Nano-sized iron oxides supported on polyester textile to remove fluoroquinolones in hospital wastewater ## Gnougon Nina COULIBALY^a, Sami RTIMI^b, Aymen Amin ASSADI^a, Khalil HANNA^{a,c*} ^a Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR – UMR6226, F-35000 Rennes, France. ^b Ecole Polytechnique Fédérale de Lausanne, EPFL-STI-LTP, Station 12, CH-1015 Lausanne, Switzerland. ^c Institut Universitaire de France (IUF), MESRI, 1 rue Descartes, 75231 Paris, France. *Corresponding author: Tel.: +33 2 23 23 80 27; khalil.hanna@ensc-rennes.fr Number of Pages: 7 Number of Figures: 4 Number of Tables: 2 Number of Text: 1 **Text S1:** Potential reactions in the FeOx₃/PMS system under irradiation. (2) (3) (4) (5) (6) SO₄•-/•OH + Organic compounds → degradation products Table S1. Inorganic species and physico-chemical characteristics of SWW and RHW | | SWW | RHW | |---------------------------------------|---------|---------------| | pН | 8.0±0.5 | 6.8 ± 0.2 | | Turbidity (NTU) | 2±1 | 196±5 | | Conductivity (µS cm ⁻¹) | 1250±5 | 1340±5 | | TOC (mg L ⁻¹) | 70±5 | 50±10 | | Suspended solid (mg L ⁻¹) | 0 | 20±2 | | Chloride (mg L ⁻¹) | 450±20 | 620±10 | | Nitrate mg L ⁻¹) | 35±2 | 7±2 | | Sulfate (mg L ⁻¹) | 20±2 | 60±10 | | Phosphate (mg L ⁻¹) | 150±10 | 60±10 | Synthetic wastewater (SWW) were prepared by adding 400 mg L^{-1} of NaCl, 50 mg L^{-1} of citric acid, 100 mg L^{-1} of sucrose and 230 mg L^{-1} Na₂HPO₄ to tap water (conductivity 408 μ S cm⁻¹). Table S2. Reactivity percentage of radicals with species in solution k": second order rate constant and k' = k" * [species] % of reactivity indicates the percentage of hydroxyl radicals or sulfate radicals reacted. Fig. S1. Schematic diagram of recirculation glass reactor system **Fig. S2**. Effect of oxidant on FLU removal with catalyst FeOx₃ under visible irradiation. Experimental conditions: [FeOx₃] = 0.26 g m⁻² on PES, [FLU] $_0$ = 5 μM, visible reaction time = 48 h, pH $_0$ = 7.0 ± 0.2, V = 200 mL, recirculation flow rate = 325 mL min⁻¹, [H₂O₂] $_0$ = [PS] $_0$ = [PMS] $_0$ = 0.5 mM. Abbreviations: FLU = flumequine, PS = persulfate, H₂O₂ = hydrogen peroxide, PMS = peroxymonosulfate, FeOx₃ corresponding to 3% O₂ in the sputtering chamber. For PMS, the solid line is only a visual guide. **Fig. S3**. Effect of radicals scavengers on FLU removal. Experimental conditions: [FLU] $_0$ = 5 μ M, [PMS] $_0$ = 0.5 mM, [FeOx₃] = 0.26 g m⁻² on PES, reaction time = 48 h, [i-PrOH] $_0$ = 10 - 20 mM, [t-BuOH] $_0$ = 5 mM, visible reaction time = 48 h, pH $_0$ = 7.0 \pm 0.2, V = 200 mL, recirculation flowrate = 325 mL min⁻¹. Abbreviations: FLU = flumequine, PMS = peroxymonosulfate, t-BuOH = tert-Butyl alcohol, i-PrOH= isopropanol, FeOx₃ corresponding to 3% O₂ in the sputtering chamber. For the control test, the solid line is only a visual guide. **Fig. S4.** FLU removal rate constant in RHW using FeOx₃-PES for five successive oxidation runs. Experimental conditions: [FLU] $_0 = 5 \,\mu\text{M}$, [PMS] $_0 = 3 \,\text{mM}$, [FeOx₃] = 0.26 g m⁻² on PES, pH $_0 = 7.0 \pm 0.2$, reaction time = 48 h, recirculation flow rate = 325 mL min⁻¹. Abbreviations: FLU = flumequine, PMS = peroxymonosulfate, RHW = Real Hospital Wastewater, FeOx₃ corresponding to 3% O₂ in the sputtering chamber.