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Newton's method is an ubiquitous tool to solve equations, both in the archimedean and non-archimedean settings -for which it does not really di er. Broyden was the instigator of what is called "quasi-Newton methods". These methods use an iteration step where one does not need to compute a complete Jacobian matrix nor its inverse. We provide an adaptation of Broyden's method in a general nonarchimedean setting, compatible with the lack of inner product, and study its Q and R convergence. We prove that our adapted method converges at least Q-linearly and R-superlinearly with R-order 2 1 2m in dimension m. Numerical data are provided.

INTRODUCTION

In the numerical world. Quasi-Newton methods refer to a class of variants of Newton's method for solving square nonlinear systems, with the twist that the inverse of the Jacobian matrix is "approximated" by another matrix. When compared to Newton's method, they bene t from a cheaper update at each iteration (See e.g. [10, p.49-50, 53]), but su er from a smaller rate of convergence. They were mainly introduced by Broyden in [START_REF] Charles G Broyden | A class of methods for solving nonlinear simultaneous equations[END_REF], which has sparked numerous improvements, generalizations, and variants (see the surveys [START_REF] John E Dennis | Quasi-newton methods, motivation and theory[END_REF][START_REF] José | Practical quasi-newton methods for solving nonlinear systems[END_REF]). It is now a fundamental numerical tool (that nds its way in entry level numerical analysis textbooks [8, § 10.3]). To some extent, this success stems from: the speci cities of machine precision arithmetic as commonly used in the numerical community, the fact that Newton's method is usually not quadratically convergent from step one, and that the arithmetic cost of an iteration is independent of the quality of the approximation reached. In another direction, variants of Broyden's method have known dramatic success for unconstrained optimization -the target system is the gradient of the objective function, the zeros are then critical points-where it takes advantage of the special structure of the Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for pro t or commercial advantage and that copies bear this notice and the full citation on the rst page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s). ISSAC'20, Kalamata, Greece © 2020 Copyright held by the owner/author(s). . . . $15.00 DOI:

Hessian (see Sec. 7 of [START_REF] John E Dennis | Quasi-newton methods, motivation and theory[END_REF]). Another appealing feature of Broyden's method is the possibility to design derivative-free methods generalizing to the multivariate case the classical secant method (which can be thought of as Broyden's in dimension one). This feature is a main motivation for this work.

Non-archimedean. It is a natural wish to transpose such a fundamental numerical method to the non-archimedean framework, o ering new tools to perform exact computations, typically for systems with p-adic or power series coe cients. For this adaptation, several non-trivial di culties have to be overcome: e.g. no inner products, a more di cult proof of convergence, or a management of arithmetic at nite precision far more subtle. This article presents satisfactory solutions for all these di culties, which we believe can be expanded to a broader variety of quasi-Newton methods.

Bach proved in [START_REF] Bach | Iterative root approximation in p-adic numerical analysis[END_REF] that in dimension one, the secant method can be on an equal footing with Newton's method in terms of complexity. We investigate how this comparison is less engaging in superior dimension (see Section 6). To our opinion, this is due to the remarkable behavior of Newton's method in the non-archimedean setting. No inversion of the Jacobian is required at each iteration (simply a matrix multiplication, this is now classical see [START_REF] Richard | Fast algorithms for manipulating formal power series[END_REF][START_REF] Hsiang | On computing reciprocals of power series[END_REF][START_REF] Hsiang | All algebraic functions can be computed fast[END_REF]). The evaluation of the Jacobian is also e cient for polynomial functions (in dimension m, it involves only O(m) evaluations, instead of m 2 over R, see [START_REF] Baur | The complexity of partial derivatives[END_REF]). It displays also true quadratic behavior from step one which, when combined with the natural use of nite precision arithmetic (against machine precision over R), o ers a ratio cost/precision gained that is hard to match.

And indeed, our results show that for large dimension m and polynomials as input, there is little hope for Broyden to outperform Newton, although it depends on the order of superlinear convergence of Broyden's method. In this respect more investigation is necessary, but for now the interest lies more in the theoretical advances and in the situations mentioned in "Motivations" thereafter.

Relaxed arithmetic. Since the cost of one iteration of Broyden's method involves m 2 instead of m ω for Newton, we should mention the relaxed framework (a.k.a online [START_REF] Michael | Fast on-line integer multiplication[END_REF]) which show essentially the same decrease of complexity, while maintaining quadratic convergence. It has been implemented e ciently for power series [START_REF] Van Der Hoeven | Relax, but don't be too lazy[END_REF], and for p-adic numbers [START_REF] Berthomieu | Relaxed algorithms for p-adic numbers[END_REF]. In case of a smaller m and a larger precision of approximation required, FFT trading [START_REF] Van Der Hoeven | Newton's method and FFT trading[END_REF] has to be mentioned. These techniques are however unlikely to be suited to the Broyden iteration, since it is a priori not described by a xed-point equation, a necessity for the relaxed machinery.

Motivations. As explains Remark 6.4, it seems unlikely in the non-archimedean world that with polynomials or rational fractions, a quasi-Newton method meets the standard of Newton's method. The practical motivations concern:

1/ Derivative-free method: instead of starting with the Jacobian at precision one, use a divided-di erence matrix. A typical application is when the function is given by a "black-box" and there is no direct access to the Jacobian.

2/ When computing the Jacobian does not allow shortcuts like in the case of rational fractions [START_REF] Baur | The complexity of partial derivatives[END_REF], evaluating it may require up to Lm2 operations, where L is the complexity of evaluation of the input function. Regarding the complexity of Remark 6.4, Broyden's method then becomes bene cial when L m 2 -m ω-1 .

3/ While Newton's method over general Banach spaces of in nite dimension can be made e ective when the di erential is e ectively representable (integral equations [15, § 5][14] are a typical example), it is in general di cult or impossible to compute it. On the other hand, Broyden's method or its variants have the ability to work with approximations of the di erential, including of nite rank, by considering a projection (as shown in [START_REF] Kelley | Broyden's method for approximate solution of nonlinear integral equations[END_REF][START_REF] Kelley | Approximate quasi-Newton methods[END_REF] and the references therein; the dimension of the projection is increased at each iteration). In the non-archimedean context, ODEs with parameters, for example initial conditions, constitute a natural application.

Organization of the paper. De nitions and notations are introduced in Section 2. Section 3 explains how Broyden's method can be adapted to an ultrametric setting. In Section 4, we study the Q and R-order of convergence of Broyden's method (see De nition 2.1), presenting our main results. It is followed by Section 5, where are introduced developments and conjectures on Q-superlinearity. Finally, in Section 6, we explain how our Broyden's method can be implemented with dynamical handling of the precision, and we conclude with some numerical data in Section 7.

BROYDEN'S METHOD AND NOTATIONS 2.1 General notations

Throughout the paper, K refers to a complete, discrete valuation eld, val : K Z ∪ {+∞} to its valuation, O K its ring of integers and π a uniformizer. 1 For k ∈ N, we write O(π k ) for π k O K .

Let m ∈ Z ≥1 . We are interested in computing an approximation of a non-singular zero x of f : K m → K m through an iterative sequence of approximations, (x n ) n ∈N ∈ (K m ) N . Note that all our vectors are column-vectors. For any x ∈ K m where it is wellde ned, we denote by f (x) ∈ M m (K) the Jacobian matrix of f at x . We will use the following notations (borrowed from [START_REF] David | Some convergence properties of broyden's method[END_REF]):

f n = f (x n ), n = f n+1 -f n , s n = x n+1 -x n (1) 
We denote by (e 1 , . . . , e m ) the canonical basis of

K m . In K m , O(π k ) means O(π k )e 1 + • • • + O(π k )e m .
Newton's iteration produces a sequence (x n ) n ∈N given by:

x n+1 = x n -f (x n ) -1 • f (x n ). (N)
For quasi-Newton methods, the iteration is given by:

x n+1 = x n -B -1 n • f (x n ), (⇒ s n = -B -1 n • f n ) (QN)
with B n presumably not far from f (x n ). More precisely, it is a generalization of the design of the secant method over K where one approximates f (x n ) by

f (x n )-f (x n-1 ) x n -x n-1
. In quasi-Newton, it is thus required that:

B n • (x n -x n-1 ) = f (x n ) -f (x n-1 ) (⇒ B n • s n-1 = n-1 ) (2) 
By this condition alone, B n is obviously underdetermined. To mitigate this issue, B n is taken as a one-dimensional modi cation of

B n-1 satisfying (2). Concretely, a sequence (u n ) n ∈N ∈ (K m ) N is introduced such that: B n = B n-1 + ( n-1 -B n-1 s n-1 ) • u n-1 t . (3) 1 = u n-1 t • s n-1 . (4) 
In Broyden's method over R, u n-1 is de ned by:

u n-1 = s n-1 s n-1 t • s n-1 . (5) 
The computation of the inverse of B n can then be done using the Sherman-Morrison formula (see [START_REF] Sherman | Adjustment of an inverse matrix corresponding to a change in one element of a given matrix[END_REF]):

B -1 n = B -1 n-1 + (s n-1 -B -1 n-1 n-1 ) • s n-1 t B -1 n-1 s n-1 t B -1 n-1 n-1 . (6) 
This formula gives rise to the so-called "good Broyden's method". Using [START_REF] Sherman | Adjustment of an inverse matrix corresponding to a change in one element of a given matrix[END_REF] provides the following alternative formulae:

B n = B n-1 + f n • u n-1 t . (7) 
B -1 n = B -1 n-1 - B -1 n-1 f n • u n-1 t B -1 n-1 u n-1 t B -1 n-1 n-1 . ( 8 
)

Convergence

We recall some notions on convergence of sequences commonly used in the analysis of the behavior of Broyden's method.

D 2.1 ([20] C 9). A sequence (x k ) k ∈N ∈ (K m ) N has Q-order of convergence µ ∈ R >1 to a limit x ∈ K m , if: ∃r ∈ R + , ∀k large enough, x k +1 -x x k -x µ ≤ r .
If we can take µ = 1 and r < 1 in the previous inequality, we say that (x k ) k ∈N has Q-linear convergence. For µ = 2, we say it has Q-quadratic convergence. The sequence is said to have Q-superlinear convergence if

lim k →+∞ x k +1 -x x k -x = 0. It is said to have R-order of convergence 2 µ ∈ R ≥1 if lim sup x k -x 1/µ k < 1.
Remark 2.2. For both Q and R, we write has convergence µ to mean has convergence at least µ.

Broyden's method satis es the following convergence results: T 2.3. Over R m , under usual regularity assumptions, Broyden's method de ned by Eq. (5) converges locally3 Q-superlinearly [START_REF] Broyden | On the local and superlinear convergence of quasi-newton methods[END_REF], exactly in 2m steps for linear systems, and with R-order at least

2 1 2m > 1 [13].
Unfortunately, for general K, Eq. ( 5) is not a good t. Indeed, the quadratic form x → x t x can be isotropic over K m , i.e. there can be an s n 0 such that s n t • s n = 0. This is the case, for example if [START_REF] Richard | Fast algorithms for manipulating formal power series[END_REF] has to be modi ed. Trying to seek for another quadratic form that would not be isotropic is pointless, since for example there is none over Q m p for m ≥ 5 [START_REF] Serre | A course in arithmetic[END_REF].

s n = (X , X ) in F 2 X 2 . Consequently,
Remark 2.4. In the sequel, all the B i 's will be invertible matrices. Consequently, s n+1 = 0 if and only if f (x n ) = 0. We therefore adopt the convention that if for some x n , we have f (x n ) = 0, then the sequences (x ) ≥n and (B ) ≥n will be constant, and this case does not require any further development.

NON-ARCHIMEDEAN ADAPTATION 3.1 Norms

We use the following natural (non-normalized) norm on K de ned from its valuation: for any x ∈ K, x = 2 -val(x ) , except for K = Q p , where we take the more natural p -val(x ) over Q p . Our norm 4 on K can naturally be extended to K m : for any

x = (x 1 , . . . , x m ) ∈ K m , x = max i |x i |.
We denote by val(x) the minimal valuation among the val(x i )'s. It de nes the norm of x . 

P . Let A ∈ M n (K). If x ∈ K m is such that x ≤ 1, then by ultrametricity, it is clear that Ax ≤ A , hence A ≤ A . If i ∈ N is such that A is
obtained with a coe cient on the column of index i, then Ae i = A , whence the equality.

Consequently, the max-norm on the coe cients of a matrix is a matrix norm. For rank-one matrices, the computation of the norm can be made easy using the following corollary of Lemma 3.1.

C 3.2. Let a, b ∈ K m be two vectors. Then a t • b = a • b . (9) 

Constraints and optimality

For the sequence (x n ) n ∈N to be well de ned, the sequence (u n ) n ∈N must satisfy Eqs (3)-( 4) and also:

s n t B -1 n n 0, (10) 
to ensure Eq. ( 6) makes sense. Many di erent u n 's can satisfy those conditions. Over R, Broyden's choice of u n de ned by ( 5) can be characterized by minimizing the Frobenius norm of B n+1 -B n . We can proceed similarly over K . L 3.3. If B n+1 satis es (2), then:

B n+1 -B n ≥ n -B n s n s n . ( 11 
) P . It is clear as in this case, (B n+1 -B n )s n = n -B n s n .
This inequality can become an equality with a suitable choice of u n as shown in the following lemma. L 3.4. Let l be such that val(s n,l ) = val(s n ). Then

u n = s -1
n,l e l satis es (4) and reaches the bound in [START_REF] Michael | Fast on-line integer multiplication[END_REF].

Nevertheless, this is not enough to have B n invertible in general, as we can see from the Sherman-Morrison formula (8): L 3.5. B n de ned by Eq.( 3) is invertible if and only if

u n-1 t B -1 n-1 n-1 0. ( 12 
)
The next lemma shows how to choose l, up to the condition (B -1 n-1 n-1 ) l 0, which actually never occurs after Corollary 4.3. L 3.6. Let l be the smallest index such that val(s n,l ) =

val(s n ). If B -1 n-1 n-1 l 0, then u n = s -1 n,l e l (13) 
satis es Eq. (4), reaches the bound in Eq. [START_REF] Michael | Fast on-line integer multiplication[END_REF] and satis es Eq.( 12).

LOCAL CONVERGENCE 4.1 Local Linear convergence

Let E and F be two nite-dimensional normed vector spaces over K We denote by L(E, F ) the space of K-linear mappings from E to F . A function f : U → F is strictly di erentiable at x ∈ U if there exists an f (x) ∈ L(E, F ) satisfying the following property: for all ε > 0, there exists a neighborhood U x,ε ⊂ U of x, on which for any , z ∈ U x,ϵ :

f (z) -f ( ) -f (x) • (z-) F ≤ ε • z-E . ( 14 
)
Note that both z and can vary. This property is natural in the ultrametric context (see 3.1.3 of [START_REF] Caruso | Computations with p-adic numbers[END_REF]), as the counterpart of Fréchet di erentiability over R does not provide meaningful local information. Polynomials and converging power series satisfy strict di erentiability everywhere they are de ned.

We can then adapt Theorem 3.2 of [START_REF] Broyden | On the local and superlinear convergence of quasi-newton methods[END_REF] in our ultrametric setting. T 4.2. Let f : K m → K m and x ∈ U be such that f is strictly di erentiable at x , f (x ) is invertible and f (x ) = 0. Then any quasi-Newton method whose choice of u n yields for all n, u n = s n -1 (which includes Broyden's choice of Eq. ( 13)), is locally Q-linearly converging to x with ratio r for any r ∈ (0, 1).

P

. Let r ∈ (0, 1). Let the constants γ , δ, and λ be satisfying:

γ ≥ f (x ) -1 , 0 < δ ≤ r γ (1 + r )(3 -r ) , 0 < λ ≤ δ (1 -r ). (15) 
Let η > 0 be given by the strict di erentiability at x and such that on the ball

B(x , η), f (z) -f ( ) -f (x ) • (z-) ≤ λ • z-.
We restrict further η so as to have:

η ≤ δ (1 -r ). Let us assume that B 0 -f (x ) ≤ δ, x 0 -x < η.
We have from the condition on δ that δ γ

(1 + r )(3 -r ) ≤ r . Since 3 -r > 2, then 2δ γ (1 + r ) ≤ r . Consequently, 1 1 -2δγ ≤ 1 + r ,
the denominator being non zero because δ < (2γ ) -1 .

Since f (x ) -1 ≤ γ and B 0 -f (x ) < 2δ, the Banach Perturbation Lemma ( [START_REF] James | Iterative solution of nonlinear equations in several variables[END_REF] page 45) in the Banach algebra M m (K) implies that B 0 is invertible and:

B -1 0 ≤ γ 1 -2γδ ≤ (1 + r )γ .
We can now estimate what happens to

x 1 = x 0 -B -1 0 f (x 0 ). x 1 -x = x 0 -x -B -1 0 f (x 0 ) , (16) = -B -1 0 f (x 0 ) -f (x ) -f (x ) • (x 0 -x ) -B -1 0 f (x )(x 0 -x ) -B 0 (x 0 -x ) , = -B -1 0 f (x 0 ) -f (x ) -f (x ) • (x 0 -x ) -B -1 0 (f (x ) -B 0 )(x 0 -x ) , ≤ B -1 0 λ x 0 -x + 2δ x 0 -x , ≤ B -1 0 (λ + 2δ ) x 0 -x , ≤ γ (1 + r )(δ (1 -r ) + 2δ ) x 0 -x , ≤ γ (1 + r )δ (3 -r ) x 0 -x by Eq. ( 15 
) (middle) ≤ r x 0 -x . (17) 
Consequently,

x 1 -x ≤ r x 0 -x and x 1 -x ≤ rη < η, i.e. x 1 ∈ B(x , η).
Eq. ( 3) de nes B 1 by 4), Corollary 3.2). Then:

B 1 = B 0 -( 1 -B 0 s 1 ) • u 1 t for some u 1 verifying u 1 = s 1 -1 (see Eqs. (
B 1 -B 0 = f (x 1 ) -f (x 0 ) -B 0 (x 1 -x 0 ) • x 1 -x 0 -1 . Therefore, B 1 -f (x ) ≤ max B 0 -f (x ) , (18) 
f (x 1 ) -f (x 0 ) -B 0 (x 1 -x 0 ) x 1 -x 0 -1 , ≤ max B 0 -f (x ) , B 0 -f (x ) (x 1 -x 0 ) x 1 -x 0 -1 , f (x 1 ) -f (x 0 ) -f (x )(x 1 -x 0 ) x 1 -x 0 -1 , ≤ max(δ, λ) ≤ δ .
We can then carry on and prove by induction that for all k,

(i) x k -x ≤ r k x 0 -x , and (ii) B k ∈ B(f (x ), δ ). ( 19 
)
Heredity for Inequality ( 19)-(i) comes from: a same use of the Banach Perturbation Lemma on B k so that B k is invertible; that B -1 k ≤ (1 + r )γ and by repeating the computations ( 16) to [START_REF] Hsiang | All algebraic functions can be computed fast[END_REF]:

x k +1 -x ≤ B k -1 (λ + 2δ ) x k -x , ≤ (1 + r )γδ (3 -r ) x k -x , ≤ r x k -x .
We can deal with ( 19)-(ii) using a similar computation as ( 18):

B k +1 -f (x ) ≤ max B k -f (x ) , ( 20 
) f (x k +1 ) -f (x k ) -B k (x k +1 -x k ) x k +1 -x k -1 ≤ max B k -f (x ) , f (x k +1 ) -f (x k ) -f (x )(x k+1 -x k ) x k +1 -x k -1 , ≤ max(δ, λ) ≤ δ . C 4.
3. Locally, one can take de nition (13) to de ne all the u n 's and all the B n 's will still be invertible.

P

. With the assumptions of the proof of Theorem 4.2, for u n de ned by [START_REF] David | Some convergence properties of broyden's method[END_REF], u n-1 = s n-1 -1 and (4) are satis ed, and by the Banach Perturbation Lemma, B n de ned by (3) is invertible.

Remark 4.4. The fact that Broyden's method has locally Q-linear convergence with ratio r for any r is not enough to prove that ithas Q-superlinear convergence. Indeed, as x k is going closer to x , there is no reason for B k to get closer to f (x ). Consequently, we cannot expect from the previous result that x k and B k enter loci of smaller ratio of convergence as k goes to in nity. In fact, in general, B k does not converge to f (x ).

Finally, the next lemma, consequence of the previous theorem, will be useful in the next subsection to obtain the R-superlinear convergence. , and B 0 -f (x ) < δ and x 0 -x < η, then for all n ∈ N,

f n+1 ≤ f n . P . Let n ∈ N. We have s n ≤ r s n-1 . Indeed, from x n+1 -x n ≤ max( x n+1 -x , x -x n ), and x n+1 -x n < x n -x , we see that s n = x -x n ≤ r x -x n-1 = r s n-1 .
Then using (QN) and the Q-linear convergence with ratio r , we get that f n+1 ≤ r B n+1 B -1 n f n . Using (20), the de nition of δ, γ in [START_REF] Kelley | Approximate quasi-Newton methods[END_REF], and the fact that 0 < r < 1, we get that B n+1 B -1 n ≤ 2γ f (x ) , which concludes the proof.

Local R-superlinear convergence

We rst remark that the 2n-step convergence in the linear case proved by Gay in [START_REF] David | Some convergence properties of broyden's method[END_REF] is still valid. Indeed, it is only a matter of linear algebra. 4.6 (T 2.2 [START_REF] David | Some convergence properties of broyden's method[END_REF]). If f is de ned by f (x) = Axb for some A ∈ GL m (K), then any quasi-Newton method converges in at most 2m steps (i.e. f (x 2m ) = 0).

With this and under a stronger di erentiability assumption on f , we can obtain R-superlinearity, similarly to Theorem 3.1 of [START_REF] David | Some convergence properties of broyden's method[END_REF].

The proof also follows the main steps thereof. T 4.7. Let us assume that on a neighborhood U of x , there is a c 0 ∈ R >0 such that f satis es

5 ∀x, ∈ U , f (x) -f ( ) -f (x ) • (x -) ≤ c 0 x -2 . (21)
Then there are η, δ and Γ in R >0 such that if x 0 ∈ B(x , η) and B 0 ∈ B(f (x ), δ ), then for any w ∈ Z ≥0 ,

x w +2m -x ≤ Γ x w -x 2 . P .
Step 1: Preliminaries. Condition ( 21) is stronger than strict di erentiability as stated in Theorem 4.2. From its proof and Lemma 4.5, let r ∈ (0, 1) and γ ≥ f (x ) -1 , as well as η and δ such that: r

≤ γ f (x ) 2 -1
, and if x 0 ∈ B(x , η) and

B 0 ∈ B(f (x ), δ ), the sequences (x n ) n ∈N and (B n ) n ∈N de ned by
Broyden's method (using ( 13)) are well de ned and moreover the four following inequalities are satis ed: for any k ∈ N, and(x n ) n ∈N and (B n ) n ∈N be de ned by Broyden's method. Let w ∈ N and h = x w -x . We must show that there is a Γ, independent of w such that x w +2mx ≤ Γh 2 .

B k -f (x ) ≤ δ, x k +1 -x ≤ r x k -x , B -1 k ≤ (1 + r )γ , f (x k+1 ) ≤ f (x k ) . Let x 0 ∈ B(x , η), B 0 ∈ B(f (x ), δ ),
Step 2: reference to a linear map. Let the linear a ne map f (x) = f (x ) xx , and x0 = x w and B0 = B w . Broyden's method (using rst ( 13)) applied to those data produces the sequences ( xn ) n ∈N and ( Bn ) n ∈N , which are constant for n ≥ 2m, as a result of Theorem 4.2. We de ne similarly ŝn = xn+1xn . We have again for all k ∈ N the four inequalities:

Bk -f (x ) ≤ δ, xk+1 -x ≤ r xk -x , B-1 k ≤ (1 + r )γ f (x k+1 ) ≤ f (x k ) .
The key to the proof is that x2m = x and xk and x w +k are not too much far apart.

Step 3: Statement of the induction. More concretely, we prove by induction on j that there exist γ 1, j and γ 2, j , independent of w, such that for 0 ≤ j ≤ 2m, we have the two inequalities:

B w +j -Bj • f w +j ≤ γ 1, j h 2 , (E 1, j ) x w +j -xj ≤ γ 2, j h 2 . (E 2, j )
Step 4: Base case. Since B w = B0 and x w = x0 , (E 1,0 ) and (E 2,0 ) are clear, with γ 1,0 = γ 2,0 = 0. Now, let us assume that (E 1,k ) and (E 2,k ) are true for a given k such that 0 ≤ k < 2m.

Step 5: We rst prove (E 2,k +1 ). One part of the inequality ( 22) is obtained thanks to:

B -1 w +k -B-1 k = B -1 w +k ( Bk -B w +k ) B-1 k . s w +k -ŝk = B -1 w +k f w +k -B-1 k f ( xk ) ≤ max B -1 w +k • B-1 k • B w +k -Bk • f w +k , (22) 
B-1

k • f w +k -f ( xk ) ≤ B-1 k max B -1 w +k • B w +k -Bk • f w +k , f w +k -f (x w +k ) , f (x w +k ) -f ( xk ) (23) 
The rst term on the r.h.s. of ( 23) is upper-bounded by (1+r ) 2 γ 2 γ 1,k h 2 using (E 1,k ) and B -1 w +k ≤ (1 + r )γ . For the second term of (23), using [START_REF] Serre | A course in arithmetic[END_REF]:

f w +k -f (x ) -f (x ) • (x w +k -x ) ≤ c 0 x w +k -x 2 and x w +k -x ≤ x w -x = h, it is upper-bounded by c 0 h 2 . Finally, the last term is equal to f (x )(x w +k -xk ) whose norm is upper-bounded by f (x ) γ 2,k h 2 thanks to (E 2,k ). This is enough to de ne γ 3,k such that s w +k -ŝk ≤ γ 3,k h 2 ( ‡). Consequently, with γ 2,k +1 = max(γ 3,k , γ 2,k ), we do have x w +k +1 -xk+1 ≤ γ 2,k +1 h 2 ,
and (E 2,k +1 ) is satis ed.

Step 6.0: We now prove (E 1,k +1 ). We rst deal with some preliminary cases. If s w +k = 0, (that is x w +k +1 = x w +k ) then the property (2) s w +k = -B -1 w +k f w +k implies that f w +k = 0, and the property B w +k +1 s w +k = w +k implies that f w +k = f w +k+1 = 0.

Thus (E 1,k +1 ) is satis ed with γ 1,k +1 = 0. If ŝk = 0, then similarly f ( xw+k ) = f ( xw+k+1 ) = 0.
Therefore, as we have seen before,

f w +k +1 = f w +k +1 -f (x w +k +1 ) + f (x w +k +1 ) -f ( xk+1 ) , ≤ max c 0 , f (x ) γ 2,k +1 h 2 .
Then, using that

B w +k +1 -Bk+1 ≤ max( B w +k +1 -f (x ) , Bk+1 - f (x ) ) ≤ δ, (E 1,k +1 ) is satis ed with: γ 1,k +1 = δh 2 max c 0 , f (x ) γ 2,k +1 .
Step 6.1 : We can now assume that both s k and ŝk are non zero. To prove that there is a γ 1,k +1 (independent of w) such that (E 1,k +1 ) holds, then in view of the fact that f w +k +1 ≤ f w +k (Lemma 4.5) of (E 1,k ) and of the de nition (Eq. ( 3)) of B k +1 and Bk+1 , it is enough to prove that there is some γ 4,k +1 (independent of w) such that:

( w +k -B w +k s w +k ) u w +k t - ˆ k -Bk ŝk ûk t • f w +k +1 ≤ γ 4,k +1 h 2 . ( 24 
)
Using that f w +k+1 ≤ f w +k (by Lemma 4.5), we obtain:

f w +k +1 • ( w +k -B w +k s w +k ) u w +k t -ˆ k -Bk ŝk ûk t ≤ f w +k max w +k -f (x )s w +k • u w +k t , (f (x ) -B w +k )s w +k u w +k t -(f (x ) -Bk )ŝ k ûk t ≤ f w +k max w +k -f (x )s w +k • u w +k t , (25) 
(f (x ) -Bk )(s w +k u w +k t -ŝk ûk t ) , (26) 
(B w +k -Bk )s w +k u w +k t . (27) 
Step 6.2: From f w +k = -B w +k s w +k , we have

f w +k ≤ s w +k • max( B w +k -f (x ) , f (x ) ) ≤ s w +k • max(δ, f (x ) ) (•).
Otoh by [START_REF] Serre | A course in arithmetic[END_REF], w +k -f (x )s w +k ≤ c 0 s w +k 2 . It follows that the rst term ( 25) can be upper-bounded in the following way:

(25) ≤ c 0 s w +k 3 u w +k t max(δ, f (x ) ) ≤ c 0 h 2 max(δ, f (x ) ),
the rightmost inequality being obtained from u w +k t = s w +k -1

and s w +k ≤ max( x w +k+1 -x , x w +k -x ) = x w +kx ≤ x w -x = h. Step 6.3: The third one (27) can be upper-bounded using (E 1,k ):

(27) ≤ f w +k (B w +k -Bk )s w +k u w +k t ≤ γ 1,k h 2 .
Step 6.4: For the second one (26), observe that:

s w +k u w +k t -ŝk ûk t = (s w +k -ŝk )u w +k t -ŝk (u w +k t -ûk t ). (28) 
The rst term is easy to manage using the previous inequality (•) on f w +k , the inequality ( ‡) on s w +kŝk and s w +k u w +k t = 1:

f w +k • (s w +k -ŝk )u w +k t ≤ max(δ, f (x ) )γ 3,k h 2 . ( 29 
)
The second one of Eq. ( 28) is a little bit trickier. De ne as in ( 13), u w +k = s -1 w +k,l e l and ûk = ŝ-1 k, l e l for some given l and l . If l = l, we have: (the last inequality below follows from ( ‡)).

u w +k -ûk = |s -1 w +k,l -ŝ-1 k,l | = |s w +k,l -ŝk,l | |s w +k,l | • | ŝk,l | = |s w +k,l -ŝk,l | s w +k • ŝk ≤ s w +k -ŝk s w +k • ŝk ≤ γ 3,k h 2 s w +k • ŝk .
From this and from f w +k = B w +k • s w +k we get:

f w +k • u w +k -ûk • ŝk ≤ γ 3,k max δ, f (x ) h 2 . ( 30 
)
If l l, then either s w +kŝk = s w +k , if ŝk ≤ s w +k , or s w +kŝk = ŝk , if s w +k ≤ ŝk . In the rst case, we have

u w +k -ûk = ŝk -1 ,
and then, the second term of (28) multiplied by f w +k veri es:

f w +k • u w +k -ûk • ŝk ≤ max δ, f (x ) s w +k ≤ max δ, f (x ) γ 3,k h 2 . (31)
The second case follows with the same computation. Eqs (31) (30) (29) prove together the bound on the expression (26) in (28). In turn with the bounds on the terms ( 25) and ( 27), prove [START_REF] Van Der Hoeven | Newton's method and FFT trading[END_REF]. This concludes the proof of (E 1,k +1 ), and nally the induction.

Step 7: Consequently, x w +2m -x2m ≤ γ 2,2m h 2 . Thanks to Theorem 4.2, x2m = x , and thus, we have proved that for any w,

x w +2m -x ≤ γ 2,2m x w -x 2 .
Theorem 4.7 has for immediate consequence: T 4.8. Broyden's method has locally R-order of convergence 2 1 2m .

P

. Let us take x 0 and B 0 as in the proof of the previous theorem, and same constants and notations. For any w, x w +2mx ≤ Γ x w -x 2 . Consequently, for 0 ≤ k < 2m, l ∈ N, and µ = 2 1/2m ,

x 2lm+k -x µ -2lm-k ≤ x k -x 2 l µ -2lm-k Γ (2 l -1)µ -2lm-k ≤ x k -x 2 l 2 -l -k 2m Γ (2 l -1)2 -l -k 2m ≤ x k -x 2 -k 2m Γ (1-2 -l )2 -k 2m .
For simplicity, we can assume that Γ ≥ 1. Thus,

x 2lm+k -x µ -2lm-k ≤ x k -x 2 -k 2m Γ 2 -k 2m . ≤ x 0 -x 2 -k 2m Γ 2 -k 2m .
Therefore, for x 0 -x small enough, we get that for all k such that 0 ≤ k < 2m, x 0 -x 2 -k 2m Γ 2 -k 2m < 1, and hence, lim sup s x s -x µ s < 1. From 9.2.7 of [START_REF] James | Iterative solution of nonlinear equations in several variables[END_REF], we then obtain that Broyden's method do have locally R-order of convergence 2 1 2m .

QUESTIONS ON Q-SUPERLINEARITY

A Q-order of µ implies an R-order of µ. The converse is not true. Over R, one of the most important result concerning Broyden's method is that it is Q-superlinear. The extension of this result to the non-archimedean case remains an open question.

Dimension 1: secant method

In dimension one, Broyden's method reduces to the secant method.

It is known since [START_REF] Bach | Iterative root approximation in p-adic numerical analysis[END_REF] that the p-adic secant method applied on polynomials has order Φ, the golden ratio. Its generalization to a general non-archimedean context is straightforward. P 5.1. Let us assume that m = 1 and on a neighborhood U of x , there is a c 0 ∈ R >0 such that f satis es (21) on U . Then the secant method has locally Q-order of convergence Φ.

P

. Let us assume that we are in the same context as in the proof of Theorem 4.7, with some Q-linear convergence of ratio r < 1. Let us de ne

ε k = x k -x for k ∈ N. For all k ∈ N, |ε k +1 | < |ε k |. Then by ultrametricity, |x k+1 -x k | = |ε k |. Also, we further assume that c 0 |ε 0 | < | f (x )| so that for all k ∈ N, | f (x ) × (x k +1 -x k )| > c 0 |(x k +1 -x k )| 2 ,
which also implies by ultrametricity and ( 21) that for all k ∈ N,

| f (x k +1 ) -f (x k )| = | f (x ) × (x k +1 -x k )|. Similarly, | f (x k )| = | f (x )||ε k |.
Now, let n ∈ Z >0 . Broyden's iteration is given by:

x n+1 = x n - x n -x n-1 f (x n ) -f (x n-1 )
.

It rewrites as:

|ε n+1 | = |ε n - ε n f (x n ) -ε n-1 f (x n ) f (x n ) -f (x n-1 ) | = | ε n-1 f (x n ) -ε n f (x n-1 ) f (x n ) -f (x n-1 ) | ≤ c 0 max |ε n-1 ||ε n | 2 , |ε n-1 | 2 |ε n | | f (x n ) -f (x n-1 )| ≤ c 0 | f (x )| |ε n ||ε n-1 |.
Let us write C = c 0 |f (x )| and n = Cε n . Then, n+1 ≤ n n-1 for any n > 0 and consequently,

n+1 Φ n ≤ 1-Φ n n-1 ≤ n Φ n-1 1-Φ , as Φ 2 = Φ + 1. If we de ne (Y n ) n ∈Z ≥1 by Y 1 = 1 Φ 0 and Y n+1 = Y 1-Φ n , then n+1 Φ n ≤ Y n . Since |1-Φ| < 1, then Y n converges to 1. Therefore,
it is bounded by some D ∈ R + , and n+1

Φ n

≤ D for all n ∈ Z ≥1 . This concludes the proof.

General case

Over R, Broyden's method is known to converge Q-superlinearly.

The key point is that for any E ∈ M m (R) and s ∈ R m \ {0},

E I - s • s t (s t • s) 2 F = E 2 F - Es 2 s 2 2 , (32) 
equation (5.5) of [START_REF] John E Dennis | Quasi-newton methods, motivation and theory[END_REF]. The minus sign is a blessing as it allows the appearance of a telescopic sum which plays a key role in proving that

x n+1 -x x n -x converges to zero. Unfortunately, there does not seem to be a non-archimedean analogue to this equality. Thanks to Theorem 4.7, we nevertheless believe in the following conjecture. C 5.2. In the same setting as Theorem 4.7, Broyden's method has locally Q-superlinear convergence.

FINITE PRECISION 6.1 Design and notations

One remarkable feature of Newton's method in an ultrametric context is the way it can handle precision. For example, if π is a uniformizer, if we assume that f (x ) -1 = 1, x n known at precision O(π 2 n ) is enough to obtain x n+1 at precision O(π 2 n+1 ).

To that intent, it thus su ces to double the precision at each new iteration. Hence the working precision of Newton's method can be taken to grow at the same rate as the rate of convergence.

The handling of precision is more subtle in Broyden. This is however crucial to design e cient implementations. Note that in the real numerical setting, most works using Broyden's methods are employing xed nite precision arithmetic, and do not address precision. Additionally, the lack of a knowledge of a precise exponent of convergence requires special care, and the presence of a division also complicates the matter. We explain hereafter how to cope with those issues.

For simplicity, we will make the following hypotheses throughout this section, which correspond to the standard ones in the Newton-Hensel method. They are that the starting x 0 and B 0 are in a basin of convergence at least linear. This allows us to replace any encountered x n by its lift xn to a higher precision (and same for B n ). Indeed, xn will still be in the basin of convergence and then follows the same convergence property. These liftings allow to mitigate the fact that some divisions are reducing the amount of precision so that only arbitrary added digits are destroyed by the divisions. 6A 6.1. We assume that x 0 and x are in O K , and that f (x ) = f (x ) -1 = B 0 = B -1 0 = 1. We also assume that some ρ 1 ≤ 1 and ρ 2 ≤ 1 are given such that B(x , ρ 1 ) × B(f (x ), ρ 2 ), is a basin of convergence at least linear and for any x ∈ B(x , ρ 1 ), and ρ ≤ ρ 1 , f (x + B(0, ρ)) = f (x) + f (x ) • B(0, ρ) (see the Precision Lemma 3.16 of [START_REF] Caruso | Computations with p-adic numbers[END_REF])

The assumption on B 0 and f (x ) states that they are unimodular, which is the best one can assume regarding to conditioning and precision. Indeed if M ∈ GL m (K) is unimodular ( M = M -1 = 1), then for any x ∈ K m , Mx = x . Over Q p , M ∈ M m (Z p ) is unimodular if and only if its reduction in M m (Z/pZ) is invertible (and idem for Q T and Q). The last assumption is there to provide the precision on the evaluations f (x k )'s. It is satis ed if f ∈ O K [X 1 , . . . , X m ]. Precision and complexity settings. Let M(N ) be a superadditive upper-bound on the arithmetic complexity over the residue eld of O K for the computation of the product of two elements in O K at precision O(π N ), and L be the size of a straight-line program that computes the system f . One can take M(N ) ∈ O (N ).

Working over K with zealous arithmetic, the ultrametric counterpart of interval arithmetic [9, § 2.1], the interval of integers [[a, b[[ indicates the coe cients of an element x ∈ K represented in the computer as x = b-1 i=a x i π i , with x i ∈ O K / π . In this way val(x) = a, its absolute precision is abs(x) = b, and its relative precision is rel(x) = ba. We recall the usual precision formulae, and assume in the algorithm below that it is how the software manages zealous arithmetic (as in Magma, SageMath, Pari). See loc. cit. for more details. 
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  [[a, b[[×[[c, d[[ = [[a + c, min(a + d, b + c)[[ [[a, b[[/[[c, d[[ = [[a -c, min(a + d -2c, bc)[[(P) The cost of multiplying two elements of relative precision a and b is within M(max(a, b)), and to divide one by the other is in 4M(max(a, b)) + max(a, b) [25, Thm 9.4]. To perform changes in the precision, we use the same notation as Magma's function for doing so. If x has interval [[a, b[[, the (destructive) procedure "ChangePrec(~x, c)" either truncates x to absolute precision c if c ≤ b, or lifts with zero coe cients 0π b + • • • + 0π c-1 to t the interval [[a, c[[, if c > b. The non-destructive counterpart is denoted "ChangePrec(x, c)" without ~.

Discrete valuation is only needed in Section 6. For the rest complete and ultrametric is enough.

R-convergence is a weaker notion, aimed at sequences not monotonically decreasing.

By locally, we mean that for any x 0 and B 0 in small enough balls around x and f (x ), the following convergence property is satis ed.

Over R, it is of course denoted by • ∞ , but when based on a non-archimedean absolute value, this notation is not used since it is implicitly unambiguous: other norms such as the • p are mostly useless.

This condition is satis ed by polynomials or converging power series.On A Non-Archimedean Broyden Method ISSAC'20, July 2020, Kalamata, Greece

This an example of an adaptive method, which can also be used in Newton's method when divisions occur.

E ective Broyden's method

We start from an initial approximation x 0 at precision one, for example given by a modular method. The inverse of the Jacobian at precision one provides B -1 0 . It yields a cost of O(m ω ), but the complexity analysis of Remark 6.4 shows that it is negligible. Obtaining these data is not always obvious [START_REF] Aviezri | Complexity of solving algebraic equations[END_REF], but is the standard hypothesis in the context of modular methods. We write k = val(f k ),

In an ideal situation. Assume an oracle provides the valuations 0 , 1 , 2 , . . . , n , . . . (computed by a Broyden method at arbitrarily large precision). From this ideal situation, we derive the simple and costless modi cations required in reality. This analysis allows us to know how e cient can a Broyden method be, which is noteworthy for comparing it to Newton's. The implementation of Iteration n (n = 0 included) follows the lines hereunder. The rightmost interval indicates the output interval precision of the object computed (following (P)), while the middle indicates a complexity estimate.

We emphasize again that thanks to the careful changes of precision undertaken, the precisions are automatically managed by the software, would it have zealous arithmetic implemented. It is then immediate to check that the output veri es the speci cations. Moreover from the positive valuation of N n it is clear that B n+1 is unimodular. Thus Iteration n + 1 can be initiated with these outputs.

Complexity of the ideal situation. The arithmetic cost of Iteration n is within

If we assume an exponent of convergence α > 1, i.e. n+1 ≈ α n for "not too small" n, then the total cost to reach a precision N ≈ α +1 ≈ +1 ( steps, including a 0-th one) is upper-bounded by

In reality. Most importantly, the remaining Lines ( 6)-( 15) are not impacted since these computations involve now the known n+1 (and not the unknown n+2 ): the intervals, and thus costs obtained are the same as in the ideal situation. On the other hand, Lines (1)-( 5) are performed as such with an overhead cost. Among them, only Lines (2), ( 5) have a non negligible cost. At Line (2), B -1

). Thus the overhead cost "ovh n " at Iteration n is:

This quantity depends on the gaps α n -n+1 and α 2 n -n+2 . These gaps increase with n, but, thanks to the tuning of Step (5.3), reasonably at a linear rate: A 6.2. The "error gap"

Under this assumption it is easy to (crudely) bound +1 n=0 ovh n of Eq. ( 34) by (L + m 2 )O(N log(N )). Being independent on α this is negligible in front of O(L + m 2 )M( N α -1 ) for α < 2. The theorem below wraps up the considerations made above with Eq. (33): T 6.3. If Broyden's method has Q-order of convergence α on B(x , ρ 1 ) × B(f (x ), ρ 2 ), then under Assumption 6.1 and 6.2, the

Remark 6.4. Understanding the Q-order of convergence is a major and notoriously di cult problem in the numerical analysis community. Numerical evidence shows it deteriorates with m, and is larger than 2 1/2m (Theorems 4.7-4.8). Some experiments suggest that taking α ≈ 2 1/m is not unreasonable. We then get a cost

denoting ω < 3 the exponent of the cost of matrix product, the standard analysis of Newton's method for rational fractions would lead to O ((m ω + mL)M (N )). Consequently, in this setting, for large m, there is little hope that Broyden's method can outperform Newton's when both are available. Remember though other worthwile applications in the paragraph "Motivations" in Introduction.

NUMERICAL DATA

An implementation of our ultrametric Broyden method in Magma [START_REF] Bosma | The Magma algebra system. I. The user language[END_REF] with more data is available at http://xdahan.sakura.ne.jp/broyden20. html. We report the data obtained using the three families of systems, derived from page 36 of [START_REF] Lecerf | Une alternative aux méthodes de réécriture pour la résolution des systèmes algébriques[END_REF]. The families are indexed by t ∈ π O K : 2 -5tt 2 , (x 1 + 1) 2 + (x 2 + 1) 2 + (x 3 + 1) 2 -5t, 2x 2 1 + x 2 2 + x 2 3 -3t 2 in K [x 1 , x 2 , x 3 ]. • F 3 = (x 1 -1) 2 + (x 2 -1) 2 + (x 3 -1) 2 + (x 4 -1) 2 -8tt 2 , (x 1 + 1) 2 + (x 2 + 1) 2 + (x 3 + 1) 2 + (x 4 + 1) 2 -8t, 2 x 2 1 + x 2 2 + x 2 3 + x 2 4 -5t 2 , 2 x 1 x 2 + x 3 x 2 -2 x 3 x 4 + 2 x 4 x 1 + 3t 2 in K [x 1 , x 2 , x 3 , x 4 ].

Valuation of f (x k ) and numerical estimation of the order of Qconvergence for Q T are compiled in the following graphic. For K = Q p , and F p t with p = 17 we experienced the same behaviour.