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Let K be a eld equipped with a valuation. Tropical varieties over K can be de ned with a theory of Gröbner bases taking into account the valuation of K. Because of the use of the valuation, the theory of tropical Gröbner bases has proved to provide settings for computations over polynomial rings over a p-adic eld that are more stable than that of classical Gröbner bases. In this article, we investigate how the FGLM change of ordering algorithm can be adapted to the tropical setting.

As the valuations of the polynomial coe cients are taken into account, the classical FGLM algorithm's incremental way, monomomial by monomial, to compute the multiplication matrices and the change of basis matrix can not be transposed at all to the tropical setting. We mitigate this issue by developing new linear algebra algorithms and apply them to our new tropical FGLM algorithms.

Motivations are twofold. Firstly, to compute tropical varieties, one usually goes through the computation of many tropical Gröbner bases de ned for varying weights (and then varying term orders). For an ideal of dimension 0, the tropical FGLM algorithm provides an e cient way to go from a tropical Gröbner basis from one weight to one for another weight. Secondly, the FGLM strategy can be applied to go from a tropical Gröbner basis to a classical Gröbner basis. We provide tools to chain the stable computation of a tropical Gröbner basis (for weight [0, . . . , 0]) with the p-adic stabilized variants of FGLM of [RV16] to compute a lexicographical or shape position basis.

All our algorithms have been implemented into S M . We provide numerical examples to illustrate time-complexity. We then illustrate the superiority of our strategy regarding to the stability of p-adic numerical computations.

INTRODUCTION

The development of tropical geometry is now more than three decades old. It has generated signi cant applications to very various domains, from algebraic geometry to combinatorics, computer science, economics, optimisation, non-archimedean geometry and many more. We refer to [START_REF] Maclagan | Introduction to tropical geometry[END_REF] for a complete introduction.

E ective computation of tropical varieties are now available using Gfan and Singular (see [START_REF] Jensen | The gfanlib interface in Singular and its applications[END_REF] , [START_REF] Görlach | Computing zero-dimensional tropical varieties via projections[END_REF]). Those computations often rely on the computation of so-called tropical Gröbner bases (we use GB for Gröbner bases in the following). Since Chan and Maclagan's de nition of tropical Gröbner bases taking into account the valuation in [START_REF] Chan | Gröbner bases over elds with valuations[END_REF], computations of tropical GB are available over elds with trivial or non-trivial valuation, using various methods: Matrix F5 in [Va15], F5 in [START_REF] Vaccon | A Tropical F5 algorithm[END_REF][START_REF] Vaccon | On A ne Tropical F5 algorithm[END_REF] or lifting in [START_REF] Markwig | Computing Tropical Varieties Over Fields with Valuation[END_REF].

An important motivation for studying the computation of tropical GB is their numerical stability. It has been proved in [Va15] that for polynomial ideals over a p-adic eld, computing tropical GB (which by de nition take into account the valuation), can be signi cantly more stable than classical GB.

Unfortunately, no tropical term ordering can be an elimination order, hence tropical GB can not be used directly for solving polynomial systems. Our work is then motivated by the following question: can we take advantage of the numerical stability of the computation of tropical GB to compute a shape position basis in dimension zero through a change of ordering algorithm?

In this article, we tackle this problem by studying the main change of ordering algorithm, FGLM [START_REF] Faugère | E cient computation of zero-dimensional Gröbner bases by change of ordering[END_REF]. On the way, we investigate some adaptations and optimizations of this algorithm designed to take advantage of some special properties of the ideal (e.g. Borel-xedness of its initial ideal).

We also provide a way to go from a tropical term order to another. This produces another motivation: di culty of computation can vary signi cantly depending on the term order (see §8.1 of [START_REF] Vaccon | On A ne Tropical F5 algorithm[END_REF]), hence, using a tropical FGLM algorithm, one could go from an easy term order to a harder one in an e cient way.

Finally, we conclude with numerical data to estimate the loss in precision for the computation of a lex Gröbner basis using a tropical F5 algorithm followed by an FGLM algorithm, in an a ne setting, and also numerical data to illustrate the behavior of the various variants of FGLM handled along the way.

Related works

Chan and Maclagan have developed in [START_REF] Chan | Gröbner bases over elds with valuations[END_REF] a Buchberger algorithm to compute tropical GB for homogeneous input polynomials (using a special division algorithm). Following their work, adaptations of the F5 strategies have been developped in [Va15, [START_REF] Vaccon | A Tropical F5 algorithm[END_REF][START_REF] Vaccon | On A ne Tropical F5 algorithm[END_REF] culminating with complete F5 algorithms for a ne input polynomials.

A completely di erent approach has been developped by Markwig and Ren in [START_REF] Markwig | Computing Tropical Varieties Over Fields with Valuation[END_REF], relating the computation of tropical GB in K[X 1 , . . . , X n ] to the computation of standard basis in R t [X 1 , . . . , X n ] (for R a subring of the ring of integers of K). It can be connected to the Gfanlib interface in Singular to compute tropical varieties (see: [START_REF] Jensen | The gfanlib interface in Singular and its applications[END_REF]).

Finally, Görlach, Ren and Zhang have developped in [GRZ19] a way to compute zero-dimensional tropical varieties using shape position bases and projections. Their algorithms take as input a lex Gröbner basis in shape position. Our strategies can be used to provide such a basis stably (precision-wise) when working with p-adic numbers, and be chained with their algorithms.

Notations

Let K be a eld with a discrete valuation val such that K is complete with respect to the norm de ned by val. We denote by R = O K its ring of integers, m K its maximal ideal (with π a uniformizer), and k = O K /m K its fraction eld. We refer to Serre's Local Fields [START_REF] Serre | Local elds[END_REF] for an introduction to such elds. Classical examples of such elds are K = Q p , with p-adic valuation, and Q((X )) or F q ((X )) with X -adic valuation.

The polynomial ring K[X 1 , . . . , X n ] (for some n ∈ Z >0 ) will be denoted by A, and for u = (u 1 , . . . , u n ) ∈ Z n ≥0 , we write x u for X u 1 1 . . . X u n n . For ∈ A, | | denotes the total degree of and A ≤d the set of all polynomials in A of total degree less than d. The matrix of a nite list of polynomials (of total degree ≤ d for some d) written in a basis of monomials (of total degree ≤ d) is called a Macaulay matrix.

For w ∈ Im(val) n ⊂ R n and ≤ m a monomial order on A, we de ne ≤ a tropical term order as in the following de nition:

De nition 1.1. Given a,b ∈ K * = K \ {0} and x α and x β two monomials in A, we write ax α < bx β if:

• |x α | < |x β |, or • |x α | = |x β |, and val(a) + w • α > val(b) + w • β, or • |x α | = |x β |, val(a) + w • α = val(b) + w • β and x α < m x β .
For u of valuation 0, we write

ax α = ≤ uax α . Accordingly, ax α ≤ bx β if ax α < bx β or ax α = ≤ bx β .
Leading terms (LT ) and leading monomials (LM) are de ned according to this term order. See Subsec. 2.3 of [START_REF] Vaccon | On A ne Tropical F5 algorithm[END_REF] for more information on this de nition and its comparison with Def. 2.3 of [START_REF] Chan | Gröbner bases over elds with valuations[END_REF].

Let I ⊂ A be a 0-dimensional. Let B ≤ the canonical linear K-basis of A/I made of the x α LM ≤ (I ). Let δ be the cardinality of B ≤ . We denote by B ≤ the border of B ≤ (i.e. the x k x α for k ∈ 1, n such that x α ∈ B ≤ and x k x α not in B ≤ ). N F ≤ is the normal form mapping de ned by I and ≤ . We de ne D such that

D = 1 + max x α ∈B ≤ |x α |.

MULTIPLICATION MATRICES

The rst task in the FGLM strategy is to develop the tools for computations in A/I . The main ingredients are the multiplication matrices, M 1 , . . . , M n , corresponding to the matrices of the linear maps given by the multiplication by x i written in the basis B ≤ .

Once they are known, it is clear that one can perform any Kalgebra operation on elements of A/I written in the basis B ≤ .

To compute those matrices, a natural strategy is to go through the computation of the normal forms N F (x i x α ) for x α ∈ B ≤ .

We investigate in this section how to proceed with this task, and how it compares to the classical case.

Linear algebra

We recall here the tropical row-echelon form algorithm of [Va15] that we use for computing normal forms using linear algebra.

Algorithm 1: The tropical row-echelon form algorithm input : M, a Macaulay matrix of degree d in A, with n r ow rows and n col columns, and mon a list of monomials indexing the columns of M. output : M, the U of the tropical LUP-form of M 1 M ← M ; 2 for i = 1 to n r ow do 3 Find j such that M[i, j] has the greatest term M[i, j]x mon j for ≤ of the row i ;

4 Swap the columns i and j of M, and the i and j entries of mon ;

5

By pivoting with the i-th row, eliminates the coe cients of the other rows on the rst column; ;

6 Return M ;

We refer the interested reader to [Va15, VVY18]. We illustrate this algorithm with the following example.

Example 2.1. We present the following Macaulay matrices, over Q 3 [x, ] with w = (0, 0), and ≤ m be the graded lexicographical ordering. The second one is the output of the tropical LUP algorithm applied on the rst one. The monomials indexing the columns are written on top of the matrix.

x 4 x 3 4 x 2 x 2 1 3 1 9 3 9 9 9 9 3 1 9

x 4 x 2 x 3 x 4 2 1 3 1 0 -57 35 9 0 9 -162 35 -35 0 -18 .
If all four polynomials represented by the matrix belong to some ideal I (and assuming that 4 , 2 ∈ B ≤ (I )) then we can conclude that N F ≤ (x ) = -18 35 2 and N F ≤ (x 3 ) = -4 + 18 35 2 .

Comparison with classical case

The classical strategy to compute the N F ≤ m (x i x α ) (x α ∈ B ≤ m ) when working with a monomial ordering ≤ m , starting with a reduced GB G, is to set apart the following only three cases possible:

(Type 1) x i x α ∈ B ≤ m ; (Type 2) x i x α ∈ LT (G); (Type 3) x i x α ∈ LT ≤ m (I ) but neither in B ≤ m nor in LT (G). Type 1 is the easiest, as in this case N F ≤ m (x i x α ) = x i x α . Type 2 is not very di cult either. If for some ∈ G, LM( ) = x i x α , = x i x α + x β ∈B ≤m c β x β , then as G is reduced, we get directly that N F ≤ m (x i x α ) = -x β ∈B ≤m c β x β .
Type 3 is the trickiest. We assume that we have already computed all the N F (x j x β ) for x j x β < m x i x α . Let x k be the smallest (for ≤ m ) variable dividing x i x α . Then the normal form

N F x i x α x k = x β ∈B ≤m , x β < m x i x α x k c β x β
is already known. As in the previous sum,

x β < m x i x α
x k , then x k x β < m x i x α , and all the N F (x k x β )'s are also already known. Therefore, we can write

N F (x i x α ) = x β ∈B ≤m , x β < m x i x α x k c β N F (x k x β ),
and N F (x i x α ) can be obtained from the previous normal forms.

It is easy to see that the cost of computation of a normal form in the third case is in O(δ 2 ) eld operations. The other two cases are negligible. As there are O(nδ ) multiples to consider, the total cost for the computation of the multiplication matrices is in O(nδ 3 ) eld operations.

Unfortunately, this strategy can not be completely generalized to the tropical context. There is no issue with the rst two computations. However, there is no straightforward way to adapt the third one. We illustrate this failure with the following example.

Example 2.2. Over Q 3 [x, ] with ≤ de ned by w = (0, 0), and ≤ m , the graded lexicographical ordering, let us take I = f 1 , f 2 , f 3 , f 4 with f 1 = x 7 , f 2 = x 4 2 + 3x 5 + 12x 3 3 + 9x 5 , f 3 = x 2 4 + 9x 5 + 18x 3 3 + 9x 5 , f 4 = 6 + 12x 5 + 3x 3 3 + 6x 5 . The rst monomials of the third type arrive in degree 7, namely x 6 , x 2 5 , x 4 3 , x 5 2 . Due to the fact that we use a tropical term order, f 2 , f 3 , and f 4 all involve the monomials x 5 , x 3 3 , x 5 . In consequence if one wants to use multiples of the N F (x 4 2 ), N F (x 2 4 ), N F ( 6 ), one gets quantity involving each three monomials among x 6 , x 2 5 , x 4 3 , and x 5 2 . They are all intertwined, and the trick we saw previously for monomials of the third type can not be used.

Tropical GB: General case

To untangle the reduction of monomials of the third type, we can use linear algebra. We have to proceed degree by degree. While monomials of the rst type do not need any special proceeding, we need to interreduce the reductions of the monomials of the second and third types. The general strategy is described in Algorithm 2. P 2.3. Algorithm 2 is correct, and is in O(n 3 δ 3 ) eld operations over K.

P

. The essentially di erent part compared to the classical case starts on Line 13. Lines 16 and 18 are crucial. By de nition, monomials of the third type are in LT (I ). If x α ∈ L can not be written as x k x β with x β of type 2 or 3, it means that all its divisors are in B ≤ . Consequently, it is a minimal generator ot LT (I ) and is Algorithm 2: Multiplication matrices computation algorithm input : A reduced GB G of the ideal I for ≤, a tropical term ordering. output :M 1 , . . . , M n the multiplication matrices of A/I (over the basis B ≤ ). 1 Using LT (G), compute B ≤ (and δ = ♯(B ≤ )); 2 De ne M 1 , . . . , M n as zero matrices in K δ ×δ , their rows and columns are indexed by the x α ∈ B ≤ ;

3 Compute L = {x i x α , for i ∈ 1, n and x α ∈ B ≤ }. ; 4 Compute L = L ∩ (B ≤ ∪ LT (G)) c ; 5 for x α ∈ L ∩ B ≤ do 6 for i such that x i divides x α do 7 Set M i [x α , x α x i ] = 1 ; /* The column indexed by x α x i is zero, except on its coefficient indexed by x α /x i */ 8 for x α ∈ L ∩ LT (G) do 9
Take ∈ G such that can be written

= x α + x β ∈B ≤ x β x β ; 10 for i such that x i divides x α do 11 for x β ∈ B ≤ do 12 Set M i [x β , x α x i ] = -x β ;
13 Set M to be a matrix over K with 0 rows and with columns indexed by L ∪ LT (G) ∪ B ≤ . ; ;

22 for i such that x i divides x α do 23 for x β ∈ B ≤ do 24 Set M i [x β , x α x i ] = - M [s, x β ] M [s, x α ] ; 25 Return M 1 , . . . , M n
of type 2, which is a contradiction. Therefore, any monomial of the third type is a simple multiple of a monomial of type 2 or 3.

As in the for loop on Line 14, we proceed by increasing degree, it is an easy induction to prove that such desired x i and exist.

For the complete set of reducers on Line 18, we use the fact that the monomials appearing in M all are in B ≤ ∪ L, again by an easy induction (using the fact that the rows of M in previous degree are already reduced), and therefore, the complete set of reducers can be built.

The Tropical Row-echelon form computation then produces the desired normal forms. The correctness is then clear.

Regarding to the arithmetic complexity, we should note that both rows and columns of M are indexed by monomials in L ∪ B ≤ and there are O(nδ ) of them. With the row-reduction, the total cost is then in O(n 3 δ 3 ) arithmetic operations.

Remark 2.4. The matrix M is sparse: any row added to the matrix on Line 17 has at most δ + 1 non-zero coe cients: it is obtained as the multiple of a reduced row. Can we take advantage of this 1 n sparsity ratio for a better complexity?

Example 2.5. Let G = ( + 2x, x 2 + 4) be a GB for w = [0, 0] and grevlex of the ideal it spans in

Q 2 [x, ]. Then B ≤ = {1, x }, L = {x, , x 2 , x } and L = {x }. Only d = 2 is considered on Line 4 of Algorithm 2.
The following matrices represent respectively M before and after applying Algorithm 1, M 1 and M 2 :

x 2 x 1 2 1 0 1 0 4 x x 2 1 1 0 -8 0 1 4 (x * ) 1 x 1 0 -4 x 1 0 ( * ) 1 x 1 0 8 x -2 0 , , , .

Finite precision

We can now analyze the loss in precision when applying Algorithms 1 and 2. To prevent loss in precision to explode exponentially, we replace Line 5 of Algorithm 1 with the following two rows:

(1) By pivoting using the 'leading terms' of the rows j for j > i, eliminate all the coe cients possible of row i ; (2) By pivoting with row i, eliminate all the coe cients on the i-th column.

The rst row makes sense because by construction, all the rows of M have distinct leading terms, and this is kept unchanged during the pivoting process. P 2.6. Let us assume that the matrix built on Line 17 of Algorithm 2 has coe cients in K known at precision O(π N ). All rows have distinct leading terms, leading coe cient 1 and let us take Ξ be the smallest valuation of a coe cient of this matrix M . We assume that Ξ ≤ 0. Let l = rank(M ). We assume that N > -l 2 Ξ. Then, after the application of Algorithm 1 1 , the coe cients of the obtained matrix M are known at precision O(π N +l 2 Ξ ), and the smallest valuation of a coe cient M is lower-bounded by lΞ.

P

. After the reduction of row 1 by the other rows, the smallest valuation on row 1 is lower-bounded by lΞ and its coe cients are known at precision at least O(π N +l Ξ ). The coe cients of row 1 for the columns indexed by L ∪ LT (G) are all zeros, except for its leading coe cient, which is 1 + O(π N +(l -1)Ξ ). After the reduction of the other rows by row 1, on the rows of index > 1, the coecients for the columns indexed by L ∪ LT (G) are of valuation at least Ξ and known at precision O(π N +l Ξ ). The coe cients for the columns indexed by B ≤ are of valuation at least lΞ and known at 1 using the modi cation presented just above this proposition the same precision. The desired result follows by an easy induction argument.

We then upper-bound the loss in precision for the whole computation of the multiplication matrices. Recall that: D = 1+ max

x α ∈B ≤ |x α |. P 2.7.
Let us assume that the smallest valuation of a coe cient of G is Ξ and that the coe cients of G are known at precision O(π N ). As G is reduced, we get that Ξ ≤ 0.

Then the coe cients of the matrices M 1 , . . . , M n are of valuation at least (nδ ) D Ξ, and are known at precision O π

N + (nδ ) 2D+2 -1 (nδ ) 2 -1 Ξ .
P . This is a corollary to the previous proposition. There are at most D calls to the previous proposition, with matrices of ranks l 1 , . . . , l D . Consequently, the upper bound on the valuation is l 1 . . . l D Ξ and the precision is in

O(π N +(l 2 1 +l 2 1 l 2 2 +•••+l 2 1 ...l 2 D )Ξ ) which is in O(π N +D(l 2 1 ...l 2 D )Ξ )
As for all i, l i ≤ nδ , we get the desired bounds.

Remark 2.8. In the very favorable case where G is homogeneous and w = [0, . . . , 0], we get that Ξ = 0, and no loss in precision is happening. This is unfortunately not the most interesting case for polynomial system solving. Numerical data in Section 5 will show that loss in precision remain very reasonnable when using w = [0, . . . , 0] even in the a ne case.

Using semi-stability

Following Huot's PhD thesis [START_REF] Huot | Résolution de systèmes polynomiaux et cryptologie sur les courbes elliptiques[END_REF], when Borel-xedness (see Subsec. 3.2) or semi-stability properties are satis ed, many arithmetic operations can be avoided during the computation of the multiplication matrices. We begin with semi-stability.

De nition 2.9. I is said to be semi-stable for x n if for all x α such that x α ∈ LM(I ) and x n | x α we have for all k ∈ 1, n -1 x k

x n x α ∈ LM(I ).

Semi-stability's application is explained in Proposition 4.15, Theorem 4.16 and Corollary 4.19 of [START_REF] Huot | Résolution de systèmes polynomiaux et cryptologie sur les courbes elliptiques[END_REF] (see also Section 4 of [START_REF] Faugère | Sub-cubic Change of Ordering for Gröbner Basis: A Probabilistic Approach[END_REF]). We recall the main idea here with its adaptation to the tropical setting: P 2.10. If I is semi-stable for x n , M n can be read from G and requires no arithmetic operation.

P

. The proof is the same as that of Theorem 8 of [START_REF] Faugère | Sub-cubic Change of Ordering for Gröbner Basis: A Probabilistic Approach[END_REF]. We prove that L ∩

x n B ≤ = ∅. Let x n x α ∈ L ∩ x n B ≤ , with x α ∈ B ≤ .
Then there is some monomial m and ∈ G such that LM(m

) = x n x α . As x α ∈ B ≤ , we get that x n ∤ m. Since x n x α ∈ L, then |m| ≥ 1. Let k < n be such that x k | m. Then, by semi-stability for x n , x α = m x k × x k LM( ) x n
∈ LM(I ), which is a contradiction.

Thanks to Proposition 2.10, Algorithm 3 is correct, and its arithmetic cost is given by the following proposition. P 2.11. Given a reduced GB G of the ideal I for ≤, a tropical term ordering, and assuming I is semi-stable for x n , then M n can be computed in O(δ 2 ) arithmetic operations, which are only computing opposites.

Algorithm 3: Computing M n , when semi-stable for x n input : A reduced GB G of the ideal I for ≤, a tropical term ordering, assuming I is semi-stable for x n output : M n the matrix of the multiplication by x n in A/I 1 Using LT (G), computes B ≤ (and δ = ♯(B ≤ )); 2 De ne M n as a zero matrix in K δ ×δ , its rows and columns are indexed by the x α ∈ B ≤ ;

3 Compute L n = {x n x α , for x α ∈ B ≤ }. ; 4 for x α ∈ L n ∩ B ≤ do 5 Set M n [x α , x α x n ] = 1 ; 6 for x α ∈ L n ∩ LT (G) do 7
Take ∈ G such that can be written

= x α + x β ∈B ≤ x β x β . for x β ∈ B ≤ do 8 Set M n [x β , x α x i ] = -x β ; 9 Return M n ;
To apply the previous result to compute a GB in shape position in Subsection 4.2, we need to also compute the N F (x i )'s. The following lemma states that this is not costly. L 2.12. Given a reduced GB G of the ideal I for ≤, a tropical term ordering, then the N F ≤ (x i )'s can be computed in O(nδ ) arithmetic operations, which are only computing opposites.

P

. It is a consequence of the fact that ≤ is degree-compatible: for any i, x i is either in LT (G) or in B ≤ . Subsection 4.2 will apply the previous two results to obtain a fast algorithm to compute a shape-position basis.

Remark 2.13. For grevlex in the classical case, it is known that after a generic change of variable, I is semi-stable for x n . The reason is that after a generic change of variable, LT (I ) is equal to the GIN of I (see De nition 4.1.3 of [START_REF] Herzog | Monomial Ideals[END_REF]) , which is known to be Borelxed, and Borel-xedness implies semi-stability for x n . In Section 3, we investigate whether this strategy is still valid in the tropical case.

GIN AND BOREL-FIXED INITIAL IDEAL

In this section, we introduce the tropical generic initial ideal of a 0-dimensional ideal analogously to the classical case, and study its properties of Borel-xedness and semi-stability. The desired goal is to be able to use the fast Algorithm 3 after a (generic) change of variable.

Tropical GIN

We follow the lines of Chapter 4 of [START_REF] Herzog | Monomial Ideals[END_REF], and use the usual action of GL n (K) on A:

(η, f (x)) ∈ GL n (K) × A → η(f ) := f (η ⊤ • x). De nition 3.1. An external product of monomials x α 1 ∧ • • • ∧x α k is called a standard exterior monomial if x α 1 ≥ • • • ≥ x a k . If its monomial is standard, a term cx α 1 ∧ • • • ∧ x α k
is called a standard exterior term. We de ne an ordering on standard exterior terms by setting that:

cx α 1 ∧ • • • ∧ x α k ≥ dx β 1 ∧ • • • ∧ x β k if val(c) + k i =1 w • α i < val(d)+ k i =1 w •β i , or val(c)+ k i =1 w •α i = val(d)+ k i =1 w
•β i and there exists 1 ≤ j ≤ k s.t. x α j > x β j and x α i = x β i for all i < j. We then de ne the leading term of an external product of polynomials f 1 ∧ • • • ∧ f k as its largest term, and denote it by

LT (f 1 ∧ • • • ∧ f k ). The monomial of the leading term is denoted by LM(f 1 ∧ • • • ∧ f k ). L 3.2. Let (f 1 , . . . , f t ) ∈ A t . If LT (f 1 ) > • • • > LT (f t ), then LT (f 1 ∧ • • • ∧ f t ) = LT (f 1 ) ∧ • • • ∧ LT (f t ). P . Let c i be the coe cient of LM(f i ) in f i . Then, c = c i is the coe cient of Γ = LT (f 1 )∧• • •∧LT (f t ) in f 1 ∧• • •∧ f t . We may assume that the f i 's are ordered such that cLT (f 1 ) ∧ • • • ∧ LT (f t ) is a standard exterior term. Let ∆ = d 1 ∧ • • • ∧ t be another term in f 1 ∧ • • • ∧ f t and d i the coe cient of i in f i . Let x α i = LM(f i ) and x β i = i . Since c i x α i is the leading term of f i , it follows that val(c i ) + w • α i ≤ val(d i ) + w • β i . Thus, t i =1 (val(c i ) + w • α i ) ≤ t i =1 (val(d i ) + w • β i ). As val(c) = t i =1 c i and val(d) = t i =1 d i , we obtain val(c) + k i =1 w • α i ≤ val(d) + k i =1 w • β i .
If the inequality is strict then Γ is strictly bigger than any permutation of the monomials of ∆ such that a standard exterior term is obtained. If equality holds. Then, for all i, val(c i ) + w • α i = val(d i ) + w • β i and x α i ≥ x β i . As Γ is a standard exterior term, we deduce that also in this case, Γ is strictly bigger than any permutation of the monomials of ∆ such that a standard exterior term is obtained. L 3.3. Let V ⊂ A be a t-dimensional K-vector space. Let w 1 , . . . , w t be monomials with w 1 > • • • > w t . Then the following conditions are equivalent.

(1) the monomials w 1 , . . . ,

w t form a K-basis of LT (V ), (2) if (f 1 , . . . , f t ) is a K-basis of V , then LM(f 1 ∧ • • • ∧ f t ) = w 1 ∧ • • • ∧ w t , (3) there exists a K-basis (f 1 , . . . , f t ) of V s.t. LM(f 1 ∧ • • • ∧ f t ) = w 1 ∧ • • • ∧ w t .

P . (1) ⇒ (2):

We may assume that the f j 's are monic and

LT (f 1 ) > • • • > LT (f t ). Since LT (f i ) ∈ LT (V ), there is j(i) s.t. LT (f i ) = w j(i ) . As w 1 > 1 • • • > 1 w t , we obtain j(i) = i and LT (f i ) = w i for all i. By Lemma 3.2, LT (f 1 ∧• • •∧ f t ) = LT (f 1 )∧• • •∧LT (f t ) = w 1 ∧ • • • ∧ w t .
(2) ⇒ (3): It is obvious by choosing a K-basis f 1 , . . . , f t of V .

(3) ⇒ (1): Since dim(V ) = dim(LT (V )) and w 1 , . . . , w t is linear independent, it is enough to show that w i ∈ LT (V ). Let f 1 , . . . , f t be monic polynomials forming a K-basis of V with LT (f 1 ) >

• • • > LT (f t ) and LT (f 1 ∧ • • •∧ f t ) = w 1 ∧ • • • ∧w t . By Lemma 3.2, LT (f 1 ∧ • • • ∧ f t ) = LT (f 1 ) ∧ • • • ∧ LT (f t ) and thus w i ∈ LT (V ). P 3.4. Let V ⊂ A d be a t-dimensional K-vector space and f 1 , . . . , f t a basis of V . Let cw 1 ∧ • • • ∧ w t be
the largest (up to multiplication by an element of valuation 0) standard exterior term of t A ≤d such that there exists η ∈ GL n (R) with

LT (η(f 1 ) ∧ • • • ∧ η(f t )) = cw 1 ∧ • • • ∧ w t . Let U V = {η ∈ GL n (R) | LT (η(f 1 ) ∧ • • • ∧ η(f t )) = ε × cw 1 ∧ • • • ∧ w t , val(ε) = 0}. Then, U V is open in GL n (R)
and for any η,υ ∈ U V , LT (ηV ) = LT (υV ).

P

. As only a nite amount of monomials are possible and val(R) is discrete and ≥ 0, U V is well-de ned. The valuation being discrete,

U V is open: LT (η(f 1 ) ∧ • • • ∧ η(f t )) = ε × cw 1 ∧ • • • ∧ w t amounts to val(q(η)) < ν for carefully chosen ν ∈ R and polyno- mial q ∈ Z[k n×n ]. The last statement follows from Lemma 3.3. From Lemma 3.3, w 1 ∧ • • • ∧w t in Prop 3.4 is independent of the choice of basis of V . For d ∈ Z ≥0 , let I ≤d = I ∩ A ≤d .
T 3.5. Let I be a 0-dimensional ideal with δ = dim K K[X ]/I . We consider the nite dimensional K-vector space I ≤δ . Then the nonempty open set U I := U I ≤δ ⊂ GL n (R) satis es that LT (ηI ) = LT (υI ) for any η,υ ∈ U I .

P

. Let η ∈ U I . We denote LT (ηI ≤d ) by ≤d . Then ≤d = LT (υI ≤d ) for all υ ∈ U I and d > δ . Indeed, since LT (ηI ≤δ ) contains the initial terms in the reduced Gröbner basis G of ηI ,

≤d ⊂ A ≤d -δ LT (ηI ≤δ ) = A ≤d -δ LT (υI ≤δ ) ⊂ LT (υI ≤d ). As dim K ( d ) = dim K (LT (υI d )), we obtain d = LT (υI d ) for all υ ∈ U I . Since LT (ηI ) = ∞ d =δ ≤d
, then LT (ηI ) = LT (υI ) for any η,υ ∈ U I , which concludes the proof.

De nition 3.6. We call LM(ηI ), with η ∈ U I ⊂ GL n (R) as given in Theorem 3.5, the tropical generic initial ideal (tropical gin) of I .

Unfortunately, U I is not a Zariski-open subset of GL n (R) in general, hence the generic in the name "tropical gin" is only given as a reference to the classical case. The following proposition is a consolation.

P 3.7. Assume k is in nite. Then U I mod π := {η mod π, for η ∈ U I } is a non-empty Zariski-open set of GL n (k).
P . Let q be the polynomial de ning U I ≤δ in the proof of Theorem 3.5. One can replace q by some q/π l so that q = q mod π is non-zero, and one can check that consequently, since k is in nite, U I mod π = {x ∈ GL n (k) : q(x) 0} and this is a non-empty Zariski-open set of GL n (k).

Remark 3.8. If, e.g., R = R t , and one takes η ∈ GL n (R) at random using a nonatomic distribution over R, then η belongs to U I with probability one.

Borel-xedness

In classical cases, a generic initial ideal is Borel-xed ideal i.e. it is xed under the action of the Borel subgroup B ⊂ GL n (K), which is the subgroup of all nonsingular upper triangular matrices. In tropical cases, a generic initial ideal is not always Borel-xed. However, it can be Borel-xed under some conditions. Example 3.9. Let I = (x 2 , 2 ) and K = Q 2 (using w = [0, 0] and grevlex). Then in degree two, for a generic change of variables of

x 2 ∧ 2 by the matrix a b c d , we get in K[x, ] K[x, ]: 2(a 2 bd -ab 2 c)x 2 ∧x + (a 2 d 2 -b 2 c 2 )x 2 ∧ 2 + 2(acd 2 -bc 2 d)x ∧ 2 .
Hence the tropical GIN is x 2 ∧ 2 for degree two, and is therefore not Borel-xed, nor semi-stable for .

De nition 3.10. Let B ⊂ GL n (O K ) be the subgroup generated by nonsingular upper triangular matrices whose diagonal entries have valuation 0. We call B a Borel subgroup. We say that a monomial ideal is tropical Borel-xed if is xed under the action of B.

A direct adaptation of Theorem 4.2.1 and Prop. 4.2.4 of [START_REF] Herzog | Monomial Ideals[END_REF] states that the usual properties of the GIN are preserved, under some conditions. P 3.11. Let d be the maximal total degree of the reduced GB of the tropical generic initial ideal of I . If K = Q p and p ≥ d, or if val(Z \ {0}) = {0}, then the tropical generic initial ideal of I is tropical Borel-xed and moreover, semi-stable for x n .

TROPICAL FGLM

In this section, we investigate the second part of the FGLM strategy. Namely, the multiplication matrices of A/I have been computed using the algorithms of Section 2, and we can now perform operations in A/I e ciently.

The strategy is then to go through projections in A/I of monomials and nd linear relations among them. When done carefully, these relations provide polynomials in I , whose leading terms for the new term order can be read on the monomials de ning the relation. When processed in the right order, we can obtain from these polynomials a minimal GB of I for our new term order.

Tropical to classical

We rst begin with the easiest case of starting from a tropical GB and computing a classical GB.

It is clear that once the multiplication matrices are obtained, we can directly apply the classical FGLM algorithm (namely Algorithm 4.1 of [START_REF] Faugère | E cient computation of zero-dimensional Gröbner bases by change of ordering[END_REF], see also Algorithm 8 of [START_REF] Huot | Résolution de systèmes polynomiaux et cryptologie sur les courbes elliptiques[END_REF]), or its p-adic stabilized version: Algorithm 3 of [START_REF] Vaccon | On the p-adic stability of the FGLM algorithm[END_REF]. This part is in O(nδ 3 ) arithmetic operations. We refer to Prop 3.6 of loc. cit. and obtain the following propositions. Behavior regarding to precision can be stated the following way. P 4.2. Let ≤ 1 be a tropical term ordering and ≤ 2 be a monomial ordering. Let G be an approximate reduced tropical GB for ≤ 1 of the ideal I , with coe cients known up to precision O(π N ). Let Ξ be the smallest valuation of a coe cient in G. Let B ≤ 1 and B ≤ 2 be the canonical bases of A/I for ≤ 1 and ≤ 2 . Let M be the matrix whose columns are the N F ≤ 1 (x β ) for x β ∈ B ≤ 2 . Let cond ≤ 1 , ≤ 2 (I ) be the biggest valuation of an invariant factor in the Smith Normal Form of M.

Recall that D = 1 + max x α ∈B ≤ |x α |. Then if N > 2cond ≤ 1 , ≤ 2 (I ) -(nδ ) 2D+2 -1 (nδ ) 2 -1
Ξ, we can chain Algorithm 2 and Algorithm 3 of [START_REF] Vaccon | On the p-adic stability of the FGLM algorithm[END_REF] to obtain an approximate GB G 2 of I for ≤ 2 . The coe cients of the polynomials of G 2 are known up to

precision O π N + (nδ ) 2D+2 -1 (nδ ) 2 -1 Ξ-2cond ≤ 1 , ≤ 2 (I ) .

Tropical to shape position

We can apply any classical FGLM algorithm if K is an exact eld, or a stabilized variant using Smith Normal Form, as in Algorithm 6 of [START_REF] Vaccon | On the p-adic stability of the FGLM algorithm[END_REF]. We refer to Prop. 4.5 of loc. cit.. Complexity is very favorable when we have the combination of Borel-xedness and shape position. P 4.3. If I is in shape position and semi-stable for x n , then we can combine Algorithm 3 with Algorithm 6 of [START_REF] Vaccon | On the p-adic stability of the FGLM algorithm[END_REF]). The time-complexity is in O(nδ 2 ) + O(δ 3 ) arithmetic operations. P 4.4. Let G 1 be an approximate reduced GB of I , with coe cients known at precision O(π N ). Let Ξ be the smallest valuation of a coe cient in G 1 . If ≤ 2 is lex, and if we assume that the ideal I is in shape position and LM ≤ 1 (I ) is semi-stable for x n , then the adapted FGLM in Algorithm 6 of [START_REF] Vaccon | On the p-adic stability of the FGLM algorithm[END_REF]), computes an approximate GB G 2 of I for lex, in shape position. The coe cients of the polynomials of G 2 are known up to precision O(π N -2cond ≤ 1 , ≤ 2 +δ Ξ ). Moreover, we can read on M whether the precision was enough or not, and hence prove after the computation that the result is indeed an approximate GB.

Tropical (or classical) to tropical

We conclude our series of algorithms with a new algorithm to compute a tropical GB of I of dimension 0 knowing the multiplication matrices of A/I .

In the classical case, the vanilla FGLM algorithm goes through the monomials x α in ascending order for ≤ 2 , test whether x α is in the vector space generated (in A/I ) by the monomials x β such that x β < 2 x α , and if so, produce a polynomial in the GB in construction from the relation obtained by this linear relation.

In the tropical case, because of the fact that coe cients have to be taken into account, a relation (in A/I ) between x α and some monomials x β such that x β < 2 x α is not enough to ensure that x α ∈ LT ≤ 2 (I ). We deal with this issue by (1) taking all monomials of a given degree at the same time, in a big Macaulay matrix, and (2) reducing them with a special column-reduction algorithm so as to preserve the leading terms.

The linear algebra algorithm is presented in Algorithm 5, with the general tropical FGLM algorithm in Algorithm 4.

The fact that Algorithm 5 computes a column-echelon form of the matrix (up to column-swapping) along with the pivoting matrix is clear. What is left to prove is the compatibility of the pivoting process with the computation of the normal forms and the leading terms according to ≤ 2 . It relies on the following loop-invariant. P 4.5. At any point during the execution of Algorithm 5, for any x α , the column of M indexed by x α corresponds to the normal form N F ≤ 1 (H ) (with respect to ≤ 1 ) of some polynomial H with LT ≤ 2 (H ) = x α . P . It is true by construction for any column when entering Algorithm 5. Also by construction, all columns are labelled by distinct monomials. Now let us assume that on Line 4, we are eliminating a coe cient d on the column labelled by x β using a coe cient c on the column labelled by x α as pivot. Because of the choice of pivot on Line 3, we get that c -1 x α < 2 d -1 x β . Let us assume that the column indexed by x α corresponds to N F ≤ 1 (H ) with LT ≤ 2 (H ) = x α , and the column indexed by x β corresponds to

N F ≤ 1 (Q) with LT ≤ 2 (Q) = x β . Please note that x α x β . Then af- ter pivoting the second column corresponds to N F ≤ 1 (Q -dc -1 H ). As LT ≤ 2 (dc -1 H ) = dc -1 x α < 2 x β ,
the loop-invariant is then preserved, which is enough to conclude the proof. For all the new columns indexed by x α that reduced to zero, add to G the polynomial x αγ α P γ , α x γ , and remove the multiples of x α from L ;

9 Add to L the x i x α for all i and for all x α new column in M that did not reduce to zero, and remove the duplicates ;

10 d ← d + 1 ;
11 Return G Algorithm 5: Column reduction for FGLM input : M a δ × l matrix over K, whose rows and columns are indexed by monomials. A tropical term ordering ≤. An invertible s × s matrix P . output : A column-reduction of M compatible with ≤, an updated P . 1 if M = 0 then Return M, P ; 2 Find the coe cient M[i, j] of row indexed by x β and column indexed by x α such that M[i, j] -1 x α is smallest, and using smallest x β to break ties ;

3 Use this non-zero coe cient to eliminate the other coe cients on the same row ;

4 Update P accordingly ; 5 Proceed recursively on the remaining rows and columns ; 6 Return M, P P . We use the following loop-invariant: after Line 9 is executed, LT ≤ 2 (G) contains all the minimal generators in LT ≤ 2 (I ) of degree ≤ d, they each correspond to a reduced-to-zero column of M, and the x β corresponding to non-reduced-to-zero columns of M are all in N S ≤ 2 (I ). The proof for this invariant is as follows. As ≤ 2 is degree-compatible, it is clear by linear algebra that rank(M) = dim(A ≤d /I ≤d ). Thanks to Proposition 4.5, the polynomials added to G are in I , and more precisely, f = x αγ P γ , α x γ as in Line 8 is a polynomial such that LT ≤ 2 (f ) = x α and N F ≤ 1 (f ) = 0, as given in the Proposition. Their LT ≤ 2 's are minimal generators of LT ≤ 2 (I ) by construction (all multiples of previous generators have been erased). By a dimension argument, no minimal generator is missing.

Once d is big enough for all minimal generators of LT ≤ 2 (I ) to have been produced, no monomials can be left in L and the algorithm terminates. Termination and correctness are then clear.

As columns are labelled by some x i x α with x α ∈ N S ≤ 2 (I ) then at most nδ columns are produced in the algorithm. As the rank of M is δ and so is also its number of rows, the column-reduction of a given column costs O(δ2 ) arithmetic operations. Consequently, the total cost of the algorithm is in O(nδ 3 ) arithmetic operations.

Remark 4.7. The previous algorithm remarkably bears the same asymptotic complexity as the vanilla classical FGLM algorithm (O(nδ 3 ) arithmetic operations), regardless of the more involved linear algebra part. Could fast linear algebra also be applied here?

Example 4.8. Let (x + 1 2 , 2 + 1) be a GB of the ideal it spans, for w = [0, -1] and grevlex. We compute a GB of the same ideal for w = [0, 0] and grevlex. The following matrices are: the polynomials added to M (in three batches, by degree), the nal state of M and the nal P . In the end, we get ( + 2x, x 2 + 1 4 ) as the output GB.

1 x x 2 1 1 -2 -2 -2 -1 1 1 x x 2 1 1 0 0 -2 -1 0 0 1 2 -2 1 2 1 1 , , P =

NUMERICAL DATA

A toy implementation of our algorithms in S M [Sage] is available on https://gist.github.com/TristanVaccon. The following arrays gather some numerical results. The timings are expressed in seconds of CPU time. 2

Tropical to classical

For a given p, we take three polynomials with random coe cients in Z p (using the Haar measure) in Q p [x, , z] of degrees 2 ≤ d 1 ≤ d 2 ≤ d 3 ≤ 4. D = d 1 + d 2 + d 3 -2 is the Macaulay bound. We rst compute a tropical GB for the weight w = [0, 0, 0] and the grevlex monomial ordering, and then apply Algorithms 2 and 4 to obtain a lex GB. We compare with the strategy of computing a classical grevlex GB and then applying FGLM to obtain a lex GB. For any given choice of d i 's, the experiment is repeated 50 times. Coe cients of the initial polynomials are given at high-enough precision O(p N ) for no precision issue to appear (see [START_REF] Vaccon | On the p-adic stability of the FGLM algorithm[END_REF] for more on FGLM at nite precision).

Coe cients of the output tropical GB or classical GB are known at individual precision O(p N -m ) (for some m ∈ Z)). We compute the total mean and max on those m's on the obtained GB. In the rst following array, we provide the mean and max for the tropical strategy. In the second, to compare classical and tropical, we provide couples for the mean on the 50 ratios of timing per execution (t), along with the arithmetic (Σ) and geometric (π ) mean of the 50 ratios of mean loss in precision per execution. Data for p = 101 or 65519 are not worth for these ratios as the loss in precision is 0 most of the time.

14 for d a

  degree of a monomial in L (in ascending order) do 15 for x α ∈ L of degree d do 16 Find x i , and either in G or as a row of M such that LT (x i ) = x α ; 17 Stack x i at the bottom of M ; 18 Using multiples of the form x i or , for either in G or as a row of M , nd a complete set of reducers for all the monomials in L ∪ LT (G) appearing with a non-zero coe cient in their column, and stack them at the bottom of M ; Compute the Tropical Row-echelon form of M by Algorithm 1 and replace M with it ; 20 for x α ∈ L do 21 Take the row s of M with leading coe cient x α .

P 4. 1 .

 1 The total complexity to compute a classical GB of I starting from a tropical GB is in O(n 3 δ 3 ) arithmetic operations.

T 4. 6 .6

 6 Algorithm 4 terminates and is correct: its output is a GB of the ideal I for ≤ 2 . It requires O(nδ 3 ) arithmetic operations. Algorithm 4: A tropical FGLM algorithm input : M 1 , . . . , M n the multiplication matrices of A/I , in a basis B ≤ 1 for a tropical term ordering ≤ 1 , a tropical term ordering ≤ 2 . output : A GB G of the ideal I for ≤ 2 . 1 L ← {1}, G ← ∅, d ← 1 ; 2 M ← the matrix with δ rows and 0 columns ; 3 P ← the matrix with 0 rows and 0 columns ; 4 while L ∅ do 5 Stack on the right of M all the monomials in L of degree d, written in the basis B ≤ 1 using the multiplication matrices ; Remove those monomials from L ; 7 Apply Algorithm 5 with M and ≤ 2 , to get a new M and update the pivoting matrix P ; /* If M 0 is the matrix of the N F ≤ 1 (x α ) for x α indexing the columns of M, then M = M 0 P . */ 8

Everything was performed on a Ubuntu 16.04 with 2 processors of 2.6GHz and 16 GB of RAM.

In average the tropical strategy takes longer, but save a large amount of precision (for small p). While the ratio of saved precision may decrease with the degree, the abolute amount of saved precision is often still very large. We have also noted that the standard deviations for these ratios can be very large. 

Tropical to tropical

We repeat the same experiments for mean and max loss in precision, but this time we compute a tropical GB for weight w = [0, 0, 0] and then use Algorithm 4 to compute a tropical GB for weight w = [-2, 4, -8] (grevlex for tie-breaks in both cases). Precisionwise, it seems that there is an intrinsic di culty in computing a lex GB compared to a tropical GB. 

Semi-stability and shape position

We adapt our setting to Q((t)), using entries with coe cients in Z t given at precision 50 (using S M 's built-in random function), and apply the ideas of Subsection 2.5 and Section 3. As Q is involved, computations are slow for D ≥ 7 due to coe cients growth.