
HAL Id: hal-02928733
https://hal.science/hal-02928733v1

Submitted on 2 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Uncovering Audio Patterns in Music with Nonnegative
Tucker Decomposition for Structural Segmentation

Axel Marmoret, Jérémy E Cohen, Nancy Bertin, Frédéric Bimbot

To cite this version:
Axel Marmoret, Jérémy E Cohen, Nancy Bertin, Frédéric Bimbot. Uncovering Audio Patterns in
Music with Nonnegative Tucker Decomposition for Structural Segmentation. ISMIR 2020 - 21st
International Society for Music Information Retrieval, Oct 2020, Montréal (Online), Canada. pp.1-7.
�hal-02928733�

https://hal.science/hal-02928733v1
https://hal.archives-ouvertes.fr


UNCOVERING AUDIO PATTERNS IN MUSIC WITH NONNEGATIVE
TUCKER DECOMPOSITION FOR STRUCTURAL SEGMENTATION

Axel Marmoret1 Jérémy E. Cohen1 Nancy Bertin1 Frédéric Bimbot1
1Univ Rennes, Inria, CNRS, IRISA, France.

axel.marmoret@irisa.fr

ABSTRACT

Recent work has proposed the use of tensor decompo-
sition to model repetitions and to separate tracks in loop-
based electronic music. The present work investigates fur-
ther on the ability of Nonnegative Tucker Decompositon
(NTD) to uncover musical patterns and structure in pop
songs in their audio form. Exploiting the fact that NTD
tends to express the content of bars as linear combinations
of a few patterns, we illustrate the ability of the decomposi-
tion to capture and single out repeated motifs in the corre-
sponding compressed space, which can be interpreted from
a musical viewpoint. The resulting features also turn out to
be efficient for structural segmentation, leading to experi-
mental results on the RWC Pop data set which are poten-
tially challenging state-of-the-art approaches that rely on
extensive example-based learning schemes.

1. INTRODUCTION

A common problem in Music Information Retrieval do-
main (MIR) is the design of musical content representa-
tions and features able to capture meaningful information
in relation to a particular aspect of music. While short-term
features are dominant in the literature, higher-scale fea-
tures aiming to describe medium-term patterns and long-
term structural properties tend to be much less addressed.

Recent work by Smith and Goto [1] has proposed the
use of tensor decomposition to model repetitions in loop-
based electronic music, with the purpose of separating
tracks in audio content. In this paper, we explore the ability
of the method to provide a sparse description of music by
capturing and characterizing patterns at the bar-scale level
in western pop songs in their audio form. As a testbed, we
evaluate the effectiveness of the new features for structural
segmentation, i.e. the task of retrieving the boundaries of
the various musical sections (such as verses, choruses, in-
tros, bridges...) which form a music piece.

We first recall (in section 2) the mathematical theory
of the tensorial model called Nonnegative Tucker Decom-
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position (NTD), and we provide detailed illustrations and
interpretation of the NTD components on the audio record-
ing of a well-known pop song. We then (in section 3)
elaborate on a number of practical considerations related
to NTD, which are needed to be taken into account when
applying the model to real music data. In the last part of the
article (sections 4 and 5), we report on experiments and re-
sults obtained with the NTD-derived features for structural
segmentation of the RWC Pop Music data set [2].

2. NONNEGATIVE TUCKER DECOMPOSITION

2.1 Time-Frequency-Bar Tensor

Music in its audio form is often represented in the time-
frequency domain as a spectrogram, i.e. a 2-dimensional
matrix (further denoted as X). Along the x-axis, the
temporal dimension unfolds, discretized as signal frames,
while the y-axis is a frequency-related dimension (such
as modules of the Fourier coefficients, pitches, constant-
Q transforms, wavelet coefficients...).
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Figure 1: Chromagram of “Come Together”, by The Beatles.

In this work, we describe music as chromagrams. Con-
ventionally, the 12 rows represent the energy distribution
across the song for each semi-tone of the classical western
music scale, where a note and all its octave counterparts
are represented in the same row. An example chromagram
is shown in Figure 1.

In the tensorial approach, the temporal dimension is
broken up into two distinct dimensions: a low-scale dimen-
sion representing time in terms of frame index normalized
at the bar scale, and a high-scale time dimension represent-
ing the bar index within the entire piece. This new view-
point makes it possible to represent a song as a third-order
tensor X of size F × T × B, F being the size of the fre-
quency dimension (12 in the case of chromas), T the num-
ber of frames used to describe bars (local time scale) and
B the number of bars in the song (global time scale). We
call X the Time-Frequency-Bar representation of the song
which, from a data structure viewpoint, is the recasting of
X as a 3D array. Tensor X can be seen as the concatenation
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Figure 2: Principle and illustration of a Time-Bar-Frequency rep-
resentation as a third-order tensor.

of local time-frequency representations, each of them char-
acterizing the content of a bar, as illustrated on Figure 2.
Note that, as bars can be of different lengths in absolute
time, the frame hop depends on each bar, and is defined so
that all bars contain the same number of frames.

2.2 Mathematical Model and Formalism

Let us denote as X the Time-Frequency-Bar representation
of a song, with dimensions F ×T ×B. Assuming chroma
coefficients are all nonnegative, X is also a nonnegative
tensor. Computing a Nonnegative Tucker Decomposition
(NTD) of X consists in finding 3 nonnegative factor ma-
trices W , H and Q (corresponding to the three “modes”
of the Time-Frequency-Bar tensor) and a nonnegative core
tensor G which relates the three modes as of how to com-
bine them to reconstruct (an approximation of) X.

The dimensions F ′ × T ′ × B′ of the core tensor G are
usually set to be lower than those of X (i.e. F ′, T ′, B′ ≤
F, T,B respectively). As a consequence, matrices W , H
and Q are respectively of dimensions F × F ′, T × T ′ and
B × B′ and they can be understood as transformed and
compressed representations of the raw information con-
veyed across the three dimensions of the full tensor.

In conventional tensor-product notation [3], the approx-
imation of X can be written in compact form as:

X ≈ G×1 W ×2 H ×3 Q . (1)

which rewrites, using element-wise notation, as:

X(f, t, b) ≈
F ′,T ′,B′∑
f ′,t′,b′=1

G(f ′, t′, b′)W (f, f ′)H(t, t′)Q(b, b′)

(2)
In particular, any given bar of index b is represented as:

X(:, :, b) ≈W

 B′∑
b′=1

Q(b, b′)G(:, :, b′)

HT (3)

Figure 3 depicts a schematic 3-D representation of a
NTD. NTD core dimensions F ′, T ′ and B′ are assumed
to be known (or set empirically) prior to the decomposi-
tion. As they are lower than the dimensions of their re-
spective mode of the tensor, NTD achieves information
compression via nonlinear dimensionality reduction. In-
deed, for an original tensor of size F × T × B (i.e. com-
prising F.T.B numerical values), the NTD decomposition
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Figure 3: Nonnegative Tucker Decomposition of tensor X in fac-
tor matrices W,H,Q, and core tensor G, with their dimensions.

will total F.F ′ + T.T ′ + B.B′ + F ′.T ′.B′ values. For
example, in the decomposition presented further in Fig-
ure 4, the original tensor contains 102528 real positive val-
ues (F, T,B = 12, 96, 89), while only 3626 for the NTD
(F ′, T ′, B′ = 12, 12, 10).

2.3 Interpretation of the NTD

Loosely speaking, music can be viewed as composed of
musical events (notes, percussive sounds, ...) occurring
non-randomly in bars. Under that assumption, bars can
be modeled as the combination of a limited set of time-
frequency templates along time within a bar, according to
some rhythmic values, such as “half notes” or “beamed
eight notes” for example. This is the purpose of a con-
ventional musical score, where the major part of symbolic
information represents pitch and rhythm. Following that
idea, it is a very popular goal in MIR to design methods for
turning back musical content (in audio form) into a sparse
combination of musical events and temporal activations, as
is the case, for instance, with Nonnegative Matrix Factor-
ization (NMF) for music transcription [4]. Moreover, mu-
sic often contains repetitions: different bars can entirely or
partly share similar content. For instance, beside almost
identical repetitions, some instrumental lines can reoccur
in different contexts: an identical bass line in a verse and
in a guitar solo, for example.

Combining these observations, we assume that each bar
can be represented as the nonnegative combination of a few
“musical patterns” (as NMF would do), where a “musical
pattern” is itself a sparse combination of musical events
and rhythmic activations at the bar scale (for example a
melodic line, or a drum fill). Repetitions imply that some
of these musical patterns should appear in several bars
across a piece. NTD offers an ideal framework to model
these properties for music decomposition, musical patterns
being efficiently and sparsely shared across bars.

In the NTD, the W matrix represents the musical
events, such as the most recurrent notes or chords. H rep-
resents rhythmic activations at the bar scale, for example
4 quarter notes on the beats. Then, each 2D “slice” of the
core G linking these two matrices defines a musical pattern,
as a linear combination of some of their columns (musical
and rhythmic atoms): for example bass drum hits on the
on-beats and snare hits on the off-beats. Finally, Q indi-
cates, for each bar, the combination of musical patterns
forming it (generally a few) and their respective intensity.

Figure 4 provides a detailed example of the various
NTD components stemming from “Come Together” by the
Beatles. While the upper part of the figure illustrates the
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(a) Visual representation of the dominant musical pattern (far-left) corresponding to the first bar of “Come Together” [a mix of the bass and
guitar lines of the intro of the song]. It is decomposed as a linear combination of the columns of W (center-left) representing the chroma
information, and of H , factors of the rhythmic information (far-right). The musical pattern is itself a linear combination of columns of these
matrices, the weights of which are given by the corresponding slice of G (center-right).

(b) “Come Together” represented as its QT matrix. Each row represents a musical pattern, in their order of appearance in the piece. Grey lines
represent the segmentation annotation.

Figure 4: Visualizations of the NTD of Come Together by The Beatles, with ranks T ′ = 12 and B′ = 10.

dominant musical pattern for the first bar together with its
decomposition in NTD, the lower part depicts the descrip-
tion of the entire piece via the QT matrix of the NTD. This
example has been obtained from the chromagram repre-
sented in Figure 1. Because the song is expressed on the
12-chroma scale, we expect little compressibility with re-
spect to this dimension. We hence simplify the model by
fixing W to the 12-size identity matrix. This means that
each semi-tone is represented by one and only one column
of W . For higher dimensions or different representations,
columns of W could represent a wider range of harmonic
or percussive sounds, chords, or any other frequency pat-
tern. Conversely, ranks T ′ and B′ (respectively the second
dimension for H and Q) are adjustable parameters of the
model. In the decomposition presented in Figure 4, they
have been set to T ′ = 12 and B′ = 10. All columns of H
and all slices of the core linking the factor matrices W and
H , which define the musical patterns, are l2 normalized
(i.e. divided by their standard deviation).

3. PRACTICAL INSIGHTS ON THE NTD

In this section, we discuss a number of considerations
which are bound to have an impact on the actual result
of the NTD-based representations and must therefore be
taken into account in practical situations.

3.1 NTD Algorithm

NTD can typically be computed by minimizing the follow-
ing non-convex objective function with respect to the non-
negative matrices W,H,Q and the core tensor G:

‖X− G×1 W ×2 H ×3 Q‖2F (4)

While a direct global minimization of Eqn (4) is not
tractable in general, a standard approach in the literature
is to resort to alternating optimization. Following [5], we
solve Eqn (4) for W , H , Q and G alternatively. It can be
shown that each of these steps means solving a matrix non-

negative least-square problem of the form:

min
Z≥0
‖Y −AZ‖2F (5)

for some matrices Y,A,Z. This problem is convex, and it
is possible to solve it exactly, or up to an arbitrary preci-
sion. An efficient algorithm for solving matrix nonnegative
least squares with high precision is the Hierarchical Alter-
nating Least Squares, and we used an accelerated variant
of it to speed-up computation [6]. The problem of updat-
ing G is also a nonnegative least squares problem, but not
a matrix one. Therefore, to update the core tensor G, we
used a proximal gradient with optimal step [7, Ch. 10].

It can be shown that the proposed alternating algorithm
is guaranteed to converge to a stationary point of the objec-
tive function (4), since it boils down to an alternating prox-
imal gradient algorithm with optimal step [8]. In practice,
we used a stopping criterion based either on a fixed maxi-
mal number of iterations or on a fixed minimal tolerance of
improvement between two successive updates. The entire
code, along with experimental notebooks, are published
and open-source 1 . Under this implementation, comput-
ing the NTD for “Come Together” (4’16” song) with our
algorithm takes approximately 15 seconds on a laptop with
an Intel R© Core(TM) i7 processor and 16GB of RAM.

3.2 Robustness of the NTD

At least two issues with the NTD make the output of any
algorithm highly dependent on the initialization. First,
there might be several solutions W,H,Q,G that provide
the same (or a very similar) estimate X̂ ≈ X. This problem,
known as identifiability deficiency, has been little stud-
ied for NTD, and established identifiability conditions are
very restrictive [9]. Moreover, these conditions are hard to
check in practice. Therefore it is unreasonable to assess
the identifiability of the NTD in our application. As a con-
sequence, this means that there might be infinitely many

1 https://gitlab.inria.fr/amarmore/musicntd/-/tree/0.1.0



solutions to minimizing Eqn (4) that are, from an optimiza-
tion point of view, equally satisfying. Second, even in the
case where the NTD is identifiable, the cost function of (4)
is highly non-convex, and local algorithms can only hope
to recover a local minimum at best.

These two issues combined give rise to a high depen-
dency of the solution on the initial condition: from two
different initializations, two different results – most prob-
ably non-identifiable local minima – are likely to be ob-
tained. We have observed such situations in our investi-
gations, with various initializations indeed resulting in dif-
ferent outputs. However, in most cases the decomposition
would provide results that were reasonably interpretable
from a musical perspective. In particular, when we initial-
ized the algorithm with the absolute values of the Higher
Order SVD [10] computed with the Tensorly toolbox [11],
the procedure consistently provided satisfying results for
segmentation, as detailed further in our experiments.

3.3 Rank Selection

The ranks F ′, T ′ and B′ of the decomposition are cru-
cial parameters of the NTD model. Indeed, low ranks
tend to over-compress information in the data, failing to
uncover relevant structural information in the song, while
high ranks may give too much importance to details in the
data, resulting in the unability of the model to group simi-
lar patterns in a same class of representations.

As developed further in section 5.4, our experiments in-
dicate that the optimal ranks are probably specific for each
song, which can be easily understood as a consequence of
the diversity of intrinsic variability across music pieces.
Providing an efficient method for selecting the ranks is a
challenging topic, left to future work.

4. NTD-BASED SEGMENTATION

To study further the relevance of the NTD representation,
we evaluated it in the context of structural segmentation.
To our knowledge, this is the first attempt to exploit tenso-
rial representations for this purpose.

4.1 Autosimilarity for Describing Structure

The autosimilarity matrix XTX of a music piece (X be-
ing its time-frequency representation) is commonly used
in structural segmentation. Indeed, similar portions of the
piece are likely to have high correlation values. A high
density of high values around the diagonal is expected in
passages with strong internal similarities, whereas low lo-
cal correlations would indicate a change in homogeneity.
In the ideal case, structural segments appear as consistent
blocks with a high level of internal correlation while seg-
ment boundaries are points connecting such blocks, sur-
rounded by zones of low cross-correlation.

Nonetheless, music signals usually generate dense au-
tosimilarity matrices, as dissimilar segments in the mu-
sicological/perceptive sense (for example a guitar line on
the chorus opposed to one in the verse) may still be close

in terms of signal properties. While similar parts gener-
ate high correlation blocks, it can be harder to character-
ize segments boundaries when the same instruments are
played in all segments (even when playing different lines).

In the present work, we replace XTX by an autosim-
ilarity matrix Q̃Q̃T computed from the row-wise normal-
ized Q matrix (denoted Q̃), and study its capacity to pro-
vide an efficient representation for structural segmentation.

Our assumption is that bar descriptions provided by Q̃
provide a better contrast between similar and dissimilar
musical constituents. For instance, we expect two differ-
ent lines of the same instrument to generate different mu-
sical patterns, resulting in lower similarity, whereas com-
pressive effects of NTD will increase correlation of similar
events in the transformed space. In that sense, NTD can
be seen as a way to uncover piece-dependent features for
describing bars, which can then be used to group the bars
according to their relative similarity.

Figure 5 depicts the “barwise” autosimilarity matrix of
the chromagram X of “Come Together”: the content of
each bar of the signal has been vectorized, and similarity
is computed between these barscale vectors. This matrix is
compared to the autosimilarity of the Q̃ matrix, presented
on Figure 4b. This figure visually supports the hypothe-
sis that autosimilarity matrices are sparser when computed
from the matrix Q rather than from the chromas X . Still,
highly similar blocks seem to be preserved.

4.2 A Segmentation Algorithm Using Autosimilarity

To assess this hypothesis, we implemented a segmentation
algorithm based on the principle of a sliding convolution
kernel along the diagonal of the autosimilarity matrix.

Figure 6: Kernel
of size 10

This kernel is a square binary
matrix, whose entries are non-zero
only on the lower and upper 4 sub-
diagonals around the main diagonal
(Figure 6). In other terms, denoting
kij the kernel elements, kij = 1 if
1 ≤ |i− j| ≤ 4. Otherwise, kij = 0.

For every possible segment (b1, b2), a kernel of size
n = b2 − b1 + 1 is convolved with the corresponding au-
tosimilarity sub-matrix (restricted to the bars between b1
and b2) which is then normalized by the size of the seg-
ment. This leads to a raw convolution score: cb1,b2 =
1
n

∑n−1
i,j=0 kijai+b1,j+b1 . The kernel aims at detecting lo-

cal similarities within the 8 bars surrounding each bar. The
more similar this surrounding is, the higher the score.

In addition, we combine the kernel score with a regular-
ity penalty p(n), depending on the size n of the segment.
Indeed, in pop music in general (and in the MIREX10
RWC Pop annotations in particular [12]), the distribution
of musical segment sizes (in bars) tend to be centered
around 8, and they are more likely to be even than odd.
In the experiments reported in the next section, we set em-
pirically, p(8) = 0, p(n) = 1

4 , if n is a multiple of 4,
p(n) = 1

2 if n is a multiple of 2, and p(n) = 1 if n is
odd. This penalty modifies the raw convolution score as



Figure 5: Barwise l1-normalized autosimilarity matrices for “Come Together” (0: white - 1: black). Left: barwise chromagram autosim-
ilarity - Right: autosimilarity of Q̃ matrix from Figure 4b. Grey horizontal and vertical lines represent the segmentation annotation.

follows:
c′b1,b2 = cb1,b2 − λp(n)cmax

k8 (6)

where cmax
k8 is the maximum of the raw convolution score

over all restrictions of size 8 bars within the piece, in order
to cope with potential discrepancies in sparsity across au-
tosimilarity matrices for different pieces. In practice, λ is
fitted by cross-validation.

Finally, segment boundaries are found by a dynamic
programming algorithm, inspired from [13]: it keeps the
sequence of segments maximizing the global cost defined
as the sum of all segment costs.

5. EXPERIMENTS

The proposed method was applied to the Q̃T representation
and tested on the “structural segmentation” task, as defined
in the MIREX campaigns [14], on the 100 songs from the
RWC Pop database [2]. MIREX10 annotations [12] serve
as the reference segmentation (1680 segments). We com-
pare our results with state-of-the-art methods listed below.

5.1 Related Work

In the context of structural segmentation, numerous meth-
ods try to detect segment boundaries from the autosimilar-
ity matrix, or from an “affinity matrix” derived from it.

The use of autosimilarity for segmenting music struc-
ture probably traces back to Foote [15]. In this work,
structural boundaries are detected by applying a kernel
along the diagonal, as described above. Foote’s kernel
though aims at detecting “novelty” in the signal’s autosim-
ilarity matrix, by comparing inter-similarity between the
near past and near future at the current point. A high nov-
elty should indicate a low inter-similarity between past and
future, hinting towards a boundary between segments.

More recently, convex NMF was used for segmenting
a pre-processed autosimilarity matrix [16]. A variant of
NMF decomposition is used to enforce the feature space

(here, similarity between different bars) to be contracted in
convex combinations of columns of the autosimilarity ma-
trix. Factorization results are thus interpreted as the most
similar bars, which can then be processed into sections.

Spectral clustering can also be used. In [17], an affinity
matrix is computed from the signal, where the similarity
is obtained with k-nearest neighbors and time-proximity
rules. Then, interpreting this matrix as a graph, and its val-
ues as vertices connectivity, this method studies the eigen-
vectors of its Laplacian. These eigenvectors can be inter-
preted as principally connected vertices, forming cluster
classes for segmentation.

We primarily compare the NTD method with these tech-
niques for two reasons. First, they are implemented in
the MSAF toolbox [20]. Second, they reach state-of-the-
art performance among “blind” methods for structural seg-
mentation, i.e. methods which, like NTD, do not resort to
extensive training from examples. Note that the segmenta-
tion results we obtained with MSAF, though, are slightly
worse (≈ 3/4%) than those obtained at MIREX 2016 [21],
possibly due to evolutions of the toolbox itself in the inter-
val. We did not tune any of the default parameters.

As current state-of-the-art, we selected the algorithm
from [18] since it ranked first in this task in the last MIREX
campaigns. However, as opposed to the previous methods,
it requires supervised training from many examples.

5.2 Downbeat-Synchronous Alignment

By construction, the boundaries estimated by the NTD-
based approach are aligned on downbeats, which is not the
case for the techniques we use as baseline comparisons. As
segments generally start and end on downbeats of the song,
this alignment could induce a bias favouring our technique.
To compensate for this, in addition to the segmentation
scores computed with the original boundaries, we compute
the scores after having aligned boundaries on the closest
downbeat. We call this condition “Aligned on downbeats”.



Algorithm P0.5 R0.5 F0.5 P3 R3 F3

NTD-based autosimilarity 53.3% 62.1% 56.6% 66.8% 78.1% 71.1%
Barwise chromagram autosimilarity 43.1% 45.7% 43.9% 64.8% 68.0% 65.8%
Foote Original 29.7% 22.3% 25.1% 63.9% 48.6% 54.5%
Novelty [15] Aligned on downbeats 42.0% 30.0% 34.5% 67.1% 47.7% 55.0%

CNMF [16]
Original 22.8% 21.5% 21.5% 46.8% 45.1% 44.7%
Aligned on downbeats 31.6% 28.1% 28.8% 50.7% 45.4% 46.5%

Spectral Original 31.2% 30.5% 29.4% 60.7% 60.8% 58.1%
Clustering [17] Aligned on downbeats 49.2% 45.0% 45.0% 65.5% 60.6% 60.3%

Table 1: Averaged segmentation scores, and their comparison with several “blind” reference methods.

Algorithm P0.5 R0.5 F0.5 P3 R3 F3

NTD, with “oracle ranks” for each song 67.1% 78.2% 71.5% 78.5% 90.2% 83.1%
Neural Networks [18], results from MIREX 2015 [19] 80.4% 62.7% 69.7% 91.9% 71.1% 79.3%

Table 2: Averaged segmentation scores in the “oracle ranks” condition, compared to the current state-of-the-art (non-blind) method.

In addition, we also processed the barwise autosimi-
larity obtained directly from the chromagram, in order to
measure the impact of the NTD-derived representation vs
the raw time-frequency representation.

5.3 Implementation Details

RWC Pop signals are sampled at 44100Hz. Bars were es-
timated by the madmom toolbox [22]. Chromas were ex-
tracted from the Constant-Q Transform of the signal with
32-sample hop using Librosa [23], then mapped to 96
equally spaced chroma vectors per bar. This results in a
chromagram X with 12 rows and 96 × B columns. Ten-
sors were handled with the Tensorly toolbox [11]. We use
our own implementation of the NTD algorithm (see Sec-
tion 3.1). Segmentation performance was computed with
the mir_eval toolbox [24].

5.4 Results

Segmentation performance is evaluated with metrics based
on “hit-rate”. The hit-rate considers a boundary as correct
if it coincides with a boundary in the reference segmenta-
tion within some time window. From the count of correct
and incorrect segment boundaries, we compute Precision,
Recall and F-measure. Tolerance windows were chosen to
be 0.5s and 3s, in line with MIREX standards.

As mentioned in Section 3.3, the ranks of the NTD
strongly influence the decomposition and, consequently,
the segmentation results. Ranks T ′ and B′ are treated as
adjustable parameters, and can vary between 12 to 48, with
a step of 4. W is fixed to the 12-size identity matrix. The
impact of T ′ and B′ is investigated under two rank selec-
tion conditions.

In the first condition (Table 1), the RWC Pop data set
is divided in two subsets (songs with odd vs even ID num-
ber), which are alternatively used as tuning (for global op-
timization of the ranks and the penalty parameter λ) and
test data sets, in a 2-fold cross-validation fashion. Results
shown in the table are averaged over the two folds. Hence,
in this condition, all songs of a test data subset are decom-
posed with the same ranks, namely T ′, B′ = 40, 28 for
odd songs, and 48, 24 for even ones.

In the second condition, presented in Table 2, the NTD
ranks are fitted a posteriori on each song individually: for
each tolerance value, separately, we select the ranks lead-
ing to the best F-measure for the given song. This is called
the “oracle ranks” condition, corresponding to the situa-
tion where a “perfect” rank selection procedure would ex-
ist. Resulting scores provide an (optimistic) performance
upper bound.

These two tables exhibit very competitive results. In the
first (and most realistic) condition, NTD-based segmenta-
tion performance exceeds those of the reference “blind”
methods segmentation. In the “oracle ranks” condition, the
NTD provides higher F-measures than the state-of-the-art,
showing strong potential for the technique, provided an ef-
ficient rank selection method is eventually developed.

6. CONCLUSION AND FUTURE WORK

Designing relevant audio features from music remains one
of the key questions in many MIR tasks. In this paper, we
have proposed a three-way tensor representation of music
in frequency, short-term (frames) and mid-term (bars), and
means to decompose it under the low-rank Nonnegative
Tucker Decomposition (NTD) model. This decomposition
turns out to be able to provide a compressed representation
of interest, capturing salient patterns in music.

We have illustrated the benefits of the method in a struc-
tural segmentation task. The NTD-based representation al-
lows to compute a new type of autosimilarity matrix which
exhibits a better contrast than those directly computed on
2D time-frequency representations, and seems well-suited
to identify musical patterns at the “right” time-scale for the
task. Experimental results are promising and show a poten-
tial to compete with state-of-the-art approaches, may they
be “blind”, or greedier on training data.

Additional research is required to consolidate the tech-
nique. First, as our experiments show, a rank selection
criterion would drastically improve segmentation perfor-
mance. Second, the model does not yet incorporate the no-
tion of proximity between patterns themselves. In parallel,
a number of theoretical questions on model identifiability
and algorithmic convergence also remain open.
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