
HAL Id: hal-02928761
https://hal.science/hal-02928761v4

Preprint submitted on 29 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Computational Aspects of Column Generation for
Nonlinear and Conic Optimization: Classical and

Linearized Schemes
Renaud Chicoisne

To cite this version:
Renaud Chicoisne. Computational Aspects of Column Generation for Nonlinear and Conic Optimiza-
tion: Classical and Linearized Schemes. 2021. �hal-02928761v4�

https://hal.science/hal-02928761v4
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Computational Optimization and Applications manuscript No.
(will be inserted by the editor)

Computational Aspects of Column Generation for
Nonlinear and Conic Optimization: Classical and
Linearized Schemes

Renaud Chicoisne

Received: date / Accepted: date

Abstract Solving large scale nonlinear optimization problems requires either sig-
nificant computing resources or the development of specialized algorithms. For
Linear Programming (LP) problems, decomposition methods can take advantage
of problem structure, gradually constructing the full problem by generating vari-
ables or constraints. We first present a direct adaptation of the Column Generation
(CG) methodology for nonlinear optimization problems, such that when optimiz-
ing over a structured set X plus a moderate number of complicating constraints,
we solve a succession of 1) restricted master problems on a smaller set S ⊂ X
and 2) pricing problems that are Lagrangean relaxations wrt the complicating
constraints. The former provides feasible solutions and feeds dual information to
the latter. In turn, the pricing problem identifies a variable of interest that is then
taken into account into an updated subset S′ ⊂ X .

Our approach is valid whenever the master problem has zero Lagrangean duality
gap wrt to the complicating constraints, and not only when S is the convex hull of
the generated variables as in CG for LPs, but also with a variety of subsets such as
the conic hull, the linear span, and a special variable aggregation set. We discuss
how the structure of S and its update mechanism influence the number of iterations
required to reach near-optimality and the difficulty of solving the restricted master
problems, and present linearized schemes that alleviate the computational burden
of solving the pricing problem.

We test our methods on synthetic portfolio optimization instances with up to
5 million variables including nonlinear objective functions and second order cone
constraints. We show that some CGs with linearized pricing are 2-3 times faster
than solving the complete problem directly and are able to provide solutions within
1% of optimality in 6 hours for the larger instances, whereas solving the complete
problem runs out of memory.

Keywords Nonlinear Optimization · Conic Programming · Column Generation ·
Lagrangean Duality · Portfolio Optimization

Renaud Chicoisne
Université Clermont-Auvergne, ISIMA, LIMOS (Clermont-Ferrand, France)
OrcidId: 0000-0002-5001-4350
E-mail: renaud.chicoisne@gmail.com

2 Renaud Chicoisne

1 Introduction

Decomposition methods are fundamental tools to solve difficult large scale prob-
lems. In this work, we focus on Column Generation (CG) algorithms, where the
number of variables is too large to allow a direct solution with an off-the-shelf
optimization software. More formally, we focus on solving the following problem:

(P (X)) ω (X) := min
x,y

f(x, y)

s.t. x ∈ X , −g(x, y) ∈ C,

where C is a cone in some Euclidean space, X is a high-dimensional structured set
and f and g are generic mappings1. The feasibility set of the auxiliary variables y
is fully defined by constraints −g(x, y) ∈ C.

Defining n, n0 and m as the respective dimensions of x, y and C, we assume that
the main issue with P (X) is the joint presence of the difficult (or coupling/side)
constraints −g(x, y) ∈ C and the magnitude of n � 1. In other words, we con-
sider a setting in which: 1) for some low-dimensional subset S ⊆ X , P (S) can be
solved efficiently, and 2) P (X) without the constraints −g(x, y) ∈ C gives birth
to an efficiently solvable problem. We propose to use these simpler optimization
problems to build a computationally efficient solution method for P (X). For the
sake of simplicity, we do not consider equalities in the complicating constraints
(the generalization is straightforward).

1.1 Examples

We now show some examples of problems that have the structure we just described.
For given integers p, q > 0, we denote [p] := {1, ..., p}, || · ||q is the q-norm in
Rp, the Lorentz cone of dimension p + 1 is the set Lp+1

2 := {(u, u0) ∈ Rp+1 :
||u||2 6 u0}. Finally, given symmetric matrices M1 and M2, M1 �M2 means that
M1−M2 belongs to the cone of semidefinite positive matrices, i.e. the eigenvalues
of M1 −M2 are nonnegative.

Example 1 Partially separable Second-Order cone (SOC) Programming, where
X := {x = (xk)k∈[K] : ||Akxk − ak||2 6 (pk)>xk − pk0 ,∀k ∈ [K]}, g(x, y) :=

(bl−Xlx−Y ly; rl0−x>ql−y>rl)l∈[L] and C := {(ul, ul0)l∈[L] : ||ul||2 6 ul0, ∀l ∈ [L]}
with L reasonably small:

min
x=(xk)k,y

f(x, y) := c>x+ d>y

s.t.
∣∣∣∣∣∣Akxk − ak∣∣∣∣∣∣

2
6
(
pk
)>

xk − pk0 , ∀k ∈ [K]∣∣∣∣∣∣Xlx+ Y ly − bl
∣∣∣∣∣∣

2
6 x>ql + y>rl − rl0, ∀l ∈ [L].

Notice that partially block-angular LPs are a particular case of Example 1 (i.e.
when Ak, ak, Xl, Y l and bl are all zero).

1 f and g satisfy some convexity properties in Section 3.

Computational Aspects of CG for Nonlinear Optimization 3

Example 2 Partially separable Semidefinite Programming (SDP) where g(x, y) :=
B −

∑K
k=1

∑nk
j=1 x

k
jX

kj −
∑n0

j=1 yjY
j , X := {x = (xk)k∈[K] :

∑nk
j=1 x

k
jA

kj �
Bk, ∀k ∈ [K]} and C is a cone of SDP matrices of reasonable dimension:

min
x=(xk)k,y

f(x, y) := c>x+ d>y

s.t.

nk∑
j=1

xkjA
kj � Bk, ∀k ∈ [K]

K∑
k=1

nk∑
j=1

xkjX
kj +

n0∑
j=1

yjY
j � B.

Several existing works already use CG to tackle this kind of problem with e.g.
polyhedral approximations of the cone of SDP matrices as their S sets [2]. CG
could also be used to generate the block factor-width-2 cone of matrices that
is used in [69] to inner approximate huge SDP cones. Example 1 and some inner
approximations of high-dimensional SDP cones are a particular case of Example 2.

Example 3 Partially separable Nonlinear Programming (NLP). C := Rm+ with m
reasonably small and X := {x = (xk)k∈[K] : pki

(
xk
)
6 0,∀i ∈ [mk],∀k ∈ [K]}:

min
x=(xk)k,y

f(x, y) :=
K∑
k=1

ck

(
xk
)

+ d(y)

s.t. pki

(
xk
)
6 0, ∀i ∈ [mk], ∀k ∈ [K]

gi
(
x1, ..., xK , y

)
6 0, ∀i ∈ [m].

Examples 1 and 2 are particular cases of Example 3.

Finally, a vast majority of problems that are tractable computationally when
their data is known become way harder when considering their stochastic coun-
terpart, i.e. when their data - such as their objective function or constraints - are
uncertain and considered random [5]. They can become highly nonlinear or too big
when - to name a few - using risk measures or chance constraints. As we see later
in our experimental setup, the risk-averse portfolio optimization problem that we
consider allows our CG scheme to take advantage of the original (deterministic)
features of the problem.

1.2 Preliminaries

We now introduce several definitions that are used through this paper. We call the
dual cone of the cone C, the set C∗ defined as C∗ := {u : 〈u, v〉 > 0,∀v ∈ C}. For
any penalization vector λ ∈ C∗, let us define the following Lagrangean relaxation:

(L (X , λ)) ω (X , λ) := min
x∈X ,y

{f(x, y) + 〈λ, g(x, y)〉} .

For any λ ∈ C∗ we have ω(X , λ) 6 ω(X). The Lagrangean dual of P (X) is:

(D (X)) max
λ∈C∗

{ω (X , λ)} 6 ω(X).

4 Renaud Chicoisne

We say that P (X) has no Lagrangean duality gap if P (X) and D(X) share the same
optimal value ω(X). Notice that the concept of Lagrangean dual is associated to
the constraints that are relaxed, which in this work are the constraints −g(x, y) ∈
C. On another hand, given a set S ⊆ X , we define the restricted problem as follows:

(P (S)) ω (S) := min
x∈S,y

{f(x, y) : −g(x, y) ∈ C} .

Given that the original problem P (X) is a relaxation of P (S) for any S ⊆ X ,
we have ω(X) 6 ω(S). If S contains the projection onto the x-components of an
optimal solution of P (X), notice that we have ω(X) = ω(S) and P (S) returns
optimal solutions for P (X).

1.3 Main concept

In this paper, we extend the concept of CG beyond the scope of LPs and simplicial
approximations of X , while keeping a similar philosophy: in the LP case, at each it-
eration k we solve an approximation P (Sk) of P (X) that uses Sk := conv(x̄l)l∈[k],

the convex hull of a family of columns x̄l, each belonging to X . Doing so, we obtain
an upper bound ω(Sk) on ω(X) and retrieve the corresponding optimal dual mul-
tipliers λk. These multipliers are fed to the pricing problem L(X , λk) that returns
an optimal solution (x̄k, ȳk) and provides a lower bound ω(X , λk) for ω(X).

Fig. 1: CG feedback: (x̄k, ȳk) is optimal for L(X , λk), λk is dual-optimal for P (Sk).

As pictured in Figure 1, we iteratively refine both problems until the optimal-
ity gap ω(X , λk) − ω(Sk) is under some tolerance. Our approach generalizes CG
in several ways: under reasonable conditions 1) the approximating set Sk does
not have to be a convex hull of previous columns, and 2) P (X) is not necessarily
an LP but P (Sk) must have zero Lagrangean duality gap wrt the complicating
constraints −g(x, y) ∈ C. Further, 1) depending on the structure of the approx-
imations Sk, the master problem can be greatly simplified and 2) under some
convexity assumptions, it is possible to replace L(X , λk) by a computationally
easier pricing. We now present the assumptions used in this article.

1.4 Working hypothesis

We make two kinds of assumptions: the first ensures the validity of our framework
and the remaining are necessary to make it computationally efficient:

Assumption 1 S is such that P (S) can be solved by a Lagrangean algorithm that
provides a multiplier λ ∈ C∗ such that ω(S) = ω(S, λ).

Computational Aspects of CG for Nonlinear Optimization 5

Assumption 2 For any λ ∈ C∗ we can solve efficiently L(X , λ) in practice.

Assumption 3 The choice of S makes P (S) efficiently solvable in practice.

Assumption 1 implies that P (S) has no Lagrangean duality gap and we have an
algorithm to find an optimal primal-dual pair ((x, y), λ) for P (S); notice that (x, y)
is also optimal for L(S, λ). Assumption 1 is satisfied by many optimization prob-
lems such as e.g. LPs or Linear Conic problems (LC) and Nonlinear optimization
Problems (NLP) that satisfy a Constraint Qualification [43], which can be solved
using an interior point method [41]. Slater’s condition is a popular constraint qual-
ification that is satisfied if the problem at hand is convex and strictly feasible2:
Although Assumption 1 may sound overly restrictive, we show in Proposition 1
that for a regular enough S, P (S) satisfies Slater’s condition. Notice that we only
need P (S) to satisfy Assumption 1, while P (X) may not, as we show in Example 4:

Example 4 Consider the following sets

X :=

x ∈ R6 :

x1 x4 x5

x4 x2 x6

x5 x6 x3

 � 0

 ,

S :=

x ∈ R6 : ∃θ ∈ [0, 1] :

x1 x4 x5

x4 x2 x6

x5 x6 x3

 = θ

1 0 0
0 1 0
0 0 0

+ (1− θ)

0 0 0
0 1 0
0 0 0

 (X

and the following SDP P (X):

ω(X) := min
x∈X ,y

y2 :

x1 x4 x5

x4 x2 x6

x5 x6 x3

 =

1 0 0
0 1 0
0 0 0

− y1

1 0 0
0 0 0
0 0 0

− y2

0 0 1
0 −1 0
1 0 0

 .

Because P (S) is an LP, it satisfies Assumption 1, while P (X) does not by having
a nonzero duality gap (see Appendix A for the details). This example shows that
our framework could possibly solve some problems having a nonzero duality gap.

Assumptions 2 and 3 are not needed from a theoretical point a view, how-
ever, they are essential for our methodology to be competitive computationally.
Assumption 2 is the basic assumption for classical CG for LPs and means that the
pricing problem L(X , λ) is either 1) block-decomposable thanks to the structure
of X and can be solved in parallel, or 2) there is an efficient dedicated algorithm
to solve it. Finally, Assumption 3 says that S is e.g. low dimensional and defined
with a few constraints3. Both Assumptions 2 and 3 depend on the ability of the
modeller to identify a set of constraints that are relaxed and choose a set S such
that both P (S) and L(X , λ) are easy enough to solve in practice.

Our objective is to design an iterative search in terms of both λ and S that
successively improves the lower and upper bounds ω(X , λ) and ω(S), returning
increasingly good feasible solutions as a byproduct. Our framework achieves this
goal by feeding information from one problem to the other by updating respec-
tively λ from P (S) and S from L(X , λ), while choosing computationally efficient
approximations S and pricing problems.

2 Strict feasibility is defined in Subsection 1.8
3 This point is explored in more detail in Sections 4 and 5.

6 Renaud Chicoisne

1.5 Dantzig-Wolfe for LPs

To illustrate our point, consider the following LP as a special (well known) case of
P (X) - i.e. when X is a polyhedron, f and g are linear mappings and C := Rm+ :

ω(X) := min
x,y

c>x+ d>y

s.t. x ∈ X := {x > 0 : Ax = a}
Xx+ Y y > b.

(1a)

(1b)

(1c)

Because of the high dimensionality of the polyhedron X and the presence of (1c)
breaking any eventual structure, even state-of-the art solvers cannot tackle directly
this kind of problem. Suppose in our case that optimizing a linear objective over
the (high-dimensional) polyhedron X is easy in practice and, as pointed out before,
if we were to replace X by some wisely chosen subset S ⊆ X in (1), we would obtain
a computationally cheap upper bound for the optimal value of (1).

Master problem P (S) In this LP case, there is a natural choice for S readily
available [7]: Letting V be the set of vertices of X and R a complete set of extreme
rays of X , we have X = conv V + cone R, where cone R is the conic hull of R:

X =

x : x =
∑
l:x̄l∈V

θlx̄
l +

∑
l:x̄l∈R

θlx̄
l, for some θ > 0 :

∑
l:x̄l∈V

θl = 1

 .

Problem (1) can thus be rewritten as the following extensive formulation:

ω(X) = min
θ>0,y

∑
l:x̄l∈V

θlc
>x̄l +

∑
l:x̄l∈R

θlc
>x̄l + d>y

s.t.
∑
l:x̄l∈V

θlXx̄
l +

∑
l:x̄l∈R

θlXx̄
l + Y y > b

∑
l:x̄l∈V

θl = 1

(2a)

(2b)

(2c)

Because X := {x > 0 : Ax = a} is convex and each x̄l belongs to X , notice that
the side constraints Xx + Y y > b are the only remnants of the original problem.
The LP dual of the extended formulation is the following problem:

ω(X) = max
λ>0,η

b>λ+ η

s.t.
(
Xx̄l

)>
λ 6 c>x̄l − η, ∀l : x̄l ∈ V(

Xx̄l
)>

λ 6 c>x̄l, ∀l : x̄l ∈ R

Y >λ = d.

(3a)

(3b)

(3c)

(3d)

A direct solution of problem (2) is in general impractical as its number of variables
can be exponential in (n, n0,m). However, the Dantzig-Wolfe (DW) algorithm [16]
offers a solution method successively generating vertices and extreme rays of the
polyhedron X . It starts with finite subsets V ⊂ V and R ⊂ R and solves a

Computational Aspects of CG for Nonlinear Optimization 7

restricted master problem (2) with V and R instead of the full sets V and R.
With our notation, this restricted master problem is none other than P (S) with
S := conv V+ cone R. Making different choices for S and consider a broader class
of optimization problems is one of the central ideas of this paper.

Pricing problem L(X , λ) Obtaining the optimal dual variables λ associated with
constraints (2b) in P (S), the Lagrangean relaxation L(X , λ) is solved:

min
x∈X ,y

{
c>x+ d>y + λ> (b−Xx− Y y)

}
= min
x∈X ,y

{(
c−X>λ

)>
x+

(
d− Y >λ

)>
y

}
+ λ>b.

By dual feasibility (3d) of λ, implying that Y >λ = d, it can be rewritten

λ>b+ min
x∈X

{(
c−X>λ

)>
x

}
, (4)

thus eliminating the variables y from the pricing problem. Discarding this depen-
dency in y is, however, not always possible in a nonlinear setting. Letting x̄ be
an optimal solution of the pricing problem (4), with a slight abuse of notation we
refer to an optimal solution to either 1) a vertex of X if the pricing problem in
x has a bounded optimal objective value, or 2) an extreme ray of X otherwise.
In the latter case we increment R̄ ← R̄ ∪ {x̄} and in the former V̄ ← V̄ ∪ {x̄},
which defines the particular update mechanism used by DW. We iterate until an
optimality tolerance criterion is satisfied or until we generated the complete sets
V and R, thus solving the full, original problem P (X).

1.6 Decomposition methods and previous work

CG algorithms were studied in depth for LPs [16,36] or Mixed Integer Linear
Programming (MILP) problems [4,56], where notoriously large MILPs could be
solved by embedding DW in a branch-and-price framework [18,14]. The main
idea of DW is to exploit the structure of X and solve smaller problems: 1) the
master problem, that works over a reduced subset S ⊂ X while keeping the side
constraints; and 2) a pricing problem that is still large but is computationally easy
to solve thanks to the absence of side constraints.

In a nonlinear setting, several algorithms such as the Alternating Direction
Method of Multipliers (ADMM) [65], the Douglas-Rachford splitting operator [21]
or augmented Lagrangean algorithms [54] all make use of a special structure in X .
However, they all solve inexactly the Lagrangean dual D(X) and do not always
provide feasible solutions for P (X). Further, proving optimality or near optimality
can be tricky and a concrete stopping criterion is also not always available. Closer
to a generalization of CG for NLPs, the convex simplex method [66] minimizes a
nonlinear objective over a polyhedron. It can be seen as solving a master prob-
lem over a basis of variables and - similar to the simplex algorithm - selecting
the entering variable by linearizing some penalization function. Akin to DW, the
simplicial decomposition [62] solves a linearized master problem over a subset S
that is the convex hull of a handful of points, and the pricing problem generating

8 Renaud Chicoisne

such columns is the original problem P (X) with an objective linearized at an in-
cumbent point. [39] has the same master problem but the pricing problem uses a
penalty function instead of a lagrangean relaxation and does not consider generic
conic constraints.

Problem-dependent CG schemes for NLPs were presented in e.g. [42] for nonlin-
ear facility location problems that are reformulated as set partitioning problems
and solved with DW, whose pricing problem is an NLP with integer variables;
[15] that uses a branch-and-price scheme for sibling groups reconstruction, which
is reformulated as a set covering problem for which columns are generated with
quadratic optimization pricing problems. A direct extension of DW for NLPs with
C = Rm+ is introduced in [9]. DW is used in [44,40] for mixed integer nonlinear-
nonconvex optimization problems with polyhedral complicating constraints.

In an LC setting - i.e. f and g are linear mappings but C is a more general
cone than Rm+ - similar extensions of CG have been developed: [2] present a de-
composition procedure for SDPs where S is an inner approximation of a matrix
set X , that are updated with the (matricial) “columns” generated by a separation
problem tailored for SDPs. The approach has two drawbacks: 1) depending on
the inner approximation chosen, the master problem can be slow to attain near
optimality, and 2) the pricing problem is a handmade separation problem that
uses problem-specific considerations and does not provide dual bounds. For SDPs,
chordal sparsity patterns [60] are able to detect underlying substructures that can
be exploited by ADMM [68,67,59], but no CG approach has been attempted so far.
The presence of a special substructure being crucial for decomposition, automatic
structure detection in LPs were developed in [31,6,64] so that a decomposition
method can make use of it. Previous CG methods for LC have focused on gradu-
ally building the set of variables considered with problem specific algorithms that
are difficult to generalize.

Other works use a different kind of set S for LPs. A subset S consisting on
forcing clusters of variables to share the same value - thus aggregating the vari-
ables together - is used in [38] and [8]. This variable aggregation principle has
been successfully applied to Freight routing [55], general extended formulations
[56], open pit mining scheduling [8], pricing problems [3], quadratic binary knap-
sack problems [51], support vector machine problems [45] or in a column-and-row
generation context where DW is used in combination with a constraint aggrega-
tion scheme to solve resource constrained covering problems [52]. Finally, [23,24]
introduce a CG scheme for almost generic sets S and pricing problems. However,
they do not take into account generic conic side constraints and link their generic
scheme with only a few special cases, whereas we take advantage of the structure
of both the pricing and master problems.

1.7 Article outline

Section 2 presents a CG algorithm to solve the generic NLP P (X) with a large
number of variables and nonlinear-conic side constraints. We show that it admits
several existing schemes as special cases, all defined by different sets S. We present
sufficient conditions to 1) drop the optimization in the y variables for the pric-
ing problem and 2) make sure that P (S) has no Lagrangean duality gap. As the
Lagrangean relaxation of a nonlinear optimization problem can be as hard as the

Computational Aspects of CG for Nonlinear Optimization 9

problem itself, under some convexity assumptions we present in Section 3 a lin-
earized version of the methodology making the pricing problem easier to solve. Ad-
ditionally, we also prove that L(X , λ) can always be independent of the secondary
variables y in the linearized algorithm. In Section 4, we point out the relation-
ships of our generic schemes to existing frameworks. In Section 5 we describe the
risk-averse portfolio optimization problem on which we test our algorithms, and
present several computational enhancements. In Section 6, we present numerical
results on large scale synthetic instances and empirically prove the usefulness of
our methodology. We conclude with some remarks and the description of several
ongoing works in Section 7.

1.8 Background notations

Given a set U , we call respectively conv U , cone U , lin U , aff U , relint U and dim U ,
the convex hull, the conic hull, the linear span, the affine span, the relative interior
and the dimension of U . The adjoint U∗ of a linear mapping U : U → V is the
linear operator such that 〈Uu, v〉 = 〈u, U∗v〉 for any (u, v) ∈ U×V. For any integer
p > 0, B(ū, ρ) := {u ∈ Rp : ||ū−u||2 < ρ} is the open ball of radius ρ > 0 centered
at ū ∈ Rp. A cone K is said to be proper if it is convex, closed, contains no line
and relint K 6= ∅. If K is a proper cone then u ∈ relint K and ū ∈ K imply that
u+ ū ∈ relint K.

Consider some function ϕ : U → V. For some L > 0 and a norm ||·||, we say that
ϕ is L-Lipschitz if for any (u1, u2) ∈ U×U we have ||ϕ(u1)−ϕ(u2)|| 6 L||u1−u2||.
For some cone K ⊆ V, ϕ is said to be K-convex [10] if for any t ∈ [0, 1] and any
(u1, u2) ∈ U ×U , we have tϕ

(
u1
)

+ (1− t)ϕ
(
u2
)
−ϕ

(
tu1 + (1− t)u2

)
∈ K. If ϕ is

real-valued and differentiable, we call its linear approximation at some ū ∈ U the
function: ϕ̄ [ū] : u → ϕ (ū) + 〈∇ϕ (ū) , u− ū〉. Notice that ϕ̄[ū] is a global under
estimator of ϕ if ϕ is convex. If ϕ is vector valued, its linear approximation is the
component-wise linear approximation ϕ̄ [ū] (u) = ϕ (ū) + Dϕ (ū) (u− ū) , where
Dϕ(ū) is the Jacobian of ϕ at ū. Given a linear mapping φ and a mapping γ, we
say that U := {u : φ(u) = 0, −γ(u) ∈ K} or minu∈U ϕ(u) is strictly feasible iff
there exists u such that φ(u) = 0 and −γ(u) ∈ relint K.

Unless otherwise specified, through this document ((xk, yk), λk) is an optimal
primal-dual pair for P (Sk) and (x̄k, ȳk) is an optimal solution for L(X , λk).

2 A Generic Column Generation Algorithm

Instead of using specific forms of feeding the pricing information to the restricted
problem, we use a generic mechanism to update S at each iteration as described
in Algorithm 1. Figure 2 summarizes the relationships between the bounds of
the problems involved in Algorithm 1. In all the “bound relationship” figures of
this paper, an edge a → b means that a 6 b, the gray edges are the nontrivial
relationships that apply at a stopping criterion and the gray nodes are the optimal
values of the problems solved by the algorithm.

Theorem 1 At termination, Algorithm 1 returns an optimal solution for P (X).

10 Renaud Chicoisne

Algorithm 1: CG

Data: A problem P (X)
Result: An optimal solution for P (X)

1 Set λ0 = 0, S1 ⊆ X contains at least one feasible solution for P (X) and k = 1;
2 repeat
3 Solve P (Sk). Let (xk, yk) be an optimal solution;

4 Let λk be an optimal dual vector corresponding to the constraints −g(x, y) ∈ C;
5 if λk = λk−1 then
6 return (xk, yk);

7 Solve L(X , λk). Let (x̄k, ȳk) be an optimal solution;

8 if x̄k ∈ Sk then
9 return (xk, yk);

10 Choose a set Sk+1 ⊆ X containing x̄k;
11 k ← k + 1;

Fig. 2: Relationships of the optimal values involved in Algorithm 1.

Proof If Algorithm 1 terminates at line 8, we have x̄k ∈ Sk. (x̄k, ȳk) is then feasible
and optimal for the Lagrangean relaxation of P (Sk) with λk:(

L(Sk, λk)
)

ω
(
Sk, λk

)
= min
x∈Sk,y

{
f (x, y) +

〈
λk, g (x, y)

〉}
.

In consequence, we have that ω(X , λk) = ω(Sk, λk). Recall that (xk, yk) is optimal
for P (Sk) and λk is an optimal dual vector associated to −g(x, y) ∈ C in P (Sk).
From Assumption 1, (xk, yk) is then also optimal for L(Sk, λk), and ω(Sk) =
ω(Sk, λk), thus proving the gray edges in Figure 2. To summarize, we have:

ω (X) 6 ω
(
Sk
)

= ω
(
Sk, λk

)
= ω

(
X , λk

)
6 ω (X) ,

making (xk, yk) optimal for P (X). Now, if Algorithm 1 terminates at line 5, we
can choose (x̄k, ȳk) = (x̄k−1, ȳk−1) and have x̄k ∈ Sk, which is the first stopping
condition at line 8. �

2.1 General remarks

Algorithm 1 can be useful only if Assumptions 2 and 3 are satisfied, i.e. either
dim Sk is significantly smaller than n, or P (Sk) possesses a special structure or is
sparser than in P (X). In Sections 4 and 5, we show that the master problem can be
considerably shrunk depending on the set Sk in use. Even though Assumption 1
must be satisfied in order to get the dual variables and make Theorem 1 hold,

Computational Aspects of CG for Nonlinear Optimization 11

in presence of a nonzero duality gap Algorithm 1 can still be used as a heuristic
that provides optimality bounds. Notice again that we do not need P (X) to have
zero duality gap, but we do see in the next Subsection that it does help to make
Assumption 1 hold.

We did not prove that Algorithm 1 always finishes but we did prove that if it
were to stop, it would return an optimal solution. Its finite termination depends
on the way the sets Sk are generated in combination with the structure of the
original problem. More precisely, the sequence Sk should shift towards at least one
optimal solution of P (X) by e.g. strictly growing in dimension until reaching X in
the worst case (which can be achieved in some special cases that we describe later).
Ideally, the sets Sk should contain increasingly good solutions for P (X) such that
we can stop prematurely the algorithm and still obtain an approximately optimal
solution. For example, by forcing Sk+1 to contain Sk or xk, we ensure that the
primal bound ω(Sk) is nonincreasing.

Because we maintain lower and upper bounds over the optimal value of P (X)
at each iteration, early termination can be reasonably used and Algorithm 1 can
provide a solution (xk, yk) feasible for P (X) with an optimality gap ω(Sk) −
ω(X , λk). Because the algorithm is not guaranteed to converge, we set a maximum
number of iterations and execution time that we can spend before forcing the
algorithm to stop.

2.2 How can the restricted problem P (S) maintain a zero duality gap?

As we mentioned earlier, it is not clear when Assumption 1 can hold. We now show
that whenever 1) the approximated sets Sk are described by convex constraints
and are strictly feasible, and 2) P (Sk) admits as a feasible solution some known,
feasible solution for P (X) satisfying strictly the side constraints −g(x, y) ∈ C, then
Slater’s condition holds for P (Sk) and thus satisfies Assumption 1:

Proposition 1 Suppose that C is proper, g is L-Lipschitz, f is convex, we know
some (x̄, ȳ) such that x̄ ∈ X and −g(x̄, ȳ) ∈ relint C, and S is described as

S := {x : φ(x, θ) = 0, −γ(x, θ) ∈ K, for some θ},

for some proper cone K, a linear mapping φ and a K-convex mapping γ. If S ⊆ X
is strictly feasible and contains x̄, then P (S) has no Lagrangean duality gap.

Proof Appendix B.�

In this work, we consider approximated sets Sk that are nonempty polyhedra4

that always contain the projection onto the variables x of a known, strictly feasible
solution for P (X). In fact, it is enough to find some feasible solution (x̄0, ȳ0) for
P (X) such that −g(x̄0, ȳ0) ∈ relint C, and set S1 3 x̄0: In other words, we consider
x̄0 as the first column generated.

4 More precisely, projections onto the variables x of a polyhedron in an extended space.

12 Renaud Chicoisne

2.3 y-independent pricing problems L(X , λk)

Notice that L(X , λk) optimizes in both x and y and is still an NLP that can be
as difficult to solve as P (X). We partially address the former issue in the next
Proposition and both in the next Section. We now introduce an adaptation of the
P -property5 [25]: Given a function ϕ : U × V → R, consider the following NLP:

min
(u,v)∈U×V

ϕ(u, v). (5)

Problem (5) satisfies the P -property wrt v if minv∈V ϕ(u, v) can be solved inde-
pendently of u ∈ U . Even if this P -property appears to be overly restrictive, it
holds if ϕ(u, v) = ϕ1(u, ϕ2(v)), for some ϕ2 : V → R and some ϕ1 : U × R → R
that is non-decreasing in its second argument. This structure can appear if e.g. 1)
ϕ is separable in u and v (i.e. ϕ(u, v) = ϕ1(u)+ϕ2(v)), or 2) ϕ(u, v) = ϕ1(u)ϕ2(v)
with ϕ1(u) > 0 for any u ∈ U . We are now ready to state a y-independency result
for the Lagrangean relaxation L(X , λk):

Proposition 2 If L(X , λk) satisfies the P -property wrt y, then y = yk is always
an optimal choice in L(X , λk), which becomes an optimization problem in x only:(

L
(
X , λk

))
ω
(
X , λk

)
:= min

x∈X

{
f
(
x, yk

)
+
〈
λk, g

(
x, yk

)〉}
.

Proof Appendix C. �

Proposition 2 allows to drop the optimization in y in the pricing problem if the
P -property holds. We now show that using a linearized version of L(X , λk), we
can always drop the optimization in y in the pricing, regardless of the P -property.

3 A linearized Column Generation Algorithm

In practice, it is common to face e.g. LPs with a nice structure that admit tailored
algorithms to solve them, getting hardened by replacing their linear objective with
a nonlinear objective function f and/or adding possibly nonlinear side constraints
−g(x, y) ∈ C to their polyhedral feasible set X . This can happen for e.g. robust
optimization problems [5] that are no easier than their deterministic counterparts.

In this Section, we show that solving a pricing problem whose objective function
is linearized at the current incumbent (xk, yk) holds the same guarantees as Al-
gorithm 1, while alleviating the difficulty of solving the pricing problem whenever
optimizing a linear objective over X is an easy task. As we show in our experi-
ments, this can be extremely useful whenever a linear objective pricing problem
can be solved with a dedicated algorithm.

3.1 Additional assumptions and results

We now present several results that allow the use of a linearized version of L(X , λk)
as a pricing problem. In this Section, the following extra assumption is met:

5 Originally used in a Generalized Benders Decomposition context.

Computational Aspects of CG for Nonlinear Optimization 13

Assumption 4 Sk, C and f are convex, g is C-convex, f and g are differentiable.

Further, we assume that for any cost vector c, minx∈X 〈c, x〉 can be solved efficiently
(which is in fact equivalent to Assumption 2 if the objective function of L(X , λk)
is linear). We now present several technical Lemmas to prove our main result:

Lemma 1 Consider a cone K, λ ∈ K∗ and a K-convex function ϕ. Then ψ : u→
〈λ, ϕ(u)〉 is convex.

Proof Appendix D.�

Lemma 2 Given λ ∈ V, a differentiable function ϕ : U → V and ū ∈ U , the linear
approximation of ψ : u→ 〈λ, ϕ(u)〉 at ū is ψ̄[ū] : u→ 〈λ, ϕ̄[ū](u)〉.

Proof Appendix E.�

Lemma 3 Consider the NLC ω∗ := minu∈U ϕ(u), where U is convex and ϕ :
U → R is differentiable. If u∗ is one of its optimal solutions, it is also optimal for
ω̄[u∗] := minu∈U{ϕ̄[u∗](u) := ϕ(u∗) + 〈∇ϕ(u∗), u− u∗〉} and we have ω∗ = ω̄[u∗].

Proof Appendix F. �

Lemma 3 tells us that an optimal solution of a convex optimization problem is
also optimal for the same problem with an objective function linearized at said
solution. For any S ⊆ X , λ ∈ C∗ and (x̄, ȳ), let us define the following problem:(

L̄ [x̄, ȳ] (S, λ)
)

ω̄ [x̄, ȳ] (S, λ) := min
x∈S,y

{
f̄ [x̄, ȳ] (x, y) + 〈λ, ḡ [x̄, ȳ] (x, y)〉

}
,

which is L(S, λ) with its objective function linearized at (x̄, ȳ).

3.2 A linearized algorithm

Now consider the following algorithm: 1) instead of solving L(X , λk), the pricing
we solve is its linear approximation L̄[xk, yk](X , λk) at the current incumbent
(xk, yk) of the restricted problem P (Sk) and 2) the stopping criterion at line 5
of Algorithm 1 is replaced by a slightly more restrictive condition. We describe
the changes applied to Algorithm 1 in Algorithm 2 and illustrate in Figure 3 the
relationships between the bounds of the problems involved in it.

Algorithm 2: CG-Lin changes wrt CG

5 if ((xk, yk), λk) = ((xk−1, yk−1), λk−1) then
6 return (xk, yk);

7 Solve L̄[xk, yk](X , λk). Let (x̄k, ȳk) be an optimal solution;

Theorem 2 Algorithm 2 returns an optimal solution for P (X) at termination.

14 Renaud Chicoisne

Fig. 3: Relationships of the optimal values involved in Algorithm 2.

Proof If Algorithm 2 terminates because x̄k ∈ Sk, then (x̄k, ȳk) is feasible and
optimal for L̄[xk, yk](Sk, λk) and we have:

ω̄
[
xk, yk

] (
Sk, λk

)
= ω̄

[
xk, yk

] (
X , λk

)
.

Because f is convex and g is C-convex, Lemmas 1 and 2 imply that f̄ [xk, yk] and
〈λk, ḡ[xk, yk](·)〉 are global under estimators of f and 〈λk, g(·)〉 respectively. In
consequence we have that

ω̄
[
xk, yk

] (
X , λk

)
6 ω

(
X , λk

)
6 ω (X) .

On another hand, (xk, yk) is also an optimal solution for L(Sk, λk) from Assump-
tion 1. Finally, we can interpret L[xk, yk](Sk, λk) as the linearization of L(Sk, λk)
at one of its optimal solutions (xk, yk). Recalling that:

ω
(
Sk, λk

)
= min
x∈Sk,y

{
f(x, y) +

〈
λk, g(x, y)

〉}
ω̄
[
xk, yk

] (
Sk, λk

)
= min
x∈Sk,y

{
f̄
[
xk, yk

]
(x, y) +

〈
λk, ḡ

[
xk, yk

]
(x, y)

〉}
,

Lemma 3 then tells us that (xk, yk) is also an optimal solution for L̄[xk, yk](Sk, λk),
giving ω(Sk, λk) = ω̄[xk, yk](Sk, λk). To summarize, we obtain

ω (X) 6ω
(
Sk
)

= ω
(
Sk, λk

)
= ω̄

[
xk, yk

] (
Sk, λk

)
=ω̄

[
xk, yk

] (
X , λk

)
6 ω

(
X , λk

)
6 ω (X) ,

thus proving the optimality of (xk, yk) for P (X). If Algorithm 2 stops from its
criterion at line 5, we can choose (x̄k, ȳk) = (x̄k−1, ȳk−1), giving x̄k ∈ Sk. �

As in the nonlinearized case, there is no guarantee that Algorithm 2 terminates
but if it does, an optimal solution for P (X) is returned.

3.3 y-independent pricing problems L̄[xk, yk](X , λk)

As opposed to Algorithm 1, we now show that regardless of the P -property, we
can always get rid of the variables y in the linearized pricing L̄[xk, yk](X , λk):

Proposition 3 Taking y = yk is always optimal for L̄[xk, yk](X , λk), which be-
comes a linear objective minimization problem in x only:

ω̄
[
xk, yk

] (
X , λk

)
= min
x∈X

{
f̄
[
xk, yk

] (
x, yk

)
+
〈
λk, ḡ

[
xk, yk

] (
x, yk

)〉}
Proof Appendix G. �

Computational Aspects of CG for Nonlinear Optimization 15

3.4 “Reduced costs”

Recall that DW for LPs can stop whenever the reduced costs6 are zero: we now
show that this is also true for the linearized scheme in our nonlinear setting.

Proposition 4 Let c̄k := ∇xf(xk, yk) + D∗g(xk, yk)λk be the cost vector wrt x
in L̄[xk, yk](X , λk). If c̄k = 0 then (xk, yk) is optimal for P (X).

Proof The linearized pricing in x is minx∈X 〈c̄k, x〉. If c̄k = 0, then any x̄k ∈ X is
optimal: choosing any x̄k ∈ Sk ⊆ X satisfies the stopping criterion. �

This last result provides a computationally cheap stopping criterion for the non-
linearized scheme as well, as the pricing problem - linearized or not - always pro-
vides a lower bound for ω(X): an all-zeroes reduced cost vector ensures that the
master problem cannot be improved.

4 Relationship with existing schemes

4.1 Dantzig-Wolfe

Assume that X ⊆ Rn is a polyhedron (that we consider bounded for simplicity),
f(x, y) := c>x+d>y and the conic inequality is defined by C := Rm+ and g(x, y) :=
b−Xx− Y y. Using Sk := conv(x̄l)l∈{0,...,k−1} we retrieve DW for LPs. Its finite
convergence is ensured by the fact that X has a finite - although exponential in
general - number of extreme points.

Extensions Notice that if C is a more general cone, our algorithm generalizes
DW for LCs, where at each iteration P (Sk) is an LC and L(X , λk) is an LP.
Applications of DW to LCs can be found in [2] and references therein. Further,
there is a direct extension of DW to a special class of nonlinear problems: going
back to the general case for C, f and g but keeping X polyhedral, L̄[xk, yk](X , λk)
turns out to be an LP. Because X is finitely generated, the finite convergence of
the linearized algorithm is also ensured with the same arguments.

Constraint redundancy If X is not convex, to enforce Sk ⊆ X , we must use

Sk := X ∩ conv
(
x̄l
)
l∈{0,...,k−1}

,

thus potentially losing the advantage of dropping any X -defining constraint in
the master problem as in the LP/convex cases. Similarly, if the conic hull is used
instead and X is a cone, it is sufficient to use Sk := cone(x̄l)l∈{0,...,k−1} instead

of Sk := X ∩ cone(x̄l)l∈{0,...,k−1}.

6 In the LP case, the vector of reduced costs is c−X>λk(see problem (4) in Subsection 1.5).

16 Renaud Chicoisne

4.2 Bienstock-Zuckerberg (BZ)

We now link our framework with a decomposition scheme for LPs [8] where
the choice of S differs substantially from DW. Considering a partition J k :=
{J k1 , ...,J kLk} of the indices [n], we force all the variables xj belonging to a same

cluster J kl to yield the same value, ultimately aggregating all the variables into a
single one. In other words, we use

Sk := P(J k) :=
{
x ∈ X : xj = θl,∀j ∈ J kl ,∀l ∈ [Lk] , for some θ ∈ RLk

}
.

Update mechanism The update mechanism in this case refines the partition J k
into a new partition J k+1, by splitting some of its clusters such that the new
column x̄k belongs to Sk+1 := P(J k+1). We call a partition induced by some
x ∈ Rn, a partition J (x) = {J1(x), ...,JL(x)} of [n] such that for every l ∈ [L] and
any pair of indices (j, j′) ∈ Jl(x)× Jl(x) we have xj = xj′ . Given two partitions
of [n], J = {J1, ...,JL} and J ′ = {J ′1, ...,J ′L′}, their intersection J∆J ′ is the
partition of [n] defined as follows:

J∆J ′ :=
{
Jl ∩ J ′l′ ,∀

(
l, l′
)
∈ [L]× [L′]

}
.

Given a partition J k and J k(x̄k) a partition induced by x̄k, we first compute
the refined partition J k+1 := J k∆J k(x̄k) and the new restricted set is given by
Sk+1 := P(J k+1).

Extensions and convergence Such a scheme makes Algorithms 1 and 2 generaliza-
tions to nonlinear problems of the BZ algorithm [8]. This time the convergence is
not ensured by some property of P (X), but rather thanks to the structure of the
sets Sk. In fact, either 1) the partition is refined until turning into {{1}, ..., {n}},
meaning we reached the original problem P (X), or 2) the partition is not re-
fined, in which case J k+1 = J k∆J k(x̄k) = J k. It is not difficult to see that
the latter implies that x̄k ∈ Sk = P(J k), which is a stopping criterion for both
Algorithms 1 and 2. The former implies that we are guaranteed to converge to
an optimal solution in at most n iterations because the size of the partition in-
creases by at least one (i.e. |J k+1| > |J k|). Motivating the scheme in the next
Subsection, [38] show that given a sequence of columns (x̄l)l∈{0,...,k−1}, we have

Sk ⊇ X ∩ lin(x̄l)l∈{0,...,k−1}.

Induced partition cardinality Notice that the pricing problem may provide a col-
umn x̄k with a large number of different values, hence generating a high-cardinality
induced partition J (x̄k) and increasing rapidly the size of the partition J k+1 used
in the next restricted problem P (Sk+1). This issue is partially addressed by the
linearized Algorithm 2 and completely circumvented in the next scheme. For ex-
ample, if X is polyhedral and possesses the integrality property [26], the pricing
problems L̄[xk, yk](X , λk) can return integer optimal solutions x̄k, thus increasing
the probability of having a reduced number of different values.

Computational Aspects of CG for Nonlinear Optimization 17

Constraint redundancy Given that {x : xj = θl, ∀j ∈ J kl , ∀l ∈ [Lk], for some θ ∈
RLk} is not necessarily contained in X , we need to keep the X -defining constraints
in general. This issue can sometimes be avoided for e.g. bound constraints ` 6 x 6
u that are present in the definition of X : they become equivalent to the following
Lk � n bound constraints in terms of θ:

max
j∈J kl

`j 6 θl 6 min
j∈J kl

uj , ∀l ∈ {1, ..., Lk} . (6)

4.3 Non-partitioned BZ

[38] link the last scheme for MILPs to another that uses at each iteration the
subset of X spanned by lin(x̄l)l∈{0,...,k−1}, i.e.

Sk :=

{
x ∈ X : x =

k−1∑
l=0

θlx̄
l, for some θ ∈ Rk

}
= X ∩ lin(x̄l)l∈{0,...,k−1}.

Akin to the classical BZ, it converges in at most n iterations. What is not men-
tioned in [38] is that this is also true independently of the structure of P (X).
Instead of using partitions of variables, it uses the raw directions x̄l, thus avoiding
an explosive increase in the number of variables. This comes at the cost of a less
structured P (S): in fact, variable aggregation is akin to a contraction operation
in combinatorial optimization, which can eliminate a substantial amount of rows
and columns when dealing with structured LPs.

Notice that even if we can maintain a reasonable number of variables in the
master problem, the loss in structure in comparison to BZ prohibits in general the
use of the trick we present in (6), and all the X -defining constraints must be kept,
including variables bounds.

4.4 How do we check if x̄k ∈ Sk?

In our experimental design, we consider the four aforementioned sets Sk. We now
show how to determine if x̄k ∈ Sk efficiently in those special cases: For BZ, it
is enough to check if the size of the partition after refinement increased or not;
For the linear span case, it is enough to check if x̄k is a linear combination of the
previous columns, which is done by projection. In the convex and conic hull cases,
we must check whether a small LP is feasible. Let the polyhedron Θk be as follows:

Θk :=

{{
θ ∈ Rk+ :

∑k−1
l=0 θl = 1

}
If using the convex hull

Rk+ If using the conic hull.

In these cases, we have that x̄k ∈ Sk iff {θ ∈ Θk :
∑k−1
l=0 θlx̄

l = x̄k} 6= ∅, which
can be done by solving an LP having k variables θk and O(n) � O(1) linear
constraints. To avoid this large number of constraints, we choose to solve the
following problem instead:

distance2
2

(
x̄k,Sk

)
:= min

θ∈Θk

∣∣∣∣∣
∣∣∣∣∣x̄k −

k−1∑
l=0

θlx̄
l

∣∣∣∣∣
∣∣∣∣∣
2

2

. (7)

18 Renaud Chicoisne

We can see that x̄k ∈ Sk iff distance2
2

(
x̄k,Sk

)
= 0. There are two advantages to

use (7): 1) we are able to monitor the distance of the current column x̄k to Sk,
and 2) when solving (7) with an interior point method, the O(k) constraints that
define Θk are not a problem because k � n and the gradient and Hessian of the
penalized objective have dimensions k and k × k respectively.

4.5 x-free master problems P (S) and constraint redundancy

First, notice that all of the aforementioned schemes are of the form

Sk :=
{
x ∈ X : x = Qkθ for some θ ∈ Θk

}
,

meaning that P (Sk) is equivalent to the following problem in θ and y only:(
P (Sk

)
ω
(
Sk
)

:= min
θ∈Θk,y

{
f(Qkθ, y) : Qkθ ∈ X ,−g

(
Qkθ, y

)
∈ C
}
.

Further, we are sometimes able to shrink or make redundant some X -defining
constraints in P (Sk). This is of crucial importance from a computational point of
view, as we must make P (Sk) as simple to solve as possible: Given a generic set
G, a convex set V, a cone K, a subspace E := {x : Ex = 0} and some variable
bounds (if x is a vector) B := {x : ` 6 x 6 u}, consider that

X := G ∩ V ∩ K ∩ E ∩ B.

We summarize in Table 1 how each of these X -defining constraints can be simplified
depending of the scheme used:

Sk X ∩ conv(x̄l)l X ∩ cone(x̄l)l X ∩ lin(x̄l)l P(J k)

Θk θ > 0 :
k−1∑
l=0

θl = 1 Rk+ Rk R|Jk|

Qkθ ∈ V - as is as is as is

Qkθ ∈ K redundant if
K is convex

- as is as is

Qkθ ∈ E - - -
as is but

sometimes shrinkable

Qkθ ∈ B - as is as is ∀l ∈ [Lk],

max
j∈Jk

l

`j 6 θl

min
j∈Jk

l

uj > θl

Table 1: Master constraints redundancy.

5 Risk-averse Portfolio Optimization Problem

We now describe the NLP we test our algorithms on. We consider the portfolio
optimization problem of determining which assets to buy - with uncertain returns
- such that 1) some risk of being rewarded a poor outcome is minimized, and 2)

Computational Aspects of CG for Nonlinear Optimization 19

the variance of the return is kept under some threshold. As opposed to a classical
expected value maximization model, using the variance and nonlinear risk mea-
sures makes the resulting optimization problem a large scale, nonlinear objective,
SOC constrained optimization problem (See e.g. [34,17,1,33,61] for non expected
value portfolio optimization).

5.1 Problem description

An administrator must allocate the resources of T +1 different clients interested in
disjoint subsets of stocks. The administrator must minimize some client-dependant
risk measures while keeping the variance of some returns under some threshold σ2.
The clients have budgets bt and are interested in nt assets each. We purposefully
separate the 0th client from the T others as its associated decision variables are
only a handful that we model with the y variables. Client t has to pay a unitary
cost atj per asset j. Each asset j has an uncertain future value ctj and at most utj
units can be purchased . The variables xtj (yj) represent the amount of each asset
j purchased by client t (0). We enforce that xt ∈ Xt and y ∈ X0 where

Xt :=
{
z ∈

[
0, ut

]
:
(
at
)>

z 6 bt
}
,∀t ∈ {0, ..., T}.

y ∈ X0 is considered to be part of the side constraints −g(x, y) ∈ C. We define dt

as the vector of returns ct, where many components are zero except for some vital
assets. Upper bounding the variance of the returns of these assets is equivalent to:

V

(
y>d0 +

T∑
t=1

(
dt
)>

xt
)
6 σ2. (8)

Each client minimizes a risk measure ft that depends on its uncertain returns.
They each minimize an entropic risk [53] of parameter αt, ft(z) := Eαt(−(ct)>z),
where7 Eα(Z) := α lnE(eZ/α). The general problem can be cast as follows:

min
x,y

{
f0(y) +

T∑
t=1

ft
(
xt
)

: xt ∈ Xt,∀t ∈ [T], y ∈ X0, (8)

}
.

5.2 Sample Average Approximation (SAA)

The last problem is approximated by using S samples cts of respective probabil-
ities ps with SAA [32]. The approximations of the variance and expectations are
summarized in Table 2. For simplicity, we use the same names for the functions and
their respective SAAs. Defining V , V t and V 0 such that V tsj :=

√
ps(d

ts
j − dtj) and

V x :=
∑T
t=1 V

txt, the variance constraint can be expressed as a classic nonlinear

7 The entropic risk measure is shown to be convex in z in [53]

20 Renaud Chicoisne

Original SAA type

Eα(−c>z) α ln
∑S
s=1 pse

(−cs)>z/α convex

V(d>z) 6 σ2
∑S
s=1 ps

(
(ds)>z −

∑S
s′=1 ps′ (d

s′)>z
)2
6 σ2 quadratic (CLA) or

second order cone (SOC)

Table 2: Sample Average Approximations

quadratic (CLA) convex constraint ||V 0y + V x||22 6 σ2, or the SOC constraint
(V 0y + V x, σ) ∈ LS+1

2 . The full approximated problem becomes:

ω (X) = min
x,y

α0 ln
S∑
s=1

pse
−(c0s)

>
y/α0 +

T∑
t=1

αt ln
S∑
s=1

pse
−(cts)

>
xt/αt

s.t.: xt ∈ Xt ,∀t ∈ [T]

y ∈ X0{∣∣∣∣V 0y + V x
∣∣∣∣2

2
6 σ2 If (8) is seen as a CLA(

V 0y + V x, σ
)
∈ LS+1

2 If (8) is seen as a SOC.

Notice that Assumption 1 is satisfied from Proposition 1, as P (X) is a convex NLP
that for some small ε > 0, admits the all-ε’s vector of Rn+n0 , εn+n0 , as a strictly
feasible point and we can use εn as a starting column for S1 ⊂ S2 ⊂ S3...

5.3 Pricing problem

The structure of the pricing problem depends on the coupling constraint consid-
ered: Given any dual vector (λ1,0, λ2,0, λ3,0) ∈ Rn0

+ × Rn0
+ × R+ corresponding to

the y-specific constraints y > 0, y 6 u0 and (a0)>y 6 b0, the pricing problem is:

ω (X , λ) = min
x,y

α0 ln
S∑
s=1

pse
−(c0s)

>
y/α0 +

T∑
t=1

αt ln
S∑
s=1

pse
−(cts)

>
xt/αt

−
(
λ1,0

)>
y +

(
λ2,0

)> (
y − u0

)
+ λ3,0

((
a0
)>

y − b0
)

+

λ4
(∣∣∣∣V 0y + V x

∣∣∣∣2
2
− σ2

)
If (8) is seen as a CLA,

(λ4 ∈ R+)

−
(
λ4
)> (

V 0y + V x
)
− λ4

0σ If (8) is seen as SOC,((
λ4, λ4

0

)
∈ LS+1

2

)
s.t. xt ∈ Xt, ∀t ∈ [T].

Notice that considering (8) as a SOC makes the pricing problem separable in each
xt and y and also allows the use of the y-independency result in Proposition 2.
More importantly, using the linearized pricing each problem in xt is solvable in
O(nt lnnt) time: the objective function becomes linear and every problem in xt

can be solved with a dedicated algorithm (see Proposition 5).

Computational Aspects of CG for Nonlinear Optimization 21

Proposition 5 The following LP with p variables can be reduced to a continuous
knapsack problem, for which an optimal solution can be found in O(p ln p) time:

ω∗ := min
z∈[0,µ]

{
γ>z : α>z 6 β

}
.

Proof Appendix H. �

We summarize In Table 3 the types of pricing problem we encounter with our
framework, and how to solve them.

Linearized Coupling cone Type Separable y-independent

yes Any T knapsacks yes yes

no
R+ single NLP no no

LS+1
2 T NLPs yes yes

Table 3: Types of pricing problems

5.4 Master problem

Sk X ∩ conv(x̄l)l X ∩ cone(x̄l)l X ∩ lin(x̄l)l P(J k)

xt > 0 - -
k−1∑
l=0

θlx̄
lt > 0 θ > 0

xt 6 ut -
k−1∑
l=0

θlx̄
lt 6 ut

k−1∑
l=0

θlx̄
lt 6 ut θl 6 min

(j,t)∈J t
l

utj , ∀l ∈ [Lk]

(at)>xt 6 bt -
k−1∑
l=0

θl(a
t)>x̄lt 6 bt

k−1∑
l=0

θl(a
t)>x̄lt 6 bt

|Jk|∑
l=1

θl
∑

(j,t)∈Jk
l

atj 6 bt

var. bnds. k k 0 2|J k|
lin. cnst. 1 n+ T 2n+ T T

Table 4: Master constraints (y ∈ X0 and the variance constraint are always present)

From Table 1, we summarize in Table 4 the types of sets Sk we use in our
experiments and their implications for the master problems P (Sk). Notice that the
convex hull and the partitioning schemes hold a clear advantage wrt the others,
as their number of constraints is way lower than the rest.

Chasing the conic dual variables If we consider the variance constraint as a SOC
we must be able to retrieve conic dual variables for the master problem P (S). Even
though nonlinear or linear conic solvers do exist, we could not find any general
purpose package for problems having both features and returning conic multipliers.
To circumvent this issue, we solve the master with an off the shelf nonlinear solver
by considering the quadratic constraint as a CLA, then use the following result to
obtain conic multipliers:

22 Renaud Chicoisne

Proposition 6 For some γ0 < 0, consider the following optimization problem:

ω∗ := min
u
{ϕ(u) : φ(u) 6 0,− (γ(u), γ0) ∈ L2} , (9)

and its equivalent representation as a classic nonlinear optimization problem:

ω∗ := min
u

{
ϕ(u) : φ(u) 6 0, ||γ(u)||22 − γ

2
0 6 0

}
, (10)

where their objective functions and constraints are convex and neither has a La-
grangean duality gap. Given an optimal primal-dual pair (u∗, (π∗, λ∗)) for (10)
then (u∗, (π∗, λ̂, λ̂0)) is an optimal pair for (9), where: (λ̂, λ̂0) := 2λ∗(γ(u∗),−γ0).

Proof Appendix I. �

Proposition 6 indicates that we can always derivate SOC multipliers from the
multipliers of the constraint in nonlinear quadratic convex form.

5.5 Numerical Enhancement

In preliminary experiments, solving the convex optimization problems at hand as
they are with an interior point method rapidly exceeds the capabilities of an aver-
age workstation. This is due to the fact that the Hessian matrix of the penalized
objective can have many nonzero coefficients because of the entropic risk measures
and the variance constraint. This observation implies that the linear system that
is solved during each Newton step of the interior point method can be overly de-
manding both in terms of memory and running time. Introducing new variables
and constraints, notice that we have the following identity: for any t ∈ {0, ..., T}
and any z (xt or y) we have

αt ln
S∑
s=1

pse
(−cts)

>
z/αt = min

vt

{
αt ln

S∑
s=1

pse
vts/αt : vts = −

(
cts
)>

z, ∀s ∈ [S]

}
.

In the same fashion, we can replace the variance constraint with

||w||22 6 σ2 and w = V 0y + V x.

By using this transformation, the objective function eliminates the variables z
from the objective function and involves only the S variables vts. This way, the
Hessian of the Lagrangean function is a slightly larger matrix with (T + 1)S extra
columns and rows having way less nonzero coefficients: at most (T + 1)S2 of them
come from the entropies, and S from the variance constraint. For this reason and
the fact that CG is typically useful when there are only a few side constraints, we
purposefully kept S moderately small for our experiments.

In Appendix J, we briefly recall the mechanics of an iteration of a primal-dual
interior point scheme and showcase the sparsity patterns of the Newton step for
the pricing problem and the master problem in their original and enhanced forms.
We also show that on our testbed, we can divide at least by a factor 100 the
number of nonzero coefficients in the Newton system at the cost of having less
than a percent of additional unknowns.

Computational Aspects of CG for Nonlinear Optimization 23

Chasing the dual variables for the enhanced model We must now be able to catch
the dual variables associated to the original constraints (depending only of x and
y) from the dual variables of the constraints in the enhanced formulation (now also
including v and w). We address this in a general setting in the next Proposition,
by showing that we can ignore the extra constraints and use the multipliers as is:

Proposition 7 Given a proper cone K, consider:

ω∗ := min
u
{ϕ(u) : φ(u) 6 0,−γ(u) ∈ K} . (11)

Suppose there is a transformation with extra variables v and w such that for any
v = V u, ϕ(u) = ϕ̃(v) and for any w = Wu, γ(u) = γ̃(w), so that (11) can be
rewritten as:

ω∗ := min
u,v,w

{ϕ̃(v) : φ(u) 6 0, −γ̃(w) ∈ K, v = V u, w = Wu} . (12)

If both are convex and neither has a Lagrangean duality gap, given an optimal
primal-dual pair ((ũ, ṽ, w̃), (π̃, λ̃, α̃, β̃)) for (12) then (ũ, (π̃, λ̃)) is optimal for (11).

Proof Appendix K. �

6 Computational experience

The algorithms presented in this paper were coded in C programming language and
run over Dell PowerEdge C6420 cluster nodes with Intel Xeon Gold 6152 CPUs at
2.10GHz with 32Gb RAM each. All the convex NLPs are solved using the callable
library of IPOPT [50,63], using as a subroutine the linear solver Pardiso [48,49].

6.1 Methods tested and nomenclature

We test our methods 1) on different sets S that use the convex hull (V), the
conic hull (C), the linear span (LR) or the partition-based linear span (LP), 2)
using a linearized pricing problem (L) or without (NL), 3) considering the variance
constraint as a conic (SOC) or as a classical nonlinear quadratic (CLA). The y-
independency result or the tailored algorithm for knapsack problems are always
used whenever it applies. For example, the scheme using the convex hull with
linearized pricing and considering the variance constraint as a SOC will be named
L-SOC-V. We summarize the different options tested in Table 5. We do not test

Parameter Possibilities

S V, C, LR, LP
Linearized pricing L, NL

Variance constraint SOC, CLA

Table 5: Algorithms tested

any non-linearized scheme if the variance constraint is considered CLA, as the
pricing problem is still not separable and can be as hard as P (X).

24 Renaud Chicoisne

6.2 Instances generated

In order to push our frameworks to their limits, we generate synthetic instances of
variable sizes. We consider T ∈ {1, 50} blocks of equal sizes nt = N ∈ {104, 105}.
There are n0 = 50 auxiliary variables and we generate S = 20 scenarios. The
supplies utj are uniformly drawn from {1, ..., 5}, and the costs and weights ctsj
and at are uniformly drawn from [1, 2]. The budgets are bt = 0.05 · (ut)>at, i.e.
such that each client can buy 5% of the assets. For some scenario s ∈ [S], letting
x̂t ∈ arg maxxt{(cts)>xt : xt ∈ Xt} and ŷ ∈ arg maxy{(c0s)>y : y ∈ X0}, we set
σ2 := 0.1 · ||V 0ŷ + V x̂||22 so that the variance constraint is binding.

Remark that for any value z and any utility random variable Z we have
Eα(−Z) = Eα(z − Z) − z, meaning that minimizing the entropic risk measure
means to avoid outcomes of Z such that z−Z is greater than α. Given a reference

random variable Ẑ, by setting z = E(Ẑ) and α = β ·
√
V(Ẑ), the clients wish to

avoid asset selections whose outcomes can make you lose more than β standard
deviations, compared to the expected return of the reference solution. With this ob-
servation in mind, we set αt := 0.7 · ||V tx̂t||2 and α0 := 0.7 · ||V 0ŷ||2. The vectors
dt are the returns ct where all the components are zero, except for 60% of the
assets bought in the referent (ŷ, x̂) (i.e. only these are considered in the variance
constraint), and the initial column x̄0 ∈ S1 - that is feasible for P (X) - is:(

x̄0
)t
j

=

{
0 If dtj 6= 0

x̂tj Otherwise.

Absolute and relative tolerances are respectively set to 10−6 and 0.1% and the
runs are stopped after 6 hours.

6.3 Computational results

In Tables 6, 7, 8 and 9, we report the number of iterations (it), the total execution
time (t), the master time (tmas), the pricing time (tpri), the best lower bound
given by a pricing problem at any time (LB), the best upper bound given by the
objective value of the last master (UB), the optimality gap (gap), and the number
of variables θ defined by the last set Sk (|S|). The execution times are in seconds,
the gaps in % and LB and UB are scaled wrt to the upper bound of L-CLA-V.
The entries in bold font are the best of each column, except for the “t” column
where it means that the associated scheme went faster than solving the monolithic
problem. If the time limit is hit during the last iteration, we report the execution
time at the end of the previous one. If an algorithm stalls before giving any partial
result, we mark the entry with “*”.

Overall, every scheme is shown to always converge to solutions within the opti-
mality tolerance for the small and mid-sized instances (10K-500K main variables:
Tables 6, 7 and 8). Further, the execution time is mostly used to solve the mas-
ter problems for the linearized schemes but more evenly split with the pricing
time for the non-linearized schemes. We can see that using the convex hull with
a linearized pricing (L-SOC-V and L-CLA-V) performs 2-3 times faster than the
monolithic model. Along with using the partitioned linear span with a linearized
pricing (L-SOC-LP and L-CLA-LP), they are the only algorithms that were able

Computational Aspects of CG for Nonlinear Optimization 25

S lin cone it t tmas tpri LB UB gap |S|

V
NL SOC 2 10 0.49 9.85 0.9992 0.9992 0.0000 2

L
CLA 9 5 4.50 0.15 0.9992 1.0000 0.0845 9
SOC 9 5 4.81 0.13 0.9992 1.0000 0.0845 9

C
NL SOC 2 9 1.40 7.59 0.9992 0.9992 0.0000 2

L
CLA 9 11 11.10 0.11 0.9992 1.0000 0.0845 9
SOC 9 12 11.94 0.16 0.9992 1.0000 0.0845 9

LR
NL SOC 2 11 2.92 8.34 0.9992 0.9992 0.0000 2

L
CLA 9 18 18.27 0.10 0.9992 1.0000 0.0845 9
SOC 9 21 20.55 0.11 0.9992 1.0000 0.0845 9

LP
NL SOC 2 5 0.83 4.04 0.9992 0.9992 0.0000 33

L
CLA 7 10 10.11 0.07 0.9992 0.9996 0.0418 208
SOC 7 10 9.88 0.10 0.9992 0.9996 0.0418 208

Monolithic - 8 - - - 0.9992 - -

Table 6: Aggregated results for T = 1, N = 10.000

S lin cone it t tmas tpri LB UB gap |S|

V
NL SOC 2 205 3.60 201.52 0.9999 0.9999 0.0000 2

L
CLA 7 29 27.59 0.93 0.9998 1.0000 0.0208 7
SOC 7 29 27.55 0.97 0.9998 1.0000 0.0208 7

C
NL SOC 2 155 30.99 123.93 0.9999 0.9999 0.0000 2

L
CLA 7 208 206.56 0.94 0.9998 1.0000 0.0208 7
SOC 7 208 206.66 0.94 0.9998 1.0000 0.0208 7

LR
NL SOC 2 278 105.41 172.22 0.9999 0.9999 0.0000 2

L
CLA 7 527 525.53 0.96 0.9998 1.0000 0.0208 7
SOC 7 527 526.32 0.93 0.9998 1.0000 0.0208 7

LP
NL SOC 2 277 7.60 269.17 0.9999 0.9999 0.0000 33

L
CLA 7 118 116.49 0.94 0.9998 1.0000 0.0158 203
SOC 7 118 116.39 0.98 0.9998 1.0000 0.0158 203

Monolithic - 111 - - - 0.9999 - -

Table 7: Aggregated results for T = 1, N = 100.000

to terminate successfully or return a good quality solution in the allotted time for
the largest instance (Table 9, T = 50, N = 100K) with 5 million variables. This
is due to the fact that these schemes are the only ones that reduce substantially
the size of our master problem, be it by making the X constraints redundant for
the convex hull, or by shrinking the variable bounds into a small number of other
variable bounds for the partitioned linear span (See Table 4 in Subsection 5.4).

We can see that - in our case - a linearized pricing is a crucial ingredient for a
successful scheme as we can use a tailored algorithm to solve it. Also, considering
the main side constraint as a SOC or a CLA does not make any difference when
linearizing the pricing. Even though the non-linearized schemes are not competi-
tive for large instances, we can see that their pricing problems provide excellent
quality columns and bounds and make the schemes converge in a few iterations.
This phenomenon is probably due to the reliability of the pricing problem on giv-
ing a “good” column: By linearizing the objective function of the pricing problem,
we somehow lose some of the information that the nonlinearity of the pricing’s ob-
jective would have carried along. One could make a parallel with bundle/proximal
methods [11] and stabilization techniques for CG [46,20] where the objective func-

26 Renaud Chicoisne

S lin cone it t tmas tpri LB UB gap |S|

V
NL SOC 2 481 22.08 459.02 0.9994 0.9994 0.0000 2

L
CLA 11 339 328.07 7.15 0.9991 1.0000 0.0858 11
SOC 11 345 334.28 7.31 0.9991 1.0000 0.0858 11

C
NL SOC 2 1192 719.59 471.89 0.9994 0.9994 0.0000 2

L
CLA 11 5076 5065.19 6.66 0.9991 1.0000 0.0858 11
SOC 11 5404 5391.71 7.12 0.9991 1.0000 0.0858 11

LR
NL SOC 2 3176 2765.16 410.87 0.9994 0.9994 0.0000 2

L
CLA 11 16221 16213.82 6.28 0.9991 1.0000 0.0858 11
SOC 11 13514 13508.58 5.39 0.9991 1.0000 0.0858 11

LP
NL SOC 2 2101 1561.09 538.02 0.9994 0.9994 0.0000 791

L
CLA 9 6105 6094.70 5.62 0.9992 0.9996 0.0430 1763
SOC 9 6108 6097.89 5.65 0.9992 0.9996 0.0430 1763

Monolithic - 902 - - - 0.9994 - -

Table 8: Aggregated results for T = 50, N = 10.000

S lin cone it t tmas tpri LB UB gap |S|

V
NL SOC * * * * * * * *

L
CLA 7 2303 2235.15 47.09 0.9996 1.0000 0.0444 7
SOC 7 2304 2236.46 46.78 0.9996 1.0000 0.0444 7

C
NL SOC * * * * * * * *

L
CLA * * * * * * * *
SOC * * * * * * * *

LR
NL SOC * * * * * * * *

L
CLA * * * * * * * *
SOC * * * * * * * *

LP
NL SOC * * * * * * * *

L
CLA 6 20769 20709.51 40.40 0.9996 1.0008 0.1153 454
SOC 4 8115 8079.25 25.38 0.9978 1.0054 0.7593 228

Monolithic - * - - - * - -

Table 9: Aggregated results for T = 50, N = 100.000

tion of the pricing problem is penalized with a nonlinear term enforcing that the
new column does not make the dual variables stray too much away from the cur-
rent dual incumbent. Notice that using the variable aggregation scheme, the mas-
ter problems are significantly bigger than the others, thus making their solution
slower, although the bounds they return are also significantly better.

In Figures 4 and 5, we show examples of progression of respectively the bounds
and gaps over time of the schemes associated to V and LP on the mid-sized
instance (T = 50, N = 10K). We can see that the bound/gap improvement is
quite progressive for the linearized schemes, whereas it takes only a few large
steps in the nonlinearized schemes.

In Figures 6 and 7, we show examples of progression of respectively the dis-
tance between x̄k and Sk, and the largest “reduced costs” (see Subsection 3.4) in
absolute value over time of the schemes associated to V and LP on the mid-sized
instance (T = 50, N = 10K). This empirically confirms the theoretical results
about the stopping criterion x̄k ∈ Sk and the zero-reduced cost one presented in
Proposition 4. Interestingly, to some extent these values can be used to estimate
the proximity of the current solution from being optimal. We can make the same
observation as for the bounds/gap, where the evolution is more progressive for the
linearized schemes than the nonlinearized ones.

Computational Aspects of CG for Nonlinear Optimization 27

-280000

-279000

-278000

-277000

-276000

-275000

-274000

-273000

-272000

 1000 2000 3000 4000 5000 6000

Time Bounds T50N10000

NL-SOC-LP
NL-SOC-V
L-SOC-LP
L-CLA-LP
L-SOC-V
L-CLA-V

Fig. 4: Bounds Vs. Time for T = 50, N = 10.000.

7 Conclusions and future work

We propose a generic primal decomposition method that unifies a broad range of
existing schemes and opens the door for new exotic algorithmic frameworks. The
convergence rate of the algorithms we present is not studied but can be heavily
problem dependent. Several special cases of our methods have been proved to con-
verge under mild assumptions but more work is required to prove the convergence
of broader classes of algorithms. Extensive computational experiments should be
conducted on benchmark instances to gauge the advantages and inconvenients of
each of those schemes.

Delayed column generation We assumed here that some structure X is exploitable:
in an ongoing work, we explore the same kind of algorithm but relaxing all the
constraints. It leads to algorithms sharing similarities with delayed column gen-
eration [7] and a simplex for nonlinear problems [66]. The pricing boils down to
check if the reduced costs are zero and pick as an entering column a variable whose
reduced cost is nonzero, while hardening significantly the master problem.

Non Lagrangean relaxations as pricing problems Instead of relying on Lagrangean
duality, be it in the information we have access to when solving the master prob-
lem or the kind of pricing problem we solve, different relaxations can be used to
provide stronger bounds and attenuate unstable behaviors [36,47]. We can use e.g.

28 Renaud Chicoisne

 0

 1

 2

 3

 4

 5

 6

 7

 500 1000 1500 2000 2500 3000 3500 4000

Time Gap T50N10000

NL-SOC-LP
NL-SOC-V
L-SOC-LP
L-CLA-LP
L-SOC-V
L-CLA-V

Fig. 5: Gap Vs. Time for T = 50, N = 10.000.

surrogate relaxations [30,27] where instead of relaxing the side constraints in the
objective, they are bundled into a single constraint 〈λ, g(x, y)〉 6 0. The pricing
problem becomes harder, but provides stronger dual bounds with weaker working
hypothesis. The master problems must be solved with a surrogate algorithm [37]
that returns optimal surrogate multipliers λ .

Non-convex problems P (X) X can be a tractable relaxation of a combinatorial

problem P (X̃): a choice of S defines the relaxation X of X̃ we work on. The
strength of the bounds and the difficulty to solve the subproblems in our algorithms
can vary greatly from one choice of S to another [12,19,58,35,28,29,69].

Dual decomposition In an ongoing work, we provide Dual decomposition schemes
where - using the tight relationship between DW and the Benders decomposition
method - we present a constraint generation methodology where the dual variables
are decomposed and generated on the fly. Again, a variety of sets S can be used,
yielding different master problems e.g. the generalized Benders decomposition [25]
or constraint aggregation schemes [22,57,13].

Acknowledgements The author thanks Victor Bucarey, Bernard Fortz, Bernard Gendron8,
Gonzalo Muñoz, Fernando Ordóñez, Dana Pizarro, Jupiler™ and two anonymous reviewers for

8 This paper is dedicated to Bernard Gendron who passed away during July 2022.

Computational Aspects of CG for Nonlinear Optimization 29

 0

 100

 200

 300

 400

 500

 600

 700

 1000 2000 3000 4000 5000 6000

Time Col Dist T50N10000

NL-SOC-LP
NL-SOC-V
L-SOC-LP
L-CLA-LP
L-SOC-V
L-CLA-V

Fig. 6: Column distance to S Vs. Time for T = 50, N = 10.000.

their valuable comments on an early version of this work. Powered@NLHPC: This research
was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02).

Conflict of interest

The author declares that he has no conflict of interest.

Appendix A Proof of Example 4

We necessarily have y2 = x3 = x4 = x5 = x6 = 0, y1 = 1− x1 and x2 = 1, which
turns the SDP constraint into x1 > 0 and we have ω(X) = 0. The conic dual of
the latter problem is

ω′ := max
λ

−λ1 − λ2 :

λ1 λ4 λ5

λ4 λ2 λ6

λ5 λ6 λ3

 � 0, 1− λ2 + 2λ5 = 0, λ1 = 0

 .

We necessarily have λ1 = λ4 = λ5 = 0, λ2 = 1, which turns the SDP constraint
into λ3 > λ2

6 and we have ω′ = −1 < 0 = ω(X), proving that P (X) does not
satisfy Assumption 1. Now, by construction S ⊂ X and P (S) is a feasible LP that
always satisfies Assumption 1. �

30 Renaud Chicoisne

 2.6

2.7

 2.8

 2.9

 3

 3.1

 3.2

 0 500 1000 1500 2000 2500

Time Red Cost T50N10000

NL-SOC-LP
NL-SOC-V
L-SOC-LP
L-CLA-LP
L-SOC-V
L-CLA-V

Fig. 7: Reduced Cost Vs. Time for T = 50, N = 10.000.

Appendix B Proof of Proposition 1

We prove that some (x̃, ỹ) is strictly feasible for P (S). Because −g(x̄, ȳ) ∈ relint C
and C is proper, there is ρ > 0 such that B(−g(x̄, ȳ), ρ) ⊂ relint C. Consider (x̂, θ̂)
strictly feasible for S and ε > 0 and x̃ as follows:

ε = min

{
1,

ρ

L||x̂− x̄||

}
, x̃ = x̄+ ε(x̂− x̄).

Because x̄ ∈ S and (x̂, θ̂) is strictly feasible for S, there exists θ̄ such that φ(x̄, θ̄) =
0, −γ(x̄, θ̄) ∈ K, φ(x̂, θ̂) = 0 and −γ(x̂, θ̂) ∈ relint K. φ being linear, defining
θ̃ = θ̄ + ε(θ̂ − θ̄), we immediately have φ(x̃, θ̃) = 0. Further, ε > 0, K is proper,
−γ(x̄, θ̄) ∈ K and −γ(x̂, θ̂) ∈ relint K so we obtain −εγ(x̂, θ̂) − (1 − ε)γ(x̄, θ̄) ∈
relint K. Because γ is K-convex and ε ∈]0, 1] we obtain −γ(x̃, θ̃) ∈ relint K. We just
proved that (x̃, θ̃) is strictly feasible for S. We finish by proving that (x̃, ȳ) is strictly
feasible for P (S): By definition we have ρ > Lε||x̂− x̄|| = L||x̃− x̄|| = L||(x̃− x̄; ȳ−
ȳ)||. Because g is L-Lipschitz, we obtain that ρ > ||g(x̃, ȳ)−g(x̄, ȳ)||, meaning that
−g(x̃, ȳ) ∈ B(−g(x̄, ȳ), ρ) ⊂ relint C. Because P (S) is convex, Slater’s condition
holds, thus finishing the proof. �

Computational Aspects of CG for Nonlinear Optimization 31

Appendix C Proof of Proposition 2

If L(X , λk) satisfies the P -property wrt y, the problem in y given some x ∈ X is
equivalent to the problem in y given x = xk, i.e. for any x ∈ X we have

arg min
y

{
f (x, y) +

〈
λk, g (x, y)

〉}
(13)

= arg min
y

{
f
(
xk, y

)
+
〈
λk, g

(
xk, y

)〉}
.

Because P (Sk) satisfies Assumption 1, (xk, yk) is optimal for L(Sk, λk), i.e.

ω(Sk, λk) = min
x∈Sk,y

{
f (x, y) +

〈
λk, g (x, y)

〉}
= f

(
xk, yk

)
+
〈
λk, g

(
xk, yk

)〉
.

In consequence, yk ∈ arg miny{f(xk, y) + 〈λk, g(xk, y)〉}. Using equality (13) fin-
ishes the proof. �

Appendix D Proof of Lemma 1

First, for any t ∈ [0, 1] and any pair (u1, u2) ∈ U × U we have: tϕ(u1) + (1 −
t)ϕ(u2) − ϕ(tu1 + (1 − t)u2) ∈ K. Given that λ ∈ K∗ we have 〈λ, tϕ(u1) + (1 −
t)ϕ(u2)− ϕ(tu1 + (1− t)u2)〉 > 0, meaning that

t
〈
λ, ϕ

(
u1
)〉

︸ ︷︷ ︸
ψ(u1)

+(1− t)
〈
λ, ϕ

(
u2
)〉

︸ ︷︷ ︸
ψ(u2)

>
〈
λ, ϕ

(
tu1 + (1− t)u2

)〉
︸ ︷︷ ︸

ψ(tu1+(1−t)u2)

.�

Appendix E Proof of Lemma 2

The linear approximation of ψ at ū is ψ̄[ū](u) := ψ(ū) + 〈∇ψ[ū], u − ū〉. By defi-
nition, for every u ∈ U :

〈∇ψ [ū] , u− ū〉 = lim
ε→0

ψ (ū+ ε (u− ū))− ψ (ū)

ε

= lim
ε→0

〈λ, ϕ (ū+ ε (u− ū))〉 − 〈λ, ϕ (ū)〉
ε

=

〈
λ, lim
ε→0

ϕ (ū+ ε (u− ū))− ϕ (ū)

ε

〉
= 〈λ,Dϕ (ū) (u− ū)〉 ,

implying that ψ̄[ū](u) = 〈λ, ϕ(ū)〉+ 〈λ,Dϕ(ū)(u− ū)〉 = 〈λ, ϕ̄[ū](u)〉. �

Appendix F Proof of Lemma 3

By convexity of U and optimality of u∗, for any ε ∈]0, 1] and any u ∈ U we have
ϕ(u∗) 6 ϕ(u∗ + ε(u− u∗)), i.e.

ϕ (u∗ + ε (u− u∗))− ϕ (u∗)

ε
> 0, ∀ε ∈]0, 1],∀u ∈ U ,

32 Renaud Chicoisne

which implies that when ε→ 0, for any u ∈ U we have 〈∇ϕ (u∗) , u− u∗〉 > 0, i.e.

ϕ
(
u∗
)

+
〈
∇ϕ

(
u∗
)
, u− u∗

〉︸ ︷︷ ︸
ϕ̄[u∗](u)

> ϕ
(
u∗
)

+
〈
∇ϕ

(
u∗
)
, u∗ − u∗

〉︸ ︷︷ ︸
ϕ̄u∗

, ∀u ∈ U ,

meaning that u∗ is optimal for minu∈U ϕ̄[u∗](u) and implying ω∗ = ω̄[u∗]. �

Appendix G Proof of Proposition 3

First, notice that the following holds:

f̄
[
xk, yk

]
(x, y) =f

(
xk, yk

)
+
〈
∇xf

(
xk, yk

)
, x− xk

〉
+
〈
∇yf

(
xk, yk

)
, y − yk

〉
ḡ
[
xk, yk

]
(x, y) =g

(
xk, yk

)
+Dxg

(
xk, yk

)(
x− xk

)
+Dyg

(
xk, yk

)(
y − yk

)
In consequence, we have that:

ω̄
[
xk, yk

] (
X , λk

)
=f
(
xk, yk

)
−
〈
∇xf

(
xk, yk

)
, xk
〉
−
〈
∇yf

(
xk, yk

)
, yk
〉

+
〈
λk, g

(
xk, yk

)
−Dxg

(
xk, yk

)
xk −Dyg

(
xk, yk

)
yk
〉

+ min
x∈X

{〈
∇xf

(
xk, yk

)
, x
〉

+
〈
λk, Dxg

(
xk, yk

)
x
〉}

+ min
y

{〈
∇yf

(
xk, yk

)
, y
〉

+
〈
λk, Dyg

(
xk, yk

)
y
〉}

, (14)

which is separable in x and y. Wlog we can assume that (14) attains its mini-
mum, otherwise the master problem is unbounded and we can stop. Under this
assumption, the first order optimality conditions in y for the master problem
P (Sk) are ∇yf(xk, yk) + Dyg(xk, yk)∗λk = 0, in turn implying that for any y:
〈∇yf(xk, yk), y〉+ 〈λk, Dyg(xk, yk)y〉 = 0, meaning that the objective function of
(14) is identically zero. �

Appendix H Proof of Proposition 5

Let us define the following subsets of [p]:

J+ := {j ∈ [p] : γj < 0, αj > 0} , J− := {j ∈ [p] : γj > 0, αj < 0} ,
J0 := {j ∈ [p] : γj , αj > 0} , Jµ := {j ∈ [p] : γj , αj 6 0} .

First notice that we can fix beforehand the following variables:

z∗j =

{
µj If j ∈ Jµ
0 If j ∈ J0.

Computational Aspects of CG for Nonlinear Optimization 33

Next, for every j ∈ J−, we use the change of variable zj ← µj − zj , obtaining the
following problem:

ω∗ :=
∑

j∈J−∪Jµ

γjµj + min
z

∑
j∈J+∪J−

γ̂jzj

s.t.:
∑

j∈J+∪J−

α̂jzj 6 β̂

zj ∈ [0, µj] , ∀j ∈ J+ ∪ J−

where β̂ := β −
∑
j∈J−∪Jµ αjµj and:

α̂j :=

{
αj if j ∈ J+

−αj if j ∈ J−
γ̂j :=

{
γj if j ∈ J+

−γj if j ∈ J−.

The latter is a knapsack problem with positive capacity β̂ and weights α̂j that can
be solved by sorting the remaining indices j ∈ J+∪J− in increasing disutility γ̂j/α̂j
and filling the capacity constraint until no variable is available or the capacity
constraint is tight. �

Appendix I Proof of Proposition 6

It is enough to show that (u∗, (π∗, λ̂, λ̂0)) satisfies the KKT conditions for (9):

φ
(
u∗
)
6 0, −

(
γ
(
u∗
)
, γ0

)
∈ L2

π∗ > 0, φ
(
u∗
)>

π∗ = 0(
λ̂, λ̂0

)
∈ L2

γ
(
u∗
)>

λ̂+ γ0λ̂0 = 0

∇ϕ
(
u∗
)

+Dφ
(
u∗
)>

π∗ +Dγ
(
u∗
)>

λ̂ = 0.

(15a)

(15b)

(15c)

(15d)

(15e)

(15a) and (15b) are trivially satisfied. Given that −γ0, λ
∗ > 0, the remaining

conditions are equivalent to:

(
λ∗
)2 (∣∣∣∣γ (u∗)∣∣∣∣2

2
− γ2

0

)
6 0

λ∗
(∣∣∣∣γ (u∗)∣∣∣∣2

2
− γ2

0

)
= 0

∇ϕ
(
u∗
)

+Dφ
(
u∗
)>

π∗ + 2λ∗Dγ
(
u∗
)>

γ
(
u∗
)

= 0,

which are all implied by the KKT conditions for (10) at (u∗, (π∗, λ∗)). �

34 Renaud Chicoisne

Appendix J Sparsity patterns for the enhanced models

Primal-dual interior point and Newton step Given a barrier parameter µ > 0 and
an optimization problem minu{ϕ(u) : φ(u) 6 0, Ru = s}, the barrier problem is
defined as minu{ϕ(u) − µ

∑p
i=1 ln(−φi(u)) : Ru = s}. The first order optimality

conditions for the barrier problem are the following perturbed conditions:

∇ϕ(u) +R>π + β>Dφ(u) = 0

µ+ βiφi(u) = 0

Ru = s.

The heavy works at each iteration of a primal-dual interior point algorithm occur
during the Newton step, which consists in approximately solve the latter system
of equations by solving in (∆u,∆β,∆π) its following first-order approximation:∇

2ϕ(u)+
p∑
i=1

βi∇2φ(u) Dφ(u)> R>

−diag(β)Dφ(u) −diag(φ(u)) 0
R 0 0

∆u∆β
∆π

+

∇ϕ(u)+R>π+β>Dφ(u)
(µ+βiφi(u))i∈[p]

Ru− s

=0

Monolithic formulation After the sparsity patterns in Figures 9 and 10, Figure 8
summarizes the number of nonzero coefficients present in the Newton step’s sys-
tem. The non-enhanced version has n2 + 10n+ T + 2 nonzeroes, with 3n+ T + 2

#nz (y, x) V X
(y, x) n2 n 3n

V n 1 0

X 3n 0
T + 1
+2n

(a) Non-enhanced model.

#nz (y, x) v w V X V E
(y, x) 0 0 0 0 3n Sn Sn

v 0
S2T

0 0 0 0
ST

+S2 +S
w 0 0 S S 0 S 0

V 0 0 S 1 0 0 0

X 3n 0 0 0
T + 1

0 0
+2n

V Sn 0 S 0 0 0 0

E Sn
ST

0 0 0 0 0
+S

(b) Enhanced model.

Fig. 8: Number of nonzeroes per block: Non-enhanced model Vs. enhanced.

unknowns, while the enhanced version sums n(4S+8)+S(S(T+1)+2T+7)+2+T
nonzeroes, with 3n + 2ST + 4S + T + 2 unknowns. We summarize these results
in Table 10 to illustrate the benefits of using the enhanced version instead of the
original version (recall that we used S = 20): We can see that we can divide at
least by a factor 100 the number of nonzero coefficients in our instances at the
cost of having less than a percent of additional unknowns.

Pricing problems We only cover here the pricing problem when the variance con-
straint is considered as conic because the pricing when considering it as a single
nonlinear constraint becomes very similar to the monolithic formulation. Given

Computational Aspects of CG for Nonlinear Optimization 35

instance #unknowns #nonzeroes
T N n orig. enh. ratio(%) orig. enh. ratio(%)
1 104 104 30003 30123 100.400 108 9 · 105 0.880
1 105 105 300003 300123 100.040 1010 9 · 106 0.088
50 104 5 · 105 1500052 1502132 100.139 2.5 · 1011 4 · 107 0.018
50 105 5 · 106 15000052 15002132 100.014 2.5 · 1013 4 · 108 0.002

Table 10: Benefits of enhancing the master problem on our instances.

n︷ ︸︸ ︷ 1︷︸︸︷ 2n+ T + 1︷ ︸︸ ︷
y x1 . . . xT V X0 X1 . . . XT

y

x1

...
. . .

xT

V

X0

X1

...
. . .

. . .

XT

Fig. 9: Sparsity pattern of the Newton step for P without numerical enhancement.

that the problem is splittable in each xt (and x0 = y), we successively solve
the pricing for each t ∈ {0, ..., T}, which is the problem for which we study the
sparsity pattern. As per Figure 12, Figure 11 summarizes the number of nonzero
coefficients present in the Newton step’s system. The non-enhanced version has
n2
t + 8nt + 1 nonzeroes, with 3nt + 1 unknowns, while the enhanced version sums
nt(8 + 2S) +S(S + 2) + 1 nonzeroes, with 3nt + 2S + 1 unknowns. We summarize
these results in Table 11 to illustrate the benefits of using the enhanced version
instead of the original version, where we can see again that we can divide at least
by a factor 100 the number of nonzero coefficients in our instances at the cost of
having less than a percent of additional unknowns.

36 Renaud Chicoisne

n︷ ︸︸ ︷ S(T + 1)︷ ︸︸ ︷ S︷ ︸︸ ︷ 1︷︸︸︷ 2n+ T + 1︷ ︸︸ ︷ S︷ ︸︸ ︷ S(T + 1)︷ ︸︸ ︷
y x1 . . . xT v0 v1 . . . vT w1 . . . wS V X0 X1 . . . XT V E0 E1 . . . ET

y

x1

.

..
. . .

. . .

xT

v0

v1

...
. . .

. . .

vT

w1

...
. . .

. . .

wS

V

X0

X1

.

..
. . .

. . .

XT

V
. . .

E0

E1

...
. . .

. . .

ET

Fig. 10: Sparsity pattern of the Newton step for P with numerical enhancement.

nz xt Xt
xt n2

t 3nt
Xt 3nt 2nt + 1

(a) Non-enhanced model.

nz xt vt Xt Et
xt 0 0 3nt Snt
vt 0 S2 0 S
Xt 3nt 0 2nt + 1 0
Et Snt S 0 0

(b) Enhanced model.

Fig. 11: Number of nonzeroes per block: Non-enhanced model Vs. enhanced.

instance #unknowns #nonzeroes
N = nt orig. enh. ratio(%) orig. enh. ratio(%)

104 30001 30041 100.133 108 4.8 · 105 0.480
105 300001 300041 100.013 1010 4.8 · 106 0.048

Table 11: Benefits of enhancing the pricing problems on our instances.

Appendix K Proof of Proposition 7

The KKT conditions for (12) are

φ (ũ) 6 0, −γ̃ (w̃) ∈ K, ṽ = V ũ, w̃ = Wũ

π̃ > 0, λ̃ ∈ K∗

φ (ũ)> π̃ = 0,
〈
γ̃ (w̃) , λ̃

〉
= 0

∇ϕ̃ (ṽ)− α̃ = 0, Dγ̃ (w̃)∗ λ̃− β̃ = 0

Dφ (ũ)> π̃ + V ∗α̃+W ∗β̃ = 0.

(16a)

(16b)

(16c)

(16d)

(16e)

Computational Aspects of CG for Nonlinear Optimization 37

nt︷ ︸︸ ︷ 2nt+1︷ ︸︸ ︷
xt Xt

xt

Xt

(a) Non-enhanced model.

nt︷ ︸︸ ︷ S︷ ︸︸ ︷ 2nt+1︷ ︸︸ ︷ S︷ ︸︸ ︷
xt vt Xt Et

xt

vt

Xt

Et

(b) Enhanced model.

Fig. 12: Sparsity patterns for the t-th pricing problem.

Conditions (16a)-(16b)-(16c) represent respectively primal and dual feasibility and
complementary slackness for (11) at (ũ, (π̃, λ̃)). We now prove that (16d)-(16e)
imply the last remaining KKT condition for (11): stationarity. Replacing (16d) in
(16e) we obtain:

Dφ (ũ)> π̃ + V ∗∇ϕ̃ (ṽ) +W ∗Dγ̃ (w̃)∗ λ̃ = 0. (17)

For any (u, v, w) such that V u = v and Wu = w, we have ϕ(u) = ϕ̃(V u) and
γ(u) = γ̃(Wu), implying that

∇ϕ(u) = V ∗∇ϕ̃ (V u) = V ∗∇ϕ̃ (v)

Dγ(u) = Dγ̃ (Wu)W = Dγ̃ (w)W.

(18a)

(18b)

Using (18) at (u, v, w) = (ũ, ṽ, w̃) and replacing in (17) we get Dφ(ũ)>π̃+∇ϕ(ũ)+
Dγ(ũ)∗λ̃ = 0. �

References

1. Acerbi, C., Simonetti, P.: Portfolio optimization with spectral measures of risk. arXiv
preprint cond-mat/0203607 (2002)

2. Ahmadi, A.A., Dash, S., Hall, G.: Optimization over structured subsets of positive semidef-
inite matrices via column generation. Discrete Optimization 24, 129–151 (2017)

3. Álvarez, C., Mancilla-David, F., Escalona, P., Angulo, A.: A bienstock–zuckerberg-based
algorithm for solving a network-flow formulation of the convex hull pricing problem. IEEE
Transactions on Power Systems 35(3), 2108–2119 (2019)

4. Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P., Vance, P.H.: Branch-
and-price: Column generation for solving huge integer programs. Operations research
46(3), 316–329 (1998)

5. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust optimization. Princeton University
Press (2009)

6. Bergner, M., Caprara, A., Ceselli, A., Furini, F., Lübbecke, M.E., Malaguti, E., Traversi,
E.: Automatic dantzig–wolfe reformulation of mixed integer programs. Mathematical Pro-
gramming 149(1-2), 391–424 (2015)

7. Bertsimas, D., Tsitsiklis, J.N.: Introduction to linear optimization, vol. 6. Athena Scientific
Belmont, MA (1997)

38 Renaud Chicoisne

8. Bienstock, D., Zuckerberg, M.: A new LP algorithm for precedence constrained production
scheduling. Optimization Online pp. 1–33 (2009)

9. Bonnans, J.F., Gilbert, J.C., Lemaréchal, C., Sagastizábal, C.A.: Numerical optimization:
theoretical and practical aspects. Springer Science & Business Media (2006)

10. Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge university press (2004)
11. Briant, O., Lemaréchal, C., Meurdesoif, P., Michel, S., Perrot, N., Vanderbeck, F.: Com-

parison of bundle and classical column generation. Mathematical programming 113(2),
299–344 (2008)

12. Burer, S.: On the copositive representation of binary and continuous nonconvex quadratic
programs. Mathematical Programming 120(2), 479–495 (2009)

13. Chicoisne, R., Ordoñez, F., Espinoza, D.: Risk averse shortest paths: A computational
study. INFORMS Journal on Computing 30(3), 539–553 (2018)

14. Choi, E., Tcha, D.W.: A column generation approach to the heterogeneous fleet vehicle
routing problem. Computers & Operations Research 34(7), 2080–2095 (2007)

15. Chou, C.A., Liang, Z., Chaovalitwongse, W.A., Berger-Wolf, T.Y., DasGupta, B., Sheikh,
S., Ashley, M.V., Caballero, I.C.: Column-generation framework of nonlinear similarity
model for reconstructing sibling groups. INFORMS Journal on Computing 27(1), 35–47
(2015)

16. Dantzig, G.B., Wolfe, P.: The decomposition algorithm for linear programs. Econometrica:
Journal of the Econometric Society pp. 767–778 (1961)

17. Dentcheva, D., Ruszczyński, A.: Portfolio optimization with stochastic dominance con-
straints. Journal of Banking & Finance 30(2), 433–451 (2006)

18. Desaulniers, G., Desrosiers, J., Dumas, Y., Marc, S., Rioux, B., Solomon, M.M., Soumis,
F.: Crew pairing at air france. European journal of operational research 97(2), 245–259
(1997)

19. Dong, H., Anstreicher, K.: Separating doubly nonnegative and completely positive matri-
ces. Mathematical Programming 137(1-2), 131–153 (2013)

20. Du Merle, O., Villeneuve, D., Desrosiers, J., Hansen, P.: Stabilized column generation.
Discrete Mathematics 194(1-3), 229–237 (1999)

21. Eckstein, J., Bertsekas, D.P.: On the douglas-rachford splitting method and the proximal
point algorithm for maximal monotone operators. Mathematical Programming 55(1-3),
293–318 (1992)

22. Espinoza, D., Moreno, E.: A primal-dual aggregation algorithm for minimizing conditional
value-at-risk in linear programs. Computational Optimization and Applications 59(3),
617–638 (2014)

23. Garćıa, R., Maŕın, A., Patriksson, M.: Column generation algorithms for nonlinear opti-
mization, I: Convergence analysis. Optimization 52(2), 171–200 (2003)

24. Garćıa, R., Maŕın, A., Patriksson, M.: Column generation algorithms for nonlinear opti-
mization, II: Numerical investigations. Computers & Operations Research 38(3), 591–604
(2011)

25. Geoffrion, A.: Generalized benders decomposition. Journal of optimization theory and
applications 10(4), 237–260 (1972)

26. Giles, F.R., Pulleyblank, W.R.: Total dual integrality and integer polyhedra. Linear alge-
bra and its applications 25, 191–196 (1979)

27. Glover, F.: Surrogate constraint duality in mathematical programming. Operations Re-
search 23(3), 434–451 (1975)

28. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming. Journal of the ACM (JACM)
42(6), 1115–1145 (1995)

29. Gorge, A., Lisser, A., Zorgati, R.: Generating cutting planes for the semidefinite relaxation
of quadratic programs. Computers & Operations Research 55, 65–75 (2015)

30. Greenberg, H., Pierskalla, W.: Surrogate mathematical programming. Operations Research
18(5), 924–939 (1970)

31. Khaniyev, T., Elhedhli, S., Erenay, F.S.: Structure detection in mixed-integer programs.
INFORMS Journal on Computing 30(3), 570–587 (2018)

32. Kleywegt, A.J., Shapiro, A., Homem-de Mello, T.: The sample average approximation
method for stochastic discrete optimization. SIAM Journal on Optimization 12(2), 479–
502 (2002)

33. Krokhmal, P., Palmquist, J., Uryasev, S.: Portfolio optimization with conditional value-
at-risk objective and constraints. Journal of risk 4, 43–68 (2002)

Computational Aspects of CG for Nonlinear Optimization 39

34. Levy, H., Markowitz, H.M.: Approximating expected utility by a function of mean and
variance. The American Economic Review 69(3), 308–317 (1979)

35. Lovász, L.: On the Shannon capacity of a graph. IEEE Transactions on Information theory
25(1), 1–7 (1979)

36. Lübbecke, M., Desrosiers, J.: Selected topics in column generation. Operations research
53(6), 1007–1023 (2005)

37. Müller, B., Muñoz, G., Gasse, M., Gleixner, A., Lodi, A., Serrano, F.: On generalized
surrogate duality in mixed-integer nonlinear programming. In: International Conference
on Integer Programming and Combinatorial Optimization, pp. 322–337. Springer (2020)

38. Muñoz, G., Espinoza, D., Goycoolea, M., Moreno, E., Queyranne, M., Rivera, O.: A study
of the Bienstock–Zuckerberg algorithm: applications in mining and resource constrained
project scheduling. Computational Optimization and Applications 69(2), 501–534 (2018)

39. Murphy, F.H.: A column generation algorithm for nonlinear programming. Mathematical
Programming 5(1), 286–298 (1973)

40. Muts, P., Nowak, I., Hendrix, E.M.: On decomposition and multiobjective-based column
and disjunctive cut generation for minlp. Optimization and Engineering 22(3), 1389–1418
(2021)

41. Nesterov, Y., Nemirovskii, A.: Interior-point polynomial algorithms in convex program-
ming. SIAM (1994)

42. Ni, W., Shu, J., Song, M., Xu, D., Zhang, K.: A branch-and-price algorithm for facility
location with general facility cost functions. INFORMS Journal on Computing 33(1),
86–104 (2021)

43. Nocedal, J., Wright, S.: Numerical optimization. Springer Science & Business Media (2006)
44. Nowak, I., Breitfeld, N., Hendrix, E.M., Njacheun-Njanzoua, G.: Decomposition-based

inner-and outer-refinement algorithms for global optimization. Journal of Global Opti-
mization 72(2), 305–321 (2018)

45. Park, Y.W.: Optimization for l 1-norm error fitting via data aggregation. Informs Journal
on Computing 33(1), 120–142 (2021)

46. Pessoa, A., Sadykov, R., Uchoa, E., Vanderbeck, F.: Automation and combination of linear-
programming based stabilization techniques in column generation. INFORMS Journal on
Computing 30(2), 339–360 (2018)

47. Pessoa, A., Sadykov, R., Uchoa, E., Vanderbeck, F.: Automation and combination of linear-
programming based stabilization techniques in column generation. INFORMS Journal on
Computing 30(2), 339–360 (2018)

48. Petra, C.G., Schenk, O., Anitescu, M.: Real-time stochastic optimization of complex energy
systems on high-performance computers. Computing in Science & Engineering 16(5), 32–
42 (2014)

49. Petra, C.G., Schenk, O., Lubin, M., Gärtner, K.: An augmented incomplete factorization
approach for computing the schur complement in stochastic optimization. SIAM Journal
on Scientific Computing 36(2), C139–C162 (2014)

50. Pirnay, H., Lopez-Negrete, R., Biegler, L.: Optimal sensitivity based on ipopt. Mathemat-
ical Programming Computations 4(4), 307–331 (2012)

51. Pisinger, W.D., Rasmussen, A.B., Sandvik, R.: Solution of large quadratic knapsack prob-
lems through aggressive reduction. INFORMS Journal on Computing 19(2), 280–290
(2007)

52. Porumbel, D., Clautiaux, F.: Constraint aggregation in column generation models for
resource-constrained covering problems. INFORMS Journal on Computing 29(1), 170–
184 (2017)

53. Pratt, J.W.: Risk aversion in the small and in the large. Econometrica: Journal of the
Econometric Society 32(1/2), 122–136 (1964)

54. Ruszczyński, A.: On convergence of an augmented lagrangian decomposition method for
sparse convex optimization. Mathematics of Operations Research 20(3), 634–656 (1995)

55. Sadykov, R., Lazarev, A., Shiryaev, V., Stratonnikov, A.: Solving a freight railcar flow
problem arising in russia. In: ATMOS-13th Workshop on Algorithmic Approaches for
Transportation Modelling, Optimization, and Systems-2013. Dagstuhl Open Access Series
in Informatics (2013)

56. Sadykov, R., Vanderbeck, F.: Column generation for extended formulations. EURO Jour-
nal on Computational Optimization 1(1-2), 81–115 (2013)

57. Song, Y., Luedtke, J.: An adaptive partition-based approach for solving two-stage stochas-
tic programs with fixed recourse. SIAM Journal on Optimization 25(3), 1344–1367 (2015)

40 Renaud Chicoisne

58. Sponsel, J., Dür, M.: Factorization and cutting planes for completely positive matrices by
copositive projection. Mathematical Programming 143(1-2), 211–229 (2014)

59. Sun, Y., Andersen, M.S., Vandenberghe, L.: Decomposition in conic optimization with
partially separable structure. SIAM Journal on Optimization 24(2), 873–897 (2014)

60. Vandenberghe, L., Andersen, M.S.: Chordal graphs and semidefinite optimization. Foun-
dations and Trends in Optimization 1(4), 241–433 (2015)

61. Vielma, J.P., Ahmed, S., Nemhauser, G.L.: A lifted linear programming branch-and-bound
algorithm for mixed-integer conic quadratic programs. INFORMS Journal on Computing
20(3), 438–450 (2008)

62. Von Hohenbalken, B.: Simplicial decomposition in nonlinear programming algorithms.
Mathematical Programming 13(1), 49–68 (1977)

63. Wachter, A., Biegler, L.: On the implementation of a primal-dual interior point filter
line search algorithm for large-scale nonlinear programming. Mathematical Programming
106(1), 25–57 (2006)

64. Wang, J., Ralphs, T.: Computational experience with hypergraph-based methods for au-
tomatic decomposition in discrete optimization. In: International Conference on AI and
OR Techniques in Constriant Programming for Combinatorial Optimization Problems,
pp. 394–402. Springer (2013)

65. Wang, Y., Yin, W., Zeng, J.: Global convergence of admm in nonconvex nonsmooth opti-
mization. Journal of Scientific Computing 78(1), 29–63 (2019)

66. Zangwill, W.I.: The convex simplex method. Management Science 14(3), 221–238 (1967)
67. Zheng, Y., Fantuzzi, G., Papachristodoulou, A., Goulart, P., Wynn, A.: Fast admm for

semidefinite programs with chordal sparsity. In: 2017 American Control Conference (ACC),
pp. 3335–3340. IEEE (2017)

68. Zheng, Y., Fantuzzi, G., Papachristodoulou, A., Goulart, P., Wynn, A.: Chordal decom-
position in operator-splitting methods for sparse semidefinite programs. Mathematical
Programming 180(1), 489–532 (2020)

69. Zheng, Y., Sootla, A., Papachristodoulou, A.: Block factor-width-two matrices and their
applications to semidefinite and sum-of-squares optimization. IEEE Transactions on Au-
tomatic Control (2022)

