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Abstract—Urban material maps are useful for several city
modeling or monitoring applications and can be retrieved from
remote sensing data. This study investigates the impact of spectral
and spatial sensor configuration on urban material classification
results, comparing several configurations corresponding to exist-
ing or envisaged airborne or space sensors. Images corresponding
to such sensors were simulated out of an airborne hyperspectral
acquisition. At the end, the relevance of an enhanced spectral
configuration and especially providing bands from the SWIR
domain was proven, as well as the need for a fine spatial
resolution to retrieve urban objects. However, the (late) fusion of
multispectral imagery at 2 m resolution with hyperspectral data
at 8 m resolution was also proven to lead to good results.

Index Terms—Hyperspectral, Multispectral, Superspectral,
Sensor assessment, Spatial resolution, Spectral configuration,
Classification, Urban materials

I. INTRODUCTION - CONTEXT

In urban areas, very fine land cover maps at material level,
i.e. knowledge concerning the roofing materials or the different
kinds of ground areas, are required for several city modeling or
monitoring applications [1]. Remote sensing seems convenient
for providing such information at a large scale but enhanced
spectral configurations may be required. Within this context,
this study aimed at comparing the impact of spectral and
spatial sensor configurations on classification results. Several
spectral and spatial configurations corresponding to existing
or envisaged airborne or space sensors were compared. They
were simulated out of a common hyperspectral acquisition

II. DATA SET AND CLASSIFICATION ASSESSMENT
STRATEGY

A. Data set

Images corresponding to several sensor configurations were
generated out of a common airborne hyperspectral image
acquired at 2 m spatial resolution over Toulouse city (South
Western France) in June 2015. This image was captured by
an Hyspex sensor, providing 408 spectral bands ranging from
400 to 2500 nm. The study area covers a 2 km? area.
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B. Classification and evaluation process

In further experiments, classifiers were trained out of
samples extracted from images. Ground truth polygons were
manually plotted by photo-interpretation using all available
information (hyperspectral image, aerial red-green-blue-near
infrared ortho-images at 12,5 cm spatial resolution, ortho-
images from Géoportail, Google Earth and Bing Map as well
as Street View images). However, the classes are present in
very different proportions. For instance, roofs are mainly
covered by clay tiles on the study area, while other roofing
materials are less frequent, and sometimes difficult to identify.
Concerning ground materials, many streets are in shadow
or masked by trees, thus limiting the amount of available
samples.

In further tests, a gaussian kernel support vector machine
(svm) classifier was used [5]. Indeed, earlier tests have shown
its ability to provide good results on hyperspectral data even
with a very limited training set. Classification was performed
per pixel and no spatial smoothing post-processing was applied
to the results. Earlier experiments also showed that plotted
ground truth polygons were not necessarily compatible with
the simulated coarsest spatial configurations, for which they
generated a too important amount of mixed pixels. Thus,
such ground truth was first eroded in order to keep only its
purest part. This eroded ground truth map was then used for
all considered sensor configurations in order to have a same
protocol for all of them: the same training set of 50 samples
per class was used for each of them.

Conversely, obtained classification results were evaluated by
comparison with the original ground truth map (before ero-
sion). Indeed, quantitative evaluation consisted in comparing
at pixel level the classification to this reference map. To
have a fair comparison, all images were resampled (bilinear
interpolation) at the original 2 m spatial resolution before
being classified and evaluated. Several classic quality metrics
were computed (User and producer accuracies and F1-Score)
for each class. Indeed, per-class indices are here more relevant
than global metrics because of the very imbalanced classes.
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Furthermore it can be said that for some classes, it was difficult
to find a sufficient number of samples for training and test that
belong to different objects. Thus, the evaluation can sometimes
be optimistic.

III. IMPACT OF SPECTRAL CONFIGURATION

A. Considered spectral configurations

To assess the impact of the spectral configuration, the next
spectral configurations were considered :

o Spectral configuration of Pleiades sensor ;

« Original spectral configuration of Hyspex sensor limited
to VNIR domain (400 nm - 1000 nm) after removal of
noisy bands (affected by the atmosphere) ;

« Original spectral configuration of Hyspex sensor limited
to VNIR domain and to the first part of SWIR domain
(400 nm - 1800 nm) after removal of noisy bands ;

o Original spectral configuration of Hyspex sensor on the
whole VNIR+SWIR domain (400 nm - 2500 nm) after
removal of noisy bands ;

o 10 bands subset selected out of Hyspex bands. This
band subset was selected automatically using a urban
material spectral data set constituted out of several avail-
able reference spectral libraries, as in [2]. These spectral
references are reflectance spectra acquired on the field or
in laboratory, and thus, independent on the image scene
processed. Besides, they correspond to a slightly different
classification legend. Selected bands are : 440 nm, 560
nm, 600 nm, 665 nm, 781 nm, 1674 nm, 2107 nm, 2203
nm, 2311 nm and 2323 nm.

These configurations were explored, simulating them out of the
original hyperspectral data set. All images were simulated for
a 2 m spatial resolution, as the one of the original acquisition.
Sensor SNR was taken into account. Except for the simulation
of Pléiades configuration, kept in radiance, all images have
undergone an atmospheric correction by Cochise method [6].
However, previous results have shown that when training a
classifier directly from samples extracted from the image, such
correction has a little effect on obtained results.

B. Results

Obtained results are presented on figure 1 and in table I.
Differences between results obtained for the different spectral
configurations are not so strong. However, it can be noticed
that the best results are generally reached for enhanced spec-
tral configurations. For instance, hyperspectral configuration
limited to VNIR domain (400-1000 nm) leads to better results
than for Pleiades configuration. Results are improved when
adding bands from SWIR domain, and the best results are
reached for the configuration covering the whole 400-2500
nm domain. The importance of SWIR domain can also be
noted since improvements are observed on several classes for
results obtained for a 10 band subset selected out of the 400-
2500 nm domain, compared to Pléiades configuration, and
even to hyperspectral VNIR 400-1000 nm configuration. From
a qualitative point of view, such improvements can also be
assessed visually : the finer the spectral configuration, the

less noisy the results. It must here be reminded that these
different results were obtained by per pixel classification and
have undergone no spatial smoothing post-processing. The
main remaining confusions concern next classes :

o Slates are hardly distinguished, as expected. Indeed, this
class is represented by very few samples while it exhibits
an important specular reflective behavior, leading to a
strong intra-class variability and making it similar to
other classes leading to confusions with shadows, water
or metal.

o High and low vegetation tend to be confused. Indeed,
these classes exhibit an intra-class variability (condition,
species) as important as inter-class variability.

e Some confusions between asphalt, stone pavement and
roofing gravels also occur.

However, this experiment remains limited as the study area
is not wide, thus leading to a model overfitting risk, and as
some classes are quite rare (training and evaluation will be
performed on different samples but from the same areas).

IV. IMPACT OF SPATIAL RESOLUTION
A. Considered spatial configurations

The impact of spatial resolution was then investigated,
especially within the specific context of an envisaged future
French satellite Hypxim [4], for which several options are con-
sidered. Thus, images were simulated for two envisaged spatial
resolutions 4 m and 8 m, and for the spectral configuration of
this sensor (192 bands ranging from 418 to 2502 nm for a
10.9 nm band width), taking into account its SNR.

B. Results

Visual analysis of the classification results (Figure 2) shows
a quality decrease when the spatial resolution becomes coarser.
Indeed, at 4 m, the scene can still be understood, while at 8 m,
only the largest objects are still well classified. Quantitative
results (Table II) are less strict. Some classes are even better
retrieved when pixel size decreases from 4 to 8 m. However,
it must be kept in mind that reference map is not a partition
of the image, and that reference polygons have generally
not been plotted on small urban objects. Thus, results at 8
m spatial resolution are coarser and smoother (less noise),
and small objects can tend to disappear, being labelled as
their largest neighbours to other classes, without a striking
consequence in the quantitative evaluation. For both spatial
resolutions, mixed pixels are not necessarily well classified.
However classification is not necessarily the most relevant
method at such resolutions and alternative approaches such
as spectral unmixing should also be tested.

V. FusION

Previous experiments showed that enhanced spectral
configuration, and especially involving bands from the SWIR
domain, improves urban material classification, but also that
the spatial resolution can not be too coarse as for instance
the one targeted for Hypxim satellite. However, a possible
solution can consist in merging such hyperspectral data



with multispectral images exhibiting an enhanced spatial
resolution. Although early fusion (i.e. pan/multi-sharpening)
could be applied within this context, a late fusion process was
retained, relying on posterior class membership probabilities
generated by classifiers applied independently to each source.
Indeed, it is more generic and could be applied even to
images not acquired simultaneously or processed by specific
land cover classification approaches (e.g. unmixing for
hyperspectral data and classification for multispectral VHR
one). The method described in [3] was applied. It consists
in a per-pixel fusion based on a Dempster-Shafer evidential
rules with masses calculated as in [3]).

It was here applied to the classification results of Hypxim 8
m and Pléiades 2 m simulations. It can be seen from Figure 2
and table 2 that results are improved. Qualitatively, the result
is visually easier to interpret: the different objects are more
clearly delineated than for original Hypxim 8 m classification.
On the other hand, this result is also less noisy than Pléiades’
original one. Besides, some errors are also corrected especially
compared to Pléiades result. Quantitatively (see Table II,
results are also generally better than for the independent
classifications of original images.

TABLE I
F1-SCORE (IN %) OF THE DIFFERENT CLASSES FOR DIFFERENT SPECTRAL
CONFIGURATIONS.

Classes Pleiades 400 - 400 - 400 - 10
1000 nm | 1800 nm | 2500 nm | bands
Slate roof 49.6 50.7 51.8 54.6 48.2
Asphalt 68.4 72.6 71.8 75.1 69.1
Cement 59.8 74.4 713 73.4 72.9
Water 99.3 99.3 99.1 99.2 99.2
Stone pavement 47.4 53.9 57.9 65.6 50.3
Bare ground 51.0 54.8 59.5 62.1 61.8
Gravel roof 70.2 71.6 75.0 82.3 76.6
Metal 1 roof 62.8 63.1 68.8 70.9 69.6
Metal 2 roof 434 449 56.3 61.7 60.0
Tile roof 90.9 90.5 95.5 96.0 95.6
Low vegetation 433 57.7 70.3 71.4 71.6
High vegetation 85.6 88.6 90.8 91.0 894
Railway 774 82.0 84.3 83.4 80.4
Plastic roof 76.9 76.7 83.2 84.4 82.1
Shadow 95.3 96.0 96.4 96.5 95.7

VI. CONCLUSION

Different spectral configurations were compared for a same
2 m spatial resolution, showing that the finer the spectral
configuration, the better the classification quality : classes are
better discriminated and results are less noisy even though
some confusions between some classes persist. Different spa-
tial resolution (4 and 8 m) were also compared for a same
spectral configuration (Hypxim sensor), showing the need for
a (very) high spatial resolution to retrieve individual urban
objects. Indeed, the visual quality decreases when the resolu-
tion becomes coarser and at 8 m, only the biggest objects are
well classified. However, it was also shown that a late fusion
of multispectral imagery at 2 m resolution with hyperspectral

TABLE II
F1-SCORE (IN %) OF THE DIFFERENT CLASSES FOR DIFFERENT SPECTRAL
AND SPATIAL CONFIGURATIONS.

Classes Hypxim 4m | Hypxim 8m | Pléiades 2m | Fusion
Slate roof 56.9 30.9 49.6 525
Asphalt 68.7 71.1 68.4 76.6
Cement 71.8 79.0 59.8 78.3
Water 97.9 96.9 99.3 98.7
Stone pavement 53.1 68.8 47.4 70.5
Bare Ground 60.9 79.3 51.0 77.8
Gravel roof 74.1 72.8 70.2 824
Metal 1 roof 68.3 80.6 62.8 80.7
Metal 2 roof 47.7 61.5 43.4 65.5
Tile roof 93.5 79.8 90.9 94.6
Low vegetation 78.0 64.7 433 74.4
High vegetation 89.6 84.7 85.6 90.2
Railway 82.3 66.1 774 87.0
Plastic roof 86.5 92.1 76.9 92.5
Shadow 95.2 77.5 95.3 94.6

data at 8 m resolution leads to results, better than for each
source considered independently, and even better than for
hyperspectral data at 4 m resolution.
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Fig. 1. From left to right and from top to bottom, ortho-image on a part of the test zone, associated ground truth, classification results for Pléiades, Hyspex
VNIR and Hyspex SWIR spectral configurations at 2 m spatial resolution

Fig. 2. From left to right and from top to bottom, classification results for Hypxim spectral configuration at 4 m and 8 m spatial resolution, and results of
the fusion of Hypxim at 8 m with Pléiades at 2 m spatial resolution



