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Keywords: porous silicon, electrochemical etching, HF-free, fluorescence, confocal 

microscopy, green chemistry. 

Abstract: Anodic etching of n-type {111} silicon in ionic liquid (IL) systems ([RMIM][X], R 

= H, Bu; X = BF4-, PF6-), realized under galvanostatic conditions and room temperature, 

allowed the formation of porous silicon surfaces with different pore morphology 

depending on the etching time, current density and the IL used. The study of the effect 

of water content in IL on the etching process has shown water content of 1% to be 

optimal. The role of the anion on the etching process was elucidated using 1-

methylimidazolium tetrafluoroborate ([HMIM][BF4]) and 1-methylimidazolium 

hexafluorophosphate ([HMIM][PF6]) IL systems. [HMIM][BF4] was found to be most 

efficient for the formation of silicon nanostructured array with a pore size of 30-80 nm. 

The thus prepared porous silicon samples show fluorescence in blue light (475 nm). 

The NMR spectra of [HMIM][BF4] ionic liquid before and after etching does not show 
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3

noticeable changes, which makes possible to consider this IL as a potentially recyclable 

etching agent.

Introduction

Silicon-based materials, in particular porous silicon (PSi), are of high demand in the 

materials science. Besides dominating solar cells market[1-4] silicon and its porous form 

are widely used in various research fields such as optoelectronics,[5-6] biosensing[7-9] and 

biomedical applications.[10-16]

The primary method of obtaining PSi is oxidative etching of a non-porous silicon 

precursor in hydrofluoric acid solutions.[17] In electrochemical version of silicon etching 

in fluoride solutions the process can be carried out both in potentiostatic and in 

galvanostatic mode; the latter option is often preferable because of easier control of the 

process.[9] 
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Although the extreme safety hazards of hydrofluoric acid for nature and humans are 

well known,[18] using HF in PSi production seems unavoidable since it is needed for 

removal of native oxides on silicon surface and for binding silicon in etching products. 

The search for different approaches for replacing HF acid by more environmental-

friendly agents is of great interest in the field of silicon etching[19,20] and in other areas of 

materials science.[21-23] 

A method of silicon etching replacing HF with silicophilic reagents, in particular, salts of 

pyridine or N-aromatic bases with tetrafluoroboric acid in an organic solvent was 

previously proposed.[19] It should be noted that for etching silicon in such systems, it is 

necessary to use the salts solutions of high concentration. In this regard, etching 

systems based on protic ionic liquids,[24] combining solvent and supporting salt in one 

compound[25-26] that were successfully used in surface electro-chemistry[27] might be 

more promising.
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Besides entirely merited attention and wide use in almost all chemistry-related areas,[28-

31] ionic liquids permit to address and in many cases to improve very important 

ecological issues. 

In this work, we propose a simple, environment-friendly, and efficient technique for 

preparing porous silicon by means of an HF-free electrochemical etching in the ionic 

liquid medium (primarily derivatives of 1-methylimidazolium, [HMIM][BF4]). This method 

allows one to prepare a uniformly porous silicon surface with the possibility of controlling 

the pore size. 

Results and discussion

The [HMIM][BF4] ionic liquid was synthesized by stirring 1-methylimidazole with 

tetrafluoroboric acid in appr. 1:1 molar ratio with minimal excess of 1-methylimidazole to 

prevent the presence of HBF4 in product. After that, the resulting solution was 

evaporated, washed with ethyl acetate and dried under vacuum according to [32]. 

Several samples of [HMIM][BF4] were then prepared with a water content of 1%, 5%, 

and 10%, controlled by Fischer titration.[33] Synthesized in the similar way [HMIM][PF6] 
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6

was conditioned to water content of 2%. In contrast to dry ILs, such wet ionic liquids (w-

IL) remain liquid at room temperature; this enables using them for silicon etching under 

the ambient conditions without heating which is otherwise needed to liquefy these ILs. 

These w-IL were then tested for etching silicon and revealing the influence of current 

density and etching time on the morphology of the obtained samples.

A polished n-type (111) oriented single-crystal silicon wafer was used (Fig. S1) for this 

purpose. The etching was carried out at room temperature in a galvanostatic mode, 

using a specially designed polytetrafluorethylene (PTFE) cell (Fig. 1). The cell was fitted 

with a PTFE nut with a 4 mm hole protecting the Si sample so that the etching area, 

limited by the hole, remains constant throughout all experiments. A platinum grid was 

used as a cathode.
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7

Figure 1. Photograph of a silicon etching setup (A), the scheme of assembling the 

etching PTFE cell (B), a polished silicon wafer used in the experiments (C), and a PTFE 

cell (D) for mounting the sample for etching.

We found that etching in 1% [HMIM][BF4] w-IL system at a current density j = 8 mA/cm2 

during 30 min results in the development of significant roughness of the surface of 

silicon wafer (Fig. 2 left). Further increase in etching time leads to the formation of a 

porous surface. 

In particular, a uniform mesoporous surface with the irregularly shaped pores sized of 

31±2 nm separated by 8±1 nm walls was obtained after a 5 hours etching (Fig. 2 right).

A B

C D
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Figure 2. Scanning electron microscope (SEM) images of porous silicon obtained by 

etching in 1% [HMIM][BF4] w-IL system at a current density 8 mA/cm2 during 30 minutes 

(left) and 5 hours (right).

When etching in HF-based systems, higher current densities are known to increase the 

pore size and depth.[34-35] This trend was also observed during the etching of silicon in 

[HMIM][BF4]-based w-IL system. Fig. 3 shows an scanning electron microscope (SEM) 

picture of the sample obtained by etching a silicon wafer at j = 24 mA/cm2 for 1 hour.

It can be seen that the pores at thus prepared homogeneous porous surface are larger 

than those observed after etching for 5 hours at j = 8 mA/cm2. Now, the pore size and 
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the thickness of the separating walls are increased up to 79±6 nm and 21±1 nm, 

respectively. It is noteworthy that the majority of the cells formed are 4 or 5-faceted.

Figure 3. SEM image of porous silicon obtained by etching in 1% [HMIM][BF4] w-IL 

system within 1 hour at a current density of 24 mA/cm2.

During etching gas formation is observed, but the change in the amount of water cannot 

be determined within the measurement accuracy, and after the process the system 

remains liquid. It contain white amorphous solid.

The increase of water content in the IL significantly affects the nature of etching. So, at 

5% water in IL the morphology of the formed layer changed now resembling to a 
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network of bulges around deeper etching zones of commensurate size (Fig. S2). This 

case is intermediate between the cellular structure (Fig. 2, 3) and a spongy surface 

when etching is achieved with higher water content (10%) (Fig. S3).

Elucidating the role of anion in the etching process encounters the intrinsic difficulties of 

strongly varying electrochemical properties of ILs when changing the anion. 

Alkylimidazolium ILs with PF6- anion have about ten times higher viscosity and ten-fold 

lower conductivity than with BF4-,[36] which dramatically alters etching efficiency with 

[HMIM][PF6]. The process becomes non-uniform developing locally (Fig. S5, S6), 

though at the bottom of the affected zones the dilution of the IL with etching products 

makes the conditions closer to those with less viscous [HMIM][BF4] and leads to the 

formation of a similar cellular structure (Fig. S6). Thus, changing the counterion to PF6- 

has significant impact on the surface structure and the viscosity effects point at a 

diffusion-based process.

When the difference in viscosity/conductivity is smaller, ca. 2 times, finer tuning of 

etching properties is seen. An isotropic electropolishing occurs (Fig. S4) with 
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[BMIM][BF4] (108.25 cP[37] and 3.53 mS/cm [38]), whereas an intermediate regime was 

observed with [BMIM][PF6] (284.49 cP [37] and 1.65 mS/cm [39]) when mesoporous 

etching (Fig. 4 a) goes concomitantly with the formation of a sub 100 nm pattern (Fig. 4 

c).

It should be noted that the formation of pores occurs without significant oxidation of the 

silicon surface, as the fraction of silicon oxide in the resulting material is less than 1.5% 

(according energy dispersive X-ray spectroscopy (EDS) data).

One of the essential qualities of porous silicon is its strong fluorescence.[40-41] The 

fluorescence spectrum of a porous silicon sample obtained by etching in 1% 

[HMIM][BF4] w-IL system at a current density of 8 mA/cm2 for 6 hours (Fig. 5) has a 

maximum in blue light at 475 nm. A more detailed study of the optical properties of the 

material is the subject of further study.
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Figure 4. SEM images of a silicon samples etched in w-ILs with [PF6-] anion: (a) 

[HMIM][PF6] (water content 2%) for 1 hour at j = 24 mA/cm2, (b) and (c) [BMIM][PF6] 

(water content 1%) for 1 hour at j = 24 mA/cm2). 
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Figure 5. The fluorescence spectrum (excitation at 401 nm) of a porous silicon sample 

obtained by etching in 1% [HMIM][BF4] w-IL system during 6 hours at j = 8 mA/cm2.

Raman spectra of the studied samples (Fig. S19, S20) are quite similar, with the more 

pronounced 2TO mode of the etched silicon, especially with the 532 nm excitation.

The IL used for preparing the wafer as in Fig. 2 (right) was diluted with CD3CN, and a 

comprehensive range of 1H, 13C, 11B, and 19F NMR spectra were recorded. Comparison 

of NMR spectra of this IL before and after etching showed that it does not decompose 

during the etching process (all signals at all nuclei before and after etching are 

completely identical and only the acidic proton signal shifts to the region of the high 

fields, which indicates a some decrease in pH [42]) and it can be considered as a 

potentially recyclable etching agent (see Fig. S7-S14). Of course, the interpretation that 

the ionic liquids will be recyclable because there is no degradation of the IL as 

determined by NMR spectroscopy is just a preliminary investigation; and, we will need 

to be examined more closely in the future including examination of the purity of the IL 

after several uses and using a more sensitive technique. 
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Experimental

Reagents, solvents, and materials. [BMIM][BF4] (99 %), used for etching, was supplied 

by Sigma Aldrich. [BMIM][PF6] (99%) was supplied by ABCR. [HMIM][BF4] and 

[HMIM][PF6] were prepared from 1-methylimidazol, 99 % (Acros) and fluoroboric acid, 

48 wt % (Acros) or hexafluorophosphoric acid, 55 wt % (Sigma Aldrich) respectively. 

Ionic liquid systems were washed with ethyl acetate (Acros).

The n-type (111) single-crystalline silicon wafer (d = 5 mm, thickness = 2 mm) was 

polished to a high gloss with chromium oxide GOI polishing paste and then degreased 

with isopropyl alcohol (SEM/EDS - see Fig.S1).

Synthesis of ionic liquids. [HMIM][BF4] was synthesized according to known literary 

technic.[32] The synthesis of [HMIM][PF6] was carried out similarly.

The purity and structure of prepared [HMIM][BF4], [HMIM][PF6] were confirmed by 1H, 

13C, 11B, 19F and 31P NMR analysis (see SI). The NMR spectra of [HMIM][BF4] in 

CD3CN: 1H NMR (600 MHz): 3.84 (s, 3H, CH3), 7.30 (s, H), 7.32 (s, H), 8.26 (s, H), 
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12.05 (s, N+-H). 13C NMR (150 MHz): 34.2, 116.9, 121.9, 136.8. 11B NMR (193 MHz): -

1.06 (s). 19F NMR (565 MHz): - 150.99 (s, 10BF4) and -151.04 (s, 11BF4) in 1:4 intensity 

ratio, which corresponding to the natural abundance of 10B and 11B isotopes in ca. 20% 

and ca. 80%, respectively.  The NMR spectra of [HMIM][PF6] in D2O: 1H NMR (600 

MHz): 3.65 (s, 3H, CH3), 7.16 (s, 2H), 8.37 (s, H). 13C NMR (150 MHz): 35.3, 119.3, 

122.8, 134.8. 31P NMR (243 MHz): -145.3 (sep, J = 709.17 Hz) 19F NMR (565 MHz): -

72.85 (d, J = 709.14 Hz)

NMR spectra were recorded on Bruker AV600 spectrometer at ambient temperature. 

Standards according to Bruker almanac [43] were used. Water content in the ILs was 

controlled by Fischer titration using a KAS-01 MD apparatus.

Electrochemical etching. The etching was carried out in a PTFE cell of the original 

design (see Fig. 1). It consisted of a PTFE rod fitted with a PTFE nut with a 4 mm hole 

that allowed the silicon wafer to be pressed against a stainless steel rod, which served 

as a current collector. A PTFE nut also allows us to limit the etching area, so it remains 

constant throughout all experiments. In parallel with the silicon wafer, a platinum grid 
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cathode was fixed above the PTFE cell. The etching agent was placed on the surface of 

the silicon wafer using a micropipette. The etching process was carried out in 

galvanostatic mode at current density in the range from 8 mA/cm2 to 24 mA/cm2 using a 

PC-piloted digital potentiostat IPC-Pro-MF (Econix). Etching time was varied from 30 

minutes to 6 hours. After that, the silicon wafer was washed with ethyl alcohol and 

stored in a high-purity argon atmosphere in a septum-sealed vial.

SEM/EDS. Morphology of pristine and etched silicon surface was studied using a 

Hitachi SU8000 field-emission scanning electron microscope (FE-SEM). The images 

were acquired in secondary electron mode at 20 kV accelerating voltage and the 

working distance 8-10 mm. Energy-dispersive X-ray spectroscopy (EDS) was carried 

out using an Oxford Instruments X-max 80 EDS system at 20 kV accelerating voltage 

and a working distance 15 mm. The samples were studied without metallization in order 

to avoid metal coating effects.[44]
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Raman spectroscopy. Raman spectra were acquired with a BWS415 spectrometer 

(BWTEK, Germany) with 785 nm laser, and with EnSpectr532 spectrometer (Enspectr, 

Russia), integrated with 532 nm laser and CX41 microscope (Olympus, Japan).

Confocal microscopy. Confocal microscopy was performed with Nikon A1 confocal 

microscope equipped with 401 nm and 514 nm lasers and spectral detector (Nikon, 

Japan).

Summary

High-purity porous silicon with uniform and size-controlled pores was produced using 

wet 1-methylimidazolium tetrafluoroborate as the etching solution. Such a non-volatile, 

non-flammable, and chemically and electrochemically stable system is a good 

alternative to commonly used aggressive, toxic and dangerous HF.[45]1-

Methylimidazolium tetrafluoroborate is easily synthesized and does not require special 

storage conditions. Moreover, it can be considered as a potentially recyclable etching 

agent. Besides, the etching process is very simple, secure and efficient with no need of 

additional heating, control of potential or any other special precautions. All this makes 
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the proposed technique suitable for scaling-up. Application of HF-free solvent-in-salt 

system for eco-friendly etching is a novel approach with excellent practical 

opportunities.
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ABBREVIATIONS

[BMIM][BF4], 1-Butyl-3-methylimidazolium tetrafluoroborate; EDS, energy dispersive X-

ray spectroscopy; EMIMF·2.3HF, 1-ethyl-3-methylimidazolium oligofluorohydrogenate; 

IL, ionic liquid; [HMIM][BF4], 1-Methylimidazolium tetrafluoroborate; [HMIM][PF6], 1-

Methylimidazolium hexafluorophosphate; NMR, nuclear magnetic-resonance; PTFE, 

polytetrafluorethylene; PSi, porous silicon; SEM, scanning electron microscope; w-IL, 

wet ionic liquids.
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