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THE PLANCHEREL FORMULA FOR COUNTABLE
GROUPS

BACHIR BEKKA

ABSTRACT. We discuss a Plancherel formula for countable groups,
which provides a canonical decomposition of the regular represen-
tation of such a group I' into a direct integral of factor represen-
tations. Our main result gives a precise description of this decom-
position in terms of the Plancherel formula of the FC-center I'¢. of
I (that is, the normal sugbroup of T' consisting of elements with
a finite conjugacy class); this description involves the action of an
appropriate totally disconnected compact group of automorphisms
of I'g.. As an application, we determine the Plancherel formula for
linear groups. In an appendix, we use the Plancherel formula to
provide a unified proof for Thoma’s and Kaniuth’s theorems which
respectively characterize countable groups which are of type I and
those whose regular representation is of type II.

1. INTRODUCTION

Given a second countable locally compact group G, a fundamental
object to study is its unitary dual space G, that is, the set irreduciblg
unitary representations of G up to unitary equivalence. The space G
carries a natural Borel structure, called the Mackey Borel structure
(see [Mach7, §6] or [Dix77, §18.6]). A classification of G is considered
as being possible only if G is a standard Borel space; according to
Glimm’s celebrated theorem ([Gli61]), this is the case if and only if G
is of type I in the following sense.

Recall that a von Neumann algebra is a self-adjoint subalgebra of
L(H) which is closed for the weak operator topology of L(H), where
‘H is a Hilbert space. A von Neumann algebra is a factor if its center
only consists of the scalar operators.

Let m be a unitary representation of G in a Hilbert space H (as
we will only consider representations which are unitary, we will often
drop the adjective “unitary”). The von Neumann subalgebra of L(H)
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generated by 7(G) coincides with the bicommutant 7(G)” of 7(G) in
L(H); we say that 7 is a factor representation if 7(G)” is a factor.

Definition 1. The group G is of type I if, for every factor representa-
tion 7w of G, the factor m(G)" is of type I, that is, 7(G)” is isomorphic
to the von Neumann algebra L(K) for some Hilbert space K; equiva-
lently, the Hilbert space H of 7 can written as tensor product K ® K’
of Hilbert spaces in such a way that « is equivalent to ¢ ® I for an
irreducible representation o of G on K.

Important classes of groups are known to be of type I, such as semi-
simple or nilpotent Lie groups. A major problem in harmonic analysis
is to decompose the left regular representation Ag on L?*(G, ug) for
a Haar measure ug as a direct integral of irreducible representations.
When G is of type I and unimodular, this is the content of the classical
Plancherel theorem: there exist a unique measure y on G and a uni-
tary isomorphism between L?(G, ug) and the direct integral of Hilbert
spaces [ (H. @ H,)du(r) which transforms g into [5 (7 ® I;-)dp(x),
where #, is the conjugate of the Hilbert space M, of 7; in particular,
we have a Plancherel formula

||f||§Z/éTr(W(f)*W(f))du(W) for all  f € LY(G, ) NL*(G, pg),

where || f||2 is the L%norm of f, w(f) is the value at f of the natural
extension of m to a representation of L'(G, ug), and Tr denotes the
standard trace on £(H,); for all this, see [Dix77, 18.8.1].

When G is not type I, Ag usually admits several integral decompo-
sitions into irreducible representations and it is not possible to single
out a canonical one among them. However, when G is unimodular, A\g
does admit a canonical integral decomposition into factor representa-
tions representations; this the content of a Plancherel theorem which
we will discuss in the case of a discrete group (see Theorem .

Let I' be a countable group. As discussed below (see Theorem [E]), I
is usually not of type L. In order to state the Plancherel theorem for I',
we need to replace the dual space I by the consideration of Thoma’s
dual space Ch(I") which we now introduce.

Recall that a function ¢ : I' — C is of positive type if the complex-
valued matrix (£(v; '7;))1<ij<n 1S positive semi-definite for any v, ..., 1
inI’

A function of positive type ¢ on I" which is constant on conjugacy
classes and normalized (that is, t(e) = 1) will be called a trace on G.
The set of traces on I' will be denoted by Tr(I').
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Let t € Tr(I') and (7, Hy, &) be the associated GNS triple (see
[BHVOS, C.4]). Then 7 : n(I')” — C, defined by 7(T") = (T& | &)
is a trace on the von Neumann algebra m(I")”, that is, 7(7*7) > 0
and 7(7S) = 7(ST) for all T, S € 7 (I")"; moreover, 7 is faithful in
the sense that 7(7*T") > 0 for every T' € m(I")”,T # 0. Observe that
7(m(f)) = t(f) for f € C[I'], where ¢ denotes the linear extension of ¢
to the group algebra C[I].

The set Tr(I") is a convex subset of the unit ball of £>°(I") which is
compact in the topology of pointwise convergence. An extreme point
of Tr(T") is called a character of I'; we will refer to Ch(I') as Thoma’s
dual space.

Since I' is countable, Tr(I") is a compact metrizable space and Ch(I")
is easily seen to be a G subset of Tr(I"). So, in contrast to I, Thoma’s
dual space Ch(I") is always a standard Borel space.

An important fact is that Tr(I") is a simplex (see [Tho64, Satz 1] or
[Sak71} 3.1.18]); by Choquet theory, this implies that every 7 € Tr(I)
can be represented as integral 7 = fCh(F) tdu(t) for a unique probability

measure y on Ch(I').

As we now explain, the set of characters of I" parametrizes the factor
representations of finite type of I', up to quasi-equivalence; for more
details, see [Dix77, §17.3] or [BH| §11.C].

Recall first that two representations 7 and 7y of I' are quasi-equivalent
if there exists an isomorphism ® : m;(I")"” — m5(T")” of von Neumann
algebras such that ®(m(y)) = ma(y) for every v € T.

Let t € Ch(I') and m; the associated GNS representation. Then
m(I')” is a factor of finite type. Conversely, let 7 be a representation
of I such that 7(I")” is a factor of finite type and let 7 be the unique
normalized trace on 7(I")”. Then ¢ := 7 o 7 belongs to Ch(I") and only
depends on the quasi-equivalence class [7] of 7.

The map ¢t — [m] is a bijection between Ch(I") and the set of quasi-
equivalence classes of factor representations of finite type of I'.

The following result is a version for countable groups of a Plancherel
theorem due to Mautner [Maub0] and Segal [Segh0] which holds more
generally for any unimodular second countable locally compact group;
its proof is easier in our setting and will be given in Section [3| for the
convenience of the reader.

Theorem A. (Plancherel theorem for countable groups) Let T’
be a countable group. There exists a probability measure p on Ch(T),
a measurable field of representations t — (m;, Hy) of T' on the standard
Borel space Ch(T"), and an isomorphism of Hilbert spaces between (*(T')
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and féeh(r) H,dp(t) which transforms Ar into fcei(r) 7 du(t) and has the
following properties:

(i) m is quasi-equivalent to the GNS representation associated to
t; in particular, the m’s are mutually disjoint factor represen-
tations of finite type, for p-almost every t € Ch(I');

(ii) the von Neumann algebra L(T') := Ap(I")" is mapped onto the
direct integral féi(r) m(0)"dv(t) of factors;

(iii) for every f € CII'], the following Plancherel formula holds:

12 = / o T )an) = / D)

The measure i is the unique probability measure on Ch(I') such that
the Plancherel formula above holds.

The probability measure 1 on Ch(I") from Theorem [A] is called the
Plancherel measure of I'.

Remark 2. The Plancherel measure gives rise to what seems to be
an interesting dynamical system on Ch(I") involving the group Aut(I")
of automorphisms of I'. We will equip Aut(I') with the topology of
pointwise convergence on I', for which it is a totally disconnected
topological group. The natural action of Aut(I') on Ch(T"), given by
t9(v) = t(g7' (7)) for g € Aut(T") and t € Ch(T'), is clearly continuous.

Since the induced action of Aut(T") on £2(T') is isometric, the following
fact is an immediate consequence of the uniqueness of the Plancherel
measure g of I':

the action of Aut(I') on Ch(I") preserves p.

For example, when I' = Z¢, Thoma’s dual Ch(T") is the torus T¢,
the Plancherel measure j is the normalized Lebesgue measure on T¢
which is indeed preserved by the group Aut(Z¢) = GL4(Z). Dynamical
systems of the form (A, Ch(I"), u) for a subgroup A of Aut(I') may be
viewed as generalizations of this example.

We denote by I't. the FC-centre of I', that is, the normal subgroup of
elements in I" with a finite conjugacy class. It turns out (see Remark@
that t = 0 on '\ Ty, for g-almost every ¢ € Ch(I"). In particular, when I
is ICC, that is, when I't. = {e}, the regular representation Ar is factorial
(see also Corollary |5)) so that the Plancherel formula is vacuous in this
case.

In fact, as we now see, the Plancherel measure of I is entirely de-
termined by the Plancherel measure of ['t.. Roughly speaking, we will
see that the Plancherel measure of I' is the image of the Plancherel
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measure of I'y, under the quotient map Ch(I't.) — Ch(I'w.)/Kr, for a
compact group Kt which we now define.

Let Kr be the closure in Aut(I'y) of the subgroup Ad(I')|r, given
by conjugation with elements from I'. Since every I'-conjugation class
in I'g is finite, KT is a compact group. By a general fact about actions
of compact groups on Borel spaces (see Corollary 2.1.21 and Appendix
in [Zim84]), the quotient space Ch(I'y.)/Kr is a standard Borel space.

Given a function ¢ : H — C of positive type on a subgroup H of a
group I, we denote by ¢ the extension of ¢ to I' given by ¢ = 0 outside H.
Observe that ¢ is of positive type on I' (see for instance [BH, 1.F.10]).

Here is our main result.

Theorem B. (Plancherel measure: reduction to the FC-center)
Let T' be a countable group. Let v be the Plancherel measure of I'y. and
Arg, = fCh 7Ttd1/ the integral decomposition of the regular repre-
sentation of ch as in Theorem [4. Let v be the image of v under the
quotient map Ch(I'y.) — Ch(I'y)/Kr.

(i) For every Kr-orbit O in Ch(I'y), let mo be the unique nor-
malized Kr-invariant probability measure on O and let 7o =
fg mmo(t). Then the induced representation o = Indgfc TO
1s factorial for v-almost every O and we have a direct integral
decomposition of the von Neumann algebra L(T") into factors

g
o= [ &y dno)
Ch(rfc)/Kl"
(ii) The Plancherel measure of I' is the image ®.(v) of v under the
map

®:Ch(Te) — Te(l), t— [ tidm(yg),

Krp

where m s the normalized Haar measure on Kr.

It is worth mentioning that the support of pu was determined in
[Tho67]. For an expression of the map ® as in Theorem [B]ii with-
out reference to the group Kr, see Remark

As we next see, the Plancherel measure on I'g. can be explicitly de-
scribed in the case of a linear group I'. We first need to discuss the
Plancherel formula for a so-called central group, that is, a central
extension of a finite group.

Let A be a central group. Then A is of type I (see Theorem [E] . In

fact, A can be described as follows; let 7 : A — Z (A) be the restric-
tion map, where Z(A) is the center of A. Then, for y € Z(A), every
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m € r~1(x) is equivalent to a subrepresentation of the finite dimen-
sional representation Ind/Z\( A) X> by a generalized Frobenius reciprocity

theorem (see [Mach2, Theorem 8.2]); in particular, r—!(x) is finite.
The Plancherel measure v on Ch(A) is, in principle, easy to deter-

mine: we identify every m € A with its normalized character given by

1
x +— —— Trm(x); for every Borel subset A of Ch(A), we have

dim 7
#(ANr(x)
A) = d
V( ) /Z/(A\)Zﬂ'er—l(x)(dimﬂ-)z X

where dy is the normalized Haar measure on the abelian compact group

—

Z(A).

Corollary C. (The Plancherel measure for linear groups) Let
I' be a countable linear group.

(i) Tt is a central group;
(ii) Kr coincides with Ad(I")|r,, and is a finite group;
(iii) the Plancherel measure of I' is the image of the Plancherel mea-
sure of ', under the map ® : Ch(I'y) — Tr(I") given by

1 S
"0 A o,

s€AA(T)|py,

When the Zariski closure of the linear group I' is connected, the
Plancherel measure of I" has a particularly simple form.

Corollary D. (The Plancherel measure for linear groups-bis)
Let G be a connected linear algebraic group over a field k and let T' be
a countable Zariski dense subgroup of G. The Plancherel measure of

—

[ is the image of the normalized Haar measure dx on Z(I') under the
map

Z00) - T(),  x =X
and the Plancherel formula is given for every f € C[['] by

113 =|__ F(f** Hlzm)(x)dx,
Z(T)
where F is the Fourier transform on the abelian group Z(T).
The previous conclusion holds in the following two cases:

(i) k is a countable field of characteristic 0 and I' = G(k) is the
group of k-rational points in G;

(i) k is a local field (that is, a non discrete locally compact field),
G has no proper k-subgroup H such that (G/H)(k) is compact,
and T is a lattice in G(k).
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Corollary @ generalizes the Plancherel theorem obtained in |[CPJ94}
Theorem 4] for I' = G(Q) and in [PJ95, Theorem 3.6] for I' = G(Z), in
the case where G is a unipotent linear algebraic group over Q; indeed,
G is connected (since the exponential map identifies G with its Lie
algebra, as affine varieties) and these two results follow from (i) and
(ii) respectively.

In an appendix to this article, we use Theorem [A] to give a unified
proof of Thoma’s and Kaniuth’s results ([Tho64],[Tho68], [Kan69]) as
stated in the following theorem. For a group I', we denote by [[', '] its
commutator subgroup. Recall that I' is said to be virtually abelian if
it contains an abelian subgroup of finite index.

The regular representation Ar is of type I (or type II) if the von Neu-
mann algebra L(I') is of type I (or type II); equivalently (see Corollaire
2 in [Dix69, Chap. II, § 3, 5]), if ()" is a finite dimensional factor
(or a factor of type II) for p-almost every ¢t € Ch(T") in the Plancherel
decomposition A\pr = fceil(r) mdpu(t) from Theorem

Theorem E (Thoma, Kaniuth). Let I" be a countable group. The
following properties are equivalent:
(i) T is type I;
(i) T is virtually abelian;
(iii) the regular representation Ar is of type I;
(iv) every irreducible unitary representation of I is finite dimen-
stonal;
(iv’) there exists an integer n > 1 such that every irreducible unitary
representation of I' has dimension < n.

Moreover, the following properties are equivalent:
(v) Ar is of type II;
(vi) either [[': T'y.] = 00 or [I' : I'g] < 00 and [I',T] is infinite.

Our proof of Theorem [E] is not completely new as it uses several
crucial ideas from [Tho64] and especially from [Kan69] (compare with
the remarks on p.336 after Lemma in [Kan69]); however, we felt it
could be useful to have a short and common treatment of both results
in the literature. Observe that the equivalence between (i) and (iii)
above does not carry over to non discrete groups (see |Mac61]).

Remark 3. Theorem |Ef holds also for non countable discrete groups.
Write such a group I' as I' = U;H; for a directed net of countable
subgroups H;. If L(I")" is not of type II (or is of type I), then L(H;) is
not of type I1 (or is of type I) for j large enough. This is the crucial
tool for the extension of the proof of Theorem [E] to I'; for more details,
proofs of Satz 1 and Satz 2 in [Kan69).
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This paper is organized as follows. In Section [2| we recall the well-
known description of the center of the von Neumann algebra of a dis-
crete group. Sections [3 and [4] contains the proofs of Theorems [A] and
B In Section 5, we prove Corollaries [C|] and [D] Section [6] is devoted to
the explicit computation of the Plancherel formula for a few examples
of countable groups. Appendix [A] contains the proof of Theorem [E]
Acknowledgement. We are grateful to Pierre-Emmanuel Caprace
and Karl-Hermann Neeb for useful comments on the first version of
this paper.

2. ON THE CENTER OF THE GROUP VON NEUMANN ALGEBRA

Let I' be a countable group. We will often use the following well-
known description of the center Z = A\(I')” N A(I")" of L(I") = Ap(I")".

Observe that Ap(H)"” is a von Neumann subalgebra of L(T"), for every
subgroup H of I'. For h € I'., we set

Ty = Ae(1p) = Z Ar(z) € Ar(T)”,
z€lh]

where [h] denotes the T'-conjugacy class of h.

Lemma 4. The center Z of L(I') = Ap(I")” coincides with the closure
of the linear span of {Tyn) | h € T'w}, for the strong operator topology;
in particular, Z is contained in Ap(T'g.)”.

Proof. It is clear that T} € Z for every h € I't.. Observe also that the
linear span of {7y, | h € I't} is a unital selfadjoint algebra; indeed,
Tip-1) = T}, for every h € I't, and {1y | h € I'i.} is a vector space
basis of the algebra C[['t]' of I-invariant functions in C[['¢].

Let T € Z. We have to show that T' € {T}, | h € I'e.}". For every
v €T, we have

Ar(Vpr(N(Tée) = (Ar(V)pr(NT)de = (TAr(v)pr(v))de = T

and this shows that f := T4, which is a function in ¢*(T'), is invariant
under conjugation by . The support of f is therefore contained in I'.

Write f = Z[h]ec cin Ly for a sequence (cpp))pjec of complex numbers
with 325 cc #[h]|em|? < oo, where C is a set of representatives for the

[-conjugacy classes in I'g.. Let pr be the right regular representation
of I'. Since T" € Ap(I')” and pr(I') C Ap(I')’, we have, for every z € T,

T(8,) = Tpr(x)(8.) = pr(z)(f VD ewtm | =D emTim(d

[h]eC [n]ecC
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where the last sum is convergent in ¢?(T'). We also have T*(d,) =

> _mec Cn i1 (0z)-
Let S € {Tiy | h € T} For every x,y € T, we have

(ST(8.) | 8,) = (S [ Y epTin(62) = () emSTi(02) | 6,)

[pleC [n]ec
= Z e (115 (92) | 6y) 21 Ty
[hleC
= < ( 6z) | T*(3,)) = (T'S(d) | 4,))
and it follows that ST = T'S. O

The following well-known corollary shows that the Plancherel mea-
sure is the Dirac measure at J. in the case where I' is ICC group, that
is, when T'r. = {e}.

Corollary 5. Assume that I" is ICC. Then L(I') = Ap(I')” is a factor.

3. PROOF OF THEOREM [A]

Consider a direct integral decomposition [ ;f medp(z) of Ar associ-
ated to the centre Z of L(I') = Ap(I")” (see [8.3.2]|Dix77]); so, X is
a standard Borel space equipped with a probability measure p and
(72, Ha)zex is measurable field of representations of I' over X, such
that there exists an isomorphism of Hilbert spaces

U:*T) — /XEB H.dp(x)

which transforms Ar into [ m,du(r) and for which UZU~" is the
algebra of diagonal operators on [ )? H.dp(z). (Recall that a diagonal
operator on f)? H.du(zx) is an operator of the form ff; o(x) Iy, dp(x)
for an essentially bounded measurable function ¢ : X — C.)

Then, upon disregarding a subset of X of p-measure 0, the following

holds (see [8.4.1][Dix77]):
(1) m, is a factor representation for every z € X;
(2) m, and m, are disjoint for every x,y € X with x # y;
(3) we have UAp(D)"U~" = [ () dp(x).

Let pr be the right regular representation of I'. Let v € I'. Then
Upr(y)U~! commutes with every diagonalisable operator on [ f H.du(z),
since pr(y) € L(I'). It follows (see [Dix69, Chap. II, §2, No 5,
Théoreme 1]) that Upr(y)U ™! is a decomposable operator, that is,
there exists a measurable field of unitary operators x — o, () such that
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Upr(7)U' = [ 0.(7)du(z). So, we have a measurable field  — o,
of representations of I' in [ f H.dp(x) such that

@
Upr(7) U™ = / o,(y)du(x) for all y €T,
X

Let (& )zex € f;f H.dp(x) be the image of 6, € ¢*(T') under U. We
claim that &, is a cyclic vector for m, and o,, for u-almost every x € X.
Indeed, since . € ¢*(T") is a cyclic vector for both Ar and pr,

{(ma(7)€x)eex [y €T} and {(02(7)a)rex | 7 €T}

are countable total subsets of [ )? H.dp(z) and the claim follows from
a general fact about direct integral of Hilbert spaces (see Proposition
8 in Chap. II, §1 of |[Dix69)]).
Since Ar(7)d. = pr(y!')d. for every v € T' and since T is countable,
upon neglecting a subset of X of p-measure 0, we can assume that
(4) me ()& = 056(771)696?
(5) ma(7)0e(v') = 02(¥)ma(7);
(6) & is a cyclic vector for both 7, and o,
for all z € X and all v,+" € T.
Let z € X and let ¢, be the function of positive type on I' defined
by
(7)) = (me(7)€e | &)  for every v €T.
We claim that ¢, € Ch(I'). Indeed, using (4) and (5), we have, for
every 71,72 € I,

4,095(72’}/172_1) = <7Tw('72'71'72_1)€a2 | §x> = <7Tx(’72’71>0x('72)€x | £x>
= (02 (72) T2 (7271)8 | €2) = (T2(11)Ee | 7796(72_1)096(72_1)590)
= <7T$('71)£z ’ fx) - 9090(/71)'

So, ¢, is conjugation invariant and hence ¢, € Tr(I"). Moreover, ¢, is
an extreme point in Tr(I"), since 7, is factorial and &, is a cyclic vector
for m,.

Finally, since U: ¢*(T') — ff H.dp(z) is an isometry, we have for
every f € C[I'],

LFIZ = f7 % fle) = (An(f* * £)de | dc)
= [Ac()oell* = U (£)de)|I*

= [Im g lPduto) = [ a5 panta),

The measurable map ® : X — Ch(I") given by ®(z) = ¢, is injective,
since 7, and , are disjoint by (2) and hence ¢, # ¢, for z,y € X with
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x # y. It follows that ®(X) is a Borel subset of Ch(I") and that ® is a
Borel isomorphism between X and ®(X) (see [Mach7, Theorem 3.2]).
Pushing forward p to Ch(I') by ®, we can therefore assume without
loss of generality that X = Ch(I") and that p is a probability measure
on Ch(I"). With this identification, it is clear that Items (i), (ii) and
(iii) of Theorem [A] are satisfied and that the Plancherel formula holds.

It remains to show the uniqueness of u. Let v any probability measure
on Ch(I") such that the Plancherel formula. By polarization, we have
then 6, = fCh(F) tdv(t), which is an integral decomposition of 6. € Tr(I)
over extreme points of the convex set Tr(I'). The uniqueness of such a
decomposition implies that v = pu.

Remark 6. (i) For p-almost every ¢t € Ch(I'), we have ¢t = 0 on I'\ I'..
Indeed, let v ¢ I'.. Then (Ar(7)Ar(h)de | d.) = 0 for every h € T'y. and
hence

(%) Ar(Y)T6: | 0.) =0  forall T e \p(I'g)".

With the notation as in the proof above, let E' be a Borel subset of X.
Then Ty := U 'PrU is a projection in Z, where Py is the diagonal
operator [y 1p(z) I, du(x). It follows from Lemmaand (%) that

/E oM du(e) = (Tedr()e | 6.) = Ar()Teb. | 6.) = 0.

Since this holds for every Borel subset E of X, this implies that ¢, () =
0 for p-almost every x € X.

As T is countable, for p-almost every z € X, we have ¢,(y) = 0 for
every v & Dg.
(11> Let Ar = fcai(r) ﬂ-td/’b(t)’ pr = f(ﬂi(r) O-td:u(t)7 and 56 = (ft)tECh(F) be
the decompositions as above. For p-almost every ¢ € Ch(I'"), the linear
map

m(T)" — My, T — T

is injective. Indeed, this follows from the fact that & is cyclic for oy
and that o4(I") C m(T)".

4. PROOF OF THEOREM [Bl

Set N :=TI't. and X := Ch(N). Consider the direct integral decom-
position [ )e{a mdr(t) of Ay into factor representations (7, K;) of N with
corresponding traces ¢ € X, as in Theorem [A]

Let Kr be the compact group which is the closure in Aut(N) of
Ad(T")|n. Since the quotient space X/Kr is a standard Borel space,
there exists a Borel section s : X/Kr — X for the projection map
X — X/Kr. Set  := s(X/Kr).Then 2 is a Borel transversal for
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X/Kr. The Plancherel measure v can accordingly be decomposed over
Q) : we have

v(f) = / [ . ar)

for every bounded measurable function f on Ch(I'y.), where m,, be the
unique normalized Kp-invariant probability measure on the Kp-orbit
O, of w and v is the image of v under s.

Let w € Q and set
®
To, = / medmy,(t),
Ou

which is a unitary representation of N on the Hilbert space

52
’Cw ::/ /Ctdmw(t)
Ow

For g € Aut(N), let 7, be the conjugate representation of N on K,
given by 7, (h) = 7o, (g(h)) for h € N.

Step 1 There exists a unitary representation U, : g — U, 4 of Kr
on IC, such that
Uw7g7row(h)U_7; = 1o, (g(h)) forall g€ Kv,h € N;

w

in particular, 7,  is equivalent to 7o, for every g € Kr.

Indeed, observe that the representations m; for t € O, are conjugate
to each other (up to equivalence) and may therefore be considered as
defined on the same Hilbert space.

Let g € Kp. Then 7¢, is equivalent to /. (gi m9dmy,(t). Define a linear
operator U, 4 : K, — K, by

Usg ((&0)ico,) = (&9)ico., for all (& )ico, € K.

Then U,  is an isometry, by Kp-invariance of the measure m,,. It is
readily checked that U, intertwines 7y, and W%w and that U, is a
homomorphism. To show that U, is a representation of Kr, it remains
to prove that g — U, ;& is continuous for every £ € .

For this, observe that K, can be identified with the Hilbert space
L*(O,, m,) ® K, where K is the common Hilbert space of the ;s for
t € O,; under this identification, U, corresponds to k ® I, where K
is the Koopman representation of Kt on L?(0,,,m,,) associated to the
action Kr n O, (for the fact that  is indeed a representation of K,
see [BHVO8, A.6]) and the claim follows.



PLANCHEREL FORMULA FOR COUNTABLE GROUPS 13

Next, let
To, := Ind}, 7o,
be the representation of I' induced by m¢,,.

We recall how 7o, can be realized on (?(R, K,,) = (*(R) ® K,,, where
R C TI' is a set of representatives for the cosets of N with e € R. For
every v € I"and r € R, let ¢(r,) € N and r -y € R be such that
ry = c(r,)r - 7. Then 7o, is given on £*(R, K,,) by

(7oL (F)(r) = mo,(c(r,))(F(r-7))  forall Fe@(RK,).

Step 2 We claim that there exists a unitary map
U, : (R, K,) = (*(R,K.)

which intertwines the representation Ip2r) ® To, and the restriction

7o, |n of To, to N; moreover, w — U, is a measurable field of unitary
operators on €.
Indeed, we have an orthogonal decomposition

(R, K,) = @rer(d, @ Ky)

into T (N)-invariant; moreover, the action of N on every copy 9, ® K,
is given by g . For every r € R, the unitary operator U, : Ky — Ky,
from Step 1 intertwines mp,, and 7, . In view of the explicit formula
of Uy, the field w — U,,, is measurable on ().

Define a unitary operator U, : (2(R, K.,) — (2(R,K.,) by
Un(0, @) =6, @ U, (&) forall &€ K.

Then U, intertwines Ip2(gy ® To,, and 7o, |ny; moreover, w — U, is a
measurable field on (2.

Observe that the representation Ay is equivalent to f;f To,dv(w).
Since Ar is equivalent to Indy Ay, it follows that Ar is equivalent to

IS moudir(w).
In the sequel, we will identify the representations Ay on ¢*(N) and
Ar on £2(T") with respectively the representations

@ ®
/ To,dv(w) on K := / Kodv(w)
0 0

®
/ To,dv(w) on ?—l::/ (R, KC,)dv(w).
Q

and
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Step 3 The representations 7, are factorial and are mutually dis-
joint, outside a subset of €2 of r-measure 0.

To show this, it suffices to prove (see |Dix77, 8.4.1]) that the algebra
D of diagonal operators in £(H) coincides with the center Z of Ap(I")".

Let us first prove that D C Z. For this, we only have to prove that
D C Ap(T')”, since it is clear that D C Ap(T)'.

By Step 2, for every w € (2, there exists a measurable field w — U,, of
unitary operators U, : (*(R, K,,) = (*(R, K,,) intertwining 2 gy ® 7o,

and mo,|ny. So,
~ & __
U::/ U,dv(w)
Q

is a unitary operator on H which intertwines Ip2(py ® Ay and Ap|y; it

is obvious that U commutes with the diagonal operators on H.
Let ¢ : 2 — C be a measurable essential bounded function on 2.
By Theorem [Alii, the corresponding diagonal operator

T /Q " () i)

on K belongs to Ay (N)”. For the corresponding diagonal operator

@
T:/ (W) leri)r(w)
Q

on H, we have T = lpw) @ T. So, T belongs to (LIep(ry ® An) (V)"

Since, U commutes with 7 and intertwines T2y @ AN and Ar|n, it
follows that
T =U(Ipm @ T)U™ € Ade(N)" C An(T)".

So, we have shown that D C Z. Observe that this implies (see
Théoreme 1 in Chap. II, §3 of [Dix69|) that L(I") is the direct in-
tegral fﬁfr}f (I')"dv(w) and that Z is the direct integral fée Z,dv(w),
where Z,, is the center of mo_ (T')”.

Let T € Z. Then T € Ap(N)”, by Lemma . So, T = fgg T, dv(w),
where T, belongs to the center of o (N)”, for r-almost every w. Since
7o, | is equivalent to Jp2(g) @ o, and since o, and hence Ip2(gy @ To,,
is a factor representation, it follows that T, is a scalar operator, for
v-almost every w. So, T' € D.

As a result, we have a decomposition

@
Ar = / o di(w)
Q
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of A\r as a direct integral of pairwise disjoint factor representations. By
the argument of the proof of Theorem [A] it follows that, for r-almost
every w € X, there exists a cyclic unit vector &, € (R, K,) for 7o,
so that

P = (70, (") | &)
belongs to Ch(T"). In particular,
M, = 7o, (T)"
is a factor of type II; and its normalized trace is the extension of ¢,

to My, which we again denote by ¢,. Our next goal is to determine
¢, in terms of the character w € Ch(N).

Fix w € € such that .7\/1\:, is a factor. We identity the Hilbert space K,
of Mo, with the subspace J. ® K, and so mp_, with a subrepresentation
of the restriction of 7o, to N.

Let n, € IC, be a cyclic vector for mo, such that

W= <7T(9w(')77w | nw>'

For g € Kr, define a normal state 1), , on Jf\;l; by the formula
VY g(T T) = (TU ol | Uy bths) forall T € M.,

where Uy, is the unitary operator on IC from Step 1.
Consider the linear functional v, : M, — C given by

Vo (T) = wwy(f)dm(g) for all T € M,
Kr

where m is the normalized Haar measure on Kr.

Step 4 We claim that 1, is a normal state on /f\\/l/
Indeed, it is clear that 1, is a state on M, Let (T )n be an n increasing
sequence of positive operators in M, with T = sup, T, € M.,
For every g € Kr, the sequence (¢, 4( n))n is increasing and its limit
is Yy 4 (f) It follows from the monotone convergence theorem that
hinq/Jw(TN) = hTan X« ¢w7g(TN)dm(g) = P wwy(T)dm(g) = Q/Jw(T)'
r r

So, 1, is normal, as //\;l; acts on a separable Hilbert space.

Step 5 We claim that, writing 7 instead of 7o (v) for v € T', we

have
_ fKrwg(V)dm(g) if ~yeN
%(7)—{0 £ o gN.
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Moreover, 9, coincides with the trace ¢, on .K/l\:, from above.
Indeed, Let v € N. Since

Usgmo,(7)Us, = m0,(9(7)),

we have

boly) = /K Fou (901 | m)dm(g) = /K (o (907 | m)dmi(g)
= /K w?(y)dm(g).

Let v € I'\ N. Then, by the usual properties of an induced represen-
tation, mo, (7)(K,) is orthogonal to ICy,. It follows that

Vug() = (To, (VUgsnw | Uy inw) =0

and hence 9,(y) = 0.

In particular, this shows that 1, is a ['-invariant state on //\/l\;; since
1, is normal (Step 4), it follows that 1),, is a trace on /T/l\; As /\A/tz is a
factor (see Step 3), the fact that @//J: = ¢, follows from the uniqueness
of normal traces on factors (see Corollaire p. 92 and Corollaire 2 p.83
in [Dix69, Chap. I, §6]).

Step 6 The Plancherel measure p on I' is the image of v under the

map P as in the statement of Theorem [Blii.
Indeed, for f € C[I'], we have by Step 5

T / 7o (F)|Pdirw) = / b (F* 5 f) diw)
- / /K WI((F* 5 )| )dm(g)dirw)

- [ (f A < Dl)dm(a) ) dm (7o)

N /Ch(r )/K t((f" = f)lw)dm(g)dv(t)
— /Ch(r) (t)(f*  fdv(t)

and the claim follows.

Remark 7. The map ® in Theorem [Blii can be described without
reference to the group Kt as follows. For ¢t € Ch(I'y.) and v € T', we
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have 1
T s t(x if v € It
®(1)(s) = § #0] =< )
0 if yg¢le
where [y] denotes the T'-conjugacy class of ~y. Indeed, it suffices to
consider the case where v € I't.. The stabilizer Ky of v in Kr is an
open and hence cofinite subgroup of Kr; in particular, the Kp-orbit
of v coincides with the Ad(T)-orbit of v and so {Ad(z) | = € [v]}
is a system of representatives for Kr/Ky. Let my be the normalized
Haar measure on K. The normalized Haar measure m on Kt is then

1

given by m(f) = == >",cp) [, f(Ad(z)g)dmo(g) for every continuous
g

function f on Kr. It follows that

B(1)() = /K Ho())dm(g) = — 3 #(x).

s

5. PROOFS OF COROLLARY [C] AND COROLLARY [D

Let T" be a countable linear group. So, I' is a subgroup of GL, (k)
for a field k, which may be assumed to be algebraically closed. Let G
be the closure of I' in the Zariski topology of GL, (k) and let G¢ be
the irreducible component of G. As is well-known, G has finite index
in G and hence I'y := Gy N T is a normal subgroup of finite index in I"

Let v € I't.. On the one hand, the centralizer I', of v in I' is a
subgroup of finite index of I'; therefore, the irreducible component of
the Zariski closure of I', coincides with Gy. On the other hand, the
centralizer G, of v in G is clearly a Zariski-closed subgroup of G. It
follows that the irreducible component of G contains (in fact coincides
with) Gy and hence

FOZGQOFCGWQF:FV.

As a consequence, we see that I'y acts trivially on I't, and hence
Ad(T)|r,, is a finite group. In particular, I'g N I'g is contained in the
center Z(I'g.) of T'y.; so Z(I'g.) has finite index in 'y, which is therefore
a central group. This proves Items (i) and (ii) of Corollary [C| Item (iii)
follows from Theorem [Blii.

Assume now that G is connected, that is G = Gg. Then I' = I'y acts
trivially on I'y. and so T’ coincides with the center Z(I") of I'. This
proves the first part of Corollary [D}

It remains to prove that the assumption G = Gy is satisfied in Cases
(i) and (ii) of Corollary D}
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(i) Let G be a connected linear algebraic group over a countable
field k of characteristic 0. Then I' = G(k) is Zariski dense in
G, by [Ros57, Corollary p.44]).

(ii) Let G be a connected linear algebraic group G over a local
field k. Assume that G has no proper k-subgroup H such that
(G/H)(k) is compact. Then every lattice I' in G(k) is Zariski
dense in G, by [Sha99, Corollary 1.2].

6. THE PLANCHEREL FORMULA FOR SOME COUNTABLE GROUPS

6.1. Restricted direct product of finite groups. Let (G,,),>1 be a
sequence of finite groups. Let I' = H;L>1 G, be the restricted direct
product of the G,,’s, that is, I' consists of the sequences (g, ),>1 with
gn € G, for all n and g, # e for at most finitely many n. It is clear
that I' is an FC-group.

Set X,, := Ch(G,,) for n > 1 and let X =[], -, X, be the cartesian
product equipped with the product topology, where each X, carries
the discrete topology. Define a map ® : X — Tr(I") by

O((t)n>1)((ga)nz1) = [J talga)  forall (tn)uz1 € X, (gn)uz1 €T

n>1

(observe that this product is well-defined, since g, = e and hence
tn(gn) = 1 for almost every n > 1). Then ®(X) = Ch(I') and
® : X — Ch(I") is a homeomorphism (see [Mau51, Lemma 7.1])

For every n > 1, let v, be the measure on X,, given by

d;
va({t}) = eN

where d; is the dimension of the irreducible representation of Gz, with ¢
as character; observe that v, is a probability measure, since ), X, d? =
#G,,.

Let v = ®,>1v be the product measure on the Borel subsets of X.
The Plancherel measure on I' is the image of v under ® (see Equation
(5.6) in [Maub1]). The regular representation Ar is of type II if and
only if infinitely many G,,’s are non abelian (see loc.cit., Theorem 1 or
Theorem [E] below).

forall te X,,

6.2. Infinite dimensional Heisenberg group. Let F, be the field
of order p for an odd prime p and let V' = @;enF), be a vector space
over F,, of countable infinite dimension. Denote by w the symplectic
form on V & V' given by

w((wy), (@ y)) = D (wy; — yiw}) for (), (z',y) eV V.

iEN



PLANCHEREL FORMULA FOR COUNTABLE GROUPS 19

The “infinite dimensional” Heisenberg group over F, is the group I
with underlying set V & V @ F,, and with multiplication defined by

(z,y,2)(",y,2) = (e +2"y+y, 2+ 2 +w((z,y), (@, y)))

for (z,y,z2), («',y,2") € T.

The group I' is an FC-group; since p > 3, its center Z coincides
with [[',I'] and consists of the elements of the form (0,0, z) for z € F,,.
Observe that I' is not virtually abelian.

Let zy be a generator for the cyclic group Z of order p. The uni-
tary dual Z consists of the characters defined by Xo(#) = wi for
j€{0,1,...,p—1} and w € C,, where C, is the group of p-th roots
of unity in C.

For w € C,, the subspace

= {f )| f(zx) =wf(z) for every x € I'}.

is left and right translation invariant and we have an orthogonal de-
composition of 2(T") = @D.cc, He- The orthogonal projection F, on

H,, belongs to the center of L( ) and is given by
1=
= - Zw_lf(zéx) for all f e *(T),zeT.

One checks that || P,(d.)]|* = 1/p.

Let 7w, be the restriction of Ar to H,. Observe that H; can be
identified with ¢*(I'/Z) and m; with Ap/z.

For w # 1, the representation 7, is factorial of type II; and the cor-
responding character is X, (for more details, see the proof of Theorem

7.D.4 in [BH]).
The integral decomposition of ¢, is
1 1 N
b = = /A xdv(x) + — Xe»
P Jr/z

with the corresponding Plancherel formula given for every f € C[I'] by

9 1
|rf||2=];/@|f<a< Do) +E S S

wECp\{l} Jj=0

vlh\ere v is the normalized Haar measure of the compact abelian group
I'/Z and F the Fourier transform. In particular, Ap(I")” is a direct sum
of an abelian von Neumann algebra and p — 1 factors of type II;. For
a more general result, see [Kaph1, Theorem 2.
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6.3. An example involving SL4(Z). Let A = SL4(Z) for an odd
integer d. Fix a prime p and for n > 1, let G,, = SL3(Z/p"Z), viewed
as (finite) quotient of A. Let T be the semi-direct product Ax [~ Gn,
where A acts diagonally in the natural way on the restricted direct
product G := H’n>1 G,, of the G,,’s.

Since A is an ICC-group, it is clear that I't. = G. The group Kr as
in Theorem [B| can be identified with the projective limit of the groups
Gy’s, that is, with SL4(Z,), where Z, is the ring of p-adic integers.
Since A acts trivially on Ch(G), the same is true for the action of Kr
on Ch(G).

Let A\g = fcei(c) mdr(t) be the Plancherel decomposition of Ag (see
Example [6.1]). It follows from Theorem [B] that the Plancherel decom-
position of Ar is

52}
Ar = / Indg,m,dv(t).
Ch(G)

APPENDIX A. PROOF OF THEOREM [E]

A.1. Easy implications. The implications (iv') = (iv) and (i) =
(i77) are obvious; if (iv) holds then T' is a so-called CCR group and so
() holds, by a general fact (see [Dix77, 5.5.2]).

We are going to show that (i7) = (1v’), Assume that I contains an
abelian normal subgroup N of finite index. Let (7, ) be an irreducible
representation of I'. R

Denote by B the set of Borel subsets of the dual group N and by
Proj(#H) the set of orthogonal projections in L(H). Let E: B(N) —
Proj(H) be the projection-valued measure on N associated with the
restriction 7|y by the SNAG Theorem (see [BHVO08, D.3.1]); so, we
have

m(n) = / x(n)dE(y) forall n € N.

G
The dual action of I" on N, given by x7(n) = x(v 'ny) for x € N
and vy € I', factorizes through I'/N. Moreover, the following covariance
relation holds

r(VEB)r(yvY) = E(BY)  forall B e B(N),
where BY = {x” | x € B}.
Let S € B(N) be the support of E, that is, S is the complement

of the largest open subset U of N with E(U) = 0. We claim that S
consists of a single I"-orbit.

Indeed, let xo € S and let (U,),>1 be a sequence of open neigh-
bourhoods of x with (,~; U, = {xo}. Fix n > 1. The set U, is I'-
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invariant and hence E(UL) € n(T)’, by the covariance relation. Since
7 is irreducible and E(U,) # 0, we have therefore E(UL) = I;. By the
usual properties of a projection-valued measure, this implies that

E(Xg) = E(ﬂ UnF) = In.
n>1
and the claim is proved.
Since S is finite, we have H = P, .4 HY, where

HX = {¢eH]|m(n)E=x(n)¢  forall neN};

moreover, since N is a normal subgroup, we have 7(y)HX = HX" for
every x € S and every vy € I

Let H be the stabilizer of xo and let T C I" be a set of representatives
of the right T-cosets of H. Then HX° is invariant under 7(H) and we

have
"= PHo = Prtyne.
teT teT

This shows that 7 is equivalent to the induced representation Ind% o,
where o is the subrepresentation of 7|y defined on HX°

We claim that Ind%a is contained in Ind]FV Xo- Indeed, as is well-
known (see [BHVO0S, E.2.5]), Ind¥(c|y) is equivalent to the tensor
product representation o ® Ay/n, where Ay is the quasi-regular rep-
resentation on ¢*(I'/H). Since H/N is finite, 1y is contained in Ay/n
and therefore o is contained in Ind¥ (o|y). Notice that o|y is a mul-
tiple nyo of xo, for some cardinal n. We conclude that 7 = Ind}; o
is contained in Ind} (Indk nxo) = nInd xo. Since  is irreducible, it
follows that 7 is contained in Ind}, yo.

Now, Ind}; xo has dimension [I" : N]; hence, dim7 < [T : N] and so
(iv") holds.

A.2. Proof of the other implications. We have to give the proof of
the implication (#i7) = (i) and the equivalence (v) < (iv).

In the sequel, I' will be a countable group and Ar = féi(r) medp(t)
the direct integral decomposition given by the Plancherel Theorem [A]
Recall (see Section [3|) that, if we write §, = fgi(r) &du(t), then & is
a cyclic vector in the Hilbert space H; of m; and ¢ = (m(-)& | &), for
p-almost every t € Ch(I).

A.2.1. Case where the FC-centre of I' has infinite index. We assume
that [I': T'] is infinite; we claim that Ar is of type II.

By Remark [6]1, there exists a subset X of Ch(T") with z(X) = 1 such
that t = 0 outside I'¢. for every t € X.
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Let t € X. Then the factor m(I')"” is infinite dimensional. In-
deed, since [I': I'y] is infinite, we can find a sequence (7,)p>1 in '
with v,-1v, ¢ Ty for every m,n with m # n. Then

()& | me(ym)&e) = (me(v' W) | &) = (V' Ym) = 0,

for m # n; so, (m(n)&)n>1 is an orthonormal sequence in H,. This
implies that (m:(7,))n>1 is a linearly independent sequence in m(I")”
and the claim is proved.

Observe that we have proved, in particular, that I' is not of type I.

A.2.2. Reduction to FC-groups. Let Ch(I')t be the set of ¢ € Ch(I)
for which m;(I")” is finite dimensional. Then

Ch(D) = | Ch(I)n,

n>1

where Ch(I"),, is the set of ¢ such that dimm(I")” = n. We claim that
Ch(I"),, and hence Ch(I")¢4 is a measurable subset of Ch(I").

Indeed, let F be collection of finite subsets of I'. For every F' € F, let
Cp be the set of ¢t € Ch(I') such that the family (7 (7)) er is linearly
independent, equivalently (see Remark [6]ii), such that (m,(7)&) ep is
linearly independent. Since t = (m(+)& | &), it follows that

Cp:={t € Ch(I') | det(t(y 7)) #0  forall (y,7')€FxF}

and this shows that Cr is measurable. Since

(+) e, = Y cp\( U cp)

FeF:#F=n F'eF:#F'>n

and F is countable, it follows that Ch(T"), is measurable.

Assume now that [[': I't] is finite. Observe that, for a cyclic rep-
resentation 7 of I'g, the induced representation Indgfc 7 is cyclic and
so (Indp, 7)(I')" is finite dimensional if and only if m(I's)”
dimensional.

let v be the Plancherel measure of I'g.. It follows from Theorem [B]that
1(Ch(I)q) = v(Ch(I't)sa); in particular, we have p(Ch(I')gy) = 0 (or
#(Ch(I)gq) = 1) if and only if ¥(Ch(I'g)) = 0 (or ¥(Ch(I'g)w) = 1),
that is, Ap is of type I (or of type II) if and only if Ar, is of type I (or
of type II).

Observe also that I' is virtually abelian if and only if I'. is virtually
abelian. As a consequence, we see that it suffices to prove the impli-
cation (zit) = (i) and the equivalence (v) < (iv) in the case where
[ =T.

is finite



PLANCHEREL FORMULA FOR COUNTABLE GROUPS 23

A.2.3. Case of an FC-group. We will need the following lemma of in-
dependent interest, which is valid for an arbitrary countable group I'.
Let r : Ch(I') — Tr([I',T']) be the restriction map. We will identify
Ch(I'/[I',I']) with the set {s € Ch(I") | 7(s) = Ijp,r}, that is, with the
set of unitary characters of I'. Observe that, for every s € Ch(I'/[I', )
and t € Ch(I"), we have st € Ch(T").

Lemma 8. Let I" be a countable group and t,t' € Ch(I') be such that
r(t) = r(t'). Then there exists s € Ch(I'/[I',I']) such that t' = st.

Proof. The integral decomposition of 1jp ) € Tr(I') into characters is

given by
1 :/ sdv(s),
Ch(T'/[T,T])

where v is the Haar measure of I'/[I,T']. By assumption, we have
t1pr) = t'1;pr) and hence

t1r :/ tsdv(s) :/ t'sdv(s).
Ch(I'/[T,T) Ch(r/[1,17)

By uniqueness of integral decomposition, it follows that the images 1,
and vy of v under the maps Ch(I'/[I',I']) — Ch(I") given respectively
by multiplication with ¢ and ¢’ coincide. In particular, the supports of
v and vy are the same, that is, t Ch(I'/[I',I']) = ¢ Ch(I'/[I',I']) and
the claim follows. O

We assume from now on that I' = I'g.

Step 1 We claim that the regular representation Ar is of type II if
and only if [I',I'] is infinite.

We have to show that @(Ch(I')g) > 0 if and only if [[', T'] is finite.

Assume first that [I',T'] is finite. The representation Ar /iy, lifted to
[, is a subrepresentation of Ar, since ¢*(I'/[T',T]) can be viewed in an
obvious way as -invariant subspace of ¢*(T"). As I'/[T",T] is abelian,
Aryr,mis of type I and so p(Ch(I')sq) > 0.

Conversely, assume that p(Ch(I')iq) > 0. Since I' is an FC-group,
it suffices to show that I' has a subgroup of finite index with finite
commutator subgroup (see [Neubs, Lemma 4.1]).

As p(Ch(I")g) > 0 and Ch(I")gg = U, Ch(I"),,, we have p(Ch(I"),,) >
0 for some n > 1. It follows from (*)_that there exists F' € F with
|F'| = n such that u(Cr N Ch(I"),) > 0.

Let A be the subgroup of I' generated by F. Since I' is an FC-group
and A is finitely generated, the centralizer H := Centp(A) of A in T
has finite index.
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Let t € CprNCh(I"), and 7o € H. On the one hand, since (7:(7)) er
is a basis of the vector space m(I"), we have m(A)” = m(T")"”. On the
other hand, as v centralizes A, we have m;(yy) € m(A)". Hence, m (7o)
belongs to the center m;(I")’ Ny (I")"” of the factor m;(I")” and so (7o)
is a scalar multiple of I3,. It follows in particular that m; is trivial on
[H, H]. As a result, the subrepresentation fgaFmCh(F)n mdu(t) of Ar is
trivial on [H, H]. Since the matrix coefficients of Ar vanish at infinity,
it follows that [H, H] is finite and the claim is proved.

In view of what we have shown so far, we may and will assume from
now on that [[,T] is finite and that Ar is of type I. We are going to
show that I' is a virtually abelian (in fact, a central) group and this
will finish the proof of Theorem [E]

Set N := [I',T'] and let r : Ch(I') — Tr(N) be the restriction map.

Step 2 We claim that there exist finitely many functions sq,..., s,
in Tr(N) such that r(t) € {s1,...,sm}, for u-almost every ¢t € Ch(I').

Indeed, since Ar is of type I, there exists a subset X of Ch(I") with
wu(X) = 1 such that 7, (I")” is finite dimensional for every ¢t € X.

Let t € X. The Hilbert space H; of m; is finite dimensional and
is a (finite) multiple of an irreducible representation o; of I'. As m
and o; have the same normalized character, we may assume that m, is
irreducible.

Let K be an irreducible N-invariant subspace of H,; and let p be the
corresponding equivalence class of representation of N. For g € I', the
subspace m;(¢)K is N-invariant with p? as corresponding representation
of N. Since m; is irreducible, we have H; = 3 ger 7 (g)KC.

Let L be the stabilizer of p; observe that L has finite index in T,
since L contains the centralizer of N and I' is an FC-group. Let
gi,--.,9g- be a set of representatives for the coset space I'/L. Then
Hi = ®_y7(9;)K,, where K, is the sum of all N-invariant subspaces
of H; with corresponding representation equivalent to p. The normal-
ized trace of the representation of N on m,(g;)K, is x;’, where y, is the
normalized character of p. It follows that, for every g € N, we have

t(g) = % Z X% (9).

Since [I,T'] is finite, [, I'] has only finitely many equivalence classes of
irreducible representations and the claim follows.
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Step 3 We claim that the center Z(I') has finite index in T".

Indeed, by Step 2, there exists a subset X of Ch(I') with pu(X) =1
and finitely many t1,...,t, € X such that r(¢t) € {r(t1),...,7(tm)}
and such that H; is finite dimensional for every t € X.

It follows from Lemma [§| that, for every ¢t € X, there exists s €
Ch(T'/[T",T]) such that ¢t = st; for some i € {1,...,m} and hence
dimm(T")” = dim 7, (I')”. As a result, we can find a finitely generated
normal subgroup M of I' such that dim m;(I")"” = dim m,(M)" for every
te X.

Since the centralizer C' of M in I' has finite index, it suffices to show
that C' contains Z(I).

For g € C,v € T and z € M, we have t(x7'gyg™') = t(x~1y), that
is,

(m(gvg™ ") | m(@)&) = (m(9)& | m(a)&).

Since dim 7(I")” = dim 7;(M)", the linear span of m,(M)&; is dense in
H,; and this implies that m;(gyg )& = m(7)& for all g € C, v € T, and
t € X. It follows that A\r(gvg~")d. = Ar(7)d. and hence gyg~! = v for
all g€ C and v € I'; so, C C Z(I).
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