
HAL Id: hal-02928761
https://hal.science/hal-02928761v2

Preprint submitted on 28 Mar 2021 (v2), last revised 29 Sep 2022 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

On Column Generation Methods for Nonlinear
Optimization
Renaud Chicoisne

To cite this version:
Renaud Chicoisne. On Column Generation Methods for Nonlinear Optimization. 2020. �hal-
02928761v2�

https://hal.science/hal-02928761v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Submitted to INFORMS Journal on Computing
manuscript (Please, provide the manuscript number!)

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

On Column Generation for Nonlinear Optimization

Renaud Chicoisne
ULB, Brussels, Belgium and INOCS, INRIA Lille Nord-Europe, France, renaud.chicoisne@gmail.com

Solving large scale nonlinear optimization problems requires either significant computing resources or the

development of specialized algorithms. For Linear Programming (LP) problems, decomposition methods can

take advantage of problem structure, gradually constructing the full problem by generating variables or

constraints. We present a new, direct adaptation of the Column Generation (CG) methodology for nonlinear

optimization problems, such that when optimizing over a structured set X plus a moderate number of

complicating constraints, we solve a succession of 1) restricted master problems on a smaller set S ⊂X and

2) pricing problems that are Lagrangean relaxations wrt the complicating constraints. The former provides

feasible solutions and feeds dual information to the latter. In turn, the pricing problem identifies a variable

of interest that is then taken into account into an updated subset S ′ ⊂X .

Our approach is valid whenever the master problem has zero Lagrangean duality gap wrt to the complicating

constraints, and not only when S is the convex hull of the generated variables as in CG for LPs, but also

with a variety of subsets such as the conic hull, the linear span, and a special variable aggregation set. We

discuss how the structure of S and its update mechanism influence the convergence and the difficulty of

solving the restricted master problems. We also present linearized schemes that alleviate the computational

burden of solving the pricing problem.

We test our methods on portfolio optimization instances with up to 5 million variables including nonlinear

objective functions and second order cone constraints. We show that some CGs with linearized pricing are

2-3 times faster than solving the complete problem directly and are able to provide solutions within 1% of

optimality in 6 hours for the larger instances, whereas solving the complete problem runs out of memory.

Key words : Nonlinear Optimization, Column Generation, Lagrangean Duality, Portfolio Optimization

History : N/A

1. Introduction

Decomposition methods are fundamental tools to solve difficult large scale problems. In

this work, we focus on Column Generation (CG or primal decomposition) algorithms,

where the number of variables is too large to allow a direct solution with an off-the-shelf

1

Chicoisne: On Column Generation for Nonlinear Optimization
2 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

optimization software. More formally, we focus on solving the following problem

(P (X)) ω (X) :=min
x,y

f(x, y)

s.t. x∈X , −g(x, y)∈ C,

where C is a cone in some Euclidean space, X is a high-dimensional structured set and f

and g are generic mappings1. The feasibility set of the auxiliary variables y is fully defined

by constraints −g(x, y)∈ C. Defining n, n0 and m as the respective dimensions of x, y and

C, we assume that the main issue with P (X) is the presence of the difficult or coupling/side

constraints −g(x, y)∈ C and the magnitude of n≫ 1. In other words, we consider a setting

in which: 1) for some low-dimensional subset S ⊆X , P (S) can be solved efficiently, and 2)

P (X) without the constraints −g(x, y)∈ C gives birth to an efficiently solvable problem. We

propose to use these simpler optimization problems to build a solution method for P (X).
For the sake of simplicity, we do not consider equalities in the complicating constraints.

1.1. Preliminaries

We now introduce several definitions and assumptions that are used through this paper.

We call the dual cone of the cone C, the set C∗ defined as C∗ := {u : ⟨u, v⟩⩾ 0,∀v ∈ C}. For
any penalization vector λ∈ C∗, let us define the following Lagrangean relaxation:

(L (X , λ)) ω (X , λ) := min
x∈X ,y

{f(x, y)+ ⟨λ, g(x, y)⟩} .

Recall that for any λ∈ C∗ we have ω(X , λ)⩽ ω(X). The Lagrangean dual of P (X) is:

(D (X)) max
λ∈C∗
{ω (X , λ)}⩽ ω(X).

We say that P (X) has no Lagrangean duality gap if P (X) andD(X) share the same optimal

value ω(X). Notice that the concept of Lagrangean dual is associated to the constraints

that are relaxed, which in this work are the constraints −g(x, y) ∈ C. On another hand,

given a set S ⊆X , we define the restricted problem as follows:

(P (S)) ω (S) := min
x∈S,y

{f(x, y) :−g(x, y)∈ C} .

Given that the original problem P (X) is a relaxation of P (S) for any S ⊆ X , we have

ω(X)⩽ ω(S). Remark that if S contains the projection on the x-components of an optimal

solution of P (X) then we have ω(X) = ω(S) and P (S) returns optimal solutions for P (X).

1 f and g satisfy some convexity properties in Section 3.

Chicoisne: On Column Generation for Nonlinear Optimization
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 3

1.2. Main concept

In this paper, we extend the concept of CG beyond the scope of LPs while keeping a

similar philosophy: in the LP case, at each iteration k we solve an approximation P (Sk)

of P (X) that uses Sk := conv(x̄l)l∈{1,...,k}, the convex hull of a family of columns x̄l, each

belonging to X . Doing so, we obtain an upper bound ω(Sk) on ω(X) and retrieve the

corresponding optimal dual multipliers λk. These multipliers are fed to the pricing problem

L(X , λk) that returns an optimal solution (x̄k, ȳk) and provides a lower bound ω(X , λk)

for ω(X). As pictured in Figure 1, we iteratively refine both problems until the optimality

gap ω(X , λk)−ω(Sk) is under some tolerance. Our approach generalizes CG in two ways:

Figure 1 CG feedback: (x̄k, ȳk) is optimal for L(X , λk) and λk is dual-optimal for P (Sk)

under reasonable conditions 1) the approximating set Sk does not have to be a convex

hull of previous columns, and 2) P (X) is not necessarily an LP but P (Sk) must have zero

Lagrangean duality gap wrt the complicating constraints −g(x, y)∈ C. We now present the

main assumptions used in this article.

1.3. Working hypothesis

We make two kinds of assumptions: the first ensures the validity of our framework and the

remaining are necessary to make it computationally efficient:

Assumption 1. S is such that P (S) can be solved by a Lagrangean algorithm that pro-

vides a multiplier λ∈ C∗ such that ω(S) = ω(S, λ).

Assumption 2. For any λ∈ C∗ we can solve efficiently L(X , λ) in practice.

Assumption 3. The choice of S makes P (S) efficiently solvable in practice.

Assumption 1 implies that strong Lagrangean duality holds for P (S) and we have an

algorithm to find an optimal primal-dual pair ((x, y), λ) for P (S); notice further that (x, y)

is also optimal for L (S, λ). Assumption 1 is satisfied by many optimization problems such

as e.g. LPs or Linear Conic problems (LC) and Nonlinear Convex problems (NLC) that

Chicoisne: On Column Generation for Nonlinear Optimization
4 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

satisfy a Constraint Qualification (CQ) (Nocedal and Wright 2006) and can be solved

using an interior point method (Nesterov and Nemirovskii 1994). Slater’s condition (SC)

is a popular CQ that is satisfied if the problem at hand is convex and strictly feasible2:

Assumption 1 may sound overly restrictive, however, we show in Proposition 1 that SC for

P (S) can hold under some regularity assumptions on S. Notice that in the general case,

we only need P (S) to satisfy Assumption 1, while P (X) may not.

Assumptions 2 and 3 are not necessary on a theoretical point a view, however, they

are essential for our methodology to be competitive computationally. Assumption 2 is the

basic assumption for classical CG for LPs and means that the pricing problem L(X , λ) is
either 1) block-decomposable thanks to the structure of X and can be solved in parallel,

or 2) there is an efficient dedicated algorithm to solve it. Finally, Assumption 3 says that

S is e.g. low dimensional and defined with a few constraints.

Our objective is to design an iterative search in terms of both λ and S that successively

improves the lower and upper bounds ω(X , λ) and ω(S), returning increasingly good fea-

sible solutions as a byproduct. Our framework achieves this goal by feeding information

from one problem to the other by updating respectively λ from P (S) and S from L(X , λ).

1.4. Dantzig-Wolfe for LPs

To illustrate our point, let us take the following LP as a special case of P (X) - i.e. when
X is a polyhedron, f and g are linear mappings and C is the non-negative orthant:

min
x,y

c⊤x+ d⊤y

s.t.: x∈X := {x⩾ 0 :Ax= a}

Xx+Y y⩾ b.

(1a)

(1b)

(1c)

Defining π and λ⩾ 0 as the dual variables associated to constraints (1b) and (1c) respec-

tively, its LP dual is:

max
λ,π

a⊤π+ b⊤λ

s.t.: λ∈Λ :=
{
λ⩾ 0 : Y ⊤λ= d

}
A⊤π+X⊤λ⩽ c.

(2a)

(2b)

(2c)

As pointed out before, if we were to replace X by some wisely chosen subset S ⊆X in (1),

we would obtain a cheap upper bound for the optimal value of (1). In this LP case, there is

2 Strict feasibility is defined in Subsection 1.7

Chicoisne: On Column Generation for Nonlinear Optimization
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 5

a natural choice for S readily available (Bertsimas and Tsitsiklis 1997): Letting V be the set

of vertices of X and R a complete set of extreme rays of X , we have X = conv V+cone R,

where cone R is the conic hull of R. In other words:

X =

{
x : x=

∑
l:x̄l∈V

θlx̄
l +

∑
l:x̄l∈R

θlx̄
l, for some θ⩾ 0 :

∑
l:x̄l∈V

θl = 1

}
.

Problem (1) can thus be rewritten as the following extensive formulation:

min
θ,y

∑
l:x̄l∈V

θlc
⊤x̄l +

∑
l:x̄l∈R

θlc
⊤x̄l + d⊤y

s.t.:
∑
l:x̄l∈V

θlXx̄
l +

∑
l:x̄l∈R

θlXx̄
l +Y y⩾ b

∑
l:x̄l∈V

θl = 1

θ⩾ 0,

(3a)

(3b)

(3c)

(3d)

whose LP dual is the following problem:

max
λ,η

b⊤λ+ η

s.t.:
(
Xx̄l

)⊤
λ⩽ c⊤x̄l− η, ∀l : x̄l ∈ V(

Xx̄l
)⊤
λ⩽ c⊤x̄l, ∀l : x̄l ∈R

λ∈Λ.

(4a)

(4b)

(4c)

(4d)

A direct solution of problem (3) is in general impractical as its number of variables can

be exponential in (n,n0,m). However, the Dantzig-Wolfe (DW) algorithm (Dantzig and

Wolfe 1961) offers a solution method successively generating vertices and extreme rays of

the polyhedron X . It starts with finite subsets V ⊂ V and R⊂R and solves a restricted

master problem (3) with V and R instead of the full sets V and R. With our notation, this

restricted master problem is none other than P (S) with S := conv V + cone R. Making

different choices for S and consider a broader class of optimization problems is the central

idea of this paper. Obtaining the optimal dual variables λ associated with constraints (3b)

in P (S), the Lagrangean relaxation L(X , λ) is solved:

min
x∈X ,y

{
c⊤x+ d⊤y+λ⊤ (b−Xx−Y y)

}
= λ⊤b+ min

x∈X ,y

{(
c−X⊤λ

)⊤
x+

(
d−Y ⊤λ

)⊤
y
}
.

Chicoisne: On Column Generation for Nonlinear Optimization
6 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

By dual feasibility (4d) of λ - implying that Y ⊤λ= d - it can be rewritten

λ⊤b+min
x∈X

{(
c−X⊤λ

)⊤
x
}
, (5)

thus eliminating the variables y from the pricing problem. Discarding this dependency in

y is, however, not always possible in a nonlinear setting. Letting x̄ be an optimal solution

of the pricing problem (5), with a slight abuse of notation we refer to an optimal solution

to either 1) a vertex of X if the pricing problem in x has a bounded optimal objective

value, or 2) an extreme ray of X otherwise. In the latter case we increment R̄← R̄∪ {x̄}

and in the former V̄ ← V̄ ∪ {x̄}, which defines the particular update mechanism used by

DW. We iterate until an optimality tolerance criterion is satisfied or until we generated

the complete sets V and R, thus solving the full, original problem P (X).

1.5. Decomposition methods and previous work

CG algorithms were studied in depth for LPs (Dantzig and Wolfe 1961, Lübbecke and

Desrosiers 2005) or Mixed Integer Linear Programming (MILP) problems (Barnhart et al.

1998, Sadykov and Vanderbeck 2013) where notoriously large MILPs could be solved

(Desaulniers et al. 1997, Choi and Tcha 2007) by embedding DW in a branch-and-price

framework. The main idea of DW is to exploit the structure of X and solve smaller prob-

lems: 1) the master problem, that works over a reduced subset S ⊂ X while keeping the

side constraints; and 2) a pricing problem that is still large but is computationally easy to

solve thanks to the absence of side constraints.

In a nonlinear setting, several algorithms such as the Alternating Direction Method of

Multipliers (ADMM) (Wang et al. 2019), the Douglas-Rachford splitting operator (Eckstein

and Bertsekas 1992) or augmented Lagrangean algorithms (Ruszczyński 1995) all make use

of a special structure of X . However, they all solve the Lagrangean dual D(X) and do not

always provide feasible solutions for P (X). Further, proving optimality or near optimality

can be tricky and a concrete stopping criterion is also not always available. Closer to a

generalization of CG for nonlinear problems, the convex simplex method (Zangwill 1967)

minimizes a nonlinear objective over a polyhedron. It can be seen as solving a master

problem over a basis of variables and - similar to the simplex algorithm - selects the

entering variable by linearizing some penalization function. Akin to DW, the simplicial

decomposition (Von Hohenbalken 1977) solves a linearized master problem over a subset

Chicoisne: On Column Generation for Nonlinear Optimization
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 7

S that is the convex hull of a handful of points, and the pricing problem generating

such columns is the original problem P (X) with an objective linearized at an incumbent

point. Problem dependent CG schemes for nonlinear optimization were presented in e.g.

Ni et al. (2021) for nonlinear facility location problems that are first reformulated as a

set partitioning problem, then solved with a CG scheme whose pricing problem is an

NLP with integer variables; Chou et al. (2015) that uses a branch-and-price scheme for

sibling groups reconstruction, which is first reformulated as a set covering problem and

then generates columns with quadratic optimization pricing problems. Other algorithms

using inner approximations of X in a nonlinear setting were introduced in Garćıa et al.

(2003, 2011) and references therein.

In an LC setting however, more similar extensions of the CG principle have been devel-

oped: Ahmadi et al. (2017) present a decomposition procedure for Semidefinite Program-

ming (SDP) problems. More precisely, they solve master problems with inner approxima-

tions of a matrix set X , that is updated with the (matricial) “columns” generated by a

separation problem tailored for SDPs. The approach has two drawbacks: 1) depending on

the inner approximation chosen, the master problem can be slow to attain near optimal-

ity, and 2) the pricing problem is a handmade separation problem using problem-specific

considerations, and does not provide dual bounds. For SDPs, chordal sparsity patterns

(Vandenberghe and Andersen 2015) are able to detect underlying substructures that can

be exploited by ADMM (Zheng et al. 2020, 2017, Sun et al. 2014), but no CG approach has

been attempted so far. The presence of a special substructure being crucial for decompo-

sition, automatic structure detection in LP were developed (Khaniyev et al. 2018, Bergner

et al. 2015, Wang and Ralphs 2013) so that a decomposition method can make use of

it. Previous CG methods for LC have focused on gradually building the set of variables

considered with problem specific algorithms that are difficult to generalize.

Other works use a different kind of set S for LPs. A subset S consisting on forcing

clusters of variables to share the same value - thus aggregating the variables together - is

used in Muñoz et al. (2018) and Bienstock and Zuckerberg (2009). This variable aggre-

gation principle has been successfully applied to Freight routing (Sadykov et al. 2013),

general extended formulations (Sadykov and Vanderbeck 2013), open pit mining schedul-

ing (Bienstock and Zuckerberg 2009), pricing problems (Álvarez et al. 2019), quadratic

binary knapsack problems (Pisinger et al. 2007), support vector machine problems (Park

Chicoisne: On Column Generation for Nonlinear Optimization
8 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

2021) or in a column-and-row generation context where CG is used in combination with a

constraint aggregation scheme to solve resource constrained covering problems (Porumbel

and Clautiaux 2017).

1.6. Article outline

Section 2 presents a CG algorithm to solve the generic nonlinear problem P (X) with a

large number of variables. We show that it admits several existing schemes as special cases,

all defined by different sets S. We present sufficient conditions to 1) drop the optimization

in the y variables for the pricing problem and 2) to make sure that P (S) has no Lagrangean

duality gap. As the Lagrangean relaxation of a nonlinear optimization problem can be

as hard as the non-relaxed problem, under some convexity assumptions we present in

Section 3 a linearized version of the methodology making the pricing problem easier to

solve. Additionally, we also prove that L(X , λ) can always be independent of the secondary

variables y in the linearized algorithm. In Section 4, we point out the relationships of our

generic schemes to existing frameworks. In Section 5 we describe the risk-averse portfolio

optimization problem on which we test our algorithms, and present several computational

enhancements. In Section 6, we present numerical results on large scale synthetic instances

and empirically prove the usefulness of our methodology. We conclude with some remarks

and the description of several ongoing works in Section 7.

1.7. Background notations

Given a set U , we call respectively conv U , cone U , lin U , aff U , relint U and dim U , the

convex hull, the conic hull, the linear span, the affine span, the relative interior and the

dimension of U . The adjoint U ∗ of a linear mapping U : U → V is the linear operator

such that ⟨Uu,v⟩= ⟨u,U ∗v⟩ for any (u, v) ∈ U ×V. For given integers p, q > 0, we denote

[p] := {1, ..., p}, || · ||q is the q-norm in Rp. The Lorentz cone of dimension p+1 is the set

Lp+1
2 := {(u,u0)∈Rp+1 : ||u||2 ⩽ u0}, and B(ū, ρ) := {u∈Rp : ||ū−u||2 < ρ} is the open ball

of radius ρ > 0 centered at ū ∈ Rp. A cone K is said to be proper if it is convex, closed,

contains no line and relint K ̸= ∅. If K is a proper cone then u∈ relint K and ū∈K imply

that u+ ū∈ relint K.

Consider some function φ : U → V. For some L > 0 and a norm || · ||, we say that φ is

L-Lipschitz if for any (u1, u2) ∈ U × U we have ||φ(u1)− φ(u2)|| ⩽ L||u1 − u2||. For some

cone K ⊆ V, φ is said to be K-convex (Boyd and Vandenberghe 2004) if for any t ∈ [0,1]

Chicoisne: On Column Generation for Nonlinear Optimization
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 9

and any (u1, u2) ∈ U × U , we have tφ (u1) + (1− t)φ (u2)− φ (tu1+(1− t)u2) ∈ K. If φ is

real-valued and differentiable, we call its linear approximation at some ū∈ U the function:

φ̄ [ū] : u→ φ (ū) + ⟨∇φ (ū) , u− ū⟩. Notice that φ̄[ū] is a global under estimator of φ if

φ is convex. If φ is vector valued, its linear approximation is the component-wise linear

approximation φ̄ [ū] (u) = φ (ū) +Dφ (ū) (u− ū) , where Dφ(ū) is the Jacobian of φ at ū.

Given a linear mapping ϕ and a mapping γ, we say that U := {u : ϕ(u) = 0, −γ(u)∈K} or

minu∈U φ(u) is strictly feasible iff there exists u such that ϕ(u) = 0 and −γ(u)∈ relint K.

Unless specified otherwise, through this document ((xk, yk), λk) is an optimal primal-dual

pair for P (Sk) and (x̄k, ȳk) is an optimal solution for L(X , λk).

2. A primal algorithm

Instead of using specific forms of feeding the pricing information to the restricted problem,

we use a generic mechanism to update S at each iteration as described in Algorithm 1.

Figure 2 summarizes the relationships between the bounds of the problems involved in

Algorithm 1: CG

Data: A problem P (X)

Result: An optimal solution for P (X)

1 Set λ0 = 0, S1 ⊆X contains at least one feasible solution for P (X) and k= 1;

2 repeat

3 Solve P (Sk). Let (xk, yk) be an optimal solution;

4 Let λk be an optimal dual vector corresponding to the constraints −g(x, y)∈ C;

5 if λk = λk−1 then

6 return (xk, yk);

7 Solve L(X , λk). Let (x̄k, ȳk) be an optimal solution;

8 if x̄k ∈ Sk then

9 return (xk, yk);

10 Choose a set Sk+1 ⊆X containing x̄k;

11 k← k+1;

Algorithm 1. In all the “bound relationship” figures of this paper, an edge a→ b means

Chicoisne: On Column Generation for Nonlinear Optimization
10 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

that a⩽ b, the gray edges are the nontrivial relationships that apply at a stopping criterion

and the gray nodes are the optimal values of the problems solved by the algorithm.

Figure 2 Relationships between the optimal values of the problems involved in Algorithm 1.

Theorem 1. At termination, Algorithm 1 returns an optimal solution for P (X).

Proof If Algorithm 1 terminates at line 8, we have x̄k ∈ Sk. (x̄k, ȳk) is then feasible and

optimal for the Lagrangean relaxation of P (Sk) with λk:

(
L(Sk, λk)

)
ω
(
Sk, λk

)
:= min

x∈Sk,y

{
f (x, y)+

⟨
λk, g (x, y)

⟩}
.

In consequence, we have that ω(X , λk) = ω(Sk, λk). Recall that (xk, yk) is an optimal solu-

tion for P (Sk) and λk is an optimal dual vector associated to −g(x, y)∈ C in P (Sk). From

Assumption 1, (xk, yk) is then also optimal for L(Sk, λk), and ω(Sk) = ω(Sk, λk), thus

proving the gray edges in Figure 2. To summarize, we have:

ω (X)⩽ ω
(
Sk
)
= ω

(
Sk, λk

)
= ω

(
X , λk

)
⩽ ω (X) ,

making (xk, yk) optimal for P (X). Now, if Algorithm 1 terminates at line 5, we can choose

(x̄k, ȳk) = (x̄k−1, ȳk−1) and have x̄k ∈ Sk, which is the first stopping condition at line 8. □

2.1. General remarks

Algorithm 1 can be useful only if Assumptions 2 and 3 are satisfied, i.e. either dim Sk

is significantly smaller than n, or P (Sk) exhibits a special structure or is sparser than in

P (X). Even though Assumption 1 must be satisfied in order to get the dual variables and

ensure convergence to an optimal solution, in presence of a duality gap Algorithm 1 can

be used as a heuristic and still provides optimality bounds. Notice again that we do not

need P (X) to have zero duality gap, but we see in the next Subsection that it can indeed

help to make Assumption 1 hold.

Chicoisne: On Column Generation for Nonlinear Optimization
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 11

We only proved that if Algorithm 1 were to stop it would return an optimal solution,

not that it would necessarily stop. Its finite termination depends on the way the sets

Sk are generated in combination with the structure of the original problem. More pre-

cisely, the sequence Sk should shift towards at least one optimal solution of P (X) by e.g.

strictly growing in dimension until reaching X in the worst case (which can be achieved

in some special cases we describe later). Ideally, the sets Sk should contain increasingly

good solutions for P (X) such that we can stop prematurely the algorithm and still obtain

an approximately optimal solution. This can be achieved by e.g. forcing Sk+1 to contain

Sk. Because we maintain lower and upper bounds over the optimal value of P (X) at each

iteration, early termination can be reasonably used and Algorithm 1 can provide a solution

(xk, yk) feasible for P (X) with an optimality gap ω(Sk)−ω(X , λk).

2.2. How can the restricted problem P (S) maintain a zero duality gap?

As mentioned earlier, it is not clear when Assumption 1 can hold. We now show that

whenever each approximated set Sk is described by convex constraints, strictly feasible

and P (Sk) admits as a feasible solution some known, feasible solution for P (X) satisfying

strictly the side constraints −g(x, y)∈ C, then P (Sk) satisfies Assumption 1:

Proposition 1. Suppose that C is proper, g is L-Lipschitz, f is convex and we know a

tuple (x̄, ȳ) such that x̄∈X and −g(x̄, ȳ)∈ relint C. Further, assume that S is described as

S := {x : ϕ(x, θ) = 0, −γ(x, θ)∈K, for some θ},

for some proper cone K, a linear mapping ϕ and a K-convex mapping γ. If S ⊆X is strictly

feasible and contains x̄, then P (S) has no Lagrangean duality gap.

Proof Appendix A.□
In this work, we consider approximated sets Sk that are nonempty polyhedra3 that always

contain the projection onto the variables x of a known, strictly feasible solution for P (X). In

fact, it is enough to find some feasible solution (x̄0, ȳ0) for P (X) that satisfies −g(x̄0, ȳ0)∈

relint C and set S1 ∋ x̄0, i.e. “Consider x̄0 as the first column generated”.

3 More precisely, they are projections onto the variables x of some polyhedron in an extended variable space.

Chicoisne: On Column Generation for Nonlinear Optimization
12 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

2.3. y-independency

Notice that the pricing problem L(X , λk) is 1) optimized in x and the variables y, and

2) is still a nonlinear optimization problem that can be as difficult to solve as P (X). We

partially address the former issue in the next Proposition and both in the next Section.

To this end, we now introduce an adaptation of the P -property4 (Geoffrion 1972): Given

a function φ : U ×V →R, problem (6) satisfies the P -property wrt v

min
(u,v)∈U×V

φ(u, v) (6)

if minv∈V φ(u, v) can be solved independently of u ∈ U . Even if this P -property appears

to be overly restrictive, it holds if φ(u, v) = φ1(u,φ2(v)), for some φ2 : V → R and some

φ1 : U ×R→ R that is non-decreasing in its second argument. This structure can appear

if e.g. 1) φ is separable in u and v, i.e. φ(u, v) = φ1(u)+φ2(v), or 2) φ(u, v) = φ1(u)φ2(v)

with φ1(u)⩾ 0 for any u ∈ U . We are now ready to state a y-independency result for the

Lagrangean relaxation L(X , λk):

Proposition 2. If L(X , λk) satisfies the P -property wrt y, then y = yk is always an

optimal choice in L(X , λk), which becomes an optimization problem in x only:(
L
(
X , λk

))
ω
(
X , λk

)
:=min

x∈X

{
f
(
x, yk

)
+
⟨
λk, g

(
x, yk

)⟩}
Proof Appendix B. □

Proposition 2 allows to drop the optimization in y in the pricing problem L(X , λ) if the

P -property holds. In the next Section, we show that using a linearized version of L(X , λ),

we can always drop the optimization in y in the pricing, regardless of the P -property.

3. A linearized primal algorithm

In practice, it is common to have e.g. LPs with a nice structure - thus admitting tailored

algorithms to solve them - getting hardened from replacing the linear objective function

by a nonlinear objective f and/or adding possibly nonlinear side constraints −g(x, y) ∈ C

to a polyhedral feasible set X . This can happen in e.g. robust optimization (Ben-Tal et al.

2009) where uncertain problems are no easier than their deterministic counterparts.

In this Section, we show that solving a pricing problem whose objective function is lin-

earized at the current incumbent (xk, yk) holds the same guarantees as Algorithm 1, while

4 Originally used in a Generalized Benders Decomposition context.

Chicoisne: On Column Generation for Nonlinear Optimization
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 13

alleviating the difficulty of solving the pricing problem whenever optimizing a linear objec-

tive over X is an easy task. As we show in our experiments, this can be extremely useful

whenever a linear objective pricing problem can be solved with a dedicated algorithm.

3.1. Additional assumptions and results

We now present some preliminary results that allows us to use a linearized version of

L(X , λk) as a pricing problem. In this Section, the following extra assumption is met:

Assumption 4. Sk, C and f are convex, g is C-convex and f and g are differentiable.

Further, we assume that for any cost vector c, minx∈X ⟨c,x⟩ can be solved efficiently (which

is in fact equivalent to Assumption 2 if the objective function of L(X , λk) is linear). We

now present several technical Lemmas to prove our main result:

Lemma 1. Consider a cone K, λ ∈ K∗ and a K-convex function φ. Then ψ : u →

⟨λ,φ(u)⟩ is convex.

Proof Appendix C.□

Lemma 2. Given λ∈ V, a differentiable function φ : U →V and ū∈ U , the linear approx-

imation of ψ : u→⟨λ,φ(u)⟩ at ū is ψ̄[ū] : u→⟨λ, φ̄[ū](u)⟩.

Proof Appendix D.□

Lemma 3. Consider the optimization problem ω∗ :=minu∈U φ(u), where U is convex and

φ : U → R is differentiable. If u∗ is one of its optimal solutions, it is also optimal for

ω̄[u∗] :=minu∈U{φ̄[u∗](u) :=φ(u∗)+ ⟨∇φ(u∗), u−u∗⟩} and we have ω∗ = ω̄[u∗].

Proof Appendix E. □
Lemma 3 tells us that an optimal solution of a convex optimization problem is also optimal

for the same problem with an objective function linearized at said solution. For any S ⊆X ,

λ∈ C∗ and (x̄, ȳ), let us define the following problem:

(
L [x̄, ȳ] (S, λ)

)
ω̄ [x̄, ȳ] (S, λ) := min

x∈S,y

{
f̄ [x̄, ȳ] (x, y)+ ⟨λ, ḡ [x̄, ȳ] (x, y)⟩

}
,

which is L(S, λ) with its objective function linearized at (x̄, ȳ).

Chicoisne: On Column Generation for Nonlinear Optimization
14 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

3.2. A linearized algorithm

Now consider the following algorithm CG-Lin: 1) instead of solving the pricing prob-

lem L(X , λk), we solve its linear approximation L[xk, yk](X , λk) at the current incumbent

(xk, yk) of the restricted problem P (Sk) and 2) the stopping criterion at line 5 of Algorithm

1 is replaced by a slightly more restrictive condition. We describe the changes applied to

Algorithm 1 in Algorithm 2 and illustrate the relationships between the bounds of the

problems involved in it in Figure 3.

Algorithm 2: CG-Lin changes wrt CG

5 if ((xk, yk), λk) = ((xk−1, yk−1), λk−1) then

6 return (xk, yk);

7 Solve L[xk, yk](X , λk). Let (x̄k, ȳk) be an optimal solution;

Figure 3 Relationships between the optimal values of the problems involved in Algorithm 2.

Theorem 2. Algorithm 2 returns an optimal solution for P (X) at termination.

Proof If the algorithm terminates because x̄k ∈ Sk, then (x̄k, ȳk) is feasible and optimal

for L[xk, yk](Sk, λk) and we have:

ω̄
[
xk, yk

] (
Sk, λk

)
= ω̄

[
xk, yk

] (
X , λk

)
.

Because f is convex and g is C-convex, Lemmas 1 and 2 imply that f̄ [xk, yk] and

⟨λk, ḡ[xk, yk](·)⟩ are global under estimators of f and ⟨λk, g(·)⟩ respectively. In consequence

we have that ω̄[xk, yk](X , λk)⩽ ω(X , λk)⩽ ω(X). On another hand, (xk, yk) is also an opti-

mal solution for L(Sk, λk) from Assumption 1. Finally, we can interpret L[xk, yk](Sk, λk)

as the linearization of L(Sk, λk) at one of its optimal solutions (xk, yk). Recalling that:

ω
(
Sk, λk

)
= min

x∈Sk,y

{
f(x, y)+

⟨
λk, g(x, y)

⟩}

Chicoisne: On Column Generation for Nonlinear Optimization
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 15

ω̄
[
xk, yk

] (
Sk, λk

)
= min

x∈Sk,y

{
f̄
[
xk, yk

]
(x, y)+

⟨
λk, ḡ

[
xk, yk

]
(x, y)

⟩}
,

Lemma 3 then tells us that (xk, yk) is also an optimal solution for L[xk, yk](Sk, λk), giving

ω(Sk, λk) = ω̄[xk, yk](Sk, λk). To summarize, we obtain

ω (X)⩽ ω
(
Sk
)
= ω

(
Sk, λk

)
= ω̄

[
xk, yk

] (
Sk, λk

)
= ω̄

[
xk, yk

] (
X , λk

)
⩽ ω

(
X , λk

)
⩽ ω (X) ,

thus proving the optimality of (xk, yk) for P (X). If Algorithm 2 stops because of its own

criterion at line 5, we can choose (x̄k, ȳk) = (x̄k−1, ȳk−1), thus satisfying x̄k ∈ Sk. □

3.3. y-independency

As opposed to Algorithm 1, we now show that we can always get rid of the variables y in

the linearized Lagrangean relaxation L[xk, yk](X , λk), regardless of the P -property:

Proposition 3. Taking y = yk is always optimal for the linearized Lagrangean relax-

ation L[xk, yk](X , λk), which becomes a linear objective minimization problem in x only:

ω̄
[
xk, yk

] (
X , λk

)
=min

x∈X

{
f̄
[
xk, yk

] (
x, yk

)
+
⟨
λk, ḡ

[
xk, yk

] (
x, yk

)⟩}
Proof Appendix F. □

3.4. “Reduced costs”

Recall that using DW for LPs, we can stop whenever the reduced costs5 are zero: we now

show that a similar criterion is also valid for the linearized scheme in our nonlinear setting.

Proposition 4. Let c̄k :=∇xf(x
k, yk) +D∗g(xk, yk)λk be the cost vector wrt x in the

linearized pricing problem L[xk, yk](X , λk). If c̄k = 0 then (xk, yk) is optimal for P (X).

Proof The linearized pricing problem in x is minx∈X ⟨c̄k, x⟩. If c̄k = 0, then any x̄k ∈ X

is optimal: choosing any x̄k ∈ Sk ⊆X satisfies the stopping criterion, proving the result. □
This last result can be particularly interesting in practice as it provides a computationally

cheap stopping criterion for the non-linearized scheme as well. Indeed, the pricing problem

- linearized or not - always provides a lower bound for ω(X): having all-zeroes“reduced

costs” makes sure that the master problem cannot be improved.

5 In the LP case, the vector of reduced costs is c−X⊤λk(see problem (5) in Subsection 1.4).

Chicoisne: On Column Generation for Nonlinear Optimization
16 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

4. Relationship with existing schemes
4.1. Dantzig-Wolfe

Assume that X ⊆Rn is a polyhedron (that we consider bounded for simplicity), f(x, y) =

c⊤x+d⊤y and the conic inequality is defined by C =Rm
+ and g(x, y) := b−Xx−Y y. Using

Sk := conv(x̄l)l∈{0,...,k−1} we retrieve DW for LPs. Its finite convergence is ensured by the

fact that X has a finite - although exponential in general - number of extreme points.

Extensions Notice that if C is a more general cone, our algorithm generalizes DW for

LCs, where at each iteration the master problem P (Sk) is an LC and the Lagrangean

relaxation L(X , λk) is an LP. Applications of DW to LCs can be found in Ahmadi et al.

(2017) and references therein. Further, there is a direct extension of DW to a special

class of nonlinear problems: going back to the general case for C, f and g but keeping X

polyhedral, L[xk, yk](X , λk) turns out to be an LP. Because X is finitely generated, the

finite convergence of the linearized algorithm is also ensured with the same arguments.

Constraint redundance Notice that if X is non-convex, to enforce Sk ⊆X , we must use

Sk :=X ∩ conv
(
x̄l
)
l∈{0,...,k−1} ,

thus potentially losing the advantage of dropping any X -defining constraint in the master

problem as in the LP/convex cases. Similarly, if the conic hull is used instead and X is a

cone, it is sufficient to use Sk := cone(x̄l)l∈{0,...,k−1} instead of Sk :=X ∩ cone(x̄l)l∈{0,...,k−1}.

4.2. Bienstock-Zuckerberg (BZ)

We now link our framework with a decomposition scheme for LPs (Bienstock and Zucker-

berg 2009) where the choice of S differs substantially from DW. Considering a partition

J k := {J k
1 , ...,J k

Lk
} of the indices [n], we force all the variables xj belonging to a same

cluster J k
l to yield the same value, ultimately aggregating all the variables into a single

one. In other words, we use

Sk :=P(J k) :=
{
x∈X : xj = θl,∀j ∈J k

l ,∀l ∈ [Lk] , for some θ ∈RLk
}
.

Update mechanism The update mechanism in this case refines the partition J k - i.e. splits

some of its clusters - into a new partition J k+1 such that the new column x̄k belongs

to Sk+1 := P(J k+1). We call a partition induced by some x ∈ Rn, a partition J (x) =

{J1(x), ...,JL(x)} of [n] such that for every l ∈ [L] and any pair of indices (j, j′)∈Jl(x)×

Chicoisne: On Column Generation for Nonlinear Optimization
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 17

Jl(x) we have xj = xj′. Given two partitions of [n], J = {J1, ...,JL} and J ′ = {J ′
1, ...,J ′

L′},

their intersection J∆J ′ is the partition of [n] defined as follows:

J∆J ′ := {Jl ∩J ′
l′,∀ (l, l′)∈ [L]× [L′]} .

Given a partition J k and J k(x̄k) a partition induced by x̄k, we first compute the refined

partition J k+1 :=J k∆J k(x̄k) and the new restricted set is given by Sk+1 :=P(J k+1).

Extensions and convergence Such a scheme makes Algorithms 1 and 2 generalizations to

nonlinear problems of the BZ algorithm (Bienstock and Zuckerberg 2009). This time the

convergence is not ensured by some property of P (X), but rather thanks to the structure

of the sets Sk. In fact, either 1) the partition is refined until eventually reach {{1}, ...,{n}},

meaning we reached the original problem P (X), or 2) the partition is not refined, in

which case J k+1 = J k∆J k(x̄k) = J k. It is not difficult to see that the latter implies that

x̄k ∈ Sk = P(J k), which is a stopping criterion for both Algorithms 1 and 2. The former

implies that we are guaranteed to converge to an optimal solution in at most n iterations

because the size of the partition increases by at least one (i.e. |J k+1|> |J k|). Motivating

the scheme in the next Subsection, Muñoz et al. (2018) show that given a sequence of

columns (x̄l)l∈{0,...,k−1}, we have Sk ⊇X ∩ lin(x̄l)l∈{0,...,k−1}.

Induced partition cardinality Notice that the pricing problem may provide a column x̄k with

a large number of different values, hence generating a high-cardinality induced partition

J (x̄k) and increasing rapidly the size of the partition J k+1 used in the next restricted

problem P (Sk+1). This issue is partially addressed by the linearized Algorithm 2 and

completely circumvented in the next scheme. For example, if X is polyhedral and possesses

the integrality property (Giles and Pulleyblank 1979), the pricing problems L[xk, yk](X , λk)

can return integer optimal solutions x̄k, thus increasing the probability of having a reduced

number of different values.

Constraint redundance Given that {x : xj = θl,∀j ∈ J k
l ,∀l ∈ [Lk], for some θ ∈RLk} is not

necessarily contained in X , we need to keep the X -defining constraints in general. This

issue can sometimes be avoided for e.g. bound constraints ℓ⩽ x⩽ u that are present in the

definition of X : they become equivalent to these Lk≪ n bound constraints for θ:

max
j∈J k

l

ℓj ⩽ θl ⩽ min
j∈J k

l

uj ,∀l ∈ {1, ...,Lk} . (7)

Chicoisne: On Column Generation for Nonlinear Optimization
18 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

4.3. Non-partitioned BZ

Muñoz et al. (2018) link the last scheme for MILPs to another that uses at each iteration

the subset of X spanned by lin(x̄l)l∈{0,...,k−1}, i.e.

Sk :=

{
x∈X : x=

k−1∑
l=0

θlx̄
l, for some θ ∈Rk

}
=X ∩ lin(x̄l)l∈{0,...,k−1}.

Akin to the classical BZ, it converges in at most n iterations. What is not mentioned in

Muñoz et al. (2018) is that this is also true independently of the structure of P (X). Instead
of using partitions of variables, it uses the raw directions x̄l, thus avoiding an explosive

increase in the number of variables. This comes at the cost of a less structured P (S): in
fact, variable aggregation is akin to a contraction operation in combinatorial optimization,

which can eliminate a substantial amount of rows and columns when dealing with LPs.

Notice that even if we can maintain a reasonable number of variables in the master

problem, the loss in structure in comparison to BZ prohibits in general the use of the trick

we present in (7), and all X -defining constraints must be kept, including variables bounds.

4.4. Checking if x̄k ∈ Sk

In our experimental design, we consider the four aforementioned sets Sk. We now show

how to determine if x̄k ∈ Sk efficiently in those special cases. For BZ, it is enough to check

if the size of the partition after refinement increased or not. For the linear span case, it

is enough to check if x̄k is a linear combination of the previous columns, which is done

by projection. However, in the convex hull and conic hull cases, we must check whether a

small LP is feasible. Let the polyhedron Θk be as follows

Θk :=


{
θ ∈Rk

+ :
∑k−1

l=0 θl = 1
}

If using convex hull

Rk
+ If using conic hull.

In these cases, we have that x̄k ∈ Sk iff {θ ∈Θk :
∑k−1

l=0 θlx̄
l = x̄k} ̸= ∅, which can be done

by solving an LP having k variables θk and O(n)≫O(1) linear constraints. To avoid this

large number of constraints, we choose to solve the following problem instead:

distance22
(
x̄k,Sk

)
:= min

θ∈Θk

∣∣∣∣∣
∣∣∣∣∣x̄k−

k−1∑
l=0

θlx̄
l

∣∣∣∣∣
∣∣∣∣∣
2

2

. (8)

We can see that x̄k ∈ Sk iff distance22
(
x̄k,Sk

)
= 0. There are two advantages to use (8): 1)

we are able to monitor the distance of the current column x̄k to Sk, and 2) when solving (8)

Chicoisne: On Column Generation for Nonlinear Optimization
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 19

with an interior point method, the O(k) constraints are not a problem because k≪ n and

the gradients/Hessian of the penalized objective have dimensions k and k×k respectively.

5. Risk-averse Portfolio Optimization Problem

We now describe the nonlinear optimization problem we test our algorithms on. We con-

sider the portfolio optimization problem of determining which assets to buy - with uncer-

tain returns - such that 1) some risk of being rewarded a poor outcome is minimized,

and 2) the variance of the return is kept under some threshold. As opposed to a classical

expected value maximization model, using the variance and nonlinear risk measures makes

the resulting optimization problem a large scale, nonlinear objective, SOC constrained

optimization problem (See e.g. Levy and Markowitz (1979), Dentcheva and Ruszczyński

(2006), Acerbi and Simonetti (2002), Krokhmal et al. (2002), Vielma et al. (2008) for non

expected value portfolio optimization).

5.1. Problem description

Consider a portfolio optimization problem where we allocate the resources of T +1 different

clients interested in disjoint subsets of stocks and having different risk profiles. As the

administrator of the budgets gets a portion of the benefits, it also requires that the variance

of the overall returns must be under some threshold σ2. T clients have budgets bt and

are interested in nt assets each, while a separate client - the 0th - has budget b0 and is

interested in n0≪ n :=
∑T

t=1 nt assets. We purposefully separate the 0th client from the

others as its associated decision variables are only a handful and are modelled with our

extra y variables. Client t (0) has to pay a unitary cost atj (a0j) per asset j. Each asset j

has an uncertain future value ctj (c0j) and at most utj (u0j) units can be purchased . The

variables xtj (yj) represent the amount of each asset j purchased by client t (0). Defining

Xt :=
{
z ∈
[
0, ut

]
:
(
at
)⊤
z ⩽ bt

}
,∀t∈ {0, ..., T},

x and y must satisfy xt ∈ Xt for each t ∈ [T] and y ∈ X0, the latter being part of the

side constraints −g(x, y) ∈ C. Let us define the vectors dt as the returns ct, where many

components are zero except for the assets that the administrator is interested in. Imposing

an upper bound σ2 on the variance of the returns of these assets is equivalent to:

V

((
d0
)⊤
y+

T∑
t=1

(
dt
)⊤
xt

)
⩽ σ2. (9)

Chicoisne: On Column Generation for Nonlinear Optimization
20 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Each client minimizes a risk measure ft that depends on the uncertain return of the stocks.

We consider that each minimizes an entropic risk (Pratt 1964) of parameter αt: ft(z) :=

Eαt(−(ct)⊤z), where6 Eα(Z) := α lnE(eZ/α). The general problem can be cast as follows:

min
x,y

{
f0(y)+

T∑
t=1

ft
(
xt
)
: xt ∈Xt,∀t∈ [T], y ∈X0, (9)

}
.

5.2. Sample Average Approximation (SAA)

We now approximate the last problem by using S samples (cts, c0s) of respective prob-

abilities ps with SAA (Kleywegt et al. 2002). The approximations of the variance and

expectations are summarized in Table 1. For simplicity, we use the same names for the func-

tions and their respective SAAs. Defining V , V t and V 0 such that V t
sj :=

√
ps(d

ts
j −dtj) and

Original SAA type

Eα(−c⊤z) α ln
∑S
s=1 pse

(−cs)⊤z/α convex

V(d⊤z)⩽ σ2 ∑S
s=1 ps

(
(ds)⊤z−

∑S
s′=1 ps′(d

s′)⊤z
)2

⩽ σ2 quadratic/Second Order Cone (SOC)

Table 1 Sample Average Approximations

V x :=
∑T

t=1 V
txt, the variance constraint can be expressed as a classic nonlinear quadratic

(CLA) convex constraint ||V 0y+V x||22 ⩽ σ2, or the SOC constraint (V 0y+V x,σ)∈LS+1
2 .

The full approximated problem becomes:

ω (X) =min
x,y

α0 ln

S∑
s=1

pse
−(c0s)

⊤
y/α0 +

T∑
t=1

αt ln

S∑
s=1

pse
−(cts)

⊤
xt/αt

s.t.: xt ∈Xt ,∀t∈ [T]

y ∈X0||V
0y+V x||22 ⩽ σ2 If (9) is seen as a CLA

(V 0y+V x,σ)∈LS+1
2 If (9) is seen as a SOC.

Notice that Assumption 1 is satisfied from Proposition 1, as P (X) is a convex optimization

problem that for some small ϵ > 0, admits the all-ϵ’s vector of Rn+n0, ϵn+n0 , as a strictly

feasible point and we can use ϵn as a starting column for S1 ⊂S2 ⊂S3....

6 The entropic risk measure is shown to be convex in z in Pratt (1964)

Chicoisne: On Column Generation for Nonlinear Optimization
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 21

5.3. Pricing problem

The structure of the pricing problem depends on the coupling constraint considered: Given

any dual vector (λ1,0, λ2,0, λ3,0)∈Rn0
+ ×Rn0

+ ×R+ corresponding to the y-specific constraints

y⩾ 0, y⩽ u0 and (a0)⊤y⩽ b0, the pricing problem is:

ω (X , λ) =min
x,y

α0 ln
S∑

s=1

pse
−(c0s)

⊤
y/α0 +

T∑
t=1

αt ln
S∑

s=1

pse
−(cts)

⊤
xt/αt

−
(
λ1,0
)⊤
y+

(
λ2,0
)⊤ (

y−u0
)
+λ3,0

((
a0
)⊤
y− b0

)
+

λ
4
(
||V 0y+V x||22−σ2

)
If (9) is seen as a CLA, λ4 ∈R+

− (λ4)
⊤
(V 0y+V x)−λ4

0σ If (9) is seen as SOC, (λ4, λ4
0)∈LS+1

2

s.t. xt ∈Xt, ∀t∈ [T].

Notice that considering (9) as a SOC makes the pricing problem separable in each xt and

y and also allows the use of the y-independency result in Proposition 2. More importantly,

using the linearized pricing, each problem in xt is solvable in O(nt lnnt) time: the objective

function becomes linear and every problem in xt can be solved with a dedicated algorithm:

Proposition 5. The following LP with p variables can be reduced to a continuous knap-

sack problem, for which an optimal solution can be found in O(p lnp) time:

ω∗ := min
z∈[0,µ]

{
γ⊤z : α⊤z ⩽ β

}
.

Proof Appendix G. □
We summarize In Table 2 the types of pricing problem we encounter with our framework,

and how to solve them.

Linearized pricing Coupling cone Pricing type Separable pricing y-independent pricing

yes Any T knapsacks yes yes

no
R+ single NLP no no

LS+1
2 T NLPs yes yes

Table 2 Problem types

5.4. Master problem

We summarize in Table 3 the types of sets Sk we use in our experiments and their implica-

tions for the master problems P (Sk). Notice that 1) the variables x are completely replaced

in function of θ and that several constraints can be omitted or translate into a reduced

Chicoisne: On Column Generation for Nonlinear Optimization
22 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Sk X ∩ conv(x̄l)l∈{0,...,k−1} X ∩ cone(x̄l)l∈{0,...,k−1} X ∩ lin(x̄l)l∈{0,...,k−1} P(J k)

Θk
{
θ⩾ 0 :

k−1∑
l=0

θl = 1

}
Rk+ Rk R|Jk|

xt ⩾ 0 redundant/omitted redundant/omitted
k−1∑
l=0

θlx̄
lt ⩾ 0 θ⩾ 0

xt ⩽ ut redundant/omitted
k−1∑
l=0

θlx̄
lt ⩽ ut

k−1∑
l=0

θlx̄
lt ⩽ ut θl ⩽min(j,t)∈J t

l
utj

(at)⊤xt ⩽ bt redundant/omitted
k−1∑
l=0

θl(a
t)⊤x̄lt ⩽ bt

k−1∑
l=0

θl(a
t)⊤x̄lt ⩽ bt

|Jk|∑
l=1

θl
∑

(j,t)∈Jk
l

atj ⩽ bt

var. bounds. k k 0 2|J k|
lin. const. 1 n+T 2n+T T

Table 3 Master constraints (y ∈X0 and the variance constraint are always present)

set of constraints wrt θ, and 2) the convex hull and the partitioning schemes hold a clear

advantage wrt the others, as their number of constraints is way lower than the rest.

Chasing the conic dual variables If we consider the variance constraint as a SOC we need

to solve an NLC that returns conic dual variables for the master problem. Even though

nonlinear solvers or linear conic solvers do exist, we could not find any general purpose

solver for problems having both features and returning conic multipliers. To circumvent

this issue, we solve the master with an off the shelf nonlinear solver by considering the

quadratic constraint as a CLA, then use the following result to obtain conic multipliers:

Proposition 6. For some γ0 < 0, consider the following optimization problem:

ω∗ :=min
u
{φ(u) : ϕ(u)⩽ 0,− (γ(u), γ0)∈L2} , (10)

and its equivalent representation as a classic nonlinear optimization problem:

ω∗ :=min
u

{
φ(u) : ϕ(u)⩽ 0, ||γ(u)||22− γ

2
0 ⩽ 0

}
. (11)

Assume they are both convex and neither has a Lagrangean duality gap. Given an optimal

primal-dual pair (u∗, (π∗, λ∗)) for (11) then (u∗, (π∗, λ̂, λ̂0)) is an optimal primal-dual pair

for (10), where: (λ̂, λ̂0) := 2λ∗(γ(u∗),−γ0).

Proof Appendix H. □
Proposition 6 indicates that we can always derivate SOC multipliers from the multipliers

of the constraint in nonlinear quadratic convex form.

5.5. Numerical Enhancement

Solving the convex optimization problems at hand as they are with an interior point method

can rapidly exceed the capabilities of an average workstation. In fact, the Hessian matrix

Chicoisne: On Column Generation for Nonlinear Optimization
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 23

of the penalized objective can have many nonzero coefficients because of the entropic risk

measures and the variance constraint. This observation implies that the linear system that

is solved during each Newton step of the interior point method can be overly demanding

both in terms of memory and running time. To tackle this, notice that we can transform

each objective by introducing new variables and constraints with the following identity:

for any t∈ {0, ..., T} and any z (xt or y) we have

αt ln
S∑

s=1

pse
(−cts)

⊤
z/αt =min

vt

{
αt ln

S∑
s=1

pse
vts/αt : vts =−

(
cts
)⊤
z,∀s∈ [S]

}
.

In the same fashion, we can replace the variance constraint with

||w||22 ⩽ σ2 and w= V 0y+V x.

This way, the Hessian of the Lagrangean function is a slightly larger matrix ((T + 1)S

extra columns and rows) with way less nonzero coefficients, having at most (T + 1)S2 of

them coming from the entropies, plus S from the variance constraint. For this reason and

the fact that decomposition methods are typically useful when there are only a few side

constraints, we purposefully kept S moderately small in our experimental design.

Chasing the dual variables for the enhanced model We must now be able to catch the dual

variables associated to the original constraints (depending only of x and y) from the dual

variables of the constraints in the enhanced formulation (now also including v and w).

We address this in a general setting in the next Proposition, where we show that we can

basically ignore the extra constraints and use the multipliers as is:

Proposition 7. Given a proper cone K, consider:

ω∗ :=min
u
{φ(u) : ϕ(u)⩽ 0,−γ(u)∈K} . (12)

Suppose there is a transformation with extra variables v and w such that for any v = V u,

φ(u) = φ̃(v) and for any w=Wu, γ(u) = γ̃(w), so that (12) can be rewritten as:

ω∗ := min
u,v,w
{φ̃(v) : ϕ(u)⩽ 0, −γ̃(w)∈K, v= V u, w=Wu} . (13)

Assume that both are convex and neither has a Lagrangean duality gap. Given an optimal

primal-dual pair ((ũ, ṽ, w̃), (π̃, λ̃, α̃, β̃)) for (13) then (ũ, (π̃, λ̃)) is optimal for (12).

Proof Appendix I. □

Chicoisne: On Column Generation for Nonlinear Optimization
24 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

6. Computational experience

The algorithms presented in this paper were coded in C programming language and run

over Dell PowerEdge C6420 cluster nodes with Intel Xeon Gold 6152 CPUs at 2.10GHz with

32Gb RAM each. All the nonlinear programming problems are solved using the callable

library of IPOPT (Pirnay et al. 2012, Wachter and Biegler 2006), using as a subroutine

the linear solver Pardiso (Petra et al. 2014a,b).

6.1. Methods tested and nomenclature

We test our methods 1) on different sets S that use the convex hull (V), the conic hull (C),

the linear span (LR) or the partition-based linear span (LP), 2) using a linearized pricing

problem (L) or without (NL), 3) considering the variance constraint as a conic (SOC) or as

a classical nonlinear quadratic (CLA). The y-independency result or the tailored algorithm

for knapsack problems are always used whenever it applies. For example, the scheme using

the convex hull with linearized pricing and considering the variance constraint as a SOC

will be named L-SOC-V. We summarize the different options tested in Table 4. We do

Parameter Possibilities

S V, C, LR, LP

Linearized pricing L, NL

Variance constraint SOC, CLA

Table 4 Algorithms tested

not test any non-linearized scheme when the variance constraint is considered CLA, as the

pricing problem is still not separable and can be as hard as the original problem P (X).

6.2. Instances generated

In order to push our frameworks to their limits, we generate synthetic instances of variable

sizes. We consider T ∈ {1,50} blocks of equal sizes nt =N ∈ {104,105}. There are n0 = 50

auxiliary variables and we generate S = 20 scenarios. The supplies utj are uniformly drawn

from {1, ...,5}, and the costs and weights ctsj and at are uniformly drawn from [1,2]. The

budgets are bt = 0.05 · (ut)⊤at, i.e. such that each client can buy 5% of the assets. For some

scenario s∈ [S], letting x̂t ∈ argmaxxt{(cts)⊤xt : xt ∈Xt} and ŷ ∈ argmaxy{(c0s)⊤y : y ∈X0},

we set σ2 := 0.1 · ||V 0ŷ+V x̂||22 so that the variance constraint is binding.

Remark that for any value z and any utility random variable Z we have Eα(−Z) = Eα(z−

Z)− z, meaning that minimizing the entropic risk measure means to avoid outcomes of Z

Chicoisne: On Column Generation for Nonlinear Optimization
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 25

such that z−Z is greater than α. Given a reference random variable Ẑ, by setting z =E(Ẑ)

and α = β ·
√

V(Ẑ), the clients wish to avoid asset selections whose outcomes can make

you lose more than β standard deviations, compared to the expected return of the reference

solution. With this observation in mind, we choose to set αt := 0.7 · ||V tx̂t||2 and α0 :=

0.7 · ||V 0ŷ||2. The vectors dt are the returns ct where all the components are zero, except

for 60% of the assets bought in the referent (ŷ, x̂) (i.e. only these are considered in the

variance constraint), and the initial column x̄0 ∈ S1 - that is feasible for P (X) - is:

(
x̄0
)t
j
=

0 If dtj ̸= 0

x̂tj Otherwise.

Absolute and relative tolerances are respectively set to 10−6 and 0.1% and the runs are

stopped after 6 hours.

6.3. Computational results

In Tables 5, 6, 7 and 8, we report the number of iterations (it), the total execution time (t),

the master time (tmas), the pricing time (tpri), the best lower bound given by a pricing

problem at any time (LB), the best upper bound given by the objective value of the last

master (UB), the optimality gap (gap), and the number of variables θ defined by the last

set Sk (|S|). The execution times are in seconds, the gaps in % and LB and UB are scaled

wrt to the upper bound of L-CLA-V. The entries in bold font are the best of each column,

except for the “t” column where it means that the associated scheme went faster than

solving the monolithic problem. If the time limit is hit during the last iteration, we report

the execution time at the end of the previous one. If an algorithm stalls before giving any

partial result, we mark the entry with “*”.

S lin cone it t tmas tpri LB UB gap |S|

V
NL SOC 2 10 0.49 9.85 0.9992 0.9992 0.0000 2

L
CLA 9 5 4.50 0.15 0.9992 1.0000 0.0845 9
SOC 9 5 4.81 0.13 0.9992 1.0000 0.0845 9

C
NL SOC 2 9 1.40 7.59 0.9992 0.9992 0.0000 2

L
CLA 9 11 11.10 0.11 0.9992 1.0000 0.0845 9
SOC 9 12 11.94 0.16 0.9992 1.0000 0.0845 9

LR
NL SOC 2 11 2.92 8.34 0.9992 0.9992 0.0000 2

L
CLA 9 18 18.27 0.10 0.9992 1.0000 0.0845 9
SOC 9 21 20.55 0.11 0.9992 1.0000 0.0845 9

LP
NL SOC 2 5 0.83 4.04 0.9992 0.9992 0.0000 33

L
CLA 7 10 10.11 0.07 0.9992 0.9996 0.0418 208
SOC 7 10 9.88 0.10 0.9992 0.9996 0.0418 208

Monolithic - 8 - - - 0.9992 - -

Table 5 Aggregated results for T = 1, N = 10.000

Chicoisne: On Column Generation for Nonlinear Optimization
26 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

S lin cone it t tmas tpri LB UB gap |S|

V
NL SOC 2 205 3.60 201.52 0.9999 0.9999 0.0000 2

L
CLA 7 29 27.59 0.93 0.9998 1.0000 0.0208 7
SOC 7 29 27.55 0.97 0.9998 1.0000 0.0208 7

C
NL SOC 2 155 30.99 123.93 0.9999 0.9999 0.0000 2

L
CLA 7 208 206.56 0.94 0.9998 1.0000 0.0208 7
SOC 7 208 206.66 0.94 0.9998 1.0000 0.0208 7

LR
NL SOC 2 278 105.41 172.22 0.9999 0.9999 0.0000 2

L
CLA 7 527 525.53 0.96 0.9998 1.0000 0.0208 7
SOC 7 527 526.32 0.93 0.9998 1.0000 0.0208 7

LP
NL SOC 2 277 7.60 269.17 0.9999 0.9999 0.0000 33

L
CLA 7 118 116.49 0.94 0.9998 1.0000 0.0158 203
SOC 7 118 116.39 0.98 0.9998 1.0000 0.0158 203

Monolithic - 111 - - - 0.9999 - -

Table 6 Aggregated results for T = 1, N = 100.000

S lin cone it t tmas tpri LB UB gap |S|

V
NL SOC 2 481 22.08 459.02 0.9994 0.9994 0.0000 2

L
CLA 11 339 328.07 7.15 0.9991 1.0000 0.0858 11
SOC 11 345 334.28 7.31 0.9991 1.0000 0.0858 11

C
NL SOC 2 1192 719.59 471.89 0.9994 0.9994 0.0000 2

L
CLA 11 5076 5065.19 6.66 0.9991 1.0000 0.0858 11
SOC 11 5404 5391.71 7.12 0.9991 1.0000 0.0858 11

LR
NL SOC 2 3176 2765.16 410.87 0.9994 0.9994 0.0000 2

L
CLA 11 16221 16213.82 6.28 0.9991 1.0000 0.0858 11
SOC 11 13514 13508.58 5.39 0.9991 1.0000 0.0858 11

LP
NL SOC 2 2101 1561.09 538.02 0.9994 0.9994 0.0000 791

L
CLA 9 6105 6094.70 5.62 0.9992 0.9996 0.0430 1763
SOC 9 6108 6097.89 5.65 0.9992 0.9996 0.0430 1763

Monolithic - 902 - - - 0.9994 - -

Table 7 Aggregated results for T = 50, N = 10.000

S lin cone it t tmas tpri LB UB gap |S|

V
NL SOC * * * * * * * *

L
CLA 7 2303 2235.15 47.09 0.9996 1.0000 0.0444 7
SOC 7 2304 2236.46 46.78 0.9996 1.0000 0.0444 7

C
NL SOC * * * * * * * *

L
CLA * * * * * * * *
SOC * * * * * * * *

LR
NL SOC * * * * * * * *

L
CLA * * * * * * * *
SOC * * * * * * * *

LP
NL SOC * * * * * * * *

L
CLA 6 20769 20709.51 40.40 0.9996 1.0008 0.1153 454
SOC 4 8115 8079.25 25.38 0.9978 1.0054 0.7593 228

Monolithic - * - - - * - -

Table 8 Aggregated results for T = 50, N = 100.000

Overall, every scheme is shown to always converge to solutions within the optimality

tolerance for the small and mid-sized instances (10.000-500.000 main variables: Tables 5,

6 and 7). Further, the execution time is mostly used to solve the master problems for

the linearized schemes but more evenly split with the pricing time for the non-linearized

schemes. We can see that using the convex hull with a linearized pricing (L-SOC-V and

L-CLA-V) performs 2-3 times faster than the monolithic model. Along with using the

partitioned linear span with a linearized pricing (L-SOC-LP and L-CLA-LP), they are the

only algorithms that were able to terminate successfully or return a good quality solution

in the allotted time for the largest instance (Table 8, T = 50, N = 100.000) with 5 million

variables. This is due to the fact that - for our problem - these schemes are the only ones

that reduce substantially the size of the master problem, be it by making the X constraints

Chicoisne: On Column Generation for Nonlinear Optimization
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 27

redundant for the convex hull, or by shrinking the variable bounds into a small number of

other variable bounds for the partitioned linear span (See Table 3 in Subsection 5.4).

We can see that - in our case - a linearized pricing is a crucial ingredient for a successful

scheme as we can use a tailored algorithm to solve it. Also, considering the main side

constraint as a SOC or a CLA does not make any difference when linearizing the pricing.

Even though the non-linearized schemes are not competitive for large instances, we can see

that their pricing problems provide excellent quality columns and bounds and make the

schemes converge in a few iterations. Notice that using the variable aggregation scheme,

the master problems are significantly bigger than the others, thus making their solution

slower, although the bounds they return are also significantly better.

-280000

-279000

-278000

-277000

-276000

-275000

-274000

-273000

-272000

 1000 2000 3000 4000 5000 6000

Time Bounds T50N10000

NL-SOC-LP
NL-SOC-V
L-SOC-LP
L-CLA-LP
L-SOC-V
L-CLA-V

Figure 4 Bounds Vs. Time for T = 50, N = 10.000.

In Figures 4 and 5, we show examples of progression of respectively the bounds and

gaps over time of the schemes associated to V and LP on the mid-sized instance (T = 50,

N = 10.000). We can see that the bound/gap improvement is quite progressive for the

linearized schemes, whereas it takes only a few large steps in the nonlinearized schemes.

In Figures 6 and 7, we show examples of progression of respectively the distance between

x̄k and Sk, and the largest “reduced costs” (see Subsection 3.4) in absolute value over time

of the schemes associated to V and LP on the mid-sized instance (T = 50, N = 10.000).

This empirically confirms the theoretical results about the stopping criterion x̄k ∈ Sk and

the zero-reduced cost one presented in Proposition 4. Interestingly, to some extent these

Chicoisne: On Column Generation for Nonlinear Optimization
28 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

 0

 1

 2

 3

 4

 5

 6

 7

 500 1000 1500 2000 2500 3000 3500 4000

Time Gap T50N10000

NL-SOC-LP
NL-SOC-V
L-SOC-LP
L-CLA-LP
L-SOC-V
L-CLA-V

Figure 5 Gap Vs. Time for T = 50, N = 10.000.

 0

 100

 200

 300

 400

 500

 600

 700

 1000 2000 3000 4000 5000 6000

Time Col Dist T50N10000

NL-SOC-LP
NL-SOC-V
L-SOC-LP
L-CLA-LP
L-SOC-V
L-CLA-V

Figure 6 Column distance to S Vs. Time for T = 50, N = 10.000.

values can be used to estimate the proximity of the current solution from being optimal.

We can make the same observation as for the bounds/gap, where the evolution is more

progressive for the linearized schemes than the nonlinearized ones.

7. Conclusions and future work

We propose a generic primal decomposition method that unifies a broad range of existing

schemes and opens the door for new exotic algorithmic frameworks. The convergence rate

of the algorithms we present is not studied but can be heavily problem dependent. Several

Chicoisne: On Column Generation for Nonlinear Optimization
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 29

 2.6

2.7

 2.8

 2.9

 3

 3.1

 3.2

 0 500 1000 1500 2000 2500

Time Red Cost T50N10000

NL-SOC-LP
NL-SOC-V
L-SOC-LP
L-CLA-LP
L-SOC-V
L-CLA-V

Figure 7 Reduced Cost Vs. Time for T = 50, N = 10.000.

special cases of our methods have been proved to converge under mild assumptions but

more work is required to prove the convergence of broader classes of algorithms. Extensive

computational experiments should be conducted on benchmark instances to gauge the

advantages and inconvenients of each of those schemes.

Delayed column generation In this paper, we assume that some structure X is exploitable:

in an ongoing work, we explore the same kind of algorithm presented here but relaxing all

the constraints. It leads to algorithms sharing similarities with delayed column generation

(Bertsimas and Tsitsiklis 1997) and the simplex algorithm for nonlinear problems (Zangwill

1967). The pricing problem boils down to check if the reduced costs are zero and pick as

an entering column a variable whose reduced cost is nonzero, whereas the master problem

can be significantly harder than in our current setting.

Non Lagrangean relaxations as pricing problems Instead of relying on Lagrangean duality,

be it in the information we have access to when solving the master problem or the kind of

pricing problem we solve, different relaxations - hence dualities - can be used to provide

stronger bounds and also attenuate unstable behaviors (Lübbecke and Desrosiers 2005,

Pessoa et al. 2018). We can use for example surrogate relaxations (Greenberg and Pierskalla

1970, Glover 1975) where instead of relaxing the side constraints in the objective, we bundle

them into a single aggregated constraint ⟨λ, g(x, y)⟩ ⩽ 0. The pricing problem becomes

harder in general, but provides stronger dual bounds with weaker working hypothesis. We

Chicoisne: On Column Generation for Nonlinear Optimization
30 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

thus must be able to solve the master problems with a surrogate algorithm that returns

optimal surrogate multipliers λ (See e.g. Müller et al. (2020)).

Non-convex problems P (X) The set X can be a tractable relaxation of a combinatorial

problem P (X̃): the choice of S defines the relaxation X of X̃ we are working on. The

strength of the bounds and the difficulty to solve the problems used in our algorithms can

vary greatly from one S to another. Many NP-hard problems can be cast as completely

positive programs (Burer 2009), that admit several tractable relaxations on different matrix

sets such as the cone of doubly non-negative matrices (Dong and Anstreicher 2013, Sponsel

and Dür 2014). Further, our schemes allow to solve stronger but harder SDP relaxations

of combinatorial problems (Lovász 1979, Goemans and Williamson 1995).

Dual decomposition In an ongoing work, we provide Dual decomposition schemes where

- using the tight relationship between DW and the Benders decomposition method - we

present a generic constraint generation methodology where the dual variables are decom-

posed and generated on the fly. As in this paper, a variety of sets S can be used, yielding

different master problems e.g. the generalized Benders decomposition (Geoffrion 1972) or

constraint aggregation schemes (Espinoza and Moreno (2014), Song and Luedtke (2015)

or Chicoisne et al. (2018)).

Acknowledgments

The author thanks Victor Bucarey, Bernard Fortz, Bernard Gendron, Gonzalo Muñoz, Fernando Ordóñez

and Dana Pizarro for their valuable comments on an early version of this work. Powered@NLHPC: This

research was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02).

Appendix A: Proof of Proposition 1

We prove that some (x̃, ỹ) is strictly feasible for P (S). Because −g(x̄, ȳ) ∈ relint C and C is proper, there is

ρ> 0 such that B(−g(x̄, ȳ), ρ)⊂ relint C. Consider (x̂, θ̂) strictly feasible for S and ϵ > 0 and x̃ as follows:

ϵ=min

{
1,

ρ

L||x̂− x̄||

}
, x̃= x̄+ ϵ(x̂− x̄).

Because x̄∈ S and (x̂, θ̂) is strictly feasible for S, there exists θ̄ such that ϕ(x̄, θ̄) = 0, −γ(x̄, θ̄)∈K, ϕ(x̂, θ̂) = 0

and −γ(x̂, θ̂) ∈ relint K. ϕ being linear, defining θ̃ = θ̄+ ϵ(θ̂− θ̄), we immediately have ϕ(x̃, θ̃) = 0. Further,

ϵ > 0, K is proper, −γ(x̄, θ̄) ∈ K and −γ(x̂, θ̂) ∈ relint K so we obtain −ϵγ(x̂, θ̂)− (1− ϵ)γ(x̄, θ̄) ∈ relint K.

Because γ is K-convex and ϵ∈]0,1] we obtain −γ(x̃, θ̃)∈ relint K. We just proved that (x̃, θ̃) is strictly feasible

for S. We finish by proving that (x̃, ȳ) is strictly feasible for P (S): By definition we have ρ⩾ Lϵ||x̂− x̄||=

L||x̃− x̄||=L||(x̃− x̄; ȳ− ȳ)||. Because g is L-Lipschitz, we obtain that ρ⩾ ||g(x̃, ȳ)− g(x̄, ȳ)||, meaning that

−g(x̃, ȳ)∈B(−g(x̄, ȳ), ρ)⊂ relint C. Because P (S) is convex, SC holds, thus finishing the proof □

Chicoisne: On Column Generation for Nonlinear Optimization
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 31

Appendix B: Proof of Proposition 2

If L(X , λk) satisfies the P -property wrt y, solving the problem in y given some x ∈X is equivalent to solve

the problem in y given x= xk, i.e. for every x∈X we have

argmin
y

{
f (x, y)+

⟨
λk, g (x, y)

⟩}
= argmin

y

{
f
(
xk, y

)
+
⟨
λk, g

(
xk, y

)⟩}
. (14)

Because P (Sk) satisfies Assumption 1, (xk, yk) is an optimal solution of L(Sk, λk), i.e.

ω(Sk, λk) = min
x∈Sk,y

{
f (x, y)+

⟨
λk, g (x, y)

⟩}
= f

(
xk, yk

)
+
⟨
λk, g

(
xk, yk

)⟩
.

In consequence, yk ∈ argminy{f(xk, y)+ ⟨λk, g(xk, y)⟩}. Using equality (14) finishes the proof. □

Appendix C: Proof of Lemma 1

First, for any t∈ [0,1] and any pair (u1, u2)∈ U ×U we have: tφ(u1)+ (1− t)φ(u2)−φ(tu1 +(1− t)u2)∈K.
Given that λ∈K∗ we have ⟨λ, tφ(u1)+ (1− t)φ(u2)−φ(tu1 +(1− t)u2)⟩⩾ 0, meaning that

t
⟨
λ,φ

(
u1
)⟩︸ ︷︷ ︸

ψ(u1)

+(1− t)
⟨
λ,φ

(
u2
)⟩︸ ︷︷ ︸

ψ(u2)

⩾
⟨
λ,φ

(
tu1 +(1− t)u2

)⟩︸ ︷︷ ︸
ψ(tu1+(1−t)u2)

.□

Appendix D: Proof of Lemma 2

The linear approximation of ψ at ū is ψ̄[ū](u) :=ψ(ū)+ ⟨∇ψ[ū], u− ū⟩. By definition, for every u∈ U :

⟨∇ψ [ū] , u− ū⟩= lim
ϵ→0

ψ (ū+ ϵ (u− ū))−ψ (ū)

ϵ
= lim
ϵ→0

⟨λ,φ (ū+ ϵ (u− ū))⟩− ⟨λ,φ (ū)⟩
ϵ

=

⟨
λ, lim

ϵ→0

φ (ū+ ϵ (u− ū))−φ (ū)

ϵ

⟩
= ⟨λ,Dφ (ū) (u− ū)⟩ ,

implying that ψ̄[ū](u) = ⟨λ,φ(ū)⟩+ ⟨λ,Dφ(ū)(u− ū)⟩= ⟨λ, φ̄[ū](u)⟩, proving the result. □

Appendix E: Proof of Lemma 3

By convexity of U and optimality of u∗, for any ϵ∈]0,1], u∈ U we have φ (u∗)⩽φ (u∗ + ϵ (u−u∗)), i.e.

φ (u∗ + ϵ (u−u∗))−φ (u∗)

ϵ
⩾ 0, ∀ϵ∈]0,1],∀u∈U .

The latter implies that when ϵ→ 0, for any u∈ U we have ⟨∇φ (u∗) , u−u∗⟩⩾ 0, i.e.

φ (u∗)+ ⟨∇φ (u∗) , u−u∗⟩︸ ︷︷ ︸
φ̄[u∗](u)

⩾φ (u∗)+ ⟨∇φ (u∗) , u∗−u∗⟩︸ ︷︷ ︸
φ̄u∗

, ∀u∈ U ,

meaning that u∗ is optimal for minu∈U φ̄[u
∗](u). As a byproduct we immediately obtain that ω∗ = ω̄[u∗]. □

Appendix F: Proof of Proposition 3

First, notice that the following holds:

f̄
[
xk, yk

]
(x, y) =f

(
xk, yk

)
+
⟨
∇xf

(
xk, yk

)
, x−xk

⟩
+
⟨
∇yf

(
xk, yk

)
, y− yk

⟩
ḡ
[
xk, yk

]
(x, y) =g

(
xk, yk

)
+Dxg

(
xk, yk

) (
x−xk

)
+Dyg

(
xk, yk

) (
y− yk

)
In consequence, we have that:

ω̄
[
xk, yk

] (
X , λk

)
=f
(
xk, yk

)
−
⟨
∇xf

(
xk, yk

)
, xk
⟩
−
⟨
∇yf

(
xk, yk

)
, yk
⟩

+
⟨
λk, g

(
xk, yk

)
−Dxg

(
xk, yk

)
xk−Dyg

(
xk, yk

)
yk
⟩

+min
x∈X

{⟨
∇xf

(
xk, yk

)
, x
⟩
+
⟨
λk,Dxg

(
xk, yk

)
x
⟩}

+min
y

{⟨
∇yf

(
xk, yk

)
, y
⟩
+
⟨
λk,Dyg

(
xk, yk

)
y
⟩}
, (15)

Chicoisne: On Column Generation for Nonlinear Optimization
32 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

which is separable in x and y. Wlog we can assume that (15) attains its minimum, otherwise the master

problem is unbounded and we can stop. Under this assumption, the first order optimality conditions in

y for the master problem P (Sk) are ∇yf(xk, yk) + Dyg(x
k, yk)∗λk = 0, in turn implying that for any y:

⟨∇yf(xk, yk), y⟩+ ⟨λk,Dyg(x
k, yk)y⟩= 0, meaning that the objective function of (15) is identically zero. □

Appendix G: Proof of Proposition 5

Let us define the following subsets of [p]:

J+ := {j ∈ [p] : γj < 0, αj > 0} , J− := {j ∈ [p] : γj > 0, αj < 0} ,

J0 := {j ∈ [p] : γj , αj ⩾ 0} , Jµ := {j ∈ [p] : γj , αj ⩽ 0} .

First notice that we can fix beforehand the following variables:

z∗j =

{
µj If j ∈Jµ
0 If j ∈J0.

Next, for every j ∈J−, we use the change of variable zj← µj − zj , obtaining the following problem:

ω∗ :=
∑

j∈J−∪Jµ

γjµj +min
z

∑
j∈J+∪J−

γ̂jzj

s.t.:
∑

j∈J+∪J−

α̂jzj ⩽ β̂

zj ∈ [0, µj] , ∀j ∈J+ ∪J−

where β̂ := β−
∑

j∈J−∪Jµ
αjµj and:

α̂j :=

{
αj if j ∈J+

−αj if j ∈J−
γ̂j :=

{
γj if j ∈J+

−γj if j ∈J−.

The latter is a knapsack problem with positive capacity β̂ and weights α̂j that can be solved by sorting

the remaining indices j ∈ J+ ∪J− in increasing disutility γ̂j/α̂j and filling the capacity constraint until no

variable is available or the capacity constraint is tight. □

Appendix H: Proof of Proposition 6

It is enough to show that (u∗, (π∗, λ̂, λ̂0)) satisfies the KKT conditions for (10):

ϕ (u∗)⩽ 0, − (γ (u∗) , γ0)∈L2

π∗ ⩾ 0, ϕ (u∗)⊤ π∗ = 0(
λ̂, λ̂0

)
∈L2

γ (u∗)⊤ λ̂+ γ0λ̂0 = 0

∇φ (u∗)+Dϕ (u∗)⊤ π∗ +Dγ (u∗)⊤ λ̂= 0.

(16a)

(16b)

(16c)

(16d)

(16e)

(16a) and (16b) are trivially satisfied. Given that −γ0, λ∗ ⩾ 0, the remaining conditions are equivalent to:

(λ∗)2
(
||γ (u∗)||22− γ

2
0

)
⩽ 0

λ∗ (||γ (u∗)||22− γ
2
0

)
= 0

∇φ (u∗)+Dϕ (u∗)⊤ π∗ +2λ∗Dγ (u∗)⊤ γ (u∗) = 0,

which are all implied by the KKT conditions for (11) at (u∗, (π∗, λ∗)). □

Chicoisne: On Column Generation for Nonlinear Optimization
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 33

Appendix I: Proof of Proposition 7

The KKT conditions for (13) are

ϕ (ũ)⩽ 0, −γ̃ (w̃)∈K, ṽ= V ũ, w̃=Wũ

π̃⩾ 0, λ̃∈K∗

ϕ (ũ)⊤ π̃= 0,
⟨
γ̃ (w̃) , λ̃

⟩
= 0

∇φ̃ (ṽ)− α̃= 0, Dγ̃ (w̃)∗ λ̃− β̃ = 0

Dϕ (ũ)⊤ π̃+V ∗α̃+W ∗β̃ = 0.

(17a)

(17b)

(17c)

(17d)

(17e)

Conditions (17a)-(17b)-(17c) represent respectively primal and dual feasibility and complementary slackness

for (12) at (ũ, (π̃, λ̃)). We now prove that (17d)-(17e) imply the last remaining KKT condition for (12):

stationarity. Replacing (17d) in (17e) we obtain:

Dϕ (ũ)⊤ π̃+V ∗∇φ̃ (ṽ)+W ∗Dγ̃ (w̃)∗ λ̃= 0. (18)

For any (u, v,w) such that V u= v and Wu=w, we have φ(u) = φ̃(V u) and γ(u) = γ̃(Wu), implying that

∇φ(u) = V ∗∇φ̃ (V u) = V ∗∇φ̃ (v)

Dγ(u) =Dγ̃ (Wu)W =Dγ̃ (w)W.

(19a)

(19b)

Using (19) at (u, v,w) = (ũ, ṽ, w̃) and replacing in (18) we get Dϕ(ũ)⊤π̃+∇φ(ũ)+Dγ(ũ)∗λ̃= 0. □

References

Acerbi C, Simonetti P (2002) Portfolio optimization with spectral measures of risk. arXiv preprint cond-

mat/0203607 .

Ahmadi AA, Dash S, Hall G (2017) Optimization over structured subsets of positive semidefinite matrices

via column generation. Discrete Optimization 24:129–151.

Álvarez C, Mancilla-David F, Escalona P, Angulo A (2019) A bienstock–zuckerberg-based algorithm for

solving a network-flow formulation of the convex hull pricing problem. IEEE Transactions on Power

Systems 35(3):2108–2119.

Barnhart C, Johnson EL, Nemhauser GL, Savelsbergh MWP, Vance PH (1998) Branch-and-price: Column

generation for solving huge integer programs. Operations research 46(3):316–329.

Ben-Tal A, El Ghaoui L, Nemirovski A (2009) Robust optimization (Princeton University Press).

Bergner M, Caprara A, Ceselli A, Furini F, Lübbecke ME, Malaguti E, Traversi E (2015) Automatic dantzig–

wolfe reformulation of mixed integer programs. Mathematical Programming 149(1-2):391–424.

Bertsimas D, Tsitsiklis JN (1997) Introduction to linear optimization, volume 6 (Athena Scientific Belmont,

MA).

Bienstock D, Zuckerberg M (2009) A new LP algorithm for precedence constrained production scheduling.

Optimization Online 1–33.

Boyd S, Vandenberghe L (2004) Convex optimization (Cambridge university press).

Chicoisne: On Column Generation for Nonlinear Optimization
34 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Burer S (2009) On the copositive representation of binary and continuous nonconvex quadratic programs.

Mathematical Programming 120(2):479–495.

Chicoisne R, Ordoñez F, Espinoza D (2018) Risk averse shortest paths: A computational study. INFORMS

Journal on Computing 30(3):539–553.

Choi E, Tcha DW (2007) A column generation approach to the heterogeneous fleet vehicle routing problem.

Computers & Operations Research 34(7):2080–2095.

Chou CA, Liang Z, Chaovalitwongse WA, Berger-Wolf TY, DasGupta B, Sheikh S, Ashley MV, Caballero IC

(2015) Column-generation framework of nonlinear similarity model for reconstructing sibling groups.

INFORMS Journal on Computing 27(1):35–47.

Dantzig GB, Wolfe P (1961) The decomposition algorithm for linear programs. Econometrica: Journal of

the Econometric Society 767–778.

Dentcheva D, Ruszczyński A (2006) Portfolio optimization with stochastic dominance constraints. Journal

of Banking & Finance 30(2):433–451.

Desaulniers G, Desrosiers J, Dumas Y, Marc S, Rioux B, Solomon MM, Soumis F (1997) Crew pairing at

air france. European journal of operational research 97(2):245–259.

Dong H, Anstreicher K (2013) Separating doubly nonnegative and completely positive matrices.Mathematical

Programming 137(1-2):131–153.

Eckstein J, Bertsekas DP (1992) On the douglas-rachford splitting method and the proximal point algorithm

for maximal monotone operators. Mathematical Programming 55(1-3):293–318.

Espinoza D, Moreno E (2014) A primal-dual aggregation algorithm for minimizing conditional value-at-risk

in linear programs. Computational Optimization and Applications 59(3):617–638.

Garćıa R, Maŕın A, Patriksson M (2003) Column generation algorithms for nonlinear optimization, I: Con-

vergence analysis. Optimization 52(2):171–200.

Garćıa R, Maŕın A, Patriksson M (2011) Column generation algorithms for nonlinear optimization, II:

Numerical investigations. Computers & Operations Research 38(3):591–604.

Geoffrion A (1972) Generalized benders decomposition. Journal of optimization theory and applications

10(4):237–260.

Giles FR, Pulleyblank WR (1979) Total dual integrality and integer polyhedra. Linear algebra and its

applications 25:191–196.

Glover F (1975) Surrogate constraint duality in mathematical programming. Operations Research 23(3):434–

451.

Goemans MX, Williamson DP (1995) Improved approximation algorithms for maximum cut and satisfiability

problems using semidefinite programming. Journal of the ACM (JACM) 42(6):1115–1145.

Chicoisne: On Column Generation for Nonlinear Optimization
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 35

Greenberg H, Pierskalla W (1970) Surrogate mathematical programming. Operations Research 18(5):924–

939.

Khaniyev T, Elhedhli S, Erenay FS (2018) Structure detection in mixed-integer programs. INFORMS Journal

on Computing 30(3):570–587.

Kleywegt AJ, Shapiro A, Homem-de Mello T (2002) The sample average approximation method for stochastic

discrete optimization. SIAM Journal on Optimization 12(2):479–502.

Krokhmal P, Palmquist J, Uryasev S (2002) Portfolio optimization with conditional value-at-risk objective

and constraints. Journal of risk 4:43–68.

Levy H, Markowitz HM (1979) Approximating expected utility by a function of mean and variance. The

American Economic Review 69(3):308–317.

Lovász L (1979) On the Shannon capacity of a graph. IEEE Transactions on Information theory 25(1):1–7.

Lübbecke M, Desrosiers J (2005) Selected topics in column generation. Operations research 53(6):1007–1023.

Müller B, Muñoz G, Gasse M, Gleixner A, Lodi A, Serrano F (2020) On generalized surrogate duality in

mixed-integer nonlinear programming. International Conference on Integer Programming and Combi-

natorial Optimization, 322–337 (Springer).

Muñoz G, Espinoza D, Goycoolea M, Moreno E, Queyranne M, Rivera O (2018) A study of the Bienstock–

Zuckerberg algorithm: applications in mining and resource constrained project scheduling. Computa-

tional Optimization and Applications 69(2):501–534.

Nesterov Y, Nemirovskii A (1994) Interior-point polynomial algorithms in convex programming (SIAM).

Ni W, Shu J, Song M, Xu D, Zhang K (2021) A branch-and-price algorithm for facility location with general

facility cost functions. INFORMS Journal on Computing 33(1):86–104.

Nocedal J, Wright S (2006) Numerical optimization (Springer Science & Business Media).

Park YW (2021) Optimization for l 1-norm error fitting via data aggregation. Informs Journal on Computing

33(1):120–142.

Pessoa A, Sadykov R, Uchoa E, Vanderbeck F (2018) Automation and combination of linear-programming

based stabilization techniques in column generation. INFORMS Journal on Computing 30(2):339–360.

Petra CG, Schenk O, Anitescu M (2014a) Real-time stochastic optimization of complex energy systems on

high-performance computers. Computing in Science & Engineering 16(5):32–42.

Petra CG, Schenk O, Lubin M, Gärtner K (2014b) An augmented incomplete factorization approach for

computing the schur complement in stochastic optimization. SIAM Journal on Scientific Computing

36(2):C139–C162.

Pirnay H, Lopez-Negrete R, Biegler L (2012) Optimal sensitivity based on ipopt. Mathematical Programming

Computations 4(4):307–331.

Chicoisne: On Column Generation for Nonlinear Optimization
36 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Pisinger WD, Rasmussen AB, Sandvik R (2007) Solution of large quadratic knapsack problems through

aggressive reduction. INFORMS Journal on Computing 19(2):280–290.

Porumbel D, Clautiaux F (2017) Constraint aggregation in column generation models for resource-

constrained covering problems. INFORMS Journal on Computing 29(1):170–184.

Pratt JW (1964) Risk aversion in the small and in the large. Econometrica: Journal of the Econometric

Society 32(1/2):122–136.

Ruszczyński A (1995) On convergence of an augmented lagrangian decomposition method for sparse convex

optimization. Mathematics of Operations Research 20(3):634–656.

Sadykov R, Lazarev A, Shiryaev V, Stratonnikov A (2013) Solving a freight railcar flow problem arising in

russia. ATMOS-13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization,

and Systems-2013 (Dagstuhl Open Access Series in Informatics).

Sadykov R, Vanderbeck F (2013) Column generation for extended formulations. EURO Journal on Compu-

tational Optimization 1(1-2):81–115.

Song Y, Luedtke J (2015) An adaptive partition-based approach for solving two-stage stochastic programs

with fixed recourse. SIAM Journal on Optimization 25(3):1344–1367.

Sponsel J, Dür M (2014) Factorization and cutting planes for completely positive matrices by copositive

projection. Mathematical Programming 143(1-2):211–229.

Sun Y, Andersen MS, Vandenberghe L (2014) Decomposition in conic optimization with partially separable

structure. SIAM Journal on Optimization 24(2):873–897.

Vandenberghe L, Andersen MS (2015) Chordal graphs and semidefinite optimization. Foundations and Trends

in Optimization 1(4):241–433.

Vielma JP, Ahmed S, Nemhauser GL (2008) A lifted linear programming branch-and-bound algorithm for

mixed-integer conic quadratic programs. INFORMS Journal on Computing 20(3):438–450.

Von Hohenbalken B (1977) Simplicial decomposition in nonlinear programming algorithms. Mathematical

Programming 13(1):49–68.

Wachter A, Biegler L (2006) On the implementation of a primal-dual interior point filter line search algorithm

for large-scale nonlinear programming. Mathematical Programming 106(1):25–57.

Wang J, Ralphs T (2013) Computational experience with hypergraph-based methods for automatic decom-

position in discrete optimization. International Conference on AI and OR Techniques in Constriant

Programming for Combinatorial Optimization Problems, 394–402 (Springer).

Wang Y, Yin W, Zeng J (2019) Global convergence of admm in nonconvex nonsmooth optimization. Journal

of Scientific Computing 78(1):29–63.

Zangwill WI (1967) The convex simplex method. Management Science 14(3):221–238.

Chicoisne: On Column Generation for Nonlinear Optimization
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 37

Zheng Y, Fantuzzi G, Papachristodoulou A, Goulart P, Wynn A (2017) Fast admm for semidefinite programs

with chordal sparsity. 2017 American Control Conference (ACC), 3335–3340 (IEEE).

Zheng Y, Fantuzzi G, Papachristodoulou A, Goulart P, Wynn A (2020) Chordal decomposition in operator-

splitting methods for sparse semidefinite programs. Mathematical Programming 180(1):489–532.

