## Nano-sized iron oxides supported on polyester textile to remove fluoroquinolones in hospital wastewater

## Gnougon Nina COULIBALY<sup>a</sup>, Sami RTIMI<sup>b</sup>, Aymen Amin ASSADI<sup>a</sup>, Khalil HANNA<sup>a,c\*</sup>

<sup>a</sup> Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR – UMR6226, F-35000 Rennes, France.

<sup>b</sup> Ecole Polytechnique Fédérale de Lausanne, EPFL-STI-LTP, Station 12, CH-1015 Lausanne, Switzerland.

<sup>c</sup> Institut Universitaire de France (IUF), MESRI, 1 rue Descartes, 75231 Paris, France.

\*Corresponding author: Tel.: +33 2 23 23 80 27; khalil.hanna@ensc-rennes.fr

Number of Pages: 7

Number of Figures: 4

Number of Tables: 2

Number of Text: 1

**Text S1:** Potential reactions in the FeOx<sub>3</sub>/PMS system under irradiation.

(2)

(3)

(4)

(5)

(6)

SO<sub>4</sub>•-/•OH + Organic compounds → degradation products

Table S1. Inorganic species and physico-chemical characteristics of SWW and RHW

|                                       | SWW     | RHW           |
|---------------------------------------|---------|---------------|
| pН                                    | 8.0±0.5 | $6.8 \pm 0.2$ |
| Turbidity (NTU)                       | 2±1     | 196±5         |
| Conductivity (µS cm <sup>-1</sup> )   | 1250±5  | 1340±5        |
| TOC (mg L <sup>-1</sup> )             | 70±5    | 50±10         |
| Suspended solid (mg L <sup>-1</sup> ) | 0       | 20±2          |
| Chloride (mg L <sup>-1</sup> )        | 450±20  | 620±10        |
| Nitrate mg L <sup>-1</sup> )          | 35±2    | 7±2           |
| Sulfate (mg L <sup>-1</sup> )         | 20±2    | 60±10         |
| Phosphate (mg L <sup>-1</sup> )       | 150±10  | 60±10         |

Synthetic wastewater (SWW) were prepared by adding 400 mg  $L^{-1}$  of NaCl, 50 mg  $L^{-1}$  of citric acid, 100 mg  $L^{-1}$  of sucrose and 230 mg  $L^{-1}$  Na<sub>2</sub>HPO<sub>4</sub> to tap water (conductivity 408  $\mu$ S cm<sup>-1</sup>).

Table S2. Reactivity percentage of radicals with species in solution

k": second order rate constant and k' = k" \* [species]

% of reactivity indicates the percentage of hydroxyl radicals or sulfate radicals reacted.



Fig. S1. Schematic diagram of recirculation glass reactor system



**Fig. S2**. Effect of oxidant on FLU removal with catalyst FeOx<sub>3</sub> under visible irradiation. Experimental conditions: [FeOx<sub>3</sub>] = 0.26 g m<sup>-2</sup> on PES, [FLU]  $_0$  = 5 μM, visible reaction time = 48 h, pH  $_0$  = 7.0 ± 0.2, V = 200 mL, recirculation flow rate = 325 mL min<sup>-1</sup>, [H<sub>2</sub>O<sub>2</sub>]  $_0$  = [PS]  $_0$  = [PMS]  $_0$  = 0.5 mM. Abbreviations: FLU = flumequine, PS = persulfate, H<sub>2</sub>O<sub>2</sub> = hydrogen peroxide, PMS = peroxymonosulfate, FeOx<sub>3</sub> corresponding to 3% O<sub>2</sub> in the sputtering chamber. For PMS, the solid line is only a visual guide.



**Fig. S3**. Effect of radicals scavengers on FLU removal. Experimental conditions: [FLU]  $_0$  = 5  $\mu$ M, [PMS]  $_0$  = 0.5 mM, [FeOx<sub>3</sub>] = 0.26 g m<sup>-2</sup> on PES, reaction time = 48 h, [i-PrOH]  $_0$  = 10 - 20 mM, [t-BuOH]  $_0$  = 5 mM, visible reaction time = 48 h, pH  $_0$  = 7.0  $\pm$  0.2, V = 200 mL, recirculation flowrate = 325 mL min<sup>-1</sup>. Abbreviations: FLU = flumequine, PMS = peroxymonosulfate, t-BuOH = tert-Butyl alcohol, i-PrOH= isopropanol, FeOx<sub>3</sub> corresponding to 3% O<sub>2</sub> in the sputtering chamber. For the control test, the solid line is only a visual guide.



**Fig. S4.** FLU removal rate constant in RHW using FeOx<sub>3</sub>-PES for five successive oxidation runs. Experimental conditions: [FLU]  $_0 = 5 \,\mu\text{M}$ , [PMS]  $_0 = 3 \,\text{mM}$ , [FeOx<sub>3</sub>] = 0.26 g m<sup>-2</sup> on PES, pH  $_0 = 7.0 \pm 0.2$ , reaction time = 48 h, recirculation flow rate = 325 mL min<sup>-1</sup>. Abbreviations: FLU = flumequine, PMS = peroxymonosulfate, RHW = Real Hospital Wastewater, FeOx<sub>3</sub> corresponding to 3% O<sub>2</sub> in the sputtering chamber.