∞) is a holomorphic function. On the other hand using the isomorphisms

HomC(S∗hC,C)HC ' HomC(S∗hC,C)H (H ⊂ HC is Zariski dense)
' HomR(S∗(

√
−1h),R)H ⊗R C

we may write p = a+
√
−1b, where a(

√
−1h) ⊂ R and b(

√
−1h) ⊂ R and both a and b

are HC invariant. Then a(u∞) and b(u∞) are holomorphic functions and since u∞ is a
section of E(

√
−1h) the function a(u∞) (resp. b(u∞)) is real (resp. imaginary) valued.

Hence both a(u∞) and b(u∞) vanish. We have thus proved that p(u∞) is constant for
any invariant polynomial p. Since u∞ takes semisimple values, the lemma is proved. �

Let x ∈ X rD be any point, take a trivialization of Ex, use it to identify E(
√
−1h)x

with
√
−1h, and let s ∈

√
−1h0 be the element corresponding to u∞(x). From the

Lemma, the section u∞ defines a reduction σ of the structure group of E|XrD to the
parabolic subgroup P = Ps, such that u∞ = sσ,h0 as in (2.7). Furthermore, this section
is holomorphic, because the bundles Ej ⊂ E(hC) are holomorphic.

Lemma 5.4. The reduction σ extends into a holomorphic reduction of E to P on the
whole X.

Proof. Denote by ps the Lie algebra of Ps. Let Gr denote the Grassmannian variety
parametrizing dim ps-dimensional subspaces of hC. The adjoint representation HC →
GL(hC) induces an action of HC on Gr. By [40, Proposition 7.83] the stabilizer of
ps ∈ Gr is equal to Ps, so there is a unique HC-equivariant map ι0 : F = HC/Ps → Gr
sending Ps to ps, and the HC-orbit through ps can be identified with the image of ι0.
Let ι : E(F )→ E(Gr) be the map induced by ι0.

We know that the L2 norm of D′′(u∞) = ∂
E
u∞ + [φ, u∞] is finite. Since, as already

pointed out, ∂Eu∞ and [φ, u∞] are orthogonal, it follows that the L2 norm of ∂Eu∞ is
finite. Denote as before ad(u∞) = ∑

ljπj. Since each projector πj can be expressed as
a polynomial of u∞, and u∞ is bounded (because the eigenvalues lj are constant), the
boundedness of ‖∂Eu∞‖L2 implies that the L2 norm of ∂Eπj is finite. This L2 norm is
computed with respect to the Hermitian metric h′0 on E(hC)|XrD induced by h0.
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Let Ej be the image of Πj = π1 + · · · + πj. Since (1 − Πj)D′′Πj = 0 the same
orthogonality argument as before implies that (1−Πj)∂EΠj = 0, from which it follows
that Ej is a holomorphic subbundle of E(hC)|XrD. We claim that we can apply [64,
Lemma 10.6] to Ej and thus get a holomorphic extension of Ej as a holomorphic
subbundle Ej of E(hC) defined over the entire X. Indeed, the requirements for [64,
Lemma 10.6] to apply are that h′0 has polynomial growth when expressed in terms of a
local trivialisation of E(hC) in a neighborhood of D, and that the curvature of h′0 has
bounded L1 norm. Now the first property follows from (5.8), and the second one follows
from the first formula in (5.13).

Since u∞ is a nowhere vanishing section of E(hC) and ad(u∞)(u∞) = 0 there exists
some m such that lm = 0. Then the fibers of Em ⊂ E(hC)|XrD can be identified with
Lie algebras isomorphic to ps, so Em defines a holomorphic section ρ0 of E(Gr) along
XrD which actually comes from a section ρ1 of E(F ) along XrD. Hence, ρ0 = ι◦ρ1.
The fact that Em extends to a holomorphic subbundle Em of E(hC) implies that ρ0 can
be extended to a holomorphic section ρ0 of E(Gr). Now, F is closed in Gr (because
HC/Ps is compact, precisely since Ps is a parabolic subgroup of HC), and consequently
there exists a holomorphic extension ρ1 of ρ1 satisfying ρ0 = ι ◦ ρ1.

For any y ∈ X let Qy := {a ∈ E(HC)y | a · E
m

y ⊆ E
m

y }. Then Qy is conjugate to Ps
for any trivialization of Ey (because the normalizer of Ps is Ps itself) and Q = ⋃

y∈X Qy

is a holomorphic subbundle of E(HC). By construction, Q is a holomorphic extension
of P to the whole X. �

The element s ∈
√
−1h0 which was used to define P = Ps also provides a strictly

antidominant character χ : p → C, see Appendix B.1. The same arguments as in
Lemma 5.4 in [64] allow to prove that ϕ ∈ H0(X r D,Eσ(ms) ⊗ K), and that the
section u∞ satisfies (recall that D′′u∞ is concentrated on negative eigenspaces of adu∞)

√
−1

∫
XrD
〈ΛF (h0), u∞〉 − 〈$(u∞)(∂u∞), ∂u∞〉

6
∫
XrD
〈
√
−1ΛF (h0), u∞〉 −

(
$(u∞)(D′′u∞), D′′u∞

)
6 0.

(5.28)

The function $ appears because the rescaling ui = λ−1
i si implies to replace in the

Donaldson functional the function ψ(t) by the rescaled function λiψ(λit) which converge
when λi →∞ to the function −$(t) = −t−1 for t < 0 and +∞ for t > 0.

This contradicts stability since u∞ = sσ,h0 so by Lemma 2.13 the first expression in
(5.28) is

2π pardeg(E)(σ, χ).
Proposition 5.2 is proved. �

5.8. Uniqueness up to automorphism. Suppose that h and hes ∈ H are two crit-
ical points of the Donaldson functional M(h0, ·). Then (5.15) and (5.21) imply that
M(h, hets) is a constant function of t. Here we need to use the fact that M(h, hets) is a
convex function of t, which follows from (5.21). Now formulas (5.15), (5.16) and (5.21)
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imply that D′′s = 0, and therefore s is an element of PE(hC) and [ϕ, s] = 0. Finally
es ∈ PE(HC) and stabilizes ϕ.

6. Parabolic local systems

In this section we take c = 0 and we refer to c-(poly)stability of a parabolic G-Higgs
bundle simply as (poly)stability. As above, we fix an alcove A ⊂ t of H such that 0 ∈ Ā

(see Appendix A.1).

6.1. From Higgs bundles to parabolic local systems. Let (E,ϕ) be a polystable
parabolic G-Higgs bundle with pardegχE = 0 for all characters χ of G. By Theorem
5.1, we get an Hermite–Einstein metric h on E, which is quasi-isometric to some given
adapted metric h0. Equation 5.1 simply means that

D = A(h) + ϕ− τh(ϕ)
is a flat G-connection on the G-bundle obtained by extending the structure group of
the H-bundle given by the Hermite–Einstein metric. We therefore obtain a G-local
system on X ′ := X r {x1, · · · , xr}. Recall that a G-local system on a manifold can be
equivalently seen as a representation of the fundamental group of the manifold in G,
a G-bundle over the manifold equipped with a flat G-connection, or a G-bundle with
locally constant transition functions.

Let us now examine the behaviour of the local system near the puncture. Let us see
that just on the local model: from (5.11) and (5.12), we deduce that, in the orthonormal
frame e,

D = d+
(
si − τ(si)− Ad(e

√
−1θαi)Yi +Xi

ln r2

)dr
r

+
√
−1
(
− αi + si + τ(si)− Ad(e

√
−1θαi)Yi −Hi −Xi

ln r2

)
dθ.

(6.1)

Observe that Yi −Hi −Xi = Ad(e−Xi)Yi is nilpotent. The monodromy around xi is

(6.2) e2π
√
−1αie2π

√
−1(−si−τ(si)+Yi−Hi−Xi).

In this formula the monodromy appears as the product of two commuting elements of G
(the first is compact, the second is non compact). The dr

r
term has also an interpretation:

taking

(6.3) f = eg, g = r−si+τ(si)(− ln r2) 1
2 Ad(e

√
−1θαi )(Xi+Yi),

we get a G-trivialization, which is parallel along rays from the origin. The metric along
these parallel rays has the form

(6.4) h = r2(−si+τ(si))(− ln r2)Ad(e
√
−1θαi )(Xi+Yi).

To calculate D in the new trivialization f , we write formally g = e
√
−1θαig0e

−
√
−1θαi

with g0 = r−si+τ(si)(− ln r2) 1
2 (Xi+Yi), and we use the fact that d+ a in the trivialization

e becomes d+ g−1dg+ Ad(g−1)a in the trivialization eg. Therefore in the trivialization
e1 = ee

√
−1θαi we have for D the same formula as (6.1) with αi replaced by 0; since

ad(Xi + Yi) acts on Yi − Hi − Xi with eigenvalue −2, we obtain in the trivialization



36 O. BIQUARD, O. GARCÍA-PRADA, AND I. MUNDET I RIERA

e2 = e1g0 = ee
√
−1θαig0 the formula d+

√
−1(si + τ(si)− (Yi−Hi−Xi))dθ, which gives

finally in the trivialization f = e2e
−
√
−1θαi the formula:

(6.5) D = d−
√
−1
(
αi − si − τ(si) + Ad(e

√
−1θαi)(Yi −Hi −Xi)

)
dθ.

The logarithmic part of h in (6.4) gives no new information, because the triple (Hi, Xi, Yi)
is already encoded in the unipotent part exp(2π

√
−1(Yi−Hi−Xi)) of the monodromy.

But the semisimple part si− τ(si) is an additional information: it gives the polynomial
order of growth of the harmonic metric h near the point xi, along parallel rays. In the
case G = GLnC, this additional structure transforms the local system into a filtered
local system in the sense of Simpson, that is the fibre over the ray has a filtration
with weights induced by si − τ(si).

In our case, the metric on the ray is a map to the symmetric space of non compact
type G/H, and exp((si− τ(si))u), where u = − ln r, describes a geodesic in G/H, with
some fixed speed, depending on si. The corresponding geometric data is a point on the
geodesic boundary of G/H, and a positive real number describing the (constant) speed
of the geodesic. This data is equivalent to that of a parabolic subgroup P of G with an
antidominant character χ of the Lie algebra of P . This leads to the following definition.
Definition 6.1. Let βi ∈ m be semisimple and β = (β1, · · · , βr). A parabolic G-local
system on X r {x1, · · · , xr} of weight β is defined by the following data:

(1) a G-local system F on X r {x1, · · · , xr},
(2) on a ray ρi going to xi, a choice of a parabolic subgroup Pi of F (G)|ρi isomorphic

to Pβi, invariant under the monodromy transformation around xi, with a strictly
antidominant character χi of the Lie algebra of Pi, where the Fx(G) for x ∈ ρi
are identified by parallel transport.

Recall from Appendix B.1, that pairs (P, χ) consisting of a parabolic subgroup P
of G and a strictly antidominant character of the Lie algebra of p are in one-to-one
correspondence with elements in m. In the definition we take χi to be the character
corresponding to χβi under the isomorphism of F (G)|ρi with Pβi . Note that, in contrast
with a parabolic bundle, at xi the weights of the parabolic G-local system are not
constrained to lie in a Weyl alcove.
Remark 6.2. Note that a choice of Pi ⊂ F (G)|ρi isomorphic to Pβi is equivalent to
choosing an orbit of the action of Pβi on Fρi , i.e. a point in the flag manifold Fρi/Pβi . The
second condition in the definition is asking that this point be fixed by the monodromy
group, that is, the image of the representation π1(X, xi)→ G corresponding to the local
system. This condition makes the data independent of the choice of ρi.

Let us come back to the G-local system coming from a G-Higgs bundle with Hermite–
Einstein metric h. The formula (6.4) gives the behaviour of h for the model, but the
formula remains valid for the adapted metric h0, up to lower order terms, and also for
the Hermite–Einstein metric h ∈ H∞, up to replacing h0 by h0e

s, for some constant
s ∈ ri ∩ r′i. Thus we see that we have a well defined parabolic structure induced at the
point xi, with the parabolic subgroup and the character of its Lie algebra defined by
si − τ(si). Recall that for a parabolic G-Higgs bundle (E,ϕ), Gr Resxi ϕ is defined in
Section 4.1, after (4.4).
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Proposition 6.3. Let (E,ϕ) be a polystable parabolic G-Higgs bundle with pardegχE =
0 for all characters χ of G. Then the G-local system induced by the Hermite–Einstein
metric constructed by Theorem 5.1 carries naturally a structure of parabolic G-local
system.

If αi ∈
√
−1Ā is the parabolic weight of E at xi, and Gr Resxi ϕ = si + Yi, then the

weight of the parabolic G-local system is given by the element si − τ(si) ∈ m, and the
projection of the monodromy around xi on the Levi group defined by si − τ(si) is

exp(2π
√
−1αi) exp(2π

√
−1(−si − τ(si) + Yi −Hi −Xi)).

To be precise, the compatibility between the metric and the parabolic structure is the
following: on a ray going to xi, we compare the metric h, seen as an application into
G/H, with a geodesic given by the (Qi, χi), parametrized by (− ln r), and the condition
is that the distance between them should grow at most like | ln r|N . For G = GLnC,
this is the property referred by Simpson in [65] as tameness.

Proof of Proposition 6.3. We have already seen the model behaviour. In general we have
a perturbed flat connection D + a, where D is the model (6.1) and the perturbation
a ∈ C∞δ , which implies a = ar

dr
r

+ aθdθ, with |ar|, |aθ| = O(| ln r|−1−δ). The radial
trivialization (6.3) is then modified by a bounded transformation (this does not change
the parabolic weight si− τ(si) of the model), while the formula (6.5) for the connection
in this radial trivialization comes with an additional term, depending only on the angle
θ,

b(θ)dθ = Ad(g−1)aθdθ.
The term r−si+τ(si) in f and the initial bound on aθ imply the vanishing of the com-
ponents of b on the eigenspaces of ad(si − τ(si)) corresponding to the nonnegative
eigenvalues. On the contrary, there can be a nonzero contribution from the eigenspaces
for the negative eigenvalues, which is an additional unipotent term in the monodromy,
in the unipotent subgroup associated to the parabolic subgroup. Therefore, only the
Levi part is fixed and is equal to that of the model. �

The converse of Proposition 6.3 is given in the next section.

6.2. Harmonic metrics and polystability of G-parabolic local systems. Given
a flat G-bundle (F,D) over X ′ and a metric h on F , that is, a reduction of structure
group to an H-bundle, we decompose D = D+

h +ψh, where D+
h is an H-connection and

ψh is a section of Ω1 ⊗ E(m). The metric h is said to be harmonic if
(6.6) (D+

h )∗ψh = 0.

If we regard the flat G-bundle as a representation ρ : π1(X ′) −→ G, then a harmonic
metric is the same as a harmonic map from the universal cover of X ′ to the symmetric
space G/H, which is equivariant with respect to the action of the fundamental group
on both sides.

A harmonic metric on a parabolic G-local system is a harmonic metric on the local
system, which is tamed in the sense defined in the previous section. The existence of
a harmonic metric on the a parabolic G-local system is governed, like for the Hermite–
Einstein equation, by a stability condition. To define this we first define the degree.
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This is simpler than for G-Higgs bundles, since the global term of the degree vanishes
here due to the flatness of the connection.

Let F be a parabolic G-local system with (Pi, χi) defining the parabolic structure at
the point xi. Let Q ⊂ G be a parabolic subgroup of G and χ be a strictly antidominant
character of its Lie algebra q. Let σ be a reduction of structure group of F to a Q-bundle,
which is constant (invariant under the flat connection). Using the relative degree of two
parabolic subgroups with antidominant characters, we define the parabolic degree of F
with respect to the reduction to (Q,χ) by the formula

(6.7) pardeg(F )(Q,χ, σ) := −
∑
i

deg
(
(Pi, χi), (Q,χ)

)
.

This makes sense since both Pi and Q can be identified to subgroups of F (G) near the
marked point xi.

We say that F is semistable if for any such reduction of the local system one has
(6.8) pardeg(F )(Q,χ, σ) > 0.
It is stable if the inequality is strict for any non-trivial reduction, and polystable
if it is semistable and equality happens in (6.8) if and only if there is a reduction of
the local system to a Levi subgroup L ⊂ Q (as for Higgs bundles, this means that
there is a parabolic L-local system which induces F through the inclusion L ↪→ G).
In particular this definition implies a compatibility of the parabolic structure with the
reduction. When there is no parabolic structure, the condition only says that there is
no reduction of the local system to a parabolic subgroup, unless there is a reduction to
a Levi subgroup: the local system is reductive.

Remark 6.4. Like in the case of G-bundles when G is complex, in the case of parabolic
G-local systems (for real or complex G) it is enough to check (6.7) for characters that
lift to Q. In fact, it suffices to verify the condition for maximal parabolic subgroups
and a certain character χQ.

Theorem 6.5. Let F be a parabolic G-local system, with vanishing parabolic degree with
respect to all characters of g. Then F admits a harmonic metric h (compatible with the
parabolic structure near the marked points) if and only if F is polystable. Moreover, any
two such harmonic metrics are related by a parallel automorphism of F , preserving the
parabolic structure at the marked points (i.e. the automorphism belongs to the parabolic
group Pi ⊂ F (G)|ρi on the chosen ray ρi going to the marked point xi).

The harmonic metric induces a polystable parabolic G-Higgs bundle, and the relation
between the weights at the marked points is the same as in Proposition 6.3.

The proof of this theorem can be made formally similar to that of Theorem 5.1, see
[65, Theorem 6] and [8, Section 11], by replacing the symbols (D′′, D′ = ∂E − τ(ϕ)) by
(D,Dc =

√
−1((D+)0,1 + ψ1,0 − (D+)1,0 − ψ0,1) and the curvature F = (D′′ + D′)2 by

the pseudocurvature G = −1
2(D−

√
−1Dc)2, so we will not give the details of the proof,

but just sketch a few steps.
The first step is to construct an initial metric h0 (a section of E(G/H)) near a

puncture xi: start with a trivialization f where the flat connection D is given by formula
(6.5), up to terms in the nilpotent part of the parabolic, and define the initial metric
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h0 by formula (6.4). Implicit in this construction is the choice of appropriate Kostant–
Sekiguchi sl2-triples (see Appendix Section A.3). In the orthonormal trivialization e =
fh
− 1

2
0 , the flat connection has then the form (6.1), up to C∞δ terms. Choose any extension

of h0 in the interior of X.
The second step is to define the functional space of metrics that we want to use: the

relevant choice here is

(6.9) H = {h = h0e
s, s ∈ L̂2,p

δ (m)}.

As in Section 5.2, this space preserves the fact that h0 can change at the points xi, since
s(xi) ∈ ri ∩ r′i. Of course, this is only a technical space needed for the proof, since at
the end, we shall get by local elliptic regularity, as in (5.25),

(6.10) h ∈ H∞ = {h0e
s, s ∈ Ĉ∞δ (m)}.

To solve the problem in H, one first solves the abelian equation on the central part,
therefore reducing to the semisimple part of G. Then one minimizes the relative energy

(6.11) N(h0, h) =
∫
X

(|ψh|2h − |ψh0|2h0)

on H, under the constraint ‖(D+
h )∗ψh‖Lp

δ
6 B (note the inaccuracy in [8, p. 88],

where the second term was forgotten). It turns out that using the formalism (D,Dc),
the functional N(h0, h) coincides with the Donaldson functional M(h0, h) in formula
(5.21). Of course the reason to introduce this relative energy is that the usual harmonic
map energy

∫
X |ψh|2 can be infinite in our case, while N(h0, h) is well defined. The fact

that N(h0, h) might be unbounded below explains why a stability condition appears
here, replacing Corlette’s semisimplicity condition for harmonic maps.

The coincidence between (6.11) and the Donaldson functional can be proved just by
checking that they have the same gradient, but since this fact does not seem well known,
we also give a direct proof:

Lemma 6.6. One has N(h0, h0e
s) =

∫
X −((D+

h0)∗ψh0 , s)h0 + 1
2(η(s)(Ds), Ds)h0, where

η(t) = et−t−1
t2

.

Proof. We use the formulas from [8, Section 11]. For h = h0e
s, one has

ψh = −1
2h
−1Dh

= Ad(e−s)ψh0 −
1
2e
−sD(es)

= Ad(e−s)ψh0 −
1
2

1−e−t
t

(s)(Ds).

Since Ad(e s2 )ψh is a section of E(m) and ad(s) exchanges h and m, we deduce

Ad(e s2 )ψh = Ad(e− s2 )ψh0 −
sinh t

2
t

(s)(Ds)

= cosh( t2)(s)(ψh0)− sinh t
2

t
(s)(D+

h0s),
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and, since |ψh|2h = |Ad(e s2 )ψh|2h0 ,

(6.12) |ψh|2h − |ψh0 |2h0 =
(

sinh2( t2)(s)(ψh0), ψh0

)
+
( sinh2 t

2
t2

(s)(D+
h0s), D

+
h0s
)

− 2
(

cosh( t2)(s)(ψh0), sinh t
2

t
(s)(D+

h0s)
)
.

On the other hand, decomposing Ds = D+
h0s + [ψh0 , s], and taking the even and odd

parts of η(t), one has(
η(s)(Ds), Ds

)
=
(
(cosh t− 1)(s)ψh0 , ψh0

)
+
(

cosh t−1
t2

(s)(D+
h0s), D

+
h0s
)

− 2
(

sinh t−t
t

(s)(D+
h0s), ψh0

)
.

Comparing with (6.12), we obtain
1
2
(
η(s)(Ds), Ds

)
= |ψh|2h − |ψh0|2h0 +

(
D+
h0s, ψh0

)
.

The lemma follows. �

The heart of the proof of Theorem 6.5 consists in proving that non convergence of a
minimizing sequence would imply the existence of a reduction of E to a parabolic sub-
group P , appearing with an antidominant character, which would contradict stability,
and this is done exactly as in the Higgs bundle case, except that the L1,2 holomorphic
subbundles are replaced by L1,2 parallel subbundles, so no subtle regularity theory is
needed here.

The harmonic metric h induces a G-Higgs bundle (E,ϕ), where the ∂̄-operator of E
is (D+)0,1 and the Higgs field ϕ = ψ1,0

h . A priori, this defines (E,ϕ) only in the interior
of X, and we have to extend it over the points xi. Fortunately, because of the good
control (6.10) on the solution, this can be done relatively easily. Because h ∈ H∞, we
have, in an orthonormal trivialization e,

∂̄E = ∂̄0 + a, ∂̄0 = ∂̄ +
(
αi −

Ad(e
√
−1θαi)Hi

ln |z|2
)dz̄

2z̄ ,

ϕ = ϕ0 + b, ϕ0 =
(
si −

Ad(e
√
−1θαi)Yi

ln |z|2
)dz
z
,

where the perturbations a and b belong to the space C∞δ .

Lemma 6.7. There exists a gauge transformation g ∈ Ĉ∞δ (E(HC)), defined in a neigh-
bourhood of xi, such that

g(∂̄E) = ∂̄0.

Proof. The equation to solve is
g−1∂̄0g = Ad(g−1)a.

Writing g = exp(u), the equation becomes e−u∂̄0e
u = e− adua, with linear part ∂̄0u = a.

One can deduce an explicit solution for the linear problem from the Cauchy kernel, with
suitable estimates [8, Lemma 9.1]. Shrinking to a smaller ball if necessary, a fixed point
argument gives the expected solution. �
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We now have a Ĉ∞δ -gauge f = eg of E (seen as a HC-bundle) in which ∂̄E is exactly
the model ∂̄0, and ϕ = ϕ0 + b′ for some b′ ∈ C∞δ . We deduce an explicit holomorphic
gauge,

e = f(− ln r2)Ad(e
√
−1θαi )Hi/2r−αi ,

which we use to extend the holomorphic bundle E over xi. Moreover, in the gauge e,
the Higgs field becomes

ϕ = Ad
(
rαi(− ln r2)−Ad(e

√
−1θαi )Hi/2

)
(ϕ0 + b′).

Here
Ad(rαi(− ln r2)−Ad(e

√
−1θαi )Hi/2)ϕ0 = (si + Ad(zαi)Yi)

dz

z
is just our model for the Higgs field in the holomorphic trivialization e, with Gr Resxi =
si + Yi, so we have to analyse the behaviour of the remainder

ϕ′ = Ad
(
rαi(− ln r2)−Ad(e

√
−1θαi )Hi/2

)
b′, b′ = O

( 1
| ln r|δ

) dz

z ln r .

Here remind that b′ is holomorphic outside the origin, and 0 < δ < 1. This implies that
ϕ′ is meromorphic: decompose

ϕ′ =
∑
µ

ϕ′µ
dz

z

along the eigenvalues µ of ad(αi) on mC, and let us analyse the pole of ϕ′µ. We certainly
have

ϕ′µ = O(rµ| ln r|N)
which implies v(ϕ′µ) > −b−µc, as wanted for a parabolic G-Higgs bundle. We can say
something more on Gr Resxi ϕ′, that is on the components ϕ′µ for µ ∈ Z: decompose
further with respect to the eigenvalues η of ad(Hi) on mC, and we get

ϕ′µ,η = O(rµ| ln r|−
η
2−1−δ).

This implies that the (µ, η)-component for µ ∈ Z can be non zero only if η < −2, which
implies that Yi + Gr Resxi ϕ′ is conjugate to Yi, that is Gr Resxi ϕ remains conjugate to
si + Yi. This finishes the proof of Theorem 6.5. �

Table 1 gives the relation between the singularities for the Higgs bundle and for the
corresponding local systems, in a similar way to Simpson’s table in [65]. The interesting
feature here is that they correspond in a way which extends the Kostant–Sekiguchi
correspondence, see Appendix A.3. More specifically, in the nilpotent case, one gets
exactly the correspondence between HC-nilpotent orbits in mC and nilpotent G-orbits
in g which is the Kostant–Sekiguchi correspondence (this was turned by Vergne [70] into
a diffeomorphism which can be seen as a toy model of our correspondence theorem).
The more general case with semisimple residues corresponds to an extension of Kostant–
Sekiguchi–Vergne [5, 9].

We summarize the discussion in the following way. Choose a fundamental domain
Af ⊂ Ā as in Proposition A.1, then:

Proposition 6.8. Table 1 gives a 1:1 correspondence between:
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Weight Monodromy (projected to the Levi)
(E,ϕ) α s+ Y = Gr Resx ϕ
(F,∇) s− τ(s) exp(2π

√
−1α) exp(2π

√
−1(−s− τ(s) + Y −H −X))

Table 1. Table of relations for weights and monodromies

• couples (α,L) of a weight α ∈ Af and a L̃-orbit L ⊂ m̃0, where L̃ and m̃0 are
associated to α by (4.4) and (4.5);
• couples (β,C) of a weight β ∈ m and a conjugacy class C in the Levi group of

the parabolic subgroup Pβ ⊂ G.

In particular, all representations of the fundamental group of the punctured surface
are obtained in our correspondance.

Proof. We have already seen how to go from (α,L) to (β,C). Conversely, given (β,C), we
must prove that this can be put in the form β = s− τ(s) with C being the orbit of some
exp(2π

√
−1α) exp(2π

√
−1(−s − τ(s) + Y − H − X)). We choose the Levi subgroup

Lβ ⊂ G as in Appendix B and u ∈ Lβ representing C. Factorize u = usun with us
semisimple, un unipotent, and usun = unus. Up to changing u in C we can arrange so
that us is in a maximal torus of G which contains the maximal torus T of H, and the
Cartan subalgebra contains β; then us = kev with k ∈ T and v ∈ m commuting; by
definition there exists a unique α ∈ Af such that k = exp(2π

√
−1α); one has [α, v] = 0.

We can then define uniquely s by β = s − τ(s) and v = −2π
√
−1(s + τ(s)). There

remains to write the unipotent part un as exp(2π
√
−1(Y −H −X)) for some sl2-triple

(H,X, Y ) in the Lie algebra of the commutator of (k, v, β), up to conjugation by this
commutator group: this is provided by the theory of Kostant-Sekiguchi triples, see
Propositions A.4 and A.5. �

6.3. Deformations of the harmonicity equation and polystability. As for par-
abolic G-Higgs bundles, there is also a more general stability condition for parabolic
G-local systems depending on a parameter. In this case the parameter is an element of
the subspace of fixed points of m under the isotropy action of H, that is

mH = {v ∈ m such that Ad(h)(v) = v for every h ∈ H}.

Let F be a parabolic G-local system with (Pi, χi) defining the parabolic structure.
Let Q ⊂ G be a parabolic subgroup of G and χ be an antidominant character of its Lie
algebra q. Let σ be a reduction of structure group of F to a Q-bundle, which is invariant
under the flat connection. Given an element ζ ∈ mH , we define ζ-polystability of F
by the condition

(6.13) pardeg(F )(Q,χ, σ)− 〈ζ, s〉 > 0,

for every such (Q,χ) and reduction σ, where s ∈ m is the element corresponding to
(Q,χ) (see Appendix B.1).
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This condition corresponds to a deformation of the harmonicity equation (6.6) given
by
(6.14) (D+

h )∗ψh = ζ.

Note that this equation is indeed H-gauge invariant since ζ ∈ mH . Using the methods
above one can prove the following.

Proposition 6.9. A parabolic G-local system admits a reduction h to H satisfying
(6.14) if and only if it is ζ-polystable.

For ζ 6= 0 a ζ-polystable parabolic G-local system no longer defines a G-Higgs bundle
since now ϕ is not a holomorphic section. The equation ∂̄ϕ = 0 is replaced by

∂̄ϕ = ηω,

with η ∈ (mC)HC and ζ = η − τ(η), where τ is the compact conjugation in gC, and ω
is a Kähler form on X. However the Higgs field ϕ defines a holomorphic section if we
replace the bundle associated to mC by the bundle associated to the HC-representation
mC/(mC)HC . Strictly speaking this is no longer a G-Higgs bundle but it is a Higgs pair
in the more general sense mentioned in Remark 4.3.

Remark 6.10. The equation (6.14) has been recently studied by Collins–Jacob–Yau [22]
for G = GLnC, where they prove in particular Proposition 6.9 in this case.

7. Moduli spaces

7.1. Moduli spaces of parabolic G-Higgs bundles. We follow the notation of Sec-
tion 4. Let X be a compact connected Riemann surface and let S = {x1, . . . , xr} be a
finite set of different points of X. Let D = x1 + · · ·+ xr be the corresponding effective
divisor. Let (G,H, θ, B) be a real reductive Lie group (see Appendix A.2). We fix an
alcove A ⊂ t of H such that 0 ∈ Ā (see Appendix A.1). Consider parabolic weights
α = (α1, . . . , αr) with αi ∈

√
−1Ā, and let c ∈ z.

Let Mc(α) := Mc(X,D,G, α) be the moduli space of meromorphic equiva-
lence classes of c-polystable parabolic G-Higgs bundles (E,ϕ) on (X,D) with
parabolic weights α. (See Definition 3.3 for the notion of meromorphic equivalence.)
Note that if none of the αi’s is contained in a bad wall then we are simply considering
isomorphism classes in the definition of Mc(α). The moduli space for c = 0 will be
simply denoted by M(α). For the moment, we are considering Mc(α) just as a set
without any additional structure.

We use the same notation as in Section 4.1. Let Li the Levi subgroup of Qi and L̃i
the subgroup corresponding to (4.5). Consider the spaces m0

i and m̃0
i corresponding to

(4.4). Recall that if αi ∈
√
−1A′g (see 4.3), L̃i = Li and m̃0

i = m0
i . We denote by m̃0

i /L̃i

the set of L̃i-orbits.
There is a map

% :Mc(α) −→
∏
i

(m̃0
i /L̃i)

defined by taking the L̃i-orbit of Gr Resxi ϕ ∈ m̃0
i .
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We fix now orbits Li ∈ m̃0
i /L̃i and denote L = (L1, · · · ,Lr). We consider the moduli

space
Mc(α,L) := %−1(L).

One can give a gauge-theoretic analytic construction of the moduli spaceMc(α,L) by
means of the identification of this moduli space with the moduli space of solutions of the
Hitchin equations given in Section 5.2. This endows the moduli space with the structure
of a complex analytic space. We do not give any details here since this is by now fairly
standard (see [6, 43, 56]), using the weighted Sobolev spaces for the connections, the
Higgs fields and the gauge group. The appropriate functional spaces to do this are
defined in Section 5.4 (see also [8]). One can then develop a Kuranishi construction for
this situation using the L2-cohomology of a suitable complex. A crucial step to do this
is the invertibility of the Laplacian (see [8]).

To ensure smoothness of Mc(α) at a point (E,ϕ) one generally needs that (E,ϕ)
be stable and simple. A parabolic G-Higgs bundle (E,ϕ) is said to be simple if
Aut(E,ϕ) = Z(HC) ∩ ker ι, where ι is the isotropy representation (see Appendix A.2),
and Aut(E,ϕ) is the group of parabolic automorphisms of (E,ϕ). If G is complex we
hence require Aut(E,ϕ) = Z(G). Except for Lie groups of type An stability does not
generally imply simplicity. For a general reductive real Lie group G, to have smoothness
ofMc(α) at a point (E,ϕ) one also needs the vanishing of a certain obstruction class in
the second L2-cohomology of the appropriate deformation complex associated to (E,ϕ)
(see [29]). This condition is always satisfied if G is complex — it follows from stability
and Serre duality. This is also satisfied for c = 0 when G is a real form of a complex
reductive group GC if the extension of (E,ϕ) to a parabolic GC-Higgs bundle is stable.

From the previous discussion one has the following.

Proposition 7.1. Let M∗
c(α) ⊂ Mc(α) and M∗

c(α,L) ⊂ Mc(α,L) be the subspaces
of parabolic G-Higgs bundles of weight α that are stable, simple and have vanishing
obstruction class. Then

(1) M∗
c(α) is a smooth Poisson manifold foliated by symplectic leaves M∗

c(α,L),
admitting a Kähler structure.

(2) If G is complexM∗
c(α) is a holomorphic Poisson manifold (in fact a hyperpoisson

manifold) foliated by holomorphic symplectic leaves M∗
c(α,L), admitting a hyperkähler

structure.

For the existence of the Poisson structure and the Kähler structure of these moduli
spaces one can look at [16, 49, 43].

Recall from Remark 4.8 that (semi)stability can be formulated in terms of any para-
bolic subgroup P ⊂ HC conjugated to a parabolic subgroup of the form Ps, and any an-
tidominant character χ of p, the Lie algebra of P . The set of characters of P is an abelian
free group, and the subset of antidominant characters is a cone A inside of this group.
The characters for which the Higgs field ϕ satisfies ϕ|XrD ∈ H0(X rD,Eσ(ms)⊗K) is
a subcone B ⊂ A. It is hence enough to check the numerical condition for the elements
of the 1-dimensional faces of B, and hence for a finite number of antidominant charac-
ters of P . If G is complex, these antidominant characters define characters of maximal



PARABOLIC HIGGS BUNDLES 45

parabolic subgroups (not merely subalgebras). In view of this, we will now make the
following assumption.

Assumption 7.2. We will assume that the reductive structure (G,H, θ, B) is such that
for a parabolic G-Higgs bundle to be (semi)stable it is enough to check the numerical
condition (4.9) when the antidominant character χs of the subalgebra ps of a parabolic
subgroup Ps lifts to a character χ̃s of Ps. In this situation deg(E)(σ, χ̃s) is the degree
of the line bundle associated to E via χ̃s : Ps → C∗, and hence an integer. This is
satisfied, in particular if G is complex.

Remark 7.3. Assumption 7.2 is needed in order to give a GIT construction of the moduli
space of ordinary G-Higgs bundles (see [61]).

Under Assumption 7.2 we can define a genericity condition for the weights. We
say that α = (α1, · · · , αr) is generic if for any parabolic subgroup P ⊂ HC and any
antidominant character of P in the finite collection mentioned above, the relative degree
satisfies ∑

i

deg((Pi, αi), (P, χ)) /∈ Z.

Since the choice of conjugacy classes of parabolic subgroups P is also finite (see Appen-
dix B.1), this defines walls dividing

√
−1Ār in chambers.

If we now take the stability parameter c = 0 (which is the relevant value in relation
to local systems and representations) then, since the first term in (4.9) is an integer, we
have that every semistable G-Higgs bundle is actually stable and more over its extension
to aGC-Higgs bundle is also stable, which implies the vanishing of the obstruction second
cohomology class, and hence every point in M(α) is smooth if it is simple or possibly
an orbifold singularity if it is not simple (recall that M(α) denotes the moduli space
for c = 0). We thus have the following

Proposition 7.4. If (G,H, θ, B) satisfies Assumption 7.2, and α is generic, then
(1) M(α) is a Poisson manifold (possibly with orbifold singularities) foliated by sym-

plectic leaves M(α,L), admitting a Kähler structure. Moreover, if α and α′ are in the
same chamber M(α) =M(α′) and M(α,L) =M(α′,L) as real and complex orbifolds,
respectively (the Poisson and symplectic structures, respectively, depend on α).

(2) If G is complex M(α) is a holomorphic Poisson manifold (possibly with orb-
ifold singularities) foliated by holomorphic symplectic leaves M(α,L), admitting a hy-
perkähler structure. Moreover, if α and α′ are in the same chamber M(α) = M(α′)
as holomorphic Poisson orbifolds and M(α,L) =M(α′,L) as holomorphic symplectic
orbifolds.

Remark 7.5. Result (2) in Proposition 7.4 is a consequence of the fact that in the hy-
perkähler structure defined as a hyperkähler quotient by the Hitchin equations, the sym-
plectic form ω1 depends on α, while the complex structure I1, and the I1-holomorphic
symplectic form Ω1 = ω2 + iω3 depend on L.

Remark 7.6. As mentioned in Proposition 7.4, the orbifold singularities take place pos-
sibly at the stable but not simple points. If (E,ϕ) is stable but not simple, there is
a reduction of structure group of (E,ϕ) to a reductive subgroup —the centralizer in
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G of Aut(E,ϕ) (see [33]). It is not clear whether one could define an extra genericity
condition for α and L to avoid this phenomenon.

There should be a GIT construction of these moduli spaces giving Mc(α,L) the
structure of a quasiprojective variety. As far as we are aware this has only been done
for G = GLnC (see [71]). In the generality considered here, this will need most likely
to involve parahoric torsors (see [3, 13, 36]).

7.2. Moduli spaces of parabolic G-local systems and representations. Let X
be a compact connected Riemann surface and let S = {x1, · · · , xr} be a finite set of
different points of X. Let (G,H, θ, B) be a real reductive Lie group. We use the notation
of Section 6. Let β = (β1, · · · , βr) be as in Definition 6.1, and ζ ∈ mH .

We define Sζ(β) := Sζ(X,S,G, β) to be the moduli space of isomorphism classes
of ζ-polystable parabolic G-local systems F on (X,S) with parabolic weights
β. The moduli space for ζ = 0 will be simply denoted by S(β). Let Pβ be the parabolic
subgroup of G defined by β, and Lβ ⊂ Pβ, the Levi subgroup. We fix loops ci enclosing
the marked points x1, · · · , xr simply. The monodromy of the loop ci around xi takes
values in Pβi , and we consider its projection to Lβi . Its conjugacy class Ci in Lβi is
independent of the simple loop that we have taken. This defines a map

µ : Sζ(β) −→
∏
i

Conj(Lβi)

where Conj(Lβi) is the set of conjugacy classes of Lβi .
Let C = (C1, · · · ,Cr) with Ci ∈ Conj(Lβi), and consider the moduli space

Sζ(β,C) = µ−1(C).

As in the case of parabolic Higgs bundles, using the same techniques, one can give
an analytic gauge-theoretic construction of Sζ(β) and Sζ(β,C), via the identification
provided by Theorem 6.5 of these spaces with the spaces of solutions to the Hermitian–
Einstein equations (see also Proposition 6.9 for ζ 6= 0). This construction endows the
spaces Sζ(β) and Sζ(β,C) with a real analytic structure (complex, if G is complex).
This is done by Nakajima [56] for the case G = GL2C.

We say that a parabolic G-local system is irreducible if its group of automorphisms
coincides with the centre of G. Similarly to Proposition 7.1, one has the following.

Proposition 7.7. Let S∗ζ (β) ⊂ Sζ(β) and S∗ζ (β,C) ⊂ Sζ(β,C) be the subsets of stable
and irreducible elements. Then

(1) S∗ζ (β) is a smooth Poisson manifold foliated by symplectic leaves S∗ζ (β,C), admit-
ting a Kähler structure.

(2) If G is complex S∗ζ (β) is a holomorphic Poisson manifold foliated by holomorphic,
symplectic leaves S∗ζ (β,C), admitting a hyperkähler structure.

As in the case of Higgs bundles, by Remark 6.4, we can define a genericity condition
for β. We say that β = (β1, · · · , βr) is generic if for any maximal parabolic subgroup
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Q ⊂ G, and its corresponding preferred character χ = χQ (see Remark 6.4) we have∑
i

deg
(
(Pi, χi), (Q,χQ)

)
6= 0.

We observe that the function µ defining the relative degree in (B.1), as a function
on Q\G ⊂ m, has a finite number of values, and since the number of types of maximal
parabolic subgroups Q is finite, the condition ∑

i deg
(
(Pi, χi), (Q,χQ)

)
= 0 defines a

finite number of walls dividing mr in chambers. By (6.7) for generic β a semistable
parabolic G-local system is actually stable, and we thus have the following.

Proposition 7.8. If β is generic, then
(1) S(β) is a Poisson manifold (possibly with orbifold singularities at the stable but not

irreducible points) foliated by symplectic leaves S(β,C), admitting a Kähler structure.
Moreover, if β and β′ are in the same chamber S(β) = S(β′) and S(β,C) = S(β′,C) as
real and complex orbifolds, respectively (the Poisson and symplectic structures, respec-
tively, depend on β).

(2) If G is complex S(β) is a holomorphic Poisson manifold (possibly with orbifold
singularities at the stable but not irreducible points) foliated by holomorphic symplectic
leaves S(β,C), admitting a hyperkähler structure. Moreover, if β and β′ are in the
same chamber S(β) = S(β′) as holomorphic Poisson orbifolds and S(β,C) = S(β′,C)
as holomorphic symplectic orbifolds.

We consider now the moduli space of representations of π1(XrS). By a representa-
tion of π1(XrS) in G we mean a homomorphism ρ : π1(XrS)→ G. A representation
is reductive if composed with the adjoint representation in the Lie algebra of G de-
composes as a sum of irreducible representations. If G is algebraic this is equivalent to
saying that the Zariski closure of the image of π1(X r S) in G is a reductive group.
Define the moduli space of reductive representations of π1(X r S) in G to be
the orbit space

R := R(X,S,G) = Hom+(π1(X r S), G)/G,
where Hom+(π1(X rS), G) is the set of reductive representations and G acts by conju-
gation. This is a real analytic variety (algebraic if G is algebraic). If G is complex R is
the affine GIT quotient Hom(π1(X r S), G) � G. Let ci be a loop enclosing xi simply.
Fix conjugacy classes Ci ∈ Conj(G), i = 1, · · · , r, and let C = (C1, · · · ,Cr). We define
the moduli space of representations of π1(X r S) in G with fixed conjugacy classes C

as the subvariety

R(C) := {[ρ] ∈ R : ρ([ci]) = Ci, i = 1, · · · , r}.

Similarly to the case G = GL(n,C) studied by Simpson [65], one has the following.

Proposition 7.9. Let C = (C1, · · · ,Cr) with Ci ∈ Conj(Lβi) like in Section 7.2 and let
C′ = (C′1, · · · ,C′r) with C′i ∈ Conj(Pβi). Let πi : Pβi → Lβi be the projection to the Levi
subgroup. Then there is a forgetful map

S(β,C)→
⋃

C′ : πi(C′i)=Ci

R(C′).
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In particular, if β = 0, Lβi = G, Ci ∈ Conj(G) and
S(0,C) = R(C).

7.3. Correspondences of moduli spaces. We formulate now in terms of moduli
spaces the correspondences that we have proved in this paper. We follow the nota-
tion of Sections 7.1 and 7.2. Using similar arguments to those in [42, 43, 65] to show
that the correspondences are homeomorphisms or diffeomorphisms (in fact real ana-
lytic isomorphisms), from Proposition 6.3 and Theorem 6.5 one has the following two
theorems.

Theorem 7.10. Let (G,H, θ, B) be a real reductive group. Let (α,L) and (β,C) be
related as in Table 1 (where β = s − τ(s)). Then, M(α,L) and S(β,C) are homeo-
morphic. In particular, if β = 0, M(α,L) and R(C) are homeomorphic. Moreover,
M∗(α,L) and S∗(β,C) are diffeomorphic. In particular, if β = 0, M∗(α,L) and R∗(C)
are diffeomorphic, where R∗(C) is the subvariety of irreducible representations.

Theorem 7.11. Let (G,H, θ, B) satisfy Assumption 7.2. Let (α,L) and (β,C) be related
by Table 1, with s = τ(s). Then if α and β are generic M(α,L) and S(β,C) are
diffeomorphic.

Now, since the combined walls defining genericity for α and β have codimension
bigger or equal than 2 in the space of parameters defining a connected chamber for the
generic parameters, Theorem 7.11, combined with Propositions 7.4 and 7.8, imply the
following.

Theorem 7.12. Let (G,H, θ, B) satisfy Assumption 7.2. Let (α,L) and (β,C), and
(α′,L′) and (β′,C′), be related by Table 1. Then if α, α′, β and β′ are generic

(1) M(α,L) and M(α′,L′) are diffeomorphic.
(2) S(β,C) and S(β′,C′) are diffeomorphic.

Remark 7.13. It would be interesting to explore the possible extension of this corre-
spondence to the moduli spaces Mc(α,L) and Sζ(β,C) for non-zero values of c ∈ z(h)
and ζ ∈ mH .

8. Examples

We give some illustrations of the use of parabolic Higgs bundles for defining certain
classical components in the moduli space of representations R(G). We do not give
details since this follows more or less directly from the arguments in the compact case
and the parabolic machinery developed here.

8.1. Teichmüller–Hitchin component of split groups. We begin by the case G =
PSL2R: this gives a parametrization of the space of hyperbolic metrics with cusps at
the marked points. We have H = U1/Z2 where the U1 is seen as a maximal compact
subgroup of SL2R. The construction on an unpunctured surface requires a square root
of K; in the punctured case we need a square root of K(D). The C∗-bundle K(D) has
not always a square root (this requires the degree of D to be even), but as a C∗/Z2
bundle it always has such a square root: let E be such a choice (here E is a principal
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holomorphic C∗/Z2 bundle). Equip E with a trivial parabolic structure at the marked
points. Then

E(mC) = K(D)⊕K(D)−1,

and we consider the meromorphic Higgs field ϕ ∈ H0(X,E(mC)⊗K(D))
ϕ = q2 ⊕ 1, q2 ∈ H0(X,K2(D)),

where 1 has a simple pole at the marked points, while q2 appears to be holomorphic at
the marked points. In particular Resxi ϕ is nilpotent and nonzero.

The Higgs bundles (E,ϕ) for q2 ∈ H0(X,K2(D)) are stable, and, as in [37], the
corresponding solutions of the Hitchin selfduality equations (Hermite–Einstein) provide
hyperbolic metrics on X r D, whose monodromy is the representation π1(X r D) →
PSL2R corresponding to (E,ϕ). In particular, its monodromy around xi is unipotent so
we obtain a cusp at xi. This gives a complete parametrization of the Teichmüller space
for the punctured surface (X,D) by the space of quadratic differentials H0(X,K2(D)).

If the degree of D is even, then a choice of square root L of K(D) gives a lifting of this
PSL2R component to SL2R, with unipotent monodromies at the punctures. It is also
well known that for all degrees, it is possible to lift the component to SL2R with minus
unipotent monodromies: in the Higgs bundle formalism, this amounts to considering
a parabolic structure with weight at the boundary of the alcove, in the following way.
One considers a square root L of K with a parabolic weight −1/2 at each puncture
(this is morally a square root of K(D), in particular pardegL = g− 1 + 1

2 degD). Then
the same Higgs field as above,

ϕ =
0 q2

1 0


is now a parabolic Higgs bundle in our sense, with nilpotent residue ( 0 0

1 0 ), this example
is discussed as the end of Section 4.1. This bundle induces the previous PSL2R Higgs
bundle after applying the Hecke transform z1/2 near each puncture (this exists in C∗/Z2).
(See [58, 12] for a related description.)

Now pass to other split real groups. The generalisation of [39] is straightforward.
We work with G a split real group of adjoint type, and we consider an irreducible
representation ρ : SL2R → G, sending U1 in the maximal compact H of G. Choose
as above a C∗/Z2 principal holomorphic bundle E, square root of K(D). We have a
decomposition gC = ⊕l1Vj into irreducible pieces under ρ, such that V1 is the image of ρ,
and we choose a highest weight vector ej ∈ Vj. If (H,X, Y ) is a standard sl2 basis, with
H ∈

√
−1u1, then e1 = ρ(X), and we also define e−1 = ρ(Y ). Moreover there exist a

basis (pj) of invariant polynomials on gC, of degrees mj +1 (determined by the fact that
adH acts with eigenvalue mj on ej), such that for any element f = e−1 +f1e1 + · · ·+flel
one has fj = pj(f). Now, adapting [39] to the punctured case, we consider the Higgs
bundle ρ(E) with trivial parabolic structure at the punctures, and Higgs field

ϕ = e−1 +
l∑
1
qjej, qj ∈ H0(Kmj+1(mjD)).

It turns out that ϕ is meromorphic with simple poles, and Resxj ϕ = e−1 is regular
nilpotent. This provides the expected Teichmüller–Hitchin component.
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One can remark that there is a natural deformation keeping the same Higgs bundles
but changing the parabolic structure: one can consider at each marked point the par-
abolic group Pρ(H), with some strictly antidominant character αi. Then e−1 ∈ pρ(H) so
the space of Higgs fields with Resxi ϕ ∈ pαi remain the same. This gives a deformation
of the Teichmüller–Hitchin component to a space of representations with fixed compact
monodromy around the punctures. One can obtain similarly any regular semisimple
monodromy at the punctures by allowing qj ∈ H0(Kmj+1((mj +1)D)) and by fixing the
highest order term of each qj at each puncture: this modifies the residue of ϕ, hence
the noncompact part of the monodromy.

8.2. Hermitian groups and the Milnor–Wood inequality. Another case where
there is a distinguished component in the space of representations of π1(X r D) into
G is when G is Hermitian, that is G/H is a Hermitian symmetric space of noncompact
type. The general theory from the Higgs bundle viewpoint is done in [11] and can
be generalised to the punctured case. In particular one recovers the Milnor–Wood
inequality of Burger–Iozzi–Wienhard [21] in the punctured case. Again we do not give
details of the proofs, which can be adapted from [11] to the parabolic case.

In the Hermitian case, h has a 1-dimensional centre, generated by an element J
which induces the complex structure of G/H. In particular it decomposes mC into ±i
eigenspaces: mC = m+ ⊕ m−. Now consider a parabolic G-Higgs bundle (E,ϕ), so ϕ
decomposes as ϕ = ϕ+ +ϕ−. We can define a Toledo invariant in the following way: it is
proved in [11] that there exists a character, called the Toledo character, χT : HC → C∗
and a polynomial det : m+ → C of degree r = rk(G/H), such that for any h ∈ HC one
has det(h · x) = χT (h) det(x). The Toledo invariant on a compact surface is degE(χT ),
and on a punctured surface we define the Toledo invariant by

τ(E) = pardeg(E,χT ),
where the reduction of E is E itself. This is actually equal to the parabolic degree of
the line bundle E(χT ) equipped with the parabolic weight χT (αi) at each puncture xi.

The proof of Theorem 4.5 in [11] extends to give the following Milnor–Wood inequal-
ity: if (E,ϕ) is a semistable parabolic G-Higgs bundle on the Riemann surface (X,D)
with n punctures, then
(8.1) − rk(ϕ+)(2g − 2 + n) 6 τ(E) 6 rk(ϕ−)(2g − 2 + n),
where the rank of ϕ± is the generic rank (there is a well defined notion of rank for
elements of m±, it is bounded by r). In particular, one has |τ(E)| 6 r(2g − 2 + n),
which gives another proof of the Milnor–Wood inequality of [21] in the punctured case,
when the Higgs bundle comes from a representation.

The case of equality in the Milnor–Wood inequality is of interest (the corresponding
representations are called maximal representations), and leads to a nice description
of the moduli space. Restrict to the case G/H is of tube type. One way to state this
condition is to say that the Shilov boundary of G/H is itself a symmetric space H/H ′. It
is proved in [11] that there is a Cayley transform, that is the moduli space is isomorphic
to a moduli space of K2-twisted H∗-Higgs bundles, where H∗/H ′ is the noncompact
dual of H/H ′. Here K2-twisted means that the Higgs field takes values in E(mC)⊗K2

rather than E(mC) ⊗K. This can be extended to the punctured case in the following
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way. For simplicity, suppose that the parabolic weights lie in
√
−1A′g, which means that

all eigenvalues of adαi on mC have modulus smaller than 1. Then one can similarly
prove that in the maximal case, one has αi ∈ h′ and the moduli space of polystable
G-Higgs bundle is isomorphic to a moduli space of K(D)2-twisted polystable H∗-Higgs
bundles, with parabolic structure αi at the punctures. Such an isomorphism remains
true if one drops the condition that αi ∈

√
−1A′g, but then one has only e2π

√
−1αi ∈ H ′

and a Hecke transformation is needed to obtain the parabolic weights of the Cayley
transformed bundle.

This fact on αi also implies that the monodromy around xi fixes a point of the Shilov
boundary, a fact also known from [21].

Appendix A. Lie theory

A.1. Weyl alcoves and conjugacy classes of a compact Lie group. For the fol-
lowing see e.g. [20].

Let H be a compact Lie group with Lie algebra h. Let 〈·, ·〉 be a H-invariant inner
product on h. Let T ⊂ H be a Cartan subgroup, i.e. a maximal torus, and t ⊂ h be
its Lie algebra (a Cartan subalgebra). Fix a system of real simple roots (see e.g. [20,
Chap V, Def 1.3]) and denote by R+ the set of positive roots. Consider the family of
affine hyperplanes in t

Hλn = λ−1(n), λ ∈ R+, n ∈ Z
together with the union ts = ∪λ,nHλn. As shown in [20], this family is given by the
critical points of the exponential map
(A.1) exp : t −→ T.

The set t − ts decomposes into convex connected components which are called the
alcoves of H (sometimes also referred as Weyl alcoves). Note that, by definition,
alcoves are open. So, a choice of an alcove is basically a choice of a logarithm for (A.1).
A wall of an alcove A is one of the subsets of Ā ∩Hλn of t that have dimension k − 1,
where Ā is the closure of A and k = rank(H).

Let W := N(T )/T be the Weyl group of H. The H-invariant inner product on h
induces a W -invariant inner product in t. The co-character lattice Λcochar ⊂ t is
defined as the kernel of the exponential map (A.1). Recall that the co-roots are the
elements of t defined by

λ∗ = 2b−1(λ)/〈λ, λ〉,
where b is the isomorphism b : t −→ t∗ defined by the inner product 〈·, ·〉.

The co-roots define a lattice Λcoroot ⊂ t. We have that Λcoroot ⊂ Λcochar and π1(H) =
Λcochar/Λcoroot. In particular, Λcoroot = Λcochar if H is simply connected.

The affine Weyl group is defined as
Waff = Λcochar oW

where Λcochar acts on t by translations.
The alcoves of H are important for us because of their relation with conjugacy classes

of H. If H is connected, every element of H is conjugate to an element of T , in particular
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every element of H lies in a Cartan subgroup. If Conj(H) is the space of conjugacy
classes of H we have then homeomorphisms

Conj(H) ' T/W ' t/Waff .

We have the following.

Proposition A.1. Let H be a connected compact Lie group. The closure Ā of any
alcove A contains a fundamental domain Af for the action of Waff on t , i.e. every
Waff-orbit meets Af in exactly one point. Hence the space of conjugacy classes of H is
in bijection with Af .

Define √
−1A′ = {α ∈

√
−1Ā | Spec(ad(α)) ⊂ (−1, 1)},

and let √
−1WA′ =

⋃
w∈W

√
−1wA′.

The following will play a crucial role in our definition of parabolic Higgs bundle and in
the analysis involved in the Hitchin–Kobayashi correspondence.

Proposition A.2. Let A ⊂ t be an alcove of H such that 0 ∈ Ā. Then:

(1) If α ∈
√
−1Ā then Spec(ad(α)) ⊂ [−1, 1].

(2) We have
√
−1A ⊂

√
−1A′.

(3) We have
√
−1WA′ = {α ∈

√
−1t | Spec(ad(α)) ⊂ (−1, 1)}.

(4) For any α ∈
√
−1Ā there exist k ∈ Z and λ ∈

√
−1(2π)−1Λcochar such that

kα + λ ∈
√
−1WA′.

Proof. Items (1), (2) and (3) are immediate consequences of the definitions. We now
prove (4). Let Γ =

√
−1(2π)−1Λcochar, and note that

√
−1t/Γ is compact. For any

β ∈
√
−1t let [β] denote its class in

√
−1t/Γ. Given α ∈

√
−1t consider the sequence

[α], [2α], [3α], . . . . By compactness this sequence must accumulate somewhere. So one
may take elements of the form [µα] and [να] with µ 6= ν in such a way that [να]− [µα] =
[(ν − µ)α] is arbitrary close to [0]. In particular, since

√
−1WA′ is a neighborhood of

0 we can find k and λ such that kα + λ ∈
√
−1WA′. �

Proposition A.3. Let G be the complexification of a connected compact Lie group H,
and let TC be the complexification of a Cartan subgroup of H. Then every semisimple
element of G is conjugate to an element of TC, which in particular can be written as
exp(α) exp(s) with α ∈ Ā, s ∈

√
−1t and [α, s] = 0.

A.2. Real reductive Lie groups. Following Harisch-Chandra [34] and Knapp [40,
p. 384], a real reductive Lie group is defined as a 4-tuple (G,H, θ, B), where G is a
real Lie group, H ⊂ G is a maximal compact subgroup, θ : g→ g is a Cartan involution,
and B is a non-degenerate bilinear form on g, which is Ad(G)-invariant and θ-invariant.
The data (G,H, θ, B) has to satisfy in addition that

• the Lie algebra g of G is reductive
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• θ gives a decomposition (the Cartan decomposition)

g = h⊕m

into its ±1-eigenspaces, where h is the Lie algebras of H, so we have

[h, h] ⊂ h, [h,m] ⊂ m, [m,m] ⊂ h,

• h and m are orthogonal under B, and B is positive definite on m and negative
definite on h,
• multiplication as a map from H × expm into G is a diffeomorphism,
• every automorphism Ad(g) of gC is inner for g ∈ G, i.e., is given by some x in

Intg.

Of course a compact real Lie group G whose Lie algebra is equipped with a non-
degenerate Ad(G)-invariant bilinear form belongs to a reductive tuple (G,H, θ, B) with
H = G and θ = Id. Also the underlying real structure of the complexification G of a
compact Lie group H, whose Lie algebra h is equipped with a non-degenerate Ad(H)-
invariant bilinear form can be endowed with a natural reductive structure.

If G is semisimple, the data (G,H, θ, B) can be recovered (to be precise, the quadratic
form B can only recovered up to a scalar but this will be sufficient for everything we
do in this paper) from the choice of a maximal compact subgroup H ⊂ G. There are
other situations where less information is enough, e.g. for certain linear groups (see [40,
p. 385]).

The bilinear form B does not play any role in the definition of a parabolic G-Higgs
bundle but is essential for defining the stability condition and the gauge equations
involved in the Hitchin–Kobayashi correspondence.

Note that the compactness of H together with the second to last property above say
that G has only finitely many components.

Let gC and hC be the complexifications of g and h respectively, and let HC be the
complexification of H. Let

(A.2) gC = hC ⊕mC

be the complexification of the Cartan decomposition. The group H acts linearly on
m through the adjoint representation, and this action extends to a linear holomorphic
action of HC on mC, the isotropy representation that we will denote by

ι : HC −→ Aut(mC),

or sometimes by Ad since it is obtained by restriction of the adjoint representation of
G.

If G is complex with maximal compact subgroup H, then g = h ⊕
√
−1h. We

thus have that m =
√
−1h, and the isotropy representation coincides with the adjoint

representation Ad : G −→ Aut(g)
If G is a reductive group, then the map Θ : G −→ G defined by

(A.3) Θ(h expA) = h exp(−A) for h ∈ H and A ∈ m
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is an automorphism of G and its differential is θ. This is called the global Cartan
involution.

A.3. sl2-triples and orbit theory. We consider a reductive group G as defined in
Appendix A.2.

An ordered triple of elements (x, e, f) in g (or gC) is called a sl2-triple if the bracket
relations [x, e] = 2e, [x, f ] = −2f , and [e, f ] = x are satisfied. One has that the elements
e and f are nilpotent. An sl2-triple (x, e, f) in gC is called normal if e, f ∈ mC and
x ∈ hC. Some times we refer to a normal triple as a Kostant–Rallis triple (see [45]).

Let N(g) and N(mC) be the set of nilpotent elements in g and mC respectively. One
has the following.

Proposition A.4. (1) Every element 0 6= e ∈ N(g) can be embedded in a sl2-triple
(x, e, f), establishing a 1–1 correspondence between the set of all G-orbits in N(g) and
the set of all G-conjugacy classes of sl2-triples in g.

(2) Every element 0 6= e ∈ N(mC) can be embedded in a normal sl2-triple (x, e, f),
establishing a 1–1 correspondence between the set of all HC-orbits in N(mC) and the set
of all HC-conjugacy classes of normal sl2-triples in gC.

Statement (1) is a real version of a refinement of the Jacobson–Morozov theorem,
proved in [44]. For (2) see [45, Prop 4, 38]

We say that an sl2-triple in g is a Kostant–Sekiguchi triple if θ(e) = −f , and hence
θ(x) = −x. A normal sl2-triple in gC is called Kostant–Sekiguchi triple if f = σ(e) where
σ is the conjugation of gC defining g.

One has the following (see [63]).

Proposition A.5. (1) Every sl2-triple in g is conjugate under G to a Kostant–Sekiguchi
triple in g. Two Kostant–Sekiguchi triples are G-conjugate if and only if they are
conjugate under H.

(2) Every normal triple in gC is conjugate under HC to a Kostant–Sekiguchi triple.
Two Kostant–Sekiguchi triples are conjugate under HC to the same Kostant–Rallis triple
if and only if they are conjugate under H.

Propositions A.4 and A.5 can be combined, together with a linear transformation
sometimes called Cayley transform (see e.g. [24, p. 579]) to obtain the Kostant–
Sekiguchi correspondence:

Proposition A.6. There is a one-to-one correspondence (see [63, 70]).
N(g)/G←→ N(mC)/HC.

A similar correspondence can be established for orbits of arbitrary elements (see
[5, 9]).

A.4. Conjugacy classes of a real reductive Lie group. Now let (G,H, θ, B) be a
reductive group as defined in Appendix A.2. We can also give in this case a description
of conjugacy classes of G. A Cartan subgroup of G is defined as the centralizer in G
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of a Cartan subalgebra of g. When G is non-compact, it is no longer true that every
element of G lies in a Cartan subgroup. For example, for G = SL2R, the element1 1

0 1

 does not lie in any Cartan subgroup (see [40], p. 487).

We know (see [40]) that any Cartan subalgebra is conjugate via Intg to a θ-invariant
Cartan subalgebra, and that there are only finitely many conjugacy classes of Cartan
subalgebras. Consequently any Cartan subgroup of G is conjugate via G to a Θ-stable
Cartan subgroup, where Θ is given in (A.3), and there are only finitely many conjugacy
classes of Cartan subgroups. Moreover, a Θ-invariant Cartan subgroup is reductive.

Cartan subgroups of a non-compact real reductive Lie group can be non-connected
even if the group G is connected. This already happens for SL2R (see [40]). In the
following we will see how alcoves can be useful to deal with elements of a Cartan
subgroup that are not in the identity component.

Proposition A.7. Let T ′ be a Θ-invariant Cartan subgroup. Every element t ∈ T ′ is
conjugate to an element of the form exp(α) exp(s) where α ∈ Ā and s ∈ m, such that
exp(α) and exp(s) commute.

Proof. Let t ∈ T ′. Then by the reductivity and Θ-invariance of T ′ we have that t =
h exp(s′) with h ∈ T ′∩H and s′ ∈ t′∩m. We can extend t′ to a Cartan subalgebra t of h
with corresponding Cartan subgroup T , and choose an alcove A containing 0 such that
h is conjugate (via an element of the Weyl group of T ) to an element of the form exp(α)
with α ∈ Ā. So h = k−1 exp(α)k with k ∈ H. Then ktk−1 = exp(α)k exp(s′)k−1. The
element k exp(s′)k−1 is in exp(m), and can thus be written k exp(s′)k−1 = exp(s) with
s ∈ m. Clearly, since h and exp(s′) (both are elements in T ′) we have that exp(α) and
exp(s) commute.

�

For the correspondences proved in this paper we will be considering conjugacy classes
of G in which one can find a representative of the form

g = geghgu

so that all the factors commute two by two, with

• ge = exp(2
√
−1πα), with α ∈

√
−1Ā (elliptic element);

• gh = exp(s − τ(s)) with s ∈ a (hyperbolic element), where τ is a conjugation
of gC defining a compact real form, and a ⊂ m is a maximal abelian subalgebra;
• gu = exp(n), where n ∈ m is a nilpotent element of the form i(Y − X − H)

where (H,X, Y ) is an appropriate sl2-triple (unipotent element).

The decomposition g = geghgu is the multiplicative Jordan decomposition, which
is proved in Helgason [35] for GLnR and in Eberlein [27] for the connected component of
the isometry group of a symmetric space of non-compact type, hence for the connected
component of the adjoint group.
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Appendix B. Parabolic subgroups and relative degree

Let (G,H, θ, B) be a real reductive Lie group as defined in Appendix A.2. In this
section we recall some basics on parabolic subgroups of G and define the relative degree
of two parabolic subgroups.

B.1. Parabolic subgroups. Let Σ = H\G be the symmetric space of non compact
type. (The action is taken to be a right action, because this fits better with the way
symmetric spaces arise in Kähler quotients.) Let g = h⊕m be the Cartan decomposition,
and a ⊂ m a maximal abelian subalgebra (the dimension of a is the rank of Σ). Let
Φ ⊂ a∗ the roots of g, so that g = g0 ⊕⊕λ∈Φgλ, where g0 is the centralizer of a.

Choose a positive Weyl chamber a+ ⊂ a, and let Φ± ⊂ Φ (resp. ∆ ⊂ Φ) be the set of
positive/negative roots (resp. simple roots). For I ⊂ ∆, denote ΦI ⊂ Φ the set of roots
which are linear combinations of elements of I, then we define a standard parabolic
subalgebra

pI = g0 ⊕
∑

λ∈ΦI∪Φ−
gλ,

and PI ⊂ G the corresponding subgroup. Any parabolic subalgebra of g is conjugate to
one of the standard parabolic subalgebras.

Given an element s ∈ m, one has a parabolic subgroup Ps and its Lie algebra defined
as follows:

Ps = {g ∈ G, etsge−ts is bounded as t→∞},
ps = {x ∈ g,Ad(ets)x is bounded as t→∞}.

When t → ∞, the geodesic t 7→ ∗ets (where ∗ is the base point, fixed by H), hits
the visual boundary ∂∞Σ in a point, whose stabilizer in G is precisely Ps. If G is
connected every parabolic subgroup Ps obtained in this way is conjugate a standard
parabolic subgroup PI . The element s defines also a Levi subgroup Ls ⊂ Ps and a Levi
subalgebra ls ⊂ ps by

Ls = {g ∈ G,Ad(g)(s) = s}, ls = {x ∈ g, [s, x] = 0}.

A character χ of ps defines an element in the dual of g and hence in g via the invariant
metric, which by projection defines an element sχ in m. When ps ⊂ psχ we say that χ is
antidominant. When ps = psχ we say that χ is strictly antidominant The mapping
χs : ps → R defined by

χs(x) = 〈s, x〉
is hence a strictly antidominant character of ps.

Remark B.1. If G is complex then g = h ⊕
√
−1h and the subgroups Ps, Ls and

corresponding Lie subalgebras ps, ls are of course complex.

B.2. Relative degree. We now define a function which is important in the paper, since
it calculates the contribution to the parabolic degree at the punctures. The setting is
the following.

Let OH ⊂ m be an H-orbit in m. As is well known, OH is also a G-homogeneous
space. This can be seen in the following way: given s ∈ OH , one can consider η(s) =
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limt→+∞ ∗ets ∈ ∂∞Σ. It turns out that the image of OH under η is a G-orbit in ∂∞Σ.
Of course the stabilizer of η(s) is the parabolic group Ps defined above, so one gets an
identification

η : OH = H/(Ps ∩H) ⊂ m −→ Ps\G ⊂ ∂∞Σ.
The action of g ∈ G on OH will be denoted by s · g; if one decomposes g = ph with
h ∈ H and p ∈ P , then s · g = s · h = Ad(h−1)s.

Now take another element σ ∈ m. As we shall see below in the proof of the proposi-
tion, the function

t 7→ 〈s · e−tσ, σ〉
is a nonincreasing function of t, so we can define a function

µs : m −→ R, µs(σ) = lim
t→+∞

〈s · e−tσ, σ〉.

This function is actually (up to a normalization) a function defined on ∂∞Σ, as follows
from the following proposition.

Proposition B.2. Suppose s and σ normalized so that |s| = |σ| = 1. Then one has

µs(σ) = cos∠Tits(η(σ), η(s)),

where ∠Tits is the Tits distance on ∂∞Σ. In particular, one has the reciprocity µσ(s) =
µs(σ).

Proof. Decompose e−tσ = ptht with ht ∈ H and pt ∈ Ps. Then

〈s · e−tσ, σ〉 = 〈Ad(h−1
t )s, σ〉 = cos∠(Ad(h−1

t )s, σ).

On the other hand, the distance

d(∗euAd(h−1
t )setσ, ∗eus) = d(∗eusp−1

t , ∗eus)

is bounded when u→ +∞, so u→ ∗euAd(ht)setσ is the geodesic emanating from ∗etσ and
going to η(s). So the angle between the geodesics emanating from ∗etσ and converging
to η(σ) and η(s) is the angle between Ad(h−1

t )s and σ. It is well known that this angle
is increasing and converges when t → ∞ to the Tits distance between η(s) and η(σ),
and the proposition follows. �

The function −µσ is the ‘asymptotic slope’ of [41]. In [53], the complex case is studied:
if G = HC then the adjoint orbit OH is a Kähler manifold, and the asymptotic slope
can be reinterpreted in terms of maximal weights of the action of G on OH .

We will use this notion to define a relative degree. From the proposition, µs(σ)
depends only on giving two pairs (P, s) and (Q, σ) of a parabolic subgroup of G and
an antidominant character on the parabolic subgroup. So we can define the relative
degree of (P, s) and (Q, σ) as

(B.1) deg
(
(P, s), (Q, σ)

)
= µs(σ).

Observe, again from the proposition, that deg is a symmetric function of its two argu-
ments.
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60 O. BIQUARD, O. GARCÍA-PRADA, AND I. MUNDET I RIERA

[53] , Maximal weights in Kähler Geometry: Flag manifolds and Tits distance (with an
appendix by A. H. W. Schmitt), in: O. Garćıa-Prada et. al. (eds.), Vector bundles and
complex geometry. Conference on vector bundles in honor of S. Ramanan on the occasion of
his 70th birthday, Madrid, Spain, June 16–20, 2008. Providence, RI: American Mathematical
Society (AMS). Contemporary Mathematics 522 (2010), 113–129.

[54] , Parabolic Higgs bundles for real reductive Lie groups: A very basic introduction,
Geometry and Physics: A Festschrift in honour of Nigel Hitchin, Oxford University Press,
2018.

[55] I. Mundet i Riera, G. Tian, A compactification of the moduli space of twisted holomorphic
maps, Adv. Math. 222 (2009), 1117-1196.

[56] H. Nakajima, Hyper-Kähler structures on moduli spaces of parabolic Higgs bundles on Rie-
mann surfaces. Moduli of vector bundles (Sanda, 1994; Kyoto, 1994), 199–208, Lecture Notes
in Pure and Appl. Math. 179, Dekker, 1996.

[57] M.S. Narasimhan, C.S. Seshadri, Stable and unitary vector bundles on a compact Riemann
surface, Ann. Math. (2) 82 (1965), 540-567.

[58] B. Nasatyr and B. Steer, Orbifold Riemann surfaces and the Yang–Mills–Higgs equations,
Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22 (1995) 595–643.

[59] G. Pappas, M. Rapoport. Some questions about G-bundles on curves. Algebraic and arith-
metic structures of moduli spaces (Sapporo 2007), 159–171, Adv. Stud. Pure Math., 58,
Math. Soc. Japan, Tokyo, 2010.

[60] A. Ramanathan, Stable principal bundles on a compact Riemann surface, Math. Ann., 213,
(1975), 129–152.

[61] A. H. W. Schmitt, Geometric Invariant Theory and Decorated Principal Bundles, Zurich
Lectures in Advanced Mathematics, European Mathematical Society, 2008.

[62] C.S. Seshadri, Moduli of vector bundles on curves with parabolic structures, Bull. Amer. Math.
Soc. 83 (1977), 124–126.

[63] J. Sekiguchi, Remarks on real nilpotent orbits of a symmetric pair, J. Math. Soc. Japan 39
(1987), 127–138.

[64] C.T. Simpson, Constructing variations of Hodge structure using Yang-Mills theory and ap-
plications to uniformization, J. Amer. Math. Soc. 1 (1988), 867–918.

[65] , Harmonic bundles on noncompact curves, J. Amer. Math. Soc. 3 (1990), 713–770.
[66] , Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. (1992), 5–95.
[67] I. M. Singer, The geometric interpretation of a special connection, Pacific J. Math. 9 (1959)

585–590.
[68] C. Teleman and C. Woodward, Parabolic bundles, products of conjugacy classes, and quantum

cohomology, Annales de L’Institut Fourier 3 (2003), 713–748.
[69] K. Uhlenbeck, S.T. Yau, On the existence of Hermitian–Yang–Mills connections in stable

vector bundles. Comm. Pure Appl. Math. 39-S (1986), 257–293.
[70] M. Vergne, Instantons et correspondance de Kostant-Sekiguchi, C. R. Acad. Sci. Paris Sér. I

Math. 320 (1995), 901–906.
[71] K. Yokogawa, Compactification of moduli of parabolic sheaves and moduli of parabolic Higgs

sheaves, J. Math. Kyoto Univ. 33 (1993) 451–504.
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