SIGNAL is a synchronized data flow language designed for programming real-time systems. A SIGNAL program defines both data and control processing, from a system of equations, the variables of the system are signals. These equations can be organized as sub-systems (or processes). A signal is a sequence of values which has a clock associated with; this clock specifies the instants at which the values are available.

This reference manual defines the syntax and the semantics of the INRIA version of the SIGNAL V4 language. The original official definition of the SIGNAL V4 language was published in French in june 1994. It is available at the following address: ftp://ftp.irisa.fr/local/signal/publis/research_reports/PI832-94:v4_manual.ps.gz It was defined together with François DUPONT, from TNI, then Geensoft and Dassault Systèmes 1 . Some of the evolutions described in this document have been defined too in cooperation with François DUPONT. However, the SIGNAL version implemented by TNI in the tools Sildex and RT-Builder is slightly different in some aspects from the version described here.

The definition of the SIGNAL version described in this manual is subject to evolutions. It is (partly) implemented in the INRIA POLYCHRONY environment. Consult the following site: http://polychrony.inria.fr

Table of contents

Operators on matrices .

F ANNEX

XIV Grammar of the SIGNAL language XIV-1 Lexical units .

INTRODUCTION

Chapter I

Introduction

The SIGNAL language has been defined at INRIA/IRISA with the collaboration and support from the CNET (now France Télécom R&D and then Orange Labs). This reference manual defines the syntax and semantics of the INRIA version of the language, which is an evolution of the V4 version. The V4 version resulted from a synthesis of experiments made by IRISA and by the TNI company. An environment of the SIGNAL language can be built in a style and in a way it is not the objective of this manual to define. However, such an environment will have to provide functions for reading and writing programs in the form specified in this manual; the translation scheme will give the semantics of the texts built in this environment.

I-1 Main features of the language

A program expressed in the SIGNAL language defines some data and control processing from a system of equations, the variables of which are identifiers of signals. These equations can be organized in subsystems (or processes). A model of process is a sub-system which may have several using contexts; for that purpose, a model is designated by an identifier. It can be provided with parameters specifying data types, initialization values, array sizes, etc. In addition, sets of declarations can be organized in modules.

I-1.1 Signals

A signal is a sequence of values, with which a clock is associated.

1.

All the values of a signal belong to a same sub-domain of a domain of values, designated by their common type. This type can be:

• predefined (the Booleans, sub-domains of the Integers, sub-domains of the Reals, sub-domains of the Complex. . .),

• defined in the program (Arrays, Tuples),

• or referenced in the program but known only by the functions that handle it (Externals).

2. The clock of a signal allows to define, relatively to a totally ordered set containing at least as much elements as the sequence of values of this signal, the subset of instants at which the signal has a value. A pure signal, the value of which belongs to the singleton event, can be associated with each signal. This pure signal is present exactly at the presence instants of the signal; the event type is a sub-domain of the Booleans. By extension, this pure signal will be called clock. A pure signal is its own clock. In a process, the clock of a signal is the representative of the equivalence INTRODUCTION class of the signals with which this signal is synchronous (synchronous signals have their values at the same instants).

3. These values are expressed in equations of definition and in constraints.

I-1.2 Events

A valuation associates, at a logical instant of the program (transition of the automaton), a value with a variable.

An event is a set of simultaneous valuations defining a transition of the automaton. In an event, a variable may have no associated value: it will be said that the corresponding signal is absent and its "value" will be written ⊥. An event contains at least one valuation.

Determining the presence of a signal (i.e., a valuation) in an event results from the solving of a system of equations in F 3 , the field of integers modulo 3. The value associated with a variable in an event results from the evaluation of its expression of definition (thus it should not be implicit: circular definitions of non Boolean signals are not allowed).

I-1.3 Models

A model associates with an identifier a system of equations with local variables, sub-models and external variables (free variables). The parameters of a model are constants (size of arrays, initial values of signals, etc.).

A model may be defined outside the program; in that case, it is visible only through its interface. Calling a model defined in a program is equivalent to replacing this call by the associated system of equations (macro-substitution).

Invoking a model defined outside the program can produce side effects on the context in which the program is executed; these effects can be directly or indirectly perceived by the program and they can affect the set of instants or the set of values of one or more interface signals. Such a model will be said non functional (for example a random "fonction" is such a non functional model).

I-1.4 Modules

The notion of module allows to describe an application in a modular way. In particular, it allows the definition and use of libraries written in SIGNAL or external ones, and constitutes an access interface to external objects.

I-2 Model of sequences

A program expressed in the SIGNAL language establishes a relation between the sequences that constitute its external signals. The set of programs of the SIGNAL language is a subset of the space of subsets of sequences (part B, chapter III).

I-3 Static semantics

The relations on sequences presented in the formal model describe a set of programs among them are only considered as legal programs those for which the ordering of each set of instants is in accordance with the ordering induced by the dependencies (causality principle), and which do not contain implicit definitions of values of non Boolean signals.

I-3.1 Causality

A real-time program has to respect the causality principle: according to this principle, the value of an event at some instant t cannot depend on the value of a future event. The respect of this principle is obtained in SIGNAL by the implicit handling of time: the user has a set of terms that allow him/her to make reference to passed or current values of a signal, not to future ones.

I-3.2 Explicit definitions

The synchronous hypothesis on which is based the definition of the SIGNAL language allows to develop a calculus on the time considered as a pre-order in a discrete set.

I-4 Subject of the reference

This manual defines the syntax, the semantics, and formal resolutions applied by a compiler to a program expressed in the SIGNAL language. The SIGNAL language has four classes of syntactic structures:

1. The structures of the kernel language for which a formal definition is given in the model of sequences. The kernel language contains a minimal set of operators on sequences of signals of type event and boolean on which the temporal structure of the program is calculated; it contains also a mechanism allowing to designate signals of external types and non interpreted functions applying to these signals. Removing anyone of these structures would strictly reduce the expressiveness of the language.

2. The structures of the minimal language that can be subdivided in three sub-classes:

(a) the non Boolean types and the associated operators, which allow to write a program completely in the SIGNAL language; the open vocation of the SIGNAL language is nevertheless clearly asserted: it is possible to use external functions/processes, defined in another language, or even realized by some hardware component; this is even advised when specific properties exist, that are not handled by the formal calculi made possible in the SIGNAL language; (b) the syntactic structures providing to the language an extensibility necessary for its specialization for a particular application domain, and for its opening toward other environments or languages; (c) the operators and constructors of general use providing a programming style that favours the development of associated methodologies and tools.

3.

The standard (or intrinsic) process models which form a library common to all the compilers of the SIGNAL language;

4. The specific process models which constitute specific extensions to the standard library.

This manual describes the structures of the kernel language and of the minimal language. It also defines a set of standard intrinsic processes. Finally, it also contains the description of non-standardized information (in the form of "directives"), used in the version of the language available in the INRIA POLYCHRONY environment.

INTRODUCTION

I-5 Form of the presentation

Three classes of terms are distinguished for the description of the syntax of the language:

• the vocabulary of the lexical level: each one of the terminals designates an enumerated set of indivisible sequences of characters;

• the lexical structures: the Terminals of the syntactic level are defined, at a lexical level, by rules in a grammar the vocabulary of which is the union of the terminals sets; no implicit character (separators, for instance) is authorized in the terms constructed following these rules;

• the syntactic structures: the NON-TERMINALS are defined, at a syntactic level, by rules in a grammar the vocabulary of which is composed of the Terminals; any number of separators can be inserted between two Terminals.

Every unit of the language is introduced and then described, individually or by category, with the help of all or part of the following items. Generally, a generic term representing the unit is given: EXPRESSION(E 1 , E 2 , . . .) where E 1 , E 2 , . . . are formal arguments of the generic term. This representative is used to define the general properties of the unit in the rubrics that describe them.

The grammar gives the context-free syntax of the considered structure in one of the following forms: Each DERIVATION is a sequence of elements, each of them can be:

• a set of characters, written in this typography (lexical level only),

• a terminal symbol (of the syntactic grammar) composed of letters, in this typography, for which only the lower case form is explicited in the grammar;

• a terminal symbol (composed of other acceptable characters), in this typography,

• a Terminal, in this typography,

• a syntactic STRUCTURE, in this typography (syntactic level only),

• a non empty sequence of elements in their respective typography, with or without comment in this typography, respectively in the following forms:

element { symbol element } * -{ element } +

• an optional element, denoted [element],

• a difference of sets, denoted { element1 \ element2 }, allowing to derive the texts of element1 that are not texts of element2.

The syntactic structures may appear either in the plural, or in the singular, following the context. They may be completed by a contextual information, in this typography. For example, in S-EXPR-ARITHMETIC, "-ARITHMETIC " is only a contextual information for the syntactic structure S-EXPR. Finally, several derivations may be placed on a same line.

Profile

This item describes the sets of input and output signals of the expression. This description is done with the notations ? (E) that designates the list of input signals (or ports) of E, and ! (E) that designates the list of output signals (or ports) of E. The notation ? {a 1 , . . . , a n } (respectively, ! {a 1 , . . . , a n }) designates explicitly the set of input ports (respectively, output ports) a 1 , . . . , a n .

Finally, the set operations A ∩ B, A ∪ B and A -B (the latter to designate the set of elements of A that are not in B).

Types

This item describes the properties of the types of the arguments using equations on the types of value of the signals. The notation τ (E) is used to designate the type (domain of value) of the expression E. Given a process model (cf. part E, chapter XI, p. 183 et seq.) with name P , the notations τ (?P) and τ (!P) are used to designate respectively the type of the tuple formed by the list of the inputs declared in the interface of the model, and the type of the tuple formed by the list of the outputs declared in this interface (cf. part E, section p. 193 et seq.).

(a) EQUATION

Semantics

When the term cannot be redefined in the SIGNAL language, its semantics is given in the space of equations on sequences.

Definition in SIGNAL

TERM(E 1 , E 2 , . . .) is a generic term of the SIGNAL language, to which is equal, by definition, the representative of the current unit.

Clocks

This unit describes the synchronization properties of the arguments (values of Booleans and clocks)

with a list of equations in the space of synchronization. The notation ω(E) is used to designate the clock of the expression E and the notation to designate the clock of the constant expressions, or more generally, the clock of the context. An equation has generally the following form:

(a) ω(E 1) = ω(E 2) INTRODUCTION 7. Graph This item defines the conditional dependencies between the arguments with a list of triples:

(a) E 1 E 3 --→ E 2
The signal E 1 precedes the signal E 2 at the clock which is the product of the clock of E 1 , the clock of E 2 and the clock representing the instants at which the Boolean signal E 3 has the value true: at this clock, E 2 cannot be produced before E 1 .

Properties

This item gives a list of properties of the construction (for example, associativity, distributivity, etc.).

(a) PROPERTY

Examples

(a) One or more Examples in the SIGNAL language illustrate the use of the unit.

Chapter II

Lexical units

The text of a program of the SIGNAL language is composed of words of the vocabulary built on a set of characters.

II-1 Characters

The characters used in the SIGNAL language are described in this section (Character). They can be designated by an encoding which is usable only in the comments, the character or string constants, and the directives, as precised in the syntax.

Context-free syntax

Character ::= character | CharacterCode

II-1.1 Sets of characters

The set of characters (denoted character) used in the SIGNAL language contains the following subsets: upper-case-letter-char ::=

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z lower-case-letter-char ::= a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z
other-letter-char ::=

À | Á | Â | Ã | Ä | Å | AE | Ç | È | É | Ê | Ë | Ì | Í | Î | Ï | Ð | Ñ | Ò | Ó | Ô | Õ | Ö | Ø | Ù | Ú | Û | Ü | Ý | Þ | ß | à | á | â | ã | ä | å | ae | ç | è | é | ê | ë | ì | í | î | ï | ð | ñ | ò | ó | ô | õ | ö | ø | ù | ú | û | ü | ý | þ | ÿ numeral-char ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
Excepted for the reserved words of the language (keywords), the upper case and lower case forms of a same letter (letter-char) are distinguished. The reserved words should appear totally in lower case or totally in upper case.

(ii) The set mark composed of the distinctive characters of the lexical units, and the set of characters used in operator symbols: (v) The other printable characters, usable in the comments, the directives and the denotations of constants. This subset, other-character, is not defined by the manual.

II-1.2 Encodings of characters

All the characters (printable or not) can be designated by an encoded form (CharacterCode) in the comments, the character constants, the string constants and the directives. The authorized codes are those of the norm ANSI of the language C (possibly extended with codes for other characters), plus the escape character \% used in the comments. An encoded character is either a special character (escape-code), or a character encoded in octal form (OctalCode), or a character encoded in hexadecimal form (HexadecimalCode). The numeric codes (OctalCode and HexadecimalCode) contain at most the number of digits necessary for the encoding of 256 characters; the manual does not define the use of unused codes.

II-2 Vocabulary

A text of the SIGNAL language is a sequence of elements of the Terminal vocabulary (cf. section I-5, p. 18) of the SIGNAL language. Between these elements, separators can appear in any number (possibly zero). A Terminal of the SIGNAL language is the longest sequence of contiguous terminals and a terminal is the longest sequence of contiguous characters that can be formed by a left to right analysis respecting the rules described in this chapter. A terminal can contain a distinctive mark; the next mark is not a character (it is used as escape mark):

1. Context-free syntax prefix-mark ::= \ start of CharacterCode

II-2.1 Names

A name allows to designate a directive, a signal (or a group of signals), a parameter, a constant, a type, a model or a module, in a context composed of a set of declarations. Two occurrences of a same name in distinct contexts can designate distinct objects.

A Name is a lexical unit formed by characters among the set composed of letter-chars plus the character _ plus numeral-chars; a Name cannot start with a numeral-char. A Name cannot be a reserved word. All the characters of a Name are significant. In this document we will sometimes designate a Name from a particular category X by Name-X.

II-2.2 Boolean constant values

A Boolean constant value is represented by true or false which are reserved words (hence they can also appear under their upper case forms, TRUE and FALSE).

II-2.3 Integer constant values

An Integer-cst is a positive or zero integer in decimal representation composed of a sequence of numerals.

Context-free syntax

Integer-cst ::= { numeral-char } +

II-2.4 Real constant values

A Real-cst denotes the approximate value of a real number. There are two sets of reals: the simple precision reals and the double precision ones that contain the former. The Real-csts are words of the lexical level so they cannot contain separators.

II-2.5 Character constant values

A Character-cst is formed of a character or a code of character surrounded by two occurrences of the character ' .

II-2.7 Comments

A comment may appear between any two lexical units and may replace a separator. It is composed of a seuqence of characters surrounded by two occurrences of the character % .

Part B THE KERNEL LANGUAGE

Chapter III

Semantic model of traces III-1 Syntax

We consider:

• A = {a, a 1 , . . . , a n , b, . . . }
a denumerable set of typed variables (or ports);

• F = {f , f 1 , .
• TT = n∈II N [0..n] → T T
the set of array types,

• SS = B∈A B → T T
the set of tuple types,

• T T = T ∪ TT ∪ SS the set of types.

• the symbols default, when, $.

We define the following sets of terms, defining the basic syntax of the SIGNAL language:

• GD = {t a} the set of declarations (association of a type with a variable);

• GSS = {a n+1 :=: f (a 1 , . . . , a n)} the set of static synchronous generators (elementary processes), among them the set of generators on arrays and tuples are distinguished;

• GDS = {a 2 :=: a 1 $ init a 0 } where a 0 is a constant with same domain as a 1 , the set of dynamic synchronous generators (elementary processes);

• GE = {a 3 :=: a 1 when a 2 } the set of extraction generators (elementary processes);

• GM = {a 3 :=: a 1 default a 2 } the set of merge generators (elementary processes);

• recursively the set PROC of syntactic processes as the least set containing:

-G = GD ∪ GSS ∪ GDS ∪ GE ∪ GM the set of generators, -PC = {P1

III-2 Configurations

Let II D be the set of values that can be taken by the variables, a configuration is an occurrence of the simultaneous valuation of distinct variables (synchronous commmunication). The values respect the properties resulting from the interpretation of the terms which are used. In II D, the set of Boolean values, II B={true, false}, is distinguished.

For a variable a i ∈ A, and a subset A j of variables in A, we consider: II D a i the domain of values (Booleans, integers, reals. . .) that may be taken by a i .

II D A j = a i ∈ A j II D a i II D A = II D
The symbol ⊥ (⊥ ∈ II D) is introduced to designate the absence of valuation of a variable. Then we denote:

II D ⊥ = II D ∪ {⊥} II D ⊥ A i = II D A i ∪ {⊥}
Considering A 1 a non empty subset of A, we call configuration on A 1 any application

e : A 1 → II D ⊥ A 1
• e(a) = ⊥ indicates that a has no value for the configuration e.

• e(a) = v indicates, for v ∈ II D a , that a takes the value v for the configuration e.

• e(A 1) = {x/a ∈ A 1 , e(a) = x}

The set of configurations on

A 1 (A 1 → II D ⊥ A 1) is denoted E * A 1 .
By convention, 1 e is the single configuration defined on the empty set of ports ∅ (it is called unit configuration).

The absent configuration on

A 1 (A 1 → {⊥}) is denoted ⊥ e (A 1).
The set

E * ⊆A 1 = A i ⊆A 1 E * A i
is the set of all configurations on the subsets of A 1 .

It is defined a special configuration on A, denoted ♯, which is called blocking configuration (or impossible configuration).

The following notations are used:

E A 1 = E * A 1 ∪ {♯} E ⊆A 1 = E * ⊆A 1 ∪ {♯}

Partial observation of a configuration

Let A 1 ⊆ A and A 2 ⊆ A two subsets of A and e ∈ E A 1 some configuration on A 1 .

The restriction of e on A 2 , or partial observation of e on A 2 , is denoted e |A 2 :

e |A 2 ∈ E A 1 ∩A 2
It is defined as follows:

• ((A 1 ∩ A 2 = ∅) (e = ♯)) ⇒ ((∀a ∈ A 1 ∩ A 2) ((e |A 2)(a) = e(a))) • ((A 1 ∩ A 2 = ∅) (e = ♯)) ⇒ (e |A 2 = ♯) • (A 1 ∩ A 2 = ∅) ⇒ (e |A 2 = e |∅ = 1 e)

Product of configurations

Let e 1 ∈ E A 1 and e 2 ∈ E A 2 two configurations.

Their product is denoted e 1 •e 2 :

e = e 1 •e 2 ∈ E A 1 ∪A 2
It is defined as follows:

•

(e = ♯) ⇔ (((e 1 = ♯) (e 2 = ♯)) (e 1|A 1 ∩A 2 = e 2|A 1 ∩A 2)) • (e = ♯) ⇒ ((e |A 1 = e 1) (e |A 2 = e 2)) Corollary 1 (E ⊆A 1 ,•,1 e) is a commutative monoid.
The product operator • is idempotent and ♯ is an absorbent (nilpotent) element.

III-3 Traces

A trace is a sequence of configurations (sequence of observations) without the blocking configuration.

For any subset A 1 of A, we consider the following definition of the set T A 1 of traces on A 1 .

III-3.1 Definition

T *

A 1 is the set of non empty sequences of configurations on A 1 , composed of:

• finite sequences: they are the set of applications II N <k → E *

A 1 where II N <k represents the set of finite initial segments of II N (set of natural integers, including 0),

• infinite sequences: they are the set of applications II N → E * A 1 .

The set

T * ⊆A 1 = A i ⊆A 1 T * A i
is the set of all non empty sequences of configurations on the subsets of A 1 .

The empty sequence of configurations is denoted 0 T . A trace on A 1 is either a sequence of T * A 1 or the empty sequence. The set of traces on A 1 is:

T A 1 = T * A 1 ∪ {0 T }
The set of traces on subsets of A 1 is:

T ⊆A 1 = T * ⊆A 1 ∪ {0 T }
The set of traces defined on A, denoted T, is the union of the sets T A 1 for all subsets A1 of A.

The single infinite sequence defined on T * ∅ is denoted 1 T and is called unit trace. It is equal to the infinite repetition (1 e) ω of the unit configuration 1 e .

The absent trace on A 1 (II N → {⊥ e (A 1)}: the infinite sequence formed by the infinite repetition of

⊥ e (A 1)) is denoted ⊥ A 1 .

Notations

The smallest set of variables of A on which a given trace T is defined (definition domain of the configurations composing T) is referred to as var(T). By convention, var(0 T) = A.

For a trace T and t an integer, we will note frequently T t the configuration T (t) of T at the instant t, and we will note sometimes a t the value of a variable a for this configuration.

III-3.2 Partial observation of a trace

Let A 1 ⊆ A and A 2 ⊆ A two subsets of A and T ∈ T A 1 some trace on A 1 .

The restriction of T on

A 2 , or partial observation of T on A 2 , is denoted T A 2 . If A 1 ∩ A 2 = ∅, T A 2 is the trace T 2 such that: dom(T 2) = dom(T) ∀t ∈ dom(T) T 2 (t) = T (t) |A 2 If A 1 ∩ A 2 = ∅, T A 2 = T ∅ = 1 T . If A 2 = ∅, 0 T A 2 = 0 T .

III-3.3 Prefix order on traces

The following relation is defined on traces:

T 1 ∠ T 2 if and only if:

dom(T 1) ⊆ dom(T 2) (∀t) ((t ∈ dom(T 1)) ⇒ (T 1 (t) = T 2 (t))) It is said that T 1 is a prefix of T 2 .
Corollary 2

• ∠ is an order relation on T, 0 T is the minimum for this order.

• The set of prefixes of a trace is a chain.

• Any subset of prefixes of a trace has an upper bound.

The notation T ≤t represents the prefix of a trace T such that t ∈ dom(T ≤t) and t + 1 ∈ dom(T ≤t).

III-3.4 Product of traces

The product T = T 1 •T 2 of two traces T 1 and T 2 defined respectively on A 1 and A 2 is the greatest trace for the order relation ∠ such that:

(T A 1 ∠ T 1) (T A 2 ∠ T 2)
(it is defined on A 1 ∪ A 2 and is obtained by termwise products of respective events).

Corollary 3 (T ⊆A 1 ,•,1 T) is a commutative monoid.
The product operator • is idempotent and 0 T is an absorbent (nilpotent) element.

III-3.5 Reduced trace

A trace T 1 is said to be a sub-trace of a non empty trace T 2 if and only if there exists an infinite sequence f 1 , strictly increasing (i.e., injective and increasing) on II N (such a sequence is called expansion function on T 1), such that:

T 2 • f 1|dom(T 1) = T 1
(the notation f |X designates the restriction of a given function f on the domain X).

Remarks

• 0 T is a sub-trace of any trace;

• any prefix T 1 of T 2 is a sub-trace of T 2 .

Corollary 4 The sub-trace relation is a preorder (reflexive and transitive).

The sub-trace relation is not antisymmetric, as shown by the following sequences: (αβ) ω and (βα) ω (with f 1 (n) = n + 1).

Definition A trace T 1 is said to be a reduced trace of a non empty trace T 2 if and only if T 1 is a sub-trace of T 2 and:

• (dom(T 1) is finite) ⇒ (dom(T 2) is finite) • for any expansion function f 1 on T 1 such that T 2 • f 1|dom(T 1) = T 1 , then: (∀t ∈ (dom(T 2)) \ f 1 (dom(T 1))) (T 2 (t) = ⊥ e (A 2))
Proposition The relation "is a reduced trace of" is an order relation.

"T 1 is a reduced trace of T 2 " is denoted:

T 1 ⊆ ↓ T 2 Proof of antisymmetry: T 1 ⊆ ↓ T 2 and T 2 ⊆ ↓ T 1 dom(T 2) = dom(T 1)
If dom(T 1) is finite then the single possible expansion function on T 1 is the identity. For any trace T , T is a prefix of T 1 if and only if it is a prefix of T 2 is proved by recurrence on the length of T .

Then the existence of an upper bound to any subset of prefixes of a trace proves the equality. ✷

For a given expansion function f and a trace T 1 , there exists a least trace (for the prefix order ∠), T 2 , such that T 1 ⊆ ↓ T 2 .

We denote by ↑ the function that, to an expansion function f and a trace T , associates this least trace f ↑ T (example on figure B-III.1).

Then we have, by definition:

T ⊆ ↓ f ↑ T T e 1 e 1 f 1 ↑ T e 2 e 2 e 3 e 4 e 3 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ Figure B-III.1: f 1 ↑ T with f 1(0) = 0, f 1(1) = 3, f 1(2) = 4, f 1(3) = 5. . .

Property:

f 2 ↑ (f 1 ↑ T) = (f 2 • f 1) ↑ T For any f , we have also f ↑ 0 T = 0 T . By convention: f ↑ 1 T = 1 T .

III-4 Flows

Definition A flow is a trace which is minimal for the relation ⊆ ↓ .

Comment: A flow F on A 1 is a trace that does not contain the absent configuration on A 1 between two configurations which have valued variables.

Corollary 5

• (F is a flow and F 1 ∠ F) ⇒ (F 1 is a flow); • 0 T is a flow; • 1 T is a flow; • if F is a finite flow on A 1 , then (F ⊥ e (A 1) ω) is a flow; • ⊥ A 1 is a flow.

III-4.1 Equivalence of traces

Definition Two traces T 1 and T 2 are said to be equivalent modulo ⊥ (this is denoted:

T 1 ≡ ↓ T 2) if
and only if there exists some trace T such that T ⊆ ↓ T 1 and T ⊆ ↓ T 2 . This relation is indeed an equivalence relation.

Property

For any trace T , the equivalence class of T modulo ⊥ is a lattice.

Proof

• By definition, every pair T 1 , T 2 in an equivalence class has a lower bound.

• Every pair T 1 , T 2 in an equivalence class has an upper bound:

Let f 1 , f 2 such that:

T 1 • f 1 = min(T 1 , T 2) T 2 • f 2 = min(T 1 , T 2)
The upper bound is the trace

max(T 1 , T 2) = f ′ 1 ↑ T 1 = f ′ 2 ↑ T 2 with f ′ 1 , f ′ 2 defined as follows: ∀t, if ∃s, f 1 (s) = t then f ′ 1 (s) = max(t, f 2 (s)), if s ∈ f 1 (dom(min(T 1 , T 2))) then if s = 0 then f ′ 1 (s) = 0 else f ′ 1 (s) = f ′ 1 (s -1) + 1 (f ′ 2 is defined symmetrically). Then (f ′ 1 • f 1) ↑ min(T 1 , T 2) = (f ′ 2 • f 2) ↑ min(T 1 , T 2) = max(T 1 , T 2) ✷
Each equivalence class has a flow as lower bound. For a trace T , this flow is denoted T ↓ .

Notation The set of flows on A 1 is denoted S A 1 .

III-4.2 Partial flow

Let A 1 ⊆ A and A 2 ⊆ A two subsets of A and F ∈ S A 1 some flow on A 1 .

The projection of F on A 2 , denoted Π A 2 (F), is defined by:

Π A 2 (F) = (F A 2) ↓
The following equalities hold:

• ∀F, Π ∅ (F) = 1 T • Π A 2 (0 T) = 0 T • Π A 2 (⊥ A 1) = ⊥ A 1 ∩A 2 III-4.

Flow-equivalence

Equivalence modulo ⊥ is an equivalence relation that preserves the simultaneousness of valuations within a configuration and the ordering of configurations within a trace: traces which are equivalent modulo ⊥ possess the same synchronization relations.

A weaker relation is introduced, which is called flow-equivalence. It allows to compare traces with respect to the sequences of values that variables hold.

Definition A trace T ′ defined on A 1 is a relaxation of a trace T defined on the same set of variables A 1 if and only if for all a ∈ A 1 , T {a} ⊆ ↓ T ′ {a} . This is denoted: T ⊑ T ′ .

Corollary

The relaxation relation ⊑ is an order relation.

Definition Two traces T 1 and T 2 are said to be flow-equivalent (this is denoted: T 1 ≈ T 2) if and only if there exists some trace T such that T ⊑ T 1 and T ⊑ T 2 .

The class of flow-equivalence of a trace T is a semi-lattice. It admits a lower bound which is a flow, written T ≈ .

III-5 Processes

III-5.1 Definition

A process on A 1 ⊆ A is a set of flows on A 1 which are non comparable by the prefix relation.

Example

Let us represent a flow by the sequence of its events, where an event is represented by the variables which are valued for it (successive events are separated by the sign ";").

Consider the following flows defined on variables a, b: F 1 : a; ab; b F 2 : a; ab; ab F 3 : a; ab; b; b

The flows F 1 and F 2 (respectively, F 2 and F 3) can belong to a same process. However, F 1 and F 3 cannot belong to a same process since they are comparable.

The set of processes on A 1 is denoted P A 1 . It is a subset of P(S A 1), the set of subsets of S A 1 .

The set

P ⊆A 1 = A i ⊆A 1 P A i
is the set of processes on the subsets of A 1 .

The process 1 P = {1 T }, defined on the empty set of ports ∅, and with the unit trace as single element, is called unit process.

The process on A 1 defined by the empty set of flows is denoted 0 P (A 1).

Notation

The notation var(P) is used to designate the smallest set of variables of A on which the process P is defined.

III-5.2 Partial observation of a process

Let A 1 ⊆ A and A 2 ⊆ A two subsets of A and P a process on A 1 .

The projection of P on A 2 , denoted Π A 2 (P), is defined by:

Π A 2 (P) = {Π A 2 (F) / F ∈ P and Π A 2 (F) is maximal for ∠} III-5.

Composition of processes

Let P 1 and P 2 two processes defined respectively on A 1 and A 2 .

The composition (or synchronous composition) of P 1 and P 2 , denoted P 1 |P 2 , is a process on A 1 ∪ A 2 defined by:

P 1 |P 2 = {F ∈ S A 1 ∪A 2 / ((∃F 1 ∈ P 1) (Π A 1 (F) ∠ F 1)) ((∃F 2 ∈ P 2) (Π A 2 (F) ∠ F 2)) (F is maximal for ∠)} Corollary 6 (P ⊆A 1 ,|,1 P) is a commutative monoid.
The composition operator | is idempotent and 0 P (A 1) is an absorbent (nilpotent) element.

III-5.4 Order on processes

The following relation is defined on processes: P 1 ∠ P 2 if and only if:

(∀F 1 ∈ P 1) ((∃F 2 ∈ P 2) (F 1 ∠ F 2))
This relation is an order relation.

Proof of antisymmetry:

(P 1 ∠ P 2) ⇒ ((∀F 1 ∈ P 1) ((∃F 2 ∈ P 2) (F 1 ∠ F 2))) (P 2 ∠ P 1) ⇒ ((∃F 3 ∈ P 1) (F 2 ∠ F 3))
Then F 1 = F 3 since flows in a process are not comparable by ∠.

Then

F 1 = F 2 . Thus P 1 = P 2 . ✷ Corollary 7 • Π A 2 (0 P (A 1)) = 0 P (A 1 ∩ A 2) • Π var(P) (P) = P • Π A 1 ∩A 2 (P) = (Π A 1 • Π A 2)(P) • Π A 1 ∪A 2 (P) ∠ Π A 1 (P)|Π A 2 (P) • Π var(P 1) (P 1 |P 2) ∠ P 1 • Π is monotonic: (P 1 ∠ P 2) ⇒ (Π B (P 1) ∠ Π B (P 2)) • | is monotonic: (P 1 ∠ P 2) ⇒ (Q|P 1 ∠ Q|P 2) • Π B (P 1 |P 2) ∠ Π B (P 1)|Π B (P 2)
Proposition Let P 1 and P 2 two processes defined respectively on A 1 and A 2 .

(P 1 = Π A 1 (P 1 |P 2)) ⇔ (Π A 1 ∩A 2 (P 1) ∠ Π A 1 ∩A 2 (P 2))
Sketch of the proof:

Since Π A 1 (P 1 |P 2) ∠ P 1 it is sufficient to prove that (P 1 ∠ Π A 1 (P 1 |P 2)) ⇔ (Π A 1 ∩A 2 (P 1) ∠ Π A 1 ∩A 2 (P 2)) ⇒) Assume that P 1 ∠ Π A 1 (P 1 |P 2). Let F ∈ Π A 1 ∩A 2 (P 1) (∃F 1 ∈ P 1) (F = Π A 1 ∩A 2 (F 1)) Since F 1 ∈ P 1 , by hypothesis, (∃F ′ ∈ Π A 1 (P 1 |P 2)) (F 1 ∠ F ′) Thus (∃F ′′ ∈ P 1 |P 2) (F 1 ∠ Π A 1 (F ′′)) By definition of the composition, (∃F ′′ 2 ∈ P 2) (Π A 2 (F ′′) ∠ F ′′ 2) Let F ′′′ 2 = Π A 1 ∩A 2 (F ′′ 2) Then F ∠ F ′′′ ⇐) Assume that Π A 1 ∩A 2 (P 1) ∠ Π A 1 ∩A 2 (P 2). If F 1 ∈ P 1 , then (∃F 2 ∈ Π A 1 ∩A 2 (P 2)) (Π A 1 ∩A 2 (F 1) ∠ F 2) Thus (∃F ′ 2 ∈ P 2) (Π A 1 ∩A 2 (F 1) ∠ Π A 1 ∩A 2 (F ′ 2)) Thus (∃F ∈ P 1 |P 2) (F 1 ∠ Π A 1 (F)) ✷ Consequences • if A 1 ∩ A 2 = ∅: P 1 = Π A 1 (P 1 |P 2) and P 2 = Π A 2 (P 1 |P 2) • if A 1 ⊆ A 2 : (P 1 = Π A 1 (P 1 |P 2)) ⇔ (P 1 ∠ Π A 1 (P 2)) • if A 2 ⊆ A 1 : (P 1 = P 1 |P 2) ⇔ (Π A 2 (P 1) ∠ P 2) • if A 1 = A 2 : (P 1 = P 1 |P 2) ⇔ (P 1 ∠ P 2)
As an application, if P 2 represents a safety property defined on the same set of variables as P 1 , P 1 satisfies the property P 2 , which means that any flow of P 1 is a flow of P 2 (P 2 is less constrained than P 1), if and only if

P 1 = P 1 |P 2 .
Note that there is the same result when P 2 is defined on a subset of the variables of P 1 .

More generally, if

A 2 ⊆ A 1 , P 1 = P 1 |P 2 means that P 2 is an abstraction of P 1 .

III-6 Semantics of basic SIGNAL terms

The semantics of each primitive operator is defined by a set of flows: a SIGNAL process on A 1 ⊆ A is a non empty set of flows on A 1 (i.e., a subset of S A 1) defined, from primitive operators and composition, by constraints (relations) on the flows.

In the following, we denote generically P : P A 1 a process on A 1 , to define the semantics of the corresponding term. In addition, we denote var(x 1 , . . . , x n) the set of the x i variables (i = 1, . . . , n) which are distinct.

III-6.1 Declarations

Let µ designate a type whose domain of values is τ (µ).

The term µ X defines a process P : P {X} representing all the possible sequences of values of the signal X.

P = ∆ { T ∈ S {X} / (∀t) ((T t (X) = ⊥) ⇒ (T t (X) ∈ τ (µ))) }

III-6.2 Monochronous processes

A process P defined on A 1 is said monochronous if, at each instant t for which one of the signals is present (respectively, absent), all of them are also present (respectively, absent). Flows defining monochronous processes are called also monochronous flows.

(∀T ∈ P) ((∀t) (((∃X ∈ A 1) (T t (X) = ⊥)) ⇒ ((∀Y ∈ A 1) (T t (Y) = ⊥))))

2-a Static monochronous processes

Let F be an operator. Under some interpretation I for which the interpretation of F is denoted [|F |] I , the term

X n+1 :=: F(X 1 ,. . . ,X n)
defines a process P : P var(X 1 , . . . , X n , X n+1) by some relation between the sequence of values of the signal X n+1 and the sequence obtained by the pointwise extension of the application of F, under this interpretation, to the sequence of tuples of values of the signals X 1 ,. . . ,X n (note that the sign ":=:" makes explicit the fact that this term represents a non oriented equation).

P = ∆ { T ∈ S var(X 1 , . . . , X n , X n+1) /
T is monochronous and

(∀t) ((T t (X n+1) = ⊥) ⇒ (T t (X n+1) = [|F |] I (T t (X 1), . . . , T t (X n)))) }

2-b Dynamic monochronous processes: the delay

The term

X 2 :=: X 1 $ init V 0
defines a process P : P var(X 1 , X 2) by the relation constraining the equality of the sequence of values of the signal X 2 and the sequence of values of the signal X 1 , delayed by 1; V 0 is the initial value of X 2 .

P = ∆ { T ∈ S var(X 1 , X 2) /
T is monochronous and

(∀t > 0) ((T t (X 2) = ⊥) ⇒ (T t (X 2) = T t-1 (X 1))) and (T 0 (X 1) = ⊥) ⇒ (T 0 (X 2) = V 0) }

III-6.3 Polychronous processes

A process defined on A 1 is said polychronous if it contains a flow T for which there exists some instant t in which one of the signals is present while another one is not. By extension, a term is said polychronous if it allows to define polychronous processes.

3-a Sub-signals

The term X 3 :=: X 1 when X 2 defines a process P : P var(X 1 , X 2 , X 3) by the relation constraining the equality of the sequence of values of the signal X 3 and the sequence of occurrences of value of the signal X 1 when the Boolean signal X 2 carries the value true.

P = ∆ { T ∈ S var(X 1 , X 2 , X 3) / (∀t) (((T t (X 2) = true) ⇒ (T t (X 3) = T t (X 1))) ((T t (X 2) = true) ⇒ (T t (X 3) = ⊥))) }

3-b Merging of signals

The term

X 3 :=: X 1 default X 2
defines a process P : P var(X 1 , X 2 , X 3) by the relation constraining the equality of the sequence of values of the signal X 3 and the sequence formed by the occurrences of value of the signal X 1 or by default the occurrences of value of the signal X 2 .

P = ∆ { T ∈ S var(X 1 , X 2 , X 3) / (∀t) (((T t (X 1) = ⊥) ⇒ (T t (X 3) = T t (X 1))) ((T t (X 1) = ⊥) ⇒ (T t (X 3) = T t (X 2)))) }

III-6.4 Composition of processes

The term

P 1 | P 2
where P 1 and P 2 define respectively processes P 1 and P 2 on the sets of variables A 1 and A 2 , defines a process P : P A 1 ∪A 2 by the greatest relation constraining their common signals to respect the constraints imposed respectively by P 1 and P 2 (see an example in the figure B-III.2, p. 44).

P = ∆ P 1 |P 2

III-6.5 Restriction

The term P 1 / a (or P 1 where a)

where P 1 defines a process P 1 on the set of variables A 1 , defines a process P : P A 1 \{a} by the projection of P 1 on the subset of ports of P 1 which are different from a.

P = ∆ Π A 1 \ {a} (P 1)

III-7 Composite signals

The types of the SIGNAL language contain elementary types such as Booleans, integers, etc

v 1 w 1 v 2 w 2 v 3 v 4 v 5 w 3 a 2 a 3 x 1 w 1 x 2 w 2 x 3 w 3 x 4 a 1 a 2 a 3 v 2 v 1 w 1 x 2 x 1 w 2 v 3 x 3 v 4 v 5 w 3 x 4 a 1 a 2 a 3 v 3 v 4 x 3 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ P1 P2 P1|P2

Tuple types

Let m types µ 1 , .

Ξ : {A 1 , . . . , A m } → m i=1 τ (µ i) such that Ξ(A i) ∈ τ (µ i).
It is reminded that the notation τ (µ i) designates the domain of values (type) associated with µ i .

When C is the process of synchronization that defines all the fields of the tuple (recursively) as being synchronous, the corresponding type is then denoted by the term:

struct (µ 1 A 1 ; . . . ; µ m A m ;)
It can be considered, generically, that a tuple type, represented by a tuple with named or unnamed fields (cf. part C, section V-5, p. 78 et seq.), can be viewed as a product of domains (µ 1 × . . . × µ m) where µ k is the type of the k th element of the tuple.

Declaration of a tuple variable (with named fields)

The association of a tuple type with synchronization C, with a variable, denoted by the term bundle (µ 1 A 1 ; . . . ; µ m A m ;) spec C X defines a polychronous tuple of signals, such that

(∀t) (((∀i) ((X t (A i) = ⊥) ⇒ (X t (A i) ∈ τ (µ i))))
(the relation defined by the process denoted by C is verified))

Remark: Such a declaration is a SIGNAL process with as interface, µ 1 A 1 , . . . , µ m A m in input, and the empty set in output.

For the particular case of a monochronous tuple, the association denoted by the term

struct (µ 1 A 1 ; . . . ; µ m A m ;) X defines a monochronous tuple signal, such that (∀t) ((X t = ⊥) ⇒ ((∀i) (X t (A i) ∈ τ (µ i))))

Access to an element

When X designates a polychronous tuple the type of which is defined as the set of functions

Ξ : {A 1 , . . . , A m } → m i=1 µ i such that Ξ(A i) ∈ µ i , the term Y :=: X.A i
defines a process allowing to access to a component of the tuple:

(∀t) (Y t = X t (A i))
Particular case: when X designates a monochronous tuple, the term Y :=: X.A i defies a monochronous process allowing to access to a component of the tuple:

(∀t) ((X t = ⊥) ⇒ (Y t = X t (A i)))

Pointwise extension

The operators defined on values of elementary types may be extended canonically (pointwise extension) to tuples.

Let us consider some operator F defined with the following signature:

µ 1 × . . . × µ N → µ N +1
(note that operators may be polymorphic on some of their operands, so that a given µ k may stand here for some set of types).

We will denote (X_a 1k ,. . . ,X_a mk) the elements of a tuple X k with m elements.

If at least one of the X k is a tuple the elements of which are correspondingly possible arguments of the operator F, more precisely, if µ k represent some particular instances of type µ k), the term

(∃ m) (((∀ k) ((τ (X k) = (. µ k 1 × . . . × . µ km)) (τ (X k) = .. µ k))) ((∃ k) (τ (X k) = (. µ k 1 × . . . × . µ km)))) (where . µ k 1 , .
X N+1 :=: F(X 1 ,. . . ,X N)
under some interpretation I, specifies a process which defines the tuple with m elements X N+1 by a pointwise application of F:

(∀t) ((∀i, 1 ≤ i ≤ m) (X_a iN +1 t = [|F |] I (v 1 _a it , . . . , v n _a it))
where

((τ (X k) = (. µ k 1 × . . . × . µ km)) ⇒ (v k _a it = X_a ikt)) (((τ (X k) = (. µ k 1 × . . . × . µ km)) (τ (X k) = .. µ k)) ⇒ (v k _a it = X kt)))
This defines recursively new signatures of the operators, so that the pointwise extension can be applied recursively.

III-7.2 Arrays

II D being the set of values that can be carried by a variable, we introduce a distinguished value, denoted nil, such that, semantically, nil ∈ II D and nil = ⊥. This value is in particular the value of a non defined element of an array. In the language, a value equal to nil may be any (non determined) value of the correct type.

Array types

Let m integers n 1 , . . . , n m (n i ∈ II N), and a type ν.

The term

[n 1 , . . . , n m] ν defines an array type as the set of functions:

([0..n 1 -1] × . . . × [0..n m -1]) → τ (ν)
, where [0..n i -1] denotes the set of integers included between 0 and n i -1, and τ (ν) denotes the domain of values of type ν.

The curryfied and non curryfied forms of the functions defining an array type are considered as equivalent. Thus, when the type ν is itself an array type, defined by the set of functions

([0..n m+1 -1] × . . . × [0..n m+p -1]) → τ (µ),
the type denoted by [n 1 , . . . , n m] ν is defined by the set of functions

([0..n 1 -1] × . . . × [0..n m+p -1]) → τ (µ).

Declaration of an array variable

The association of an array type with a variable, denoted by the term

[n 1 , . . . , n m] ν X defines an array signal such that (∀t) ((X t = ⊥) ⇒ ((∀k, 1 ≤ k ≤ m) ((∀i k , 0 ≤ i k ≤ n k -1) (X t (i 1 , . . . , i m) ∈ τ (ν)))))
For X an array of type

([0..n 1 -1] × . . . × [0..n m -1]) → ν, the set of tuples of types [0..n 1 -1] × . . . × [0..n p -1] where 1 ≤ p ≤ m is designated by Dom(X).

Complete arrays and partial arrays

An array of type

([0..n 1 -1] × . . . × [0..n m -1]) → ν is said complete if the function ([0..n 1 -1] × . . . × [0..n m -1]) → ν that defines it is total.
If this function is partial, the array is said partial. In this case, it is defined by the total function

([0..n 1 -1] × . . . × [0..n m -1]) → ν ∪ {nil}
that extends this partial function by associating nil with the non defined elements.

When the array defined by one of the following operators may be partial, the function described by this semantics is necessarily a restriction of the function that defines the array. The corresponding extension is such that any element non defined by the semantics is equal to nil.

Array element

When X designates an array the type of which is defined as the set of functions andI 1 , defines a monochronous process allowing to access to an element of the array X:

([0..n 1 -1] × . . . × [0..n m -1]) → ν,
(∀t) ((X t = ⊥) ⇒ (((∀I kt) (0 ≤ I kt ≤ n k -1)) (Y t = X t (I 1t , . . . , I mt))))
This operator is generalized below (see "extraction of sub-array").

Static enumeration of array

The term

X :=: [E 1 ,. . . ,E n]
defines a monochronous process enumerating the elements of an array:

(∀t) ((X t = ⊥) ⇒ ((∀i = 1, . . . , n) (X t (i) = E it)))

Iterative enumeration of array

The term K :=: N recur f from V 0 (where N, maximum number of iterations, denotes a positive integer, which has a stricly positive upper bound, upper _bound (N); V 0 denotes a value (or a tuple of values) of type µ; and f is a function from µ into µ), defines a process enumerating elements of a vector of µ of size upper _bound (N):

(∀t) ((K t = ⊥) ⇒ ((∀i) (((0 ≤ i < N t -1) ((K t (0) = V 0t) (K t (i + 1) = [|f |] I (K t (i))))) ((N t ≤ i < upper _bound (N)) (K t (i) = nil)))))
The equation K t (i) = nil expresses the fact that the corresponding value exists (since all the elements of an array have the same clock), but it is not determined. In the language, this can be represented by: K t (i) = K t (i).

This form is not provided as such in the concrete syntax of the language.

A particular form is 0..N -1 which represents the term N recur f from 0 where f designates the function on integers such that f(x) = x + 1.

Pointwise extension

The operators defined on values of elementary types may be extended canonically (pointwise extension) to arrays.

Let us consider some operator F defined with the following signature:

µ 1 × . . . × µ N → µ N +1
(note that operators may be polymorphic on some of their operands, so that a given µ k may stand here for some set of types).

If at least one of the TX k has one dimension more than the corresponding argument in the definition of the operator F, more precisely, if

(∃ m) (((∀ k) ((τ (TX k) = [0..m -1] → . µ k) (τ (TX k) = .. µ k))) ((∃ k) (τ (TX k) = [0..m -1] → . µ k))) (where . µ k and ..
µ k represent some particular instances of type µ k), the term

TX N+1 :=: F(TX 1 ,. . . ,TX N)
under some interpretation I, defines a monochronous process which defines the array TX N+1 by a pointwise application of F:

(∀t) ((T X N +1 t = ⊥) ⇒ ((∀i, 0 ≤ i ≤ m -1) (T X N +1 t (i) = [|F |] I (v 1t (i), . . . , v nt (i)))
where

((τ (TX k) = [0..m -1] → . µ k) ⇒ (v kt (i) = T X kt (i))) (((τ (TX k) = [0..m -1] → . µ k) (τ (TX k) = .. µ k)) ⇒ (v kt (i) = T X kt))))
This defines recursively new signatures of the operators, so that the pointwise extension can be applied recursively.

Cartesian product

With I and J arrays of respective types

τ (I) = [0..m -1] → µ and τ (J) = [0..n -1] → ν,
(∀t) ((I t = ⊥) ⇒ ((∀k, 0 ≤ k ≤ m -1) ((∀p, 0 ≤ p ≤ n -1) ((II t (k * n + p) = I t (k)) (JJ t (k * n + p) = J t (p))))))
More generally, if I is a tuple (with unnamed fields) of type

τ (I) = [0..m -1] → µ 1 × . . . × [0..m -1] → µ p
and J is an array of type τ (J) = [0.

τ (II) = [0..m * n -1] → µ 1 × . . . × [0..m * n -1] → µ p , τ (JJ) = [0..m * n -1] → ν,
and:

(∀t) ((I t = ⊥) ⇒ ((∀k, 0 ≤ k ≤ m -1) ((∀p, 0 ≤ p ≤ n -1) ((II t (k * n + p) = I t (k)) (JJ t (k * n + p) = J t (p))))))
The cartesian product is used in particular to define jointly indexes used for multi-dimensional iterations of processes.

≤ i ≤ n, a i = max K∈Dom(I i) I i (K)
defines a monochronous process which specifies, in the general case, a partially defined array:

(∀t) ((X t = ⊥) ⇒ (((p = 0) ((Y t (I 1t , . . . , I nt) = X t) ((∀J ∈ Dom(Y)) ((J = (I 1t , . . . , I nt)) ⇒ (Y t (J) = nil))))) ((p ≥ 1) (((∀(j 1 , . . . , j n) ∈ II N n) (K = {(k 1 , . . . , k p) ∈ II N p / ∀i, 1 ≤ i ≤ n, I it (k 1 , . . . , k p) = j i })) ⇒ (((K = ∅) ⇒ (Y t (j 1 , . . . , j n) = nil)) ((K = ∅) ⇒ ((K max = max k∈K k) ⇒ (Y t (j 1 , . . . , j n) = X t (K max)))))))))
where the K max are obtained by the maximal elements in the sets K, using the lexicographic order on II N p .

Extraction of sub-array

The definition of the operator of access to an element of array given above is generalized in the following way to define the extraction of sub-array.

The term

X :=: Y[I 1 ,. . . ,I n]
where I 1 , . . . , I n are integers or arrays of integers:

τ (I 1) = . . . = τ (I n) = ([0..b 1] × . . . × [0..b p]) → ν
with ν an integer type, and the basic integer values of the I i are positive or zero,

τ (Y) = ([0..a 1] × . . . × [0..a n]) → µ and τ (X) = ([0..b 1] × . . . × [0..b p]) → µ ∪ {nil}
defines a monochronous process which, in the general case, extracts some sub-array from Y:

(∀t) ((Y t = ⊥) ⇒ (((((I 1t , . . . , I nt) ∈ Dom(Y)) ⇒ (X t = Y t (I 1t , . . . , I nt))) (((I 1t , . . . , I nt) ∈ Dom(Y)) ⇒ (X t = nil))) ((∀(j 1 , . . . , j p) ∈ II N p , ∀k, 1 ≤ k ≤ p, 0 ≤ j k ≤ b k) (((
(I 1t (j 1 , . . . , j p), . . . , I nt (j 1 , . . . , j p)) ∈ Dom(Y)) ⇒ (X t (j 1 , . . . , j p) = Y t (I 1t (j 1 , . . . , j p), . . . , I nt (j 1 , . . . , j p)))) (((I 1t (j 1 , . . . , j p), . . . , I nt (j 1 , . . . , j p)) ∈ Dom(Y)) ⇒ (X t (j 1 , . . . , j p) = nil))))))

Sequential definition

The term T :=: T1 next T2 where:

τ (T1) = ([0..c 1] × . . . × [0..c p]) → µ 1 ∪ {nil}, τ (T2) = ([0..b 1] × . . . × [0..b p]) → µ 2 ∪ {nil} with c 1 ≥ b 1 , . . . , c p ≥ b p , and τ (T) = ([0..c 1] × . . . × [0..c p]) → (µ 1 ⊔ µ 2) ∪ {nil}
defines a monochronous process which specifies, in the general case, a sequential definition of an array:

(∀t) ((T t = ⊥) ⇒ ((∀(j 1 , . . . , j p) ∈ II N p , ∀k, 1 ≤ k ≤ p, 0 ≤ j k ≤ c k) (((((j 1 , . . . , j p) ∈ Dom(T2)) (T 2 t (j 1 , . . . , j p) = nil)) ⇒ (T t (j 1 , . . . , j p) = T 2 t (j 1 , . . . , j p))) ((((j 1 , . . . , j p) ∈ Dom(T2)) (T 2 t (j 1 , . . . , j p) = nil)) ⇒ (T t (j 1 , . . . , j p) = T 1 t (j 1 , . . . , j p))))))

III-8 Classes of processes

The following classes of processes are usefully distinguished.

III-8.1 Iterations of functions

Let P a process defined on A 1 . P is an iteration of function on A 2 ⊆ A 1 if and only if:

(∀F 1 , F 2 ∈ P) ((∀t 1 , t 2) ((F 1 A 2 (t 1) = F 2 A 2 (t 2)) ⇒ (F 1 (t 1) = F 2 (t 2))))
Remark: An iteration of function does not need memory.

III-8.2 Endochronous processes

Let P a process defined on A 1 . P is endochronous on A 2 ⊆ A 1 , where A 2 is considered as a totally ordered set {a 1 , . . . , a n }, if and only if the function

Φ : P → Π {a 1 } (P) × . . . × Π {a n } (P) such that Φ(F) = (Π {a 1 } (F), . . . , Π {a n } (F))
is injective (and thus bijective, since it is necessarily surjective).

Informally, a process is endochronous on a set of variables if any flow of this process is entirely determined by the sequences of values carried by these variables, independently of their relative presence and absence.

In other words, a process is endochronous on a set of variables if given an external (asynchronous) stimulation of these variables, it is capable of reconstructing a unique synchronous behavior (up to ⊥equivalence). Then, it can be implemented as a process which is mostly insensitive to internal and external propagation delays. This implementation and its context have only to agree on activation starts and on the availability of data.

Property A process P defined on A 1 is endochronous on A 2 ⊆ A 1 if and only if:

(∀F, F ′ ∈ P) (((Π A 2 (F)) ≈ = (Π A 2 (F ′)) ≈) ⇔ (F ≡ ↓ F ′))
If a subset A 2 ⊆ A 1 is considered as the set of inputs for P , we say that P is endochronous if it is endochronous on its inputs.

III-8.3 Deterministic processes

A process is deterministic on a set of variables if any flow of this process is entirely determined by its restriction to this set of variables.

Let P a process defined on A 1 . P is deterministic on A 2 ⊆ A 1 if and only if the function

Φ : P → Π A 2 (P) such that Φ(F) = Π A 2 (F)
is injective (and thus bijective, since it is necessarily surjective).

In other words, a process is deterministic on a set of variables if any two flows of this process have the same behaviors when they have the same projection on this set of variables.

Property A process P defined on A 1 is deterministic on A 2 ⊆ A 1 if and only if:

(∀F, F ′ ∈ P) (((Π A 2 (F)) ≡ ↓ (Π A 2 (F ′))) ⇒ (F ≡ ↓ F ′))
Remarks and examples:

• For any elementary process P of the SIGNAL language of the form x :=: E(y 1 , . . . , y n), if

x ∈ {y 1 , . . . , y n }, then P is deterministic on {y 1 , . . . , y n }.

• For any elementary process P of the SIGNAL language of the form x :=: E(y 1 , . . . , y n), if

x ∈ {y 1 , . . . , y n }, then P is deterministic on {y 1 , . . . , y n }.

• X :=: Y default X is not deterministic on {Y}.

• The determinism on A i is not stable by composition and restriction.

Properties:

If a process P is an iteration of function on A 1 , then it is deterministic on A 1 .

If a process P is endochronous on A 1 , then it is deterministic on A 1 .

III-8.4 Reactive processes

Reactivity of a process with respect to some set of variables may be defined as the ability of the process to react to each configuration of these variables in all states.

Let P a process defined on A 1 . P is reactive on A 2 ⊆ A 1 if and only if for each flow F ∈ P , for each t ∈ dom(F), for each event e on A 2 , there exists a flow F ′ ∈ P such that:

(F ′ ≤t-1 = F ≤t-1) (F ′ (t) |A 2 = e).
P is strictly reactive on A 2 ⊆ A 1 if and only if for each flow F ∈ P , for each t ∈ dom(F), for each event e on A 2 different from the absent event ⊥ e (A 2), there exists a flow F ′ ∈ P such that:

(F ′ ≤t-1 = F ≤t-1) (F ′ (t) |A 2 = e).
A process which is reactive on a non empty set A 2 is obviously strictly reactive on A 2 .

Examples:

• Z :=: X default Y is strictly reactive on {X, Y}.

• Z :=: X and Y is neither strictly reactive, nor reactive on {X, Y}.

III-9 Composition properties III-9.1 Asynchronous composition of processes

The partial order of relaxation is used to define the semantics of the asynchronous composition of processes: roughly, the asynchronous composition of two processes P 1 and P 2 is defined by the flows the projection of which on common variables of P 1 and P 2 are relaxations of the projections on these common variables of flows of P 1 and of flows of P 2 .

Definition Let P 1 and P 2 two processes defined respectively on A 1 and A 2 .

The parallel composition (or asynchronous composition of P 1 and P 2 , denoted P 1 P 2 , is a process on A 1 ∪ A 2 defined by:

P 1 P 2 = {F ∈ S A 1 ∪A 2 / ((∃F 1 ∈ S A 1 , ∃F ′ 1 ∈ P 1) ((F 1 ∠ F ′ 1) (Π A 1 ∩A 2 (F 1) ⊑ Π A 1 ∩A 2 (F)) (Π A 1 \A 2 (F 1) ≡ ↓ Π A 1 \A 2 (F)))) ((∃F 2 ∈ S A 2 , ∃F ′ 2 ∈ P 2) ((F 2 ∠ F ′ 2) (Π A 1 ∩A 2 (F 2) ⊑ Π A 1 ∩A 2 (F)) (Π A 2 \A 1 (F 2) ≡ ↓ Π A 2 \A 1 (F)))) (F is maximal for ∠)}

III-9.2 Flow-invariance

Flow-invariance, based on flow-equivalence, is a property that relates synchronous and asynchronous compositions of processes. It consists of ensuring that an asynchronous "implementation" P 1 P 2 of a synchronous specification P 1 |P 2 preserves the sequences of values for all flows.

Definition Let P 1 and P 2 two processes defined respectively on A 1 and A 2 .

The composition of P 1 and P 2 is said flow-invariant on I ⊆ A 1 ∪ A 2 if and only if:

(∀F ∈ P 1 |P 2) ((∀F ′ ∈ P 1 P 2) (((Π I (F)) ≈ = (Π I (F ′)) ≈) ⇒ (F ≈ F ′)))
It means that a synchronous design made of a flow-invariant composition of processes is robust to their distribution.

III-9.3 Endo-isochrony

A special case of practical interest is the one of endochronous processes.

Definition Let P 1 and P 2 two processes defined respectively on A 1 and A 2 . They are said endoisochronous if and only if P 1 , P 2 and Π A 1 ∩A 2 (P 1)|Π A 1 ∩A 2 (P 2) are endochronous.

Property If P 1 and P 2 are endo-isochronous, then their composition is flow-invariant on its set of variables.

III-10 Clock system and implementation relation

The refinement of a system specification consists in transforming its abstract behaviors into more concrete ones that make intermediate computational steps explicit. Conversely, the abstraction of a behavior consists in discarding some intermediate calculations. Thus it is useful to have an implementation relation between processes, that takes into account a notion of time refinement.

Sampler system

Let T a trace on A 1 . A sampler system for T is a function s : A 1 → A 1 such that s is acyclic, and for all a ∈ A 1 , s(a) is a Boolean and

(∀t) ((T t (s(a)) = true) ⇒ (T t (a) = ⊥))
A function s is a sampler system for a process P if and only if it is a sampler system for every flow of P .

Clock system

Let T a trace on A 1 . A clock system for T is a sampler system such that for all a ∈ A 1 ,

(∀t) ((T t (s(a)) = true) ⇔ (T t (a) = ⊥))
A function s is a clock system for a process P if and only if it is a clock system for every flow of P .

Sampling

Let T a trace on A 1 and s a sampler system for T . The sampling of T by s is the trace T ′ = S s (T) defined on A 1 such that for all a ∈ A 1 , (∀t) (T ′ t (a) = S * (T t (a))) where S * is recursively defined as follows: if s is not defined on a, then S * (T t (a)) = T t (a), if s is defined on a, then

S * (T t (a)) = T t (a) if S * (T t (s(a))) = true, S * (T t (a)) = ⊥ if S * (T t (s(a))) = true.
Let P a process defined on A 1 . The sampling of P by a sampler system s for P is the process P ′ , denoted P ′ = Σ s (P), defined as the set of flows which are equivalent to samplings of flows of P :

P ′ = {T ′ ↓ ∈ S A 1 / (T ∈ P) (T ′ = S s (T))}

Well-clocked implementation

Let P a process on A 1 and Q a process on A 2 such that there exists a one-to-one correspondence σ such that σ(A 1) ⊆ A 2 , and let s a clock system on Q. Q is a well-clocked implementation of P with respect to s (denoted Q s P) if and only if:

Π σ(A 1) (Σ s (Q)) = P.

III-11 Transformation of programs

A general principal of transformation of programs (which is applied for SIGNAL programs all along the design of an application, for example for verification purpose, for implementation purpose, or to calculate abstractions of behaviors) consists in the following generic rewritting scheme: homomorphisms of programs are defined such that a program is contained in the composition of its transformations by these homomorphisms. Typically, one of these transformations is an abstract interpretation of the initial program.

Let A 1 a set of variables. We consider:

• an interpretation homomorphism, f , which associates with each elementary process P defined on

A 1 a process Q f = f (P) on A 2 ,
• an homomorphism r, which associates with each elementary process P defined on A 1 a process

Q r = r(P) on A ′ 1 ⊆ A 1 , such that Π A 1 ∩A 2 (P) ∠ Π A 1 ∩A 2 (Q f |Q r) and thus P = Π A 1 (P |(Q f |Q r)).
Then we define a transformation of programs (which is an homomorphism)

T fr : P A 1 → P A ′ 1 ∪A 2
such that T fr (P) = left(T T fr (P))|right(T T fr (P)) with:

• left(< X, Y >) = X • right(< X, Y >) = Y
• T T fr (P) = < f (P), r(P) > if P is an elementary process

• T T fr (P 1 |P 2) = < left(T T fr (P 1))|left(T T fr (P 2)), right(T T fr (P 1))|right(T T fr (P 2)) >

Then, P = Π A 1 (P |T fr (P)).

Chapter IV

Calculus of synchronizations and dependences IV-1 Clocks

As said before, the clock of a signal represents the presence instants of this signal, relatively to the other ones. A system of clock relations is associated with any system of SIGNAL equations (SIGNAL process), in order to represent specifically the synchronizations of the process.

For that purpose, an homomorphism, Clock , is defined on processes, which has the following property: Clock (P) | P = P or equivalently: P ∠ Clock (P) (by abuse of notation, we use the same notation for the syntactic and semantic homomorphisms).

Then, the system of clock relations is encoded as a system of polynomial equations on the field of integers modulo 3.

IV-1.1 Clock homomorphism

Let us consider the following derived elementary processes, in order to make easier the expression of clock equations:

• a 2 :=: a 1 is defined by a 2 :=: a 1 == a 1 where == represents the equality operator defined on values of any type. The signal a 2 is defined at the same instants as the signal a 1 and at each one of these instants, its value is the Boolean value true (the type of a 2 is the subtype called event of the Boolean type, which contains as single value the value true). It is said that a 1 represents the event clock of the signal a 1 .

• a 1 = a 2 is defined by (a 3 :=: a 1 == a 2) where a 3 and is generalized to n variables (a 1 = . . . = a n). It expresses that the signals a 1 and a 2 (more generally, a 1 , . . . , a n) are present at the same instants (their clocks are equal).

The Clock homomorphism is defined as follows, depending on the types of the signals (the notation τ (x) designates the type of x): Boolean equations are left unchanged in the homomorphism.

1-a Monochronous definitions

• Definitions by extension:

if τ (b) = τ (a 1) = .

F 3 = [{-1, 0, 1}, +, *]
with the usual meanings for operations and values (+ is the usual addition modulo 3, * is the usual multiplication).

We define the set of polynomials on F 3 and a set of variables isomorphic to the variables of a SIGNAL program. The association of the value 0 with a variable indicates the absence of value for the associated signal in the corresponding instant. With each present Boolean signal, the value -1 (which is equal to 2 in Z/3Z) is associated if its current value is false, and the value +1 is associated if its current value is true. Thus, the square of the value of the variable associated with a present Boolean signal is equal to 1; for each non Boolean signal, we are interested only in the presence or absence of a value at the current instant. So we associate with such a signal a squared variable.

The synchronization of a SIGNAL program is expressed by a system of equations in the set of polynomials on F 3 defined by the homomorphism described below.

3-a Monochronous definitions

• Definitions by extension:

b :=: f (a 1 , . . . , a n) → b 2 = a 2 1 = . . . = a 2 n
(some relation on the values of b, a 1 , . . . , a n is obtained when f designates a Boolean operator).

• Clock:

b :=: a → b = a 2
• Delay:

b :=: a $ init v → ξ n+1 = (1 -a 2) * ξ n + a, ξ 0 = v, b = a 2 * ξ n 3-b Polychronous definitions • Extraction: b :=: a 1 when a 2 → b = a 1 * (-a 2 -a 2 2)
• Merging:

b :=: a 1 default a 2 → b = a 1 + (1 -a 2 1) * a 2

3-c Hiding

Replaces, in the system, the hidden variable by an internal one.

3-d Composition

The system obtained for P1 | P2 is the union of the systems obtained for P1 and for P2.

3-e Static and dynamic clock calculus

Then the calculus of synchronizations (clock calculus) of a SIGNAL program is done by studying a dynamic system such as:

   X n+1 = P (X n , Y n) Q(X n , Y n) = 0 Q 0 (X 0) = 0
where X is a state vector in (Z/3Z) p and Y is a vector of events (abstract interpretations of signals) that make the system evolve. Such a dynamic system is a particular form of finite state transition system. Thus it is a model of discrete event system on which it is possible to verify properties or to make control.

Studying such a system then consists in:

• studying its static part, i.e., the set of constraints

Q(X n , Y n) = 0
• studying its dynamic part, i.e., the transition system

X n+1 = P (X n , Y n) Q 0 (X 0) = 0
and the set of its reachable states, etc.

IV-2 Context clock

The clock relations imposed by SIGNAL operators imply the existence of context clocks for the various occurrences of the signal variables.

A particular case of this situation is for the occurrence of constants (representing constant sequences), since such a context clock is the only way to assign a clock to the occurrence of a constant.

Occurrences of constants are allowed in SIGNAL expressions as a practical way to designate constant signals, i.e., signals with a constant value. The occurrence of such a constant, v, in some expression, stands for the occurrence of some hidden signal x, defined as x :=: x $ init v.

Each occurrence of a constant has a particular clock (which cannot be fixed explicitly since the corresponding signal is hidden): this clock is defined by the context of utilization of the constant.

It is defined a utilization mode of the constants:

• allowing as much flexible use as possible (we want to be able to write x + 5 but also x + (y default 5));

• allowing intuitive handling of their clocks (a constant is delivered at the clock necessary for the coherence of a synchronous expression);

• free of interpretation for the synchronous operations and in particular, preserving possible properties of commutativity, associativity. . . of these operators;

• preserving the spirit, if not the letter, of the substitution principle;

• preserving the properties of the temporal operators:

-"associativity" of when,

associativity of default,

-"right distributivity" of when on default.

These requirements lead to consider that the occurrence of a constant has a clock which is provided by the context. This has the consequence that the substitution principle cannot apply in general.

The rules for the definition of the context clock are introduced informally below.

• For a definition

X :=: E the context clock of E is the clock of X.
• For a monochronous expression, the context clock of each argument is the context clock of the expression.

• For a delay

E 1 $
the context clock of E 1 is undefined, which means that the argument of a delay cannot be a constant (note that it has also consequences on derived operators).

• For an extraction

E 1 when C
having H as context clock, the context clock of C is H, that of E 1 is the clock product of H and of the clock at which C has the value true (this can be used to assign explicitly a clock to a constant).

• For a merging of signals

E 1 default E 2 having H as context clock, the context clock of E 1 and of E 2 is H.
For example, 5 default x is equivalent to 5.

In the sequel, the clock of a constant outside some context will be denoted .

The rules for the calculation of the clock of a constant in a given context apply also for the signals the clock of which is undefined. These signals are called non clocked signals. Such a signal is obtained, for instance, by the operator var. Thus, the clock of var E outside some context is also denoted .

IV-3 Dependences

The equations on signals imply, at the execution, an evaluation order which is described by the dependence graph.

IV-3.1 Formal definition of dependences

The following informal definition of dependences can be stated:

A signal x depends on a signal y "at" a Boolean condition c (noted y c -→ x) if, at each instant for which c is present and true, the event setting a value to x cannot precede the event setting a value to y.

A formal definition in the form of an automaton is presented here. We give the formal meaning of the statement reads: "signal c occurs, with value true (respectively, false)"; the empty word ε represents the occurrence of any signal but (y, c, x).

• In the automaton of the figure B-IV.1, all the states have an additional transition (not represented in the figure), labelled by ε, toward the initial state (which is represented with a thick circle in the figure).

The automaton describing all legal schedulings of calculi for a program in one instant is obtained by a synchronous product of such basic automata, as described in section IV- 3.3. Since these automata describe instantaneous behaviors, they are called micro automata. The states of the transition system describing the overall behavior of a program are the forced states (or initial states) of the micro automata.

IV-3.2 Implicit dependences

The equations defining a process may induce implicit dependences, such as described in the following.

Notations: For a Boolean c, we use the notation [c] to represent the clock at which c has the value true, and [¬c] to represent the clock at which c has the value false.

In addition to the implicit dependences described below, the following implicit dependences apply equally:

• for any signal x, x x --→ x • for any Boolean signal c, c c -→ [c] and c c -→ [¬c] • any dependence y c -→ x implies implicitly a dependence [c] [c] --→ x.

2-a Monochronous definitions

• Definitions by extension:

b :=: f (a 1 , . . . , a n)
The following implicit dependences exist:

a 1 -→ b, . . . , a n -→ b
• Clock:

b :=: a b is identified with the clock of a, there is no implicit dependence.

• Delay:

b :=: a $ init v
There is no implicit dependence.

2-b Polychronous definitions

• Extraction:

b :=: a 1 when a 2

The following implicit dependence exists:

a 1 b -→ b • Merging: b :=: a 1 default a 2
The following implicit dependences exist:

a 1 a 1 --→ b a 2 a 2 -a 1 -------→ b
where a 2a 1 designates the clock representing the instants of a 2 that are not instants of a 1 .

IV-3.3 Micro automata 3-a Definition of micro automata

The micro automaton associated with a program describes the legal schedulings of calculi in one instant.

Let A be a set of variables;

A s = A + ∪ A -is the set of variables of A labelled by + or -. A word on A is any subset m of A s such that a s ∈ m ⇒ a s ∈ m where + = -and -= + A micro automaton on A is a tuple < S, P(A s), S I , Γ ⊆ S × P(A s) × S >
such that:

• S I ⊂ S: S is the set of states and S I is a set of initial states;

• if s 1 m 1 ❀ s 2 ∈ Γ (Γ
∀i = j, m i ∩ m j = ∅ and m = n i=1 m i is a word on A. • if s 1 ∅ ❀ s 2 ∈ Γ then s 2 ∈ S I 1
The micro automaton is called saturated micro automaton if, in addition,

s 1 m 1 ❀ s 2 ∈ Γ and s 2 m 2 ❀ s 3 ∈ Γ ⇒ s 1 m 1 ∪m 2 ❀ s 3 ∈ Γ
Let AU T be a micro automaton, Sat(AU T) is the saturated micro automaton which contains AU T . Consider two micro automata defined respectively on A 1 and A 2 with A 1 ∩ A 2 = A. Two labels of transitions, m 1 on A 1 , and m 2 on A 2 , are said to coincide on A if and only if:

(m 1 ∩ A s) = (m 2 ∩ A s) Let AU T 1 =< S 1 , P(A s 1), S 1I , Γ 1 > and AU T 2 =< S 2 , P(A s 2), S 2I , Γ 2 > two micro automata. Their (synchronous) product, denoted AU T = AU T 1 ||AU T 2 , is the micro automaton on A 1 ∪ A 2 , defined by: AU T = Sat(< S 1 × S 2 , P(A s 1 ∪ A s 2), S 1I × S 2I , Γ >)
with Γ defined as follows:

(s 1 , s 2) m 1 ❀ (s ′ 1 , s 2) ∈ Γ iff m 1 ∩ A s 2 = ∅ and s 1 m 1 ❀ s ′ 1 ∈ Γ 1 (s 1 , s 2) m 2 ❀ (s 1 , s ′ 2) ∈ Γ iff m 2 ∩ A s 1 = ∅ and s 2 m 2 ❀ s ′ 2 ∈ Γ 2 (s 1 , s 2) m 1 ∪ m 2 ❀ (s ′ 1 , s ′ 2) ∈ Γ iff m 1 and m 2 coincide on A 1 ∩ A 2 and s 1 m 1 ❀ s ′ 1 ∈ Γ 1 and s 2 m 2 ❀ s ′ 2 ∈ Γ 2
3-b Construction of basic micro automata (i) Micro automaton associated with a system of equations

Let us consider a system of clock equations on a set of variables A:

Σ : R(A) = 0
having at least one solution (the system encodes clock equations of a program).

A partial valuation of Σ is any system of equations

Σ ′ : R ′ (A ′) = 0 equivalent to R(A) = 0 in which a non empty subset {a 1 , . . . , a n } of variables of A have been replaced by values v 1 , . . . , v n ∈ {-1, 1} such that Σ ′ has at least one solution.
If σ denotes such a substitution, the following notations are used:

σ(a i) = v i denotes the value assigned to a i by σ σ(R(A))
denotes the system R ′ (A ′) obtained by the substitution.

Then we consider P(Σ) the set of R ′ (A ′) such that there exists σ verifying

σ(R(A)) = R ′ (A ′).
The micro automaton associated with Σ is the saturated micro automaton < S, P(A s), {s 0 }, Γ > such that:

• there exists a bijection φ :

P(Σ) → S with φ(R) = s 0 • for any partial valuation σ of R ′ (A ′) ∈ P(R(A)), φ(R ′) T ❀ φ(σ(R ′)) ∈ Γ
if and only if:

a + ∈ T iff σ(a) = 1 and a -∈ T iff σ(a) = -1 • for all Σ ′ : R ′ (A ′) = 0 such that ∀a, a ∈ A ′ ⇒ a = 0 is a solution of Σ ′ then φ(R ′) ∅ ❀ s 0 ∈ Γ (ii) Micro

automaton associated with a dependence

The micro automaton associated with y c -→ x is defined as follows.

We consider the following states of resolution E:

y c -→ x, y -→ x, {y, x}, {c, x}, (y 2 (c + c 2) = 0), {y}, {x}, {c}, (c + c 2 = 0), (y 2 = 0)
The micro automaton associated with y c -→ x is the saturated micro automaton Sat(< S, P({y, x, c} s), {s 0 }, Γ >)

such that there exists a bijection φ : E → S with φ(y c → x) = s 0 and with Γ defined as follows:

φ(y c -→ x) c + ❀ φ(y -→ x) ∈ Γ φ(y c -→ x) c - ❀ φ({y, x}) ∈ Γ φ(y c -→ x) y ± ❀ φ({c, x}) ∈ Γ φ(y c -→ x) x ± ❀ φ(y 2 (c + c 2) = 0) ∈ Γ φ(y c -→ x) ∅ ❀ φ(y c -→ x) ∈ Γ φ(y -→ x) y ± ❀ φ({x}) ∈ Γ φ(y -→ x) x ± ❀ φ(y 2 = 0) ∈ Γ φ(y -→ x) ∅ ❀ φ(y c -→ x) ∈ Γ
In addition, Γ contains all other transitions coming from resolution such as described in (i).

The corresponding micro automaton is displayed in the figure B-IV.1, where c + and c -are denoted respectively c(1) and c(-1), and y ± and x ± are denoted y and x; moreover, the ∅ transitions have been omitted in the figure.

(iii) Micro automaton associated with a memorization

The encoding presented in IV-3.1 considers not only the clocks, but also the values of the Boolean flows: delayed Boolean flows are the state variables of the program.

The micro automaton associated with x :=: y $ init v where x and y are Boolean flows is the saturated micro automaton obtained from the micro automaton depicted in the figure B-IV.2, p. 67. The initial states of this micro automaton are the states represented with a thick circle in the figure . (iv) Micro automaton associated with a process

The micro automaton associated with a process is the product of the saturated micro automata associated with each definition involved in the process.

Domains of values of the signals

A signal is a sequence of values associated with a clock. These values have all the same type, which is considered as the type of the sequence. The objective of this chapter is to present the notations used to represent these types and the processings which are applied on them. An element of the set of types of the SIGNAL language is denoted type.

Let E be a term of the SIGNAL language; we denote by τ (E) the type associated with the term E and, when E is a constant expression, ϕ(E) the value of this expression, elaborated in the context in which E appears.

The set of types of the SIGNAL language contains the scalar types, the external types, the array types and the tuple types.

V-1 Scalar types

Scalar types are the following: synchronization types, integer types, real types, complex types, character type, string type; the integer, real and complex types compose the set of numeric types; character and string types compose the set of alphabetic types.

Denotations of values

• A signal of type event takes its values in a single-element set: there is no associated constant and a parameter cannot be of that type.

• The constants of type boolean are the logical values denoted with the syntax of a Boolean-cst (cf. part A, section II-2.2, p. 25).

• The default initial value of type boolean is the value false.

V-1.2 Integer types

Integer values can be in short representation (type short), normal representation (type integer), or long representation (type long); a given implementation may not distinguish these types. In this document, the notations max long, min long, max integer , min integer , max short and min short will be used to designate respectively: the greatest representable integer (of type long), the smallest representable integer (of type long), the greatest integer of type integer , the smallest integer of type integer , the greatest integer of type short and the smallest integer of type short . These values depend of the implementation and respect the following order:

min long ≤ min integer ≤ min short ≤ 0 < max short ≤ max integer ≤ max long min integer < 0 Denotations of types 1. Context-free syntax Integer-type ::= short | integer | long 2. Types (a) τ (short) = short (b) τ (integer) = integer (c) τ (long) = long

Denotations of values

The positive values of an integer type are denoted following the syntax of an Integer-cst (cf. part A, section II-2.3, p. 26). A negative value has not a direct representation: it is obtained using the operator applied to a positive value. 1. Types (a) The type of an Integer-cst E is the smallest integer type that contains it.

Semantics

• An Integer-cst denotes an integer value represented in decimal base, contained between 0 and max long . • An occurrence of an integer value of type short (respectively, integer and long) smaller than min short (respectively, min integer and min long) or greater than max short (respectively, max integer and max long) results, in the considered type, in a value depending of the implementation.

• For an Integer-type, the default initial value is the value 0.

Bounded integers

Integers have a special role since they can be used to index arrays. In that case, we have to consider bounded values.

In this document, for a given signal E, we will use sometimes the following notations:

• lower _bound (E) designates the lower bound of the values of E;

• upper _bound (E) designates the upper bound of the values of E.

These bounds are constant integers.

V-1.3 Real types

The real values can be in simple precision representation (type real) or double precision representation (type dreal); a given implementation may not distinguish these types.

Denotations of types

1. Context-free syntax Real-type ::= real | dreal 2. Types (a) τ (real) = real (b) τ (dreal) = dreal Denotations of values E 1 .E 2 eE 3 (simple precision) or E 1 .E 2 dE 3 (double precision)
A value of real type is denoted following the syntax of a Real-cst (cf. part A, section II-2.4, p. 26). A Real-cst denotes the approximate value of a real number.

Types

(a) A Simple-precision-real-cst is of type real .

(b) A Double-precision-real-cst is of type dreal .

Semantics

• The value ϕ(E i), when E i is omitted, is 0.

• If E 2 has n digits, the value of the constant is the approximate value of (ϕ

(E 1) + ϕ(E 2) * 10 -n) * 10 ϕ(E 3) .
• For a Real-type, the default initial value is the value 0.0 or 0.0d0 following the type.

V-1.4 Complex types

The complex values have the common representation of their components (simple or double precision, respectively types complex and dcomplex); both types are distinguished in a given implementation if and only if the type dreal is distinguished from the type real .

Denotations of types

1. Context-free syntax Complex-type ::= complex | dcomplex 2. Types (a) τ (complex) = complex (b) τ (dcomplex) = dcomplex

Denotations of values

A value of complex type is obtained for example in the following expression, the first element of which is the real part and the second one the imaginary part (cf. section VI-8.1, p. 131).

Examples

(a) 1.0 @ (-1.0) For a Complex-type, the default initial value is the pair of default real initial values.

V-1.5 Character type

The type character contains the set of the admitted characters in the language.

Denotation of type

1. Types (a) τ (char) = character

Denotations of values

A value of type character is denoted by a Character-cst (cf. part A, section II-2.5, p. 26 et seq.).

The default initial value of type character is the character '\000'.

V-1.6 String type

The type string allows to represent any sequence of admitted characters. The value of the maximal authorized size for a string, maxStringLength, depends of the implementation.

Denotation of type

Denotations of values

A value of type string is denoted by a String-cst (cf. part A, section II-2.6, p. 27). The default initial value of type string is the empty string "".

V-2 External types

External types make possible the use of signals the type of which is not a type of the language.

Denotation of type A

An external type is designated by a name.

Context-free syntax

External-type ::= Name-type

Types

(a) For an external type with name A, τ (A) = A Two external types with distinct names are not comparable.

Examples

(a) pointer is an external type with name pointer.

Denotations of values

An external constant can be denoted by a name; the value of an external constant can be defined by the environment of the program (cf. part E, chapter XII, p. 207 et seq.).

For example the identifier nil can represent a constant of type pointer.

For any external type A, it is possible to define a constant that represents the default initial value of type A (cf. section V-7, p. 86 et seq.).

The only operations the semantics of which is defined on external type signals are operations of description of communication graphs (which are polymorphic operations).

V-3 Enumerated types

Enumerated types allow to represent finite domains of values represented by distinct names. These values (the enumerated values) are the constants of the type to which they belong.

Denotation of types

enum (a 1 , ..., a m)
An enumerated type is defined by the list (considered as an ordered list) of its values (the enumerated values) and by its name (cf. section V-7, p. 86 et seq.): type A = enum (a 1 , ..., a m); However, like for the other types, such a name does not necessarily exist. In that case, the name of the type is empty. The definition of an enumerated type declares its enumerated values.

τ (A = enum (a 1 , ..., a m)) = A × {a 1 , . . . , a m }
where {a 1 , . . . , a m } represents the finite set of ordered values a 1 , . . . , a m . It means that the name of an enumerated type (the name that is given in the declaration of the type) is part of that type. Depending on the implementation, it can be the case or not that synonyms (cf. section V-7, p. 86 et seq.) are considered in the definition of the type. If the enumerated type is not designated by a name, then its type is just the finite set of its ordered values.

(b) The type of the enumerated values of an enumerated type is this enumerated type: τ (a 1) =

. . . = τ (a m) = τ (enum (a 1 , ..., a m))
(c) Two enumerated types are considered to be equal if they have both the same name, and the same set of enumerated values, in the same order. Two enumerated types that are not designated by a name are considered to be equal if they have the same set of enumerated values, in the same order.

Semantics

The enumerated values of an enumerated type are ordered (syntactic order of their declaration).

All the values of a given type are distinct; these values are distinguished by their name.

Examples

(a) type color = enum (yellow, orange); and type fruit = enum (apple, orange); are two enumerated types, each one defining an enumerated value named "orange". Both enumerated values named "orange" are distinct values, with different types. The next paragraph describes the way allowing to distinguish them.

Denotation of values

#a i or A#a i where A is the name of the enumerated type. Note: the symbol # does not appear in the definition of the type (and its enumerated values), but only for the use of an enumerated value.

1. Context-free syntax ENUM-CST ::= # Name-enum-value | Name-type # Name-enum-value

Semantics

• The notation #a i can be used to reference an enumerated value a i in a context in which there is no possible ambiguity on the referenced value. If it is not the case, the notation A#a i has to be used, where A designates the enumerated type.

• The default initial value of an enumerated type is the first value of its declaration.

Clocks

An enumerated value a i (designated by #a i or A#a i) is a constant. With respect to the fact that there are possibly identical names for different enumerated values in different enumerated types, the visibility of enumerated values is the same as that of the type in which they are declared (cf. part E, section XI-2, p. 191 et seq.).

V-4 Array types

An array is a structure allowing to group together synchronous elements of a same type. The description of such a structure and of the access to its elements uses constant expressions that have the general syntax of signal expressions (S-EXPR).

Denotation of types

[n 1 , ..., n m]ν
An array type is defined by its dimensions and by the type of its elements.

τ ([n 1 , ..., n m]ν) = ([0..ϕ(n 1) -1] × . . . × [0..ϕ(n m) -1]) → τ (ν). (c) When the type τ (ν) itself is an array type [n m+1 , ..., n m+p]µ, then the type of the array is: τ ([n 1 , ..., n m]ν) = ([0..ϕ(n 1) -1] × . . . × [0..ϕ(n m+p) -1]) → τ (µ).

Denotations of values

A constant array is defined by a constant expression of array (cf. part D, section IX-2, p. 159); the elements that compose a constant array are from the same domain.

For an ARRAY-TYPE, the default initial value is an array of which each element has the default initial value of the type of the elements of the array.

V-5 Tuple types

The SIGNAL language allows to define structured types, called in a generic way tuple types. Two categories of tuple types, called also tuple types with named fields, can be associated with the objects of the SIGNAL language in declarations:

• polychronous tuples (designated by the keyword bundle);

• monochronous tuples (designated by the keyword struct) (remark: the objects declared of tuple type can also be called tuples).

An object declared of type polychronous tuple is in fact a gathering of objects (family of objects). In this way, a polychronous tuple of signals is not a signal (for example, in the general case, it has no clock); it cannot be used as the type of the elements of an array. At the opposite, an object declared of type monochronous tuple can be a signal: it has a clock (delivered by the operator) and it can be used as the type of the elements of an array.

A general rule is that operators on signals do not apply on polychronous tuples, but they are pointwise extended on the fields of these tuples (cf. part D, chapter X, p. 179 et seq.).

The SIGNAL language allows also to manipulate gatherings (or tuples) of objects with no explicit declaration of these gatherings. They define in fact tuples with unnamed fields, the type of which is a product of types (cf. section V-6.2, paragraph "Order on tuples", p. 82 et seq.). The operators defined on signals are pointwise extended to tuples with unnamed fields (cf. part D, chapter X, p. 179 et seq.). By extension, it will be possible to refer to the clock of a tuple of signals if all the signals of the tuple have the same clock.

Denotation of types

struct (µ 1 X 1 ; ...; µ m X m ;) or bundle (µ 1 X 1 ; ...; µ m X m ;) spec C
A tuple type is defined by a list of typed and named fields; in addition, clock properties can be specified on the fields of a tuple.

The description of such a type uses lists of declarations of sequence identifiers S-DECLARATION (cf. section V-9, p. 89) for the designation of the fields, and properties SPECIFICATION-OF-PROPERTIES (cf. part E, section p. 195) to express the clock properties that must be respected by the signals corresponding to the fields defined by the type. These properties should describe exclusively clock properties on the fields of the tuple, excluding for instance graph properties. Note that constraints on values can be specified under the form of constraints on clocks.

A tuple type can be multi-clock (polychronous) or mono-clock (monochronous). If it is multi-clock, it is distinguished by the keyword bundle and it can contain specifications of clock properties applying on its fields. If it is mono-clock, it is distinguished by the keyword struct and all its fields are implicitly synchronous; in this case, it can be used as type of the elements of an array.

b) τ (struct (µ 1 X 1 ; ...; µ m X m ;)) = bundle({X 1 } → τ (µ 1) × . . . × {X m } → τ (µ m)) (c) τ (bundle (µ 1 X 1 ; ...; µ m X m ;) spec C) = bundle({X 1 } → τ (µ 1) × . . . × {X m } → τ (µ m)) (d) A type bundle({X 1 } → τ (µ 1) × . . . × {X m } → τ (µ m))
defines a set of functions

Ξ : {X 1 , . . . , X m } → m i=1 τ (µ i) such that Ξ(X i) ∈ τ (µ i).

Semantics

The tuple types with named fields (struct and bundle) allow to define structured types as non associative grouping of typed named fields: (µ 1 X 1 ; ...; µ m X m ;). The specifications of properties spec C apply on the fields of the tuple. They establish constraints that must be respected by the signals defined with such a type (space of synchronization of the values of the domain).

Examples

Denotations of values

A constant tuple is defined by a constant expression of tuple (cf. part D, section VIII-1, p. 153).

For a TUPLE-TYPE, the default initial value is recursively the tuple of initial values of its fields.

V-6 Structure of the set of types

A partial order is defined on the types such that there exists a "natural" plunging of a smaller set into a greater one. The types are organized into domains corresponding to theoretical sets (non constrained by the implementation). In this way, the domain of synchronization values (Synchronization-type) contains the types event and boolean; the domain of integers (Integer-type) contains the types short , integer , and long; the domain of reals (Real-type) contains the types real and dreal ; the domain of complex (Complex-type) contains the types complex and dcomplex .

V-6.1 Set of types

The set of types is composed of the types the expressions of which, in the SIGNAL language, described in the following summary, are derived from the variable SIGNAL-TYPE:

SIGNAL-TYPE      Scalar-type      Synchronization-type event denotes the type event boolean denotes the type boolean Numeric-type                                        Integer-type     
([0..n 1 -1] × . . . × [0..n m -1]) → ν TUPLE-TYPE          struct (NAMED-FIELDS) bundle (NAMED-FIELDS) [SPECIFICATION-OF-PROPERTIES]
Generic form of the tuple types with named fields: bundle

({X 1 } → µ 1 × . . . × {X m } → µ m) V-6.

Order on types Order on scalar and external types

The order on scalar and external types of the SIGNAL language is described in the figure C-V.1, p. 82. A downward solid arrow (→) links a type with a type directly superior from the same domain (two types of a same domain are comparable); the other arrows represent basic conversions, the semantics of which is described below. The other conversions are obtained by composition of conversions. The partial order is denoted ⊑.

The notion of "comparable types" is extended to arrays and tuples.

Order on arrays

The order on scalar and external types is extended to arrays:

• ([0..m 1 -1] × . . . × [0..m k -1]) → µ ⊑ ([0..n 1 -1] × . . . × [0..n l -1]) → ν if and only if * k = l * ∀i 1 ≤ i ≤ k ⇒ m i = n i * and µ ⊑ ν

Order on tuples

A product of types is a type, called tuple type with unnamed fields, which preserves the structuring. There is no syntactic designation of such a type (it is not possible to declare some object of type tuple with unnamed fields); however, it is possible to manipulate objects of type tuple with unnamed fields (product of types). A tuple with unnamed fields with a single element is considered as isomorphic to this element.

The product of types µ 1 , . . . , µ n (in this order) is denoted

(µ 1 × . . . × µ n).
The order on the types of signals is extended as follows on tuples:

• bundle({X 1 } → µ 1 × . . . × {X n } → µ n) ⊑ bundle({Y 1 } → ν 1 × . . . × {Y p } → ν p) if and only if: p = n and (∀ i) (X i = Y i et µ i ⊑ ν i) • (µ 1 × . . . × µ n) ⊑ bundle({Y 1 } → ν 1 × . . . × {Y p } → ν p) if and only if: (µ 1 × . . . × µ n) ⊑ (ν 1 × . . . × ν p) • (µ 1 × . . . × µ n) ⊑ (µ 1 × (µ 2 × . . . × µ n)) • (µ 1 × . . . × µ n) ⊑ (ν 1 × . . . × ν p)
if and only if:

((n = p) ((∀i) (µ i ⊑ ν i))) or ((∃k, l) (((i < k) ⇒ (µ i ⊑ ν i)) (((µ k × . . . × µ k+l) ⊑ ν k) (((k + l = n) (k = p)) or (((k + l < n) (k < p)) ((µ k+l+1 × . . . × µ n) ⊑ (ν k+1 × . . . × ν p)))))))

Notation

The notation µ ⊔ ν is used to designate the upper bound of two comparable types µ and ν.

V-6.3 Conversions

A conversion is a function for which the image of an object of the type µ of the argument is an object of the type ν required by the context of utilization. The conversion functions for the types defined in the SIGNAL language have the name of the reserved designation of the expected type or in general the name of the expected type. In this document, these functions are denoted as follows, in order to describe their semantics: C µ ν : µ → ν Direct conversion functions are available in the language, even if their semantics is described in terms of composition of conversions.

3-a Conversions between comparable types

Between two directly comparable types µ ⊑ ν, the two following conversions are defined:

1. the conversion C µ ν from a smaller type µ to a greater type ν lets the values unchanged;

2. the conversion C ν µ : ν → µ which is the inverse of the previous one for the values of type µ.

The conversion functions are extended to any pair of comparable types:

• if ν 1 ⊑ µ ⊑ ν 2 then C ν 1 ν 2 = C µ ν 2 • C ν 1 µ ; • C µ µ is the identity function.

Implicit conversions

The only implicit conversions are the conversions C µ ν for which µ ⊑ ν. Implicit conversions do not need to be explicited in the language.

3-b Conversions toward the domain "Synchronization-type"

The conversions C µ event are defined for each µ (except if µ is a polychronous tuple); Trivially, they deliver the single value of type event.

the conversions C µ boolean depend of the implementation while respecting the following rules:

• The conversion C long boolean verifies: -C long boolean (0) = false -C long boolean (1) = true • For a Scalar-type µ distinct from event C µ boolean = C long boolean • C µ long 3-c Conversions toward the domain "Integer-type"
The conversions C µ short depend of the implementation while respecting the following rules:

• C integer short (v) = v if v is
greater than min short and smaller than max short (non strictly in both cases),

• C long short = C integer short • C long integer • for a Scalar-type or ENUMERATED-TYPE µ C µ short = C long short • C µ long
The conversions C µ integer depend of the implementation while respecting the following rules:

• C long integer (v) = v if v is greater than min integer and smaller than max integer (non strictly in both cases),

• for a Scalar-type µ which is not smaller than integer (for the order defined on the types), or for µ an ENUMERATED-TYPE

C µ integer = C long integer • C µ long
The conversions C µ long depend of the implementation while respecting the following rules: • the conversion C boolean long is defined by the following rules:

-C boolean long (false) = 0 -C boolean long (true) = 1
• the value of C character long (C) is the numerical value of the code of the character C,

• the value of C dreal long (v) is the integer part n of v if n is greater than min long and smaller than max long (non strictly in both cases),

• for a Scalar-type µ which is not smaller than long (for the order defined on the types)

C µ long = C dreal long • C µ dreal • for an ENUMERATED-TYPE µ equal to A × {a 1 , . . . , a m }, the conversion C µ long is defined by: C µ long (a 1) = 0, . . . , C µ long (a m) = m -1.

3-d Conversions toward the domain "Real-type"

For each Real-type, a given implementation distinguihes the safe numbers (in the same sense as in Ada), which have an exact representation.

The conversions C µ real depend of the implementation while respecting the following rules:

• if v, of type dreal , is a safe number in the type real , C dreal real (v) = v
• the conversion preserves the order on the real numbers included between the smallest and the greatest safe number in the type real ,

• for a Scalar-type µ

C µ real = C dreal real • C µ dreal
The conversions C µ dreal depend on the implementation while respecting the following rules: • the conversion preserves the order on the real numbers included between the smallest and the greatest safe number in the type dreal ,

• C dcomplex dreal (re@im) = re • C complex dreal = C dcomplex dreal • C complex dcomplex • if v, of type long , is a safe number in the type dreal , C long dreal (C) = v • for a Scalar-type distinct of the previous ones, C µ dreal = C long dreal • C µ long

3-e Conversions toward the domain "Complex-type"

There are no conversions toward the domain Complex-type except those internal to that domain. However, a given implementation can provide such conversion functions. Note that the conversion of a real re into a complex (respectively, of a dreal re into a dcomplex) can be obtained by re@0.0.

The conversion C dcomplex complex depends on the implementation while respecting the following rule:

• C dcomplex complex (re@im) = {C dreal real (re), C dreal real (im)}

3-f Conversions toward the types character and string

The conversions C µ character depend on the implementation while respecting the following rules:

• the value of C long character (v) is the character (if it exists) whose decimal value of its code is equal to v,

• for a Scalar-type µ C µ character = C long character • C µ long
There is no conversion toward the type string.

3-g Conversions of arrays

For any tuple of strictly positive integers n 1 , . . . , n m , and any conversion C µ ν , the conversion C

([0..n 1 -1] × . . . × [0..nm -1]) → µ ([0..n 1 -1] × . . . × [0..nm -1]) → ν is defined by: C ([0..n 1 -1] × . . . × [0..nm -1]) → µ ([0..n 1 -1] × . . . × [0..nm -1]) → ν (T) = C µ ν • T

3-h Conversions of tuples

Conversions of tuples with unnamed fields

For any conversions

C µ 1 ν 1 , . . . , C µn νn , the conversion C (µ 1 × . . . × µn) (ν 1 × . . . × νn) is defined by: C (µ 1 × . . . × µn) (ν 1 × . . . × νn) (x 1 , . . . , x n) = (C µ 1 ν 1 (x 1), . . . , C µn νn (x n))
Conversions of tuples with unnamed fields toward tuples with named fields

For any conversions C µ1 ν 1 , . . . , C µn νn and any tuple with named fields of type bundle({X

1 } → ν 1 × . . . × {X m } → ν m) that defines a function Ξ (cf. section V-5, p. 78 et seq.), the conversion C (µ 1 × . . . × µn) bundle({X 1 } → ν 1 × . . . × {Xm} → νm) is defined by: C (µ 1 × . . . × µn) bundle({X 1 } → ν 1 × . . . × {Xm} → νm) = Ξ • C (µ 1 × . . . × µn) (ν 1 × . . . × νn)

V-7 Denotation of types

A type can be designated by an identifier, declared in a DECLARATION-OF-TYPES (it cannot be an identifier of predefined type). In particular, such a type identifier can designate a generic type, which can represent a type of the language, an external type, or a virtual type that can be "overridden" in its compilation context. The actual definition of A is provided in the environment of the program.

Denotation of type

It is possible to specify, in the declaration of an external type A, a constant name (which must be the name of an external constant of type A-cf. section V-8, p. 88 et seq.), that allows to designate the default initial value of that type.

A given compiler may consider that such a constant name appearing as default initial value of an external type constitutes an implicit declaration of this external constant.

(c) If A is defined as an external type, then:). This actual value can be a type of the language or an external type.

τ (A) = A (d)

Properties

(a) With the declarations type A = µ; and type B = µ;

then τ (A) = τ (B) = τ (µ).
Some implementations may not ensure this property.

Examples

(a) type T = [n] integer; declares the type T as vector of integers, of size n.

V-8 Declarations of constant identifiers

constant µ X 1 = E 1 , . . . , Y j , . . . , X n = E n ;
A constant sequence is a sequence each element of which has the same value. Such a sequence can be designated by an identifier.

= S-EXPR | EXTERNAL-NOTATION 2. Types (a) (∀ i) (τ (µ) = τ (X i)) (b) (∀ i) (τ (E i) ⊑ τ (X i))
(c) When the constant declaration refers to the external notation, (for example, Y j = external;), it specifies Y j as an externally defined constant. It means that the value of Y j should be provided in the environment of the program.

(d) When the constant declaration (for example for Y j) does not contain an expression, nor the external notation, it specifies Y j as a virtual constant in the current context of declaration.

It means that the value of Y j is provided elsewhere (Y j is "overridden") in the context or is provided in a module (cf. part E, section XII-1, p. 207 et seq.).

Semantics

• Any expression defining a constant must be monochronous and functional (without side effect). With this reserve, the set of expressions admitted by a compiler contains the operators and intrinsic functions and can contain a set of functions depending of a particular environment.

• The elaboration of the expression E i , in the context C D of the declaration D, minus the identifier X i , provides a constant value (determined at compile time) ϕ(E i) = v;

• the declaration D hides any higher declaration of X i for the context C D and the included contexts;

• in a context where D is visible, the elaboration of an occurrence of the identifier X i provides the value ϕ(X i) = v.

4.

Clocks An occurrence of use of X i (or Y j) is considered as an occurrence of the designated constant.

(a) ω(where RECTANGLE is an identifier of external type, defines a constant of that type: BASE, the value of which should be provided at code generation.

E i) = (b) ω(X i) = (c) ω(Y j) = 5. Examples (
(d) The declaration constant integer L = M + N; is incorrect if M or N does not designate a constant or a parameter; if it is correct, it defines the identifier L as being equal to the sum of the constants ϕ(M) and ϕ(N).

V-9 Declarations of sequence identifiers µ ID 1 , ..., ID j init V j , ..., ID n ;

A sequence of values is provided with a type (the one of its elements); this type is associated with an identifier in a declaration. In such a declaration, an identifier can designate a static parameter (formal "signal"), a signal, or a tuple of signals. Initialization values can be associated with signals and tuples of signals (ID j init V j) in order to define their initial value(s) when these initial values are not defined elsewhere. (b) For a signal expression ("assignment", passage of static parameter or positional identification) associating a value v with an identifier ID i declared with type µ, we must have τ (v) ⊑ µ.

(c) The rules applying to initial values are exactly those described in the section "Initialization expression" (cf. section VI-3.1, p. 110).

Semantics

• µ ID 1 , . • The semantics of an initialization expression specified in a declaration is exactly the same as that described in the section "Initialization expression" (cf. section VI- 3.1, p. 110). The association of an initialization with a signal declaration specifies a default initialization for the corresponding signal. It can be overloaded by the definition of that signal (in that case, it is unnecessary or only partly necessary).

Clocks

(a) The relations on the clocks of initialization expressions are described in the section "Initialization expression" (cf. section VI-3.1, p. 110).

Examples

(a) The declaration real X, Y; declares the signals X and Y of type real .

(b) The declaration [n] integer V; declares the vector of integers V, of size n.

V-10 Declarations of shared variables

shared µ ID 1 init V 1 , ..., ID j , ..., ID n init V n ;
Shared variables are particular cases of signals or tuples of signals (cf. section V-9, p. 89 et seq.). A shared variable is defined via partial definitions (cf. section VI-1.1, paragraph 1-c, p. 96 et seq.). A shared variable cannot be declared as input or output of a model of process. (b) For a signal expression (partial "assignment" associating a value v with an identifier ID i declared with type µ, we must have τ (v) ⊑ µ.

(c) The rules applying to initial values are exactly those described in the section "Initialization expression" (cf. section VI-3.1, p. 110).

Semantics

• shared µ ID 1 , ..., ID n ; declares the shared variables ID 1 , . . . , ID n .

• The semantics of an initialization expression specified in a declaration is exactly the same as that described in the section "Initialization expression" (cf. section VI- 3.1, p. 110).

V-11 Declarations of state variables

statevar µ ID 1 init V 1 , ..., ID j , ..., ID n init V n ;
A state variable is a typed sequence the elements of which are present as frequently as necessary (it is available at a clock which is upper than the upper bound of the clocks of all the signals of the compilation unit in which it is declared). A state variable is defined via partial definitions the clock of which are well defined (cf. section VI-1.1, paragraph 1-d, p. 97 et seq.). It keeps its previous value until a new value is defined. It should have an initial value associated with its declaration (if it has not, it takes as initial value the default initial value of its type). A state variable can be used only in a context which defines a context clock (the occurrence of a state variable is described in section VI-2.3, p. 108 et seq.). A state variable cannot be declared as input or output of a model of process. (b) For a signal expression (partial "assignment" associating a value v with an identifier ID i declared with type µ, we must have τ (v) ⊑ µ.

(c) The rules applying to initial values are exactly those described in the section "Initialization expression" (cf. section VI-3.1, p. 110).

Semantics

• statevar µ ID 1 , ..., ID n ; declares the state variables ID 1 , . . . , ID n .

• The semantics of an initialization expression specified in a declaration is exactly the same as that described in the section "Initialization expression" (cf. section VI- 3.1, p. 110).

Note:

The INRIA POLYCHRONY environment allows in some cases that the type of a constant, a sequence identifier, a shared variable or a state variable is not provided explicitly in their declaration (the corresponding SIGNAL-TYPE is simply omitted). The corresponding type must be deduced from the context of use of the object.

Chapter VI

Expressions on signals

The values associated with signals are determined by equations on signals; these equations are built by composition of sub-systems of equations (named also processes) from elementary equations. This chapter presents the expressions of definition of signals (S-EXPR). This presentation is preceded by an introduction to the expressions of composition of definitions (P-EXPR).

VI-1 Systems of equations on signals

Composition of definitions of signals

The equations of definition of signals can be composed by the operator | (cf. chapter VII, "Expressions on processes", p. 135 et seq.). An expression on processes E 1 | E 2 defines the signals (or, equivalently, has as outputs the signals) defined in each one of its sub-expressions, and has as inputs the input signals of each one of these sub-expressions which are not outputs of the other one. The value of an input signal of a sub-expression, which is defined in the other one, is the value associated by this definition. As a signal cannot have a double complete definition, a given signal identifier representing a totally defined signal cannot be output of two sub-expressions. However, it is possible to have several partial definitions, in different sub-expressions, for shared variables (partial definitions are syntactically distinguished).

An expression on processes can be parenthesized by (| on the left and by |) on the right (note the presence of the symbol |).

A given output of an expression on processes can be hidden through the operator / (cf. chapter VII, "Expressions on processes", p. 135 et seq.). An expression on processes E 1 / a 1 has as outputs the outputs of E 1 distinct from a 1 and for inputs the inputs of E 1 .

The signals are defined by explicit elementary equations of DEFINITION-OF-SIGNALS, CON-STRAINTs (cf. section VI-5. 3, p. 123 et seq.), or by referring to systems of equations declared as models of processes (INSTANCE-OF-PROCESS).

VI-1.1 Elementary equations

Profile

An equation of definition of a signal has as output the defined signal and as inputs the inputs of the expression E distinct of the output.

• ! (X := E) = {X}

• The inputs of E are the signal identifiers that have at least one occurrence in E.

? (

X := E) = ? (E) -! (X := E) 3. Types (a) τ (E) ⊑ τ (X) 4.

Semantics

The signal X is equal to the signal resulting from the evaluation of E. An occurrence of X in the expression E builds a recursive definition.

Definition in SIGNAL

Though it is the most frequently form of equation used in the SIGNAL language, X := E is not the basic form. The sign := expresses that the equation is oriented, while in the basic form (cf. part B, chapter III, p. 31 et seq.) the sign :=: is used to express the fact that equations are non oriented (cf. section VI-6, p. 125).

It is equal to the following process, where the dependences are made explicit:

(| X :=: E | E --> X |)
6. Clocks A signal represented by an identifier and the signal that defines it are synchronous.

Profile

An equation of multiple definition of signals has the inputs and outputs defined by the following rules.

• The identifiers of defined signals represent the outputs of the equation:

! ((X 1 ,. . . ,X n) := E) = {X 1 , . . . , X n }
• The inputs of the equation are the inputs of E which are not outputs of the equation:

? ((X 1 ,. . . ,X n) := E) = ? (E) -! ((X 1 ,. . . ,X n) := E) 3. Types (a) τ ((X 1 ,. . . ,X n)) = (τ (X 1) × . . . × τ (X n)) (b) τ (E) ⊑ (τ (X 1) × . . . × τ (X n)) 4. Semantics
• X 1 , . . . , X n designate signals or tuples of signals.

• E can be viewed as a tuple of n elements: let (E 1 ,. . . ,E n) this tuple.

• Each signal or tuple X i is respectively equal to the signal or tuple E i that corresponds to it positionally as output of E.

Definition in SIGNAL

(X 1 ,. . . ,X n) := E is equal to the following process:

(| X 1 := E 1 . . . | X n := E n |)
As a particular case, when the defined signal or tuple is unique, (X) := E is equivalent to: X := E (the syntax without parentheses as described in 1-a can be used when X is a tuple).

Clocks

A signal represented by an identifier and the signal E i that defines it are synchronous. In this case, there is:

(a) ω(X i) = ω(E i) 7. Graph (a) E i -→ X i 8. Examples (

1-c Equation of partial definition of a signal

Equations of partial definition of a signal are a way to avoid the syntactic single assignment rule, even if semantically, this rule applies. Signals that are defined using partial definitions should be declared as shared variables (cf. section V-10, p. 90 et seq.). Each one of the partial definitions of a given signal contributes to the overall definition of this signal. These partial definitions can appear in different syntactic contexts. All these partial definitions have to be mutually compatible. One default partial definition can appear for a given signal: it allows to complete the definition of the signal by a default value when the partial definitions do not apply. The overall definition of the signal is considered as complete in a compilation unit.

Equations of partial definition are syntactically distinguished by the use of the special symbol ::= . The use of this symbol is mandatory to allow the presence of different syntactic definitions of a given signal. The syntactic single assignment rule still applies when the assignment symbol := is used. In particular, it is not possible to have both complete definition and partial ones for a given signal.

Profile

An equation of partial definition of a signal has as output the partially defined signal and as inputs the inputs of the expression E distinct of the output.

• ! (X ::

= E) = {X} • ? (X ::= E) = ? (E) -! (X ::= E) • ! (X ::= defaultvalue E) = {X} • ? (X ::= defaultvalue E) = ? (E) -! (X ::= defaultvalue E) 3. Types (a) τ (E) ⊑ τ (X) 4.
Definition in SIGNAL Let the following composition represent the whole set of partial definitions of a signal X in a given compilation unit:

(| X ::= E 1 . . . | X ::= E n | X ::= defaultvalue E n+1 |) It is semantically equivalent to: (| X := E 1 default X . . . | X := E n default X | X := (E n+1 when (X -(E 1 + ... + E n))) default X | X = E 1 + ... + E n + X |)
5. Clocks For the above set of partial definitions of the signal X, any two different expressions E i must have the same value at their common instants if they have such common instants. The clock of X is greater than the upper bound of the clocks of the expressions is the only one that can be accessed at every instant, is referred to via the special notation X? (cf. section VI-2.3, p. 108 et seq.).

E i , i = 1, . . . , n. (a) ∀i, j = 1, . . . , n ω(E i * E j) = ω(when ((E i when E j) == (E j when E i))) (b) ω(X) = ω(E 1 + . . . + E n + X) (c) For i = 1, . . . ,
X ::= E 1. Context-free syntax
The syntax is the same as that of an equation of partial definition of a signal.

Types

(a) τ (E) ⊑ τ (X) 3. Definition in SIGNAL Let the following composition represent the whole set of partial definitions of a state variable X in a given compilation unit:

(| X ::= E 1 . . . | X ::= E n |) It is semantically equivalent to: (| next_X := E 1 default next_X . . . | next_X := E n default next_X | X := next_X $ |) / next_X 4.
Clocks For the above set of partial definitions of the state variable X, any two different expressions E i must have the same value at their common instants if they have such common instants.

(a) ∀i, j ω(E i * E j) = ω(when

((E i when E j) == (E j when E i))) (b)
The clock of any expression E i has to be well defined: it cannot be a context clock. In particular, E i cannot be a constant expression or a non-clocked reference to another state variable.

(c) The clock of X is upper than the upper bound of the clocks of all the signals of the compilation unit in which X is declared.

1-e Equation of partial multiple definition

2.

Types • This is the same generalization of 1-c and 1-d (only of 1-c for (X 1 ,. . . ,X n) ::= defaultvalue E) as that of 1-b with respect to 1-a.

(a) τ ((X 1 ,. . . ,X n)) = (τ (X 1) × . . . × τ (X n)) (b) τ (E) ⊑ (τ (X 1) × . . . × τ (X n)) 3. Semantics • X 1 , .
• Each signal, tuple or state variable X i is respectively partially defined by the signal or tuple v i that corresponds to it positionally as output of E.

VI-1.2 Invocation of a model

The invocation of a model of process provides an INSTANCE-OF-PROCESS by macro-expansion of the text of the model, or by reference to this model if the text of the model is defined externally or is compiled separately.

Depending on the fact that a model:

• has or not parameters,

• has or not inputs,

• has or not outputs, the invocation of the model can take different syntactic forms. In all cases, the composition with the context is done positionally, on the inputs and on the outputs.

If the model has no outputs, and only in this case, its invocation appears as an expression on processes (ELEMENTARY-PROCESS); in any other case, an invocation of model appears as an expression on signals (S-EXPR).

The table C-VI.1 gives the generic forms of the invocation of a model (which can be either an expression on processes or an expression on signals).

Positional definition

No inputs of the inputs Without parameters • ? (P {V 1 ,. . . ,V m }) is equal to the set of the names of the inputs of the visible declaration of P , let {X 1 , . . . , X p }. (c

P (E 1 ,. . . ,E n) P () With parameters P {V 1 ,. . . ,V m }(E 1 ,. . . ,E n) P {V 1 ,. . . ,V m }()

Types

) (τ (V 1) × . . . × τ (V m)) ⊑ (τ (P 1) × . . . × τ (P l)) (d) τ (P {V 1 ,. . . ,V m }) = τ (!P) (cf.
part E, section XI-5, p. 193 et seq.)

Semantics

• P being the name of a model of visible process, the expressions V 1 , . . . , V m are the actual parameters of the expansion, corresponding positionally to the formal parameters of this model. The expansion P {V 1 ,. . . ,V m } is equivalent to the body of the visible declaration of P in which each formal parameter has been substituted by the corresponding actual parameter.

• P () is the expansion of P when P has no parameters.

Clocks

The actual parameters of sequences V i must be constant expressions.

(a) ω(V i) =

2-b Positional macro-expansion of a model

P {V 1 ,. . . ,V m }(E 1 ,. . . ,E n) or P (E 1 ,. . . ,E n)
with n ≥ 1 In the external form of the language, the input signals are associated with an instance of model, respecting their "position": a list of expressions between the symbols (and) redefines the input signals declared in the model respecting the order of these declarations. • ?

(P {V 1 ,. . . ,V m } (E 1 ,. . . ,E n)) = n i=1 ? (E i) -{Y 1 , . . . , Y q }.

Types

(a) Let, in this order, P 1 , . . . , P l be the names of the formal parameters and X 1 , . . . , X p the names of the inputs of the visible declaration of P . ? (E i)), or to the sets of input or output names of P , or to the set {SS 1 , . . . , SS r }.

(b) (τ (V 1) × . . . × τ (V m)) ⊑ (τ (P 1) × . . . × τ (P l)) (c) (τ (E 1) × . . . × τ (E n)) ⊑ (τ (X 1) × . . . × τ (X p)) (d) τ (P {V 1 ,. . . ,V m }(E 1 ,. . . ,E n)) = τ (!P) (cf.
(| (SS 1 ,...,SS r) := (SY 1 ,...,SY q) | (| P {V 1 ,...,V m }(E 1 ,...,E n) | (SY 1 ,...,SY q) := (Y 1 ,...,Y q) |) / Y 1 , ..., Y q |) / SY 1 , ..., SY q
The table C-VI.2 gives the different forms of the invocation of a model together with the priority of their arguments (refer to the tables C-VI.3 and C-VI.4).

2-d Expressions of type conversion

T (E) Scheme Type Arguments → Result P {V 0 1 ,. . . ,V 0 m }(E 0 1 ,. . . ,E 0 n) P {V 0 1 ,. . . ,V 0 m }() (µ 1 × . . . × µ m) × (ν 1 × . . . × ν n) P {V 0 1 ,. . . ,V 0 m } → (ρ 1 × . . . × ρ p) P (E 0 1 ,. . . ,E 0 n) (ν 1 × . . . × ν n) P () Table C-VI.2: INSTANCE-OF-PROCESS E 25 • When the inputs E i are absent, it is a model without input (the tuple ((ν 1 × . . . × ν n)) is then empty);
• When the model has at least one input, the types ν ′ 1 , . . . , ν ′ p being, in this order, those of the declaration of the inputs of P , there is

(ν 1 × . . . × ν n) ⊑ (ν ′ 1 × . . . × ν ′ p) •
The type ρ i is that of the signal declaration corresponding positionally in output in P .

The conversions of values between distinct effective types can be explicited as call of a model (INSTANCE-OF-PROCESS); the name of this model is the name of the destination type of the conversion; the expressions of conversion can only appear as expressions on signals, but not as expressions on processes.

τ (T (E)) = τ (T) (b) If the conversion C τ (E) τ (T)
does not exist, T (E) is incorrect.

Semantics

• If v is an element of the sequence of values represented by E, the corresponding element is

C τ (E) τ (T) (v) in the sequence represented by T (E) (if the conversion C τ (E) τ (T) exists).
• If the type T or the type of E is an external type, the applied conversion, when it exists, depends on the environment while respecting the general rules concerning conversions (cf.

section V-6.3, p. 83 et seq.).

4.

Clocks A conversion is a monochronous expression.

VI-1.3 Nesting of expressions on signals

The expressions on signals can be nested in the respect of the priorities of the operators: any expression with lower priority than the expression of which it is an argument must be parenthesized. Parenthesizing is possible but not necessary in the other cases. Non parenthesized expressions which contain operators with the same priority are evaluated from left to right, unless it is explicitly mentioned.

Profile

The expressions S-EXPR do not return a named output; their inputs are the set obtained by the union of the sets of inputs of their operands.

Semantics

In the respect of the rules of priority, an equation S :=: T (E 1 ,. . . ,E n) formed by a function (or an operator) and sub-expressions E 1 ,. . . ,E n is equal to the composition

• of the equations calculating these expressions in auxiliary variables: (X i,1 ,. . . ,X i,m i) :=: E i • of the equation S :=: T (X 1,1 ,. . . ,X n,nm) equal to the equation S :=: T (E 1 ,. . . ,E n) in which has been substituted, to each expression E i , the tuple (X i,1 ,. . . ,X i,m i) of the auxiliary variables in which it is evaluated,

• and of the clock equations depending on the context of each one of these expressions. • the priorities are described in the first column (priority of the expression) and the second column (priorities of its arguments) by using E i to describe an expression of priority i; the expressions are evaluated in the decreasing order of priorities;

Priorities and types of the operators on signals

• the third column describes the types of the arguments and of the result:

any i represents any type (however, one must refer to the definition of the operators for a more precise description) bool i is the type boolean or event compar i is any type in which there exists a partial order

Prio- Scheme Type rity Arguments → Result E 0 0 event E 1 E 1 next E 2 ([0..n 1] × . . . × [0..np]) → any 1 × ([0..m 1] × . . . × [0..mp]) → any 2 → ([0..n 1] × . . . × [0..np]) → any 1 ⊔ any 2 a E 2 E 3 : E 3 ([0..l 1] × . . . × [0..lp]) → int 1 n × ([0..m 1] × . . . × [0..mp]) → any 1 → ([0..r 1] × . . . × [0..rn]) → any 1 E 3 E 3 default E 4 any 1 × any 2 → any 1 ⊔ any 2 a E 4 E 4 when E 5 any 1 × bool 1 → any 1 E 5 E 6 after E 6 event × event E 6 from E 6 → integer E 6 count E 6 event × int 1 E 6 E 6 + E 7 , E 6 -E 7 any 1 × any 2 E 7 E 7 * E 8 → event E 8 when E 8 , [:E 0], [/:E 0] bool 1 E 9 if E 0 then E 0 else E 9 bool 1 × any 1 × any 2 → any 1 ⊔ any 2 a E E 11 ..E 11 step E 11 int 1 × int 2 × int 3 → [0..n] → int 1 ⊔ int 2 E 11 ..E 11 int 1 × int 2 → [0..n] → int 1 ⊔ int 2 E E 11 xor E 12 bool 1 × bool 2 → bool 1 ⊔ bool 2 E E 12 or E 13 E E 13 and E 14 E not E 14 bool 1 E E 16 == E 16 any 1 × any 2 a E 16 «= E 16 compar 1 × compar 2 → boolean a E E 17 Op E 17 any 1 × any 2 → boolean a, b compar 1 × compar 2 a, c E E 17 + E 18 , E 17 -E 18 num 1 × num 2 → num 1 ⊔ num 2 E 17 |+ E 18 [0..m 1] → any 1 × [0..m 2] → any 2 → [0..m 1 + m 2 + 1] → any 1 ⊔ any 2 a E E 18 * E 19 , E 18 / E 19 num 1 × num 2 → num 1 ⊔ num 2 E 18 | * E 19 any 1 × int 1 → [0..m] → any 1 E 18 modulo E 19 int 1 × int 2 → int 2 E 18 * . E 19 d E E 20 * * E 20 num 1 × int 1 → num 1 E 20 @ E 20 real 1 × real 2 → cmplx 1 e E + E 21 , -E 21 num 1 → num 1 E var E 22 init E 22 any 1 × any 2 → any 1 f var E 22 any 1 E 21 cell E 22 init E 22 any 1 × bool 1 × any 2 → any 1 f E 21 cell E 22 any 1 × bool 1 S-EXPR-DYNAMIC C-VI.6
Table real i is a real type (i.e., among real , dreal) cmplx i is a complex type (i.e., among complex , dcomplex) num i is a numeric type (i.e., among int i , real i , cmplx i); when, on a same line, two notations of type have the same index, then they designate the same type;

E 25 ≪E 0 ,. . . ,E 0 ≫ [0..m 1 -1] → any 1 × . . . × [0..mn -1] → any n → [0.. n k=1 m k -1] → any 1 × . . . × [0.. n k=1 m k -1] → any n [E 0 ,. . . ,E 0] any 1 × . . . × any n → [0..n -1] → n i=1 any i a INSTANCE-OF-PROCESS C-VI.2 T(E 0) any 1 → τ (T) h E 26 E 26 [E 0 ,. . . ,E 0] (([0..n 1] × . . . × [0..nm]) → any 1) × (int 1 × . . . × int m) → any 1 ([0..l 1] × . . . × [0..ln]) → any 1 × ([0..m 1] × . . . × [0..mp]) → int 1 n → ([0..m 1] × . . . × [0..mp]) → any 1 E 26 .X i bundle({X 1 } → any 1 × . . . × {Xm} → any m) → any i E 27 (E 0 ,. . . ,E 0) any 1 × . . . × any n → (any 1 × . . . × any n) CONSTANT C-VI.5 Id τ (Id) i (E 0) τ (E)
• the last column is a reference to the notes that follow the table (lowercase letter) or a reference to another table.

VI-2 Elementary expressions

The expressions of elementary signals are the following:

1. Context-free syntax S-EXPR-ELEMENTARY ::= CONSTANT | Name-signal | Label | Name-state-variable ?

VI-2.1 Constant expressions

A constant expression is a CONSTANT, an occurrence of constant identifier, an occurrence of parameter identifier, a constant expression of tuple (cf. part D, section VIII-1, p. 153), a constant expression of array (cf. part D, section IX-2, p. 159), or one of the following expressions having recursively as arguments constant expressions:

• an INSTANCE-OF-PROCESS (only if it is the call of a monochronous function with constant arguments), or a CONVERSION,

• among S-EXPR-TEMPORAL, a MERGING or an EXTRACTION,

• an S-EXPR-BOOLEAN,

• an S-EXPR-ARITHMETIC,

• an S-EXPR-CONDITION.

Clock expressions (S-EXPR-CLOCK) and dynamic expressions (S-EXPR-DYNAMIC) cannot be part of a constant expression.

A constant is a denotation of value of a Scalar-type or of an ENUMERATED-TYPE:

1. Context-free syntax CONSTANT ::= Boolean-cst | Integer-cst | Real-cst | Character-cst | String-cst | ENUM-CST
These syntactic categories are described elsewhere (cf. part A, section II-2, p. 25 et seq.).

Profile

A constant and consequently a constant expression have neither named input, nor named output.

Types

(a) The type of a constant expression is evaluated in accordance with the type of the S-EXPR having the same syntax.

Clocks

(a) The clock of a constant expression and of its arguments is .

The table C-VI.5 contains a summary of these properties and gives the priority of the constant lexical expressions.

Scheme

Type

true

VI-2.2 Occurrence of signal or tuple identifier

An occurrence of signal identifier has as value the signal that defines this identifier, as clock, the clock of this signal and as type the type of its most internal declaration; the profile which is associated with it contains as input this single identifier and does not contain a named output.

An occurrence of tuple identifier has as value the tuple of the signals that define this identifier.

In the rules describing the context-free syntax of the language, Name-signal can designate, following the context, a signal name, a tuple name, or a field name in a tuple.

The occurrence of a label is more specifically described in chapter VII, section VII-5, p. 138 et seq.

VI-2.3 Occurrence of state variable

The notation X? allows to refer to the last defined value of a state variable X (cf. section V-11, p. 91 et seq.). State variables can be defined exclusively by equations of partial definition, that define the next values of the state variable (cf. section VI-1.1, paragraph 1-d, p. 97 et seq.). For a declared state variable X, the direct reference to X is not allowed in expressions on signals; the only way to refer to the last defined value of the state variable is by using the notation X?. The notation X? designates the value of the state variable X at the beginning of the "current step" (current logical instant). Moreover, this notation must be used in a context in which a context clock is well defined.

X?

1. Types (a) τ (X?) = τ (X)

Definition in SIGNAL

Let H be the context clock of X?, then, with the definition of X as it is given in section VI-1.1, paragraph 1-d, p. 97 et seq., X? is equivalent to: X when H

Clocks

(a) The clock of X?, which is equal to the clock of X, is upper than the upper bound of the clocks of all the signals of the compilation unit in which X is declared. The table C- VI.6 gives the different forms of dynamic expressions.

VI-3 Dynamic expressions

Scheme

Type

Arguments → Result E 21 window E 22 init E 22 A 1 × E 1 × W 1 → W 2 E 21 window E 22 A 1 × E 1 → W 2 E 21 $ E 22 init E 22 A 1 × E 11 × W 11 → A 1 E 21 $ init E 22 A 1 × A 2 → A 1 E 21 $ E 22 A 1 × E 11 → A 1 E 21 $ A 1 → A 1 Table C-VI.6: S-EXPR-DYNAMIC E 21 A 1 any 1 E 1 constant M of Integer-type, strictly positive W 1 [0..M -2] → A 2 W 2 [0..M -1] → A 1 E 11 signal i of Integer-type, positive or zero, bounded by a constant N , of implicit value 1 W 11 [0..N -1] → A 2 A i A 2 ⊑ A 1 VI-3.1 Initialization expression E init V
The initialization expression allows to define the initial value(s) of a signal. [START_REF]Polychronous definitions[END_REF]. Types (a) E is a signal of any type. (b) The type of V can be, depending on the context of the initialization:

• a type ν such that ν ⊑ τ (E), • a type [0..n -1] → ν such that ν ⊑ τ (E).

Semantics

• If V has a type ν such that ν ⊑ τ (E), the value of V defines an initial value for the expression

E init V . • If V has a type [0..n -1] → ν such that ν ⊑ τ (E), then the value of V defines n initial values for the expression E init V : the value ϕ(V [0]
) defines the value of this expression at its first instant, the value ϕ(V [START_REF]Polychronous definitions[END_REF]) defines the value of the expression at its second instant, etc.

If V defines more values than required by the initialization of the expression E, the extra values are not taken into account. If V defines less values than required by the initialization of the expression E, the missing values are defined by the default initial value of type ν.

An initialization expression can be associated with a signal either in an expression on signals, as it is the case here, or in the declaration of a signal (cf. section V-9, p. 89 et seq.). When both forms of initialization are defined for a same signal, the one which has the priority is that appearing in the expression of definition of the signal. The presence of an initialization expression in the definition of a signal specifies, with the same semantics as above, a default initialization for the signal, when no initialization is specified in its expression of definition. For a state variable (cf. section V-11, p. 91 et seq.), it is recommended that its initialization is described in its declaration, and not in its expressions of definition.

When several initialization expressions are associated with a signal in different partial definitions, they should be compatible. 3.

Clocks (a) ω(E init V) = ω(E) (b) ω(V) = VI-3.2 Simple delay E $ init v 0 1. Context-free syntax SIMPLE-DELAY ::= S-EXPR $ [init S-EXPR] 2. Types (a) E is a signal of any type. (b) τ (E $ init v 0) = τ (E) (c) τ (v 0) ⊑ τ (E)

Semantics

The semantics of the delay is described formally in part B, section III-6.2, paragraph 2-b, p. 42.

The value of the signal E $ init v 0 is at each instant t the value of the delayed signal E at the instant t -1. Initially, this value is the value defined by the initialization (ϕ(v 0)).

Definition in SIGNAL

When the initial value is omitted, it is equal to the "null" value of type τ (E) (which implies that it is defined for any type, including external one), 0 τ (E) :

E $ = E $ init 0 τ (E) ,
except if an initial value is associated with the defined signal, in its declaration (cf. section VI-3.1, p. 110).

5.

Clocks

(a) ω(v 0) = (b) ω(E $ init v 0) = ω(E) 6. Examples (a)
The values taken by y for y defined by y := x $ init 0 are described below for the corresponding values of x in input:

x = 1 2 3 4 . . . ց ց ց ց y = 0 1 2 3 . . .
Note that the initial value is the first value of y, not that of x.

VI-3.3 Sliding window

E window M init T E 0 1. Context-free syntax WINDOW ::= S-EXPR window S-EXPR [init S-EXPR]

Types

(a) E is a signal of any type.

(b) The size of the window, M , is an integer constant expression the value of which is greater than or equal to 1. If it is equal to 1, the initialization has no effect.

(c) τ (E window M init T E 0) = [0..ϕ(M) -1] → τ (E) (d) τ (T E 0) = [0..n -1] → µ,
where µ ⊑ τ (E), n ≥ ϕ(M) -1, and n > 0 (in the particular case where ϕ(M) = 2, the single initialization value can be given by an element of type τ (T E 0) = µ, where µ ⊑ τ (E))

Semantics

For a signal X defined by X := E window M init T E 0 :

• (t + i ≥ ϕ(M)) ⇒ (X t [i] = E t-ϕ(M)+i+1) • (1 ≤ t + i < ϕ(M)) ⇒ (X t [i] = T E 0 [t-ϕ(M) + i + 2]) 4. Definition in SIGNAL X := E window M init T E 0
whose right side of := represents an expression of sliding window, is equal to the process defined as follows, when ϕ(M) > 1:

(| X 0 := E | X 1 := X 0 $ init T E 0 [M -2] . . . | X M -1 := X M -2 $ init T E 0 [0] | X := [X M -1 , ..., X 0] |) / X 0 , ..., X M -1

Definition in SIGNAL

E window M is equal, when ϕ(M) > 1, to the following expression on signals:

E window M init 0 [0..ϕ(M) -2] → τ (E) 6.
Definition in SIGNAL X := E window 1 is equal to the process defined as follows:

X := [E] 7. Clocks (a) ω(M) = (b) ω(T E 0) = (c) ω(E window M init T E 0) = ω(E) 8. Examples (a)
The values taken by y for y defined by y := x window 3 init [-1,0] are described below for the corresponding values of x in input: 1,0,1] [0,1,2] [1,2,3] [2,3,4] Let N be the upper bound (if I is an integer constant, N is equal to I).

x = 1 2 3 4 . . . y = [-
(c) τ (E $ I init T E 0) = τ (E) (d) τ (T E 0) = [0..n -1] → µ,
where µ ⊑ τ (E), n ≥ ϕ(N), and n > 0 (in the particular case where ϕ(N) = 1, the single initialization value can be given by an element of type τ (T E 0) = µ, where µ ⊑ τ (E))

3. Definition in SIGNAL X := E $ I init T E 0 whose right side of := represents an expression of generalized delay bounded by the maximal value N , is equal to the process defined as follows:

(| T X := E window N +1 init T E 0 | X := T X[N -I] |) / T X 4.
Definition in SIGNAL X := E $ I is equal to the process defined as follws:

(| T X := E window N +1 | X := T X[N -I] |) / T X 5. Clocks (a) ω(I) = ω(E) (b) ω(T E 0) = (c) ω(E $ I) = ω(E) 6. Examples

VI-4 Polychronous expressions

The polychronous expressions are built on signals which have possibly different clocks.

τ (E 1 default E 2) = τ (E 1) ⊔ τ (E 2) 3.

Semantics

The semantics is described formally in part B, section III-6.3, paragraph 3-b, p. 43. [START_REF]II Lexical units II-1 Characters[END_REF].

Clocks (a) ω(E 1 default E 2) = ω(E 1) + ((1 -ω(E 1)) * ω(E 2)) if ω(E 2) = (b) ω(E 1 default E 2) = ω(E 1) + ((1 -ω(E 1)) * ω(E 1 default E 2)) if ω(E 2) = 5. Graph When τ (E 1 default E 2) = boolean and τ (E 1 default E 2) = event: (a) E 1 -→ E 1 default E 2 (b) E 2 1 -ω(E 1) --------→ E 1 default E 2 6. Properties (a) (E 1 default E 2) default E 3 = E 1 default (E 2 default E 3) (b) E 1 default E 2 = E 1 default (E 2 when not E 1 default E 2) (c) (ω(E 1) * ω(E 2) = 0) ⇒ (E 1 default E 2 = E 2 default E 1) (d) ((ω(E 1) ≥ ω(E 2)) (ω(E 1) =)) ⇒ (E 1 default E 2 = E 1) 7. Examples (

VI-4.2 Extraction

E when B

The values of a signal can be produced by extraction of the values of another signal when the values of a Boolean signal are equal to true.

b) τ (B) ⊑ boolean (c) τ (E when B) = τ (E) 3.

Semantics

The semantics is described formally in part B, section III-6.3, paragraph 3-a, p. 42. [START_REF]II Lexical units II-1 Characters[END_REF].

Clocks (a) ω(E when B) = ω(E) * ω(B) * (-1 -B) if ω(E) = (b) ω(E when B) = ω(B) * (-1 -B) if ω(E) =

Graph

When τ (E when B) = boolean and τ (E when B) = event:

(a) E -→ E when B 6. Properties (a) (τ (B) = event) ⇒ (B when B = B) (b) (E when B 1) when B 2 = E when (B 1 when B 2) (c) E when (B when B) = E when B 7.
Examples (a) the values taken by X when C are described below for the corresponding values of X and C in input:

X = 1 3 ⊥ 5 ⊥ 7 . . . C = T ⊥ T F F T . . . X when C = 1 ⊥ ⊥ ⊥ ⊥ 7 . . .

VI-4.3 Memorization

E cell B init V 0
The memorization allows to memorize a given signal at the clock defined by the upper bound of the clock of the signal and the clock defined by the instants at which a Boolean signal has the value true.

b) τ (B) ⊑ boolean (c) τ (E cell B init V 0) = τ (E) (d) τ (V 0) ⊑ τ (E) 3. Definition in SIGNAL X := E cell B init V 0
whose right side of := represents an expression of memorization of E at the instants at which B is true, is equal to the process defined as follows:

(| X := E default (X $ init V 0) | X = E + (when B) |)

Definition in SIGNAL

When the initial value is omitted, it is equal to the "null" value of type τ (E), 0 τ (E) :

E cell B = E cell B init 0 τ (E) ,
except if an initial value is associated with the defined signal, in its declaration (cf. section VI-3.1, p. 110).

Clocks

(a) ω(E cell B init V 0) = ω(E) + ((1 -ω(E)) * ω(B) * (-1 -B))

Examples

(a) the values taken by X cell C init 0 are described below for the corresponding values of X and C in input:

X = ⊥ 1 3 ⊥ ⊥ ⊥ 5 ⊥ 7 . . . C = T F T T F T ⊥ T ⊥ . . . X cell C init 0 = 0 1 3 3 ⊥ 3 5 5 7 . . .

VI-4.4 Variable clock signal

var E init V 0
The var operator allows to use a signal at any clock defined by the context.

b) τ (var E init V 0) = τ (E) (c) τ (V 0) ⊑ τ (E)

Definition in SIGNAL

Let:

• F an expression on processes containing an occurrence var i of the expression on signals

var E init V 0 , • H the context clock of var i in F ,
• F F the expression on processes equal to F in which XX has been substituted to var i .

F is then equivalent to:

(| F F | X := E default (X $ init V 0) | XX := X when H | X = E + H |) / X, XX

Definition in SIGNAL

When the initial value is omitted, it is equal to the "null" value of type τ (E), 0 τ (E) : var E = var E init 0 τ (E) except if an initial value is associated with the defined signal, in its declaration (cf. section VI-3.1, p. 110).

Clocks

(a) ω(var E init V 0) = VI-4.5 Counters H 1 modality H 2 or H 1 count M
The counter expressions (modality after or from, or counter modulo: count) allow the numbering of the occurrences of a clock.

a) τ (H 1) = τ (H 2) = event (b) M is an integer constant expression. (c) τ (H 1 modality H 2) = integer (d) τ (H 1 count M) = integer

Definition in SIGNAL

N := H 1 after H 2 whose right side of := represents an expression of counter of the events H 1 after the reinitialization H 2 , is equal to the process defined as follows:

(The signal N counts the number of occurrences of the signal H 1 (o 1) since the last occurrence of the signal H 2 (o 2); the occurrences o 1 which are simultaneous to occurrences o 2 are counted.

Definition in SIGNAL

N := H 1 count M
whose right side of := represents an expression of counter of the events H 1 modulo ϕ(M), is equal to the process defined as follows:

(| N := (0 when ZN >= (M -1)) default (ZN + 1) | ZN := N $ init (M -1) | N = H 1 |) / ZN
The signal N has 0 as initial value and is incremented by 1, modulo ϕ(M), at each new occurrence of the signal H 1 .

Clocks

(a) ω(H 1 modality H 2) = ω(H 1) (b) ω(M) = (c) ω(H 1 count M) = ω(H 1)

Examples

(a) the values taken by E1 from E2, E1 after E2 and E1 count 3 are described below for the corresponding signals E1 and E2 in input:

E1 = ⊥ • • • • • ⊥ • . . . E2 = • ⊥ ⊥ • ⊥ ⊥ • ⊥ . . . E1 from E2 = ⊥ 1 2 1 2 3 ⊥ 1 . . . E1 after E2 = ⊥ 1 2 0 1 2 ⊥ 1 . . . E1 count 3 = ⊥ 0 1 2 0 1 ⊥ 2 . . .

VI-4.6 Other properties of polychronous expressions

See also properties in section VI-4.1, p. 114 et seq. and section VI-4.2, p. 115 et seq.

• (E 1 default E 2) when B = (E 1 when B) default (E 2 when B)

• (τ (B 1) = event) ⇒ (E when (B 1 default B 2) = (E when B 1) default (E when B 2))

VI-5 Constraints and expressions on clocks

A CONSTRAINT is an expression of processes which contributes to the construction of the system of clock equations of the program. It is the tool for constraint programming. Such an expression can take as arguments expressions on clocks or expressions on signals.

1-c Empty clock

0 The empty clock is the clock that does not "contain" any instant.

b) τ (E 1 Op E 2) = event 3. Definition in SIGNAL X := E 1 + E 2
defines a signal equal to the upper bound of the clocks of the signals E 1 and E 2 ; this expression is equal to the process defined as follows:

(| X := E 1 default E 2 |)
4. Definition in SIGNAL X := E 1 * E 2 defines a signal equal to the lower bound of the clocks of the signals E 1 and E 2 ; this expression is equal to the process defined as follows:

(| X := E 1 when E 2 |) 5. Definition in SIGNAL X := E 1 -E 2
defines a signal equal to the complementary clock of E 1 * E 2 in E 1 ; this expression is equal to the process defined as follows:

(| X := when ((not E 2) default E 1) |) 6. Clocks (a) ω(E 1 + E 2) = ω(E 1) + ((1 -ω(E 1)) * ω(E 2)) (b) ω(E 1 * E 2) = ω(E 1) * ω(E 2) (c) ω(E 1 -E 2) = ω(E 1) -(ω(E 1) * ω(E 2)) 7. Properties (a) E 1 + (E 2 + E 3) = (E 1 + E 2) + E 3 (b) E 1 + E 2 = E 2 + E 1 (c) E + 0 = E (d) E + E = E (e) E 1 * (E 2 * E 3) = (E 1 * E 2) * E 3 (f) E 1 * E 2 = E 2 * E 1 (g) E * 0 = 0 (h) E * E = E (i) (E 1 * E 2) + E 3 = (E 1 + E 3) * (E 2 + E 3) (j) (E 1 + E 2) * E 3 = (E 1 * E 3) + (E 2 * E 3)

VI-5.3 Relations on clocks

E 1 Op E 2
The following expressions are expressions on processes describing constraints between clocks of signals.

Context-free syntax CONSTRAINT

::= S-EXPR { = S-EXPR } * | S-EXPR { < S-EXPR } * | S-EXPR { > S-EXPR } * | S-EXPR { # S-EXPR } *

Profile

A relation on clocks of signals is a process with no output and with:

?

(E 1 Op ... Op E n) = n i=1
? (E i). It is recursively defined by the composition of the following expressions of processes:

(| E 1 Op E 2 | E 1 Op EE | E 2 Op EE |)
5. Definition in SIGNAL E 1 = E 2 constrains the clock of the expression on signals E 1 to be equal to that of E 2 ; this expression, when H 1 ∈ ? (E 1 = E 2), is equal to the process with no output defined as follows:

(| H 1 := (E 1) == (E 2) |) / H 1 6. Definition in SIGNAL E 1
< E 2 constrains the clock of the expression on signals E 1 to be smaller than (or equal to) that of E 2 ; this expression is equal to the process with no output defined as follows:

E 1 = E 1 * E 2 7. Definition in SIGNAL E 1
> E 2 constrains the clock of the expression on signals E 1 to be greater than (or equal to) that of E 2 ; this expression is equal to the process with no output defined as follows:

E 1 = E 1 + E 2 8. Definition in SIGNAL E 1 # E 2 specifies

Profile

An identity equation is a process with no output and with:

? (E 1 :=: E 2) = ? (E 1) ∪ ? (E 2).

Clocks

If E 1i and E 2i designate signals, they are synchronous. In this case:

(a) ω(E 1i) = ω(E 2i) 6. Properties (a) E 1 :=: E 2 is equal to the following process: (| (when (E 11 == E 21)) = E 11 . . . | (when (E 1n == E 2n)) = E 1n |)

VI-7 Boolean synchronous expressions

The Boolean expressions are synchronous expressions on signals.

2.

Types

(a) τ (E 1) ⊑ boolean (b) τ (not E 1) = boolean

Semantics

The operator of negation has, on the occurrences of signals, its usual semantics. [START_REF]II Lexical units II-1 Characters[END_REF].

Clocks (a) ω(not E 1) = ω(E 1)
1-b Operators of Boolean lattice

a) τ (E 1) ⊑ boolean (b) τ (E 2) ⊑ boolean (c) τ (E 1 Op E 2) = boolean

Semantics

The expressions on Boolean signals have, on the synchronous occurrences of these signals, their usual semantics; however, they are not primitive operators of the SIGNAL language.

4. Definition in SIGNAL X := E 1 and E 2 is equal to the process defined as follows:

(| X := (E 1 when E 2) default (not E 1) | E 1 = E 2 |)

Definition in SIGNAL

X := E 1 or E 2 is equal to the process defined as follows:

(| X := (E 1 when not E 2) default E 1 | E 1 = E 2 |) 6. Definition in SIGNAL X := E 1 xor E 2
is equal to the process defined as follows:

(| X := not (E 1 == E 2) |) 7. Clocks (a) ω(E 1) = ω(E 2) (b) ω(E 1 Op E 2) = ω(E 1)

VI-7.2 Boolean relations

The Boolean relations are equality, difference, and strict and non strict greater and lower relations. Two classes of relation operators are distinguished according to their denotation:

• the operators which have a pointwise extension on elements of arrays (cf. part D, chapter X, p. 179 et seq.), denoted respectively = , / =, > , >=, < et <=; for example, the operator = applied on two vectors has as result a vector of Booleans;

• the operators which have a Boolean result, whatever is the type of the signals on which they are applied; in this class are only defined the operator of equality, denoted == and the operator of inferior or equal relation order, denoted <<= (these operators are pointwise extended to families of signals: polychronous tuples with named fields and tuples with unnamed fields).

(a) τ (E 1 Op E 2) = boolean (b) For E 1 == E 2 : E 1 and

Semantics

• Two objects of array types are equal if and only if both arrays have the same dimension, are of comparable types and the elements of same index are respectively equal.

• Two objects of monochronous tuple types are equal if and only if both objects are of comparable types and the elements of corresponding fields are respectively equal.

• In the order defined on the values of type boolean , false is lower than true.

• The order defined on the values of type character is the order on the decimal values of their encoding.

• The order defined on the values of type string is the corresponding lexicographic order.

• The order defined on the values of an ENUMERATED-TYPE is the syntactic order of their declaration in the definition of the type (cf. section V-3, p. 76 et seq.).

With these precisions, the operators of relation have their usual semantics. The operators == and = denote the relation of equality; the operators <<= and <= denote the relation inferior or equal. The comparisons are made in the greatest type (of a same domain). Then if v 1 is an element of the sequence of values represented by E 1 and if v 2 is the corresponding element in the sequence of values represented by E 2 , the corresponding element is v 1 Op E 2 in the sequence represented by E 1 Op E 2 .

Definition in SIGNAL

The expression E 1 /= E 2 is equal to the following expression:

not (E 1 = E 2)

Definition in SIGNAL

The expression E 1 < E 2 is equal to the following expression:

(not (E 1 = E 2)) and (E 1 <= E 2)

Definition in SIGNAL

The expression E 1 >= E 2 is equal to the following expression:

E 2 <= E 1

Definition in SIGNAL

The expression E 1 > E 2 is equal to the following expression:

E 2 < E 1 8. Clocks (a) ω(E 1) = ω(E 2) (b) ω(E 1 Op E 2) = ω(E 1)

Graph

When the E i are not of a domain Synchronization-type:

(a) E 1 -→ E 1 Op E 2 (b) E 2 -→ E 1 Op E 2

Properties

The relation <<= is an order relation on all the types of signals for which it is defined; it has all the properties of an order relation:

(a) reflexivity (b) transitivity (c) anti-symmetry: ((E 1 «= E 2) (E 2 «= E 1)) ⇒ (E 1 == E 2)

Properties

The relation <= is an order relation on the domains of values on which it is defined; it is:

(a) reflexive, (b) transitive, (c) anti-symmetric: ((E 1 <= E 2) (E 2 <= E 1)) ⇒ (E 1 = E 2)

VI-8 Synchronous expressions on numeric signals

The synchronous expressions on numeric signals are defined by pointwise extension of the standard arithmetic operators on sequences of elements.

VI-8.1 Binary expressions on numeric signals

Semantics

If the result of an expression cannot be represented in the type µ of this expression, its value is a value of type µ depending on the implementation.

If v 1 is an element of the sequence of values represented by E 1 and if v 2 is the corresponding element of the sequence of values represented by E 2 , the corresponding element in the sequence represented by E 1 Op E 2 is:

v 1 Op v 2 3. Clocks (a) ω(E 1) = ω(E 2) (b) ω(E 1 Op E 2) = ω(E 1) 4. Graph (a) E 1 -→ E 1 Op E 2 (b) E 2 -→ E 1 Op E 2 Operators + -, * , / E 1 Op E 2 1. Types (a) τ (E 1) and τ (E 2) are of any Numeric-type in a same domain, (b) τ (E 1 Op E 2) = τ (E 1) ⊔ τ (E 2) 2.
Semantics When an expression of division is of domain Integer-type, the division is the integer division.

Operator modulo E 1 modulo E 2

Types

(a) τ (E 1) and τ (E 2) are of domain Integer-type.

In addition, E 2 must be a constrained integer (strictly positive and with an upper bound).

(b) τ (E 1 modulo E 2) = τ (E 2) 2. Semantics
If r is defined by r := a modulo b, then at each instant, the following property is true:

(∃ an integer q) ((a=b * q+r) (0 ≤ r < b)) Operator * * E 1 * * E 2 1. Types (a) τ (E 1) is a Numeric-type. (b) τ (E 2) is an Integer-type. (c) τ (E 1 * * E 2) = τ (E 1)
Operator @ E 1 @E 2

A pair of synchronous elements of Real-type defines a signal of domain Complex-type.

Context-free syntax

DENOTATION-OF-COMPLEX ::= S-EXPR @ S-EXPR

2.

Types

(a) τ (E 1) is a Real-type, (b) τ (E 2) is a Real-type, (c) if τ (E 1) ⊔ τ (E 2) = real , then τ (E 1 @E 2) = complex if τ (E 1) ⊔ τ (E 2) = dreal , then τ (E 1 @E 2) = dcomplex

Examples

(a) 1.0 @ (-1.0) defines a complex constant.

VI-8.2 Unary operators

Op E 1

Context-free syntax S-EXPR-ARITHMETIC

::= + S-EXPR | -S-EXPR 2. Types (a) τ (E 1) is a Numeric-type. (b) τ (Op E 1) = τ (E 1)

Semantics

If the result of an expression cannot be represented in the type µ of this expression, its value is a value of type µ depending on the implementation.

If v 1 is an element of the sequence of values represented by E 1 , the corresponding element in the sequence represented by Op E 1 is:

Op v 1 4. Clocks (a) ω(Op E 1) = ω(E 1) 5. Graph (a) E 1 -→ Op E 1 VI-9 Synchronous condition if B then E 1 else E 2
The synchronous condition is an expression on signals with same clock.

(c) τ (if B then E 1 else E 2) = τ (E 1) ⊔ τ (E 2) 3. Definition in SIGNAL X := if B then E 1 else E 2
whose right side of := represents an expression of synchronous condition, is equal to the process defined as follows:

(| X := (E 1 when B) default E 2 | B = E 1 = E 2 |) 4. Clocks (a) ω(E 1) = ω(E 2) COMPOSITION ::= (| [P-EXPR { | P-EXPR } *] |)

Profile

• ! (P 1 | P 2) = ! (P 1) ∪ ! (P 2) • ? (P 1 | P 2) = (? (P 1) -! (P 2)) ∪ (? (P 2) -! (P 1)) 3. Types (a) If their names are identical, an output x of P 1 (respectively, P 2) and an input x of P 2 (respectively, P 1) have also the same type.

(b) If their names are identical, an input x of P 1 and an input x of P 2 have also the same type.

Semantics

A signal, input of P 1 (respectively, P 2), having as name the name of a signal, output of P 2 (respectively, P 1) and totally defined in it, has as definition in P 1 (respectively, in P 2) its definition in P 2 (respectively, in P 1).

If the definitions of such a signal are partial definitions, in P 1 and in P 2, its resulting definition is the combination of both partial definitions, as it is specified in section VI-1.1, paragraph 1-c, p. 96 et seq.

Clocks

(a) If their names are identical, an output x of P 1 (respectively, P 2) and an input x of P 2 (respectively, P 1) have also the same clock.

(b) If their names are identical, an input x of P 1 and an input x of P 2 have also the same clock.

VII-3 Hiding

The hiding is an expression that modifies the profile of an expression of processes by hiding some of its outputs.

P / A 1 , ..., A n 1. Context-free syntax HIDING ::= GENERAL-PROCESS / Name-signal { , Name-signal } * | HIDING / Name-signal { , Name-signal } * 2. Profile • ? (P / A 1 , ..., A n) = ? (P) • ! (P / A 1 , ..., A n) = ! (P) -{A 1 , . . . , A n }

Semantics

The hiding operation allows to hide outputs of the process P : the outputs of the resulting process are the outputs of P which do not appear in the list A 1 , ..., A n .

The A i can be names of tuples: in that case, the hiding applies globally on the tuples.

Examples

Let P be a process with A, B and C as inputs and X and Y as outputs.

(a) P / Y has only X as output;

(b) P / Z is equal to P.

VII-4 Confining with local declarations

Local declarations can be associated with any expression of processes.

Local declarations of sequences

The signals (or tuples) that appear in a list of S-DECLARATIONs associated with an expression of processes are hidden in output of this CONFINED-PROCESS.

P where µ 1 A 1 , . The following rules help to specify the context of visibility established by the local declarations of a confined process (see also in part E, section p. 191 et seq.).

• An identifier of sequence X (or an identifier of constant, or an identifier of type) used in an expression on processes that does not contain a declaration of X is said external to this expression of processes.

• An identifier of sequence (or of constant, or of type) X local to an expression of processes P , or external to P and declared in a list of DECLARATIONs D, is local to the CONFINED-PROCESS P where D end.

• An identifier of sequence (or of constant, or of type) X external to an expression of processes P , and not declared in a list of DECLARATIONs D, is external to the CONFINED-PROCESS P where D end.

• Let A be an identifier of input signal of an expression of processes P (used but not defined in P), then A must be external to P .

• Let B be an identifier of output signal of a model M , then B must be an output signal defined (at least partially) in the expression of processes associated with M , external to this expression of processes.

• Any sequence used in a MODEL but not declared in the interface of this MODEL must be either local to the associated expression of processes, or external to the MODEL (visible in a syntactic context that includes it). In the same way, any constant or type identifier used in a MODEL must be either local to the associated expression of processes, or external to that MODEL.

VII-5 Labelled processes

It is possible to label an expression of processes: Label ::=

Name

The labelled process XX :: P has the same semantics as the process P , but the label XX defines a context clock for the process P , and implicit signals are added to the graph.

The label XX associated with P can be used to designate the process P in some expressions (dependences, for example).

In particular, the label XX can be used to define or to reference a characteristic clock of P : the tick of P . For that purpose, the label is considered as a signal of special type label, for which it is always possible to reference its clock (in the usual ways: XX for example). This clock of the label XX (the tick of the process P) is recursively defined as the upper bound of the ticks of the components of the process.

The tick of an equation X := E is the clock of X.

The tick of an equation X ::= E is the clock of E.

The tick of the invocation of a process model is the tick of this process model. There is a particular case when the called process model is an external process model:

• In that case, if the (external) process model is declared as being an action (cf. part E, section XI- 1.2, p. 186), the tick of its invocation is fixed through the closest label of the invocation: it is equal to the clock of this label (which can be fixed by explicit equations, for instance). This clock must be greater than the upper bound of the clocks of the inputs/outputs of the action.

• Otherwise (if the external process model is not declared as an action), the tick of its invocation is equal to the upper bound of the clocks of its inputs/outputs.

Thus, no "visible clock" in P is greater than the clock of the label XX.

The clock of the label XX represents the context clock of P .

The other effect of labelling a process is to add the two following signals to the graph: let us denote them respectively ? XX and ! XX, although these notations are not available in the syntax of the language.

Both ? XX and ! XX have the clock XX as their common clock. The implicit signal ? XX is a signal that precedes all the nodes of the graph of the process P : there is a dependence from ? XX to each one of the signals designated in P . Symmetrically, the implicit signal ! XX is a signal which is preceded by all the nodes of the graph of P : there is a dependence from each one of the signals designated in P to the signal ! XX.

This feature is used to specify explicit dependences between processes (cf. part E, section XI-6.2, p. 196 et seq.).

The labels declared in a model of process (cf. part E, section p. 192) are visible (i.e., can be referenced) everywhere in this model, but not in its included models of processes: a label is in some way local to a model.

In one model, a label cannot have the same name as another visible object (signal, parameter, constant, type, model).

VII-6 Guarded processes

An expression of processes may be guarded by a clock (or an expression that provides a clock): on H 1 :: P The guarded process on H 1 :: P provides a guard (the clock defined by H 1) which is a tick for the process P , the inputs of which are filtered by this guard.

Profile

• ? (P i) = {e 1 , . . . , e n } • ? (on H 1 :: P) = ? (H 1) ∪ ? (P) • ! (on H 1 :: P) = ! (P) 3. Types (a) τ (H 1) = event or H 1 is a label (associated with some other process).

Definition in SIGNAL

The guard H 1 defines a context clock H 1 which provides a tick (cf. section VII-5, p. 138 et seq.) for the guarded process: in this process, no "visible clock" can be greater than this context clock. The inputs of the process P are filtered by this guard. Then the above guarded process is equivalent to:

(| e ′ 1 := e 1 when H 1 . . . | e ′ n := e n when H 1 | l 1 :: (| P [e ′ 1 /e 1 , ..., e ′ n /e n] | l 1 = H 1 |) |) / e ′ 1 , .

VII-7 Choice processes

not yet fully implemented in POLY-CHRONY A choice process is an expression of processes that allows to compose definitions according to the different values of a signal (or of a signal expression such as clocked occurrence of state variable) 1 .

case E in {V 1,1 , ..., V 1,n 1 } : P 1 . . .
{V m,1 , ..., V m,nm } : P m else P m+1 end

The "else" part is optional. Other forms of enumeration of values can also be used in the different branches of the choice process. They are described below.

Profile

• ? (case E in ... end) = ? (E) ∪ i ? (P i) - i ! (P i) • ! (case E in ... end) = i ! (P i)

Types

(a) E has a Scalar-type or ENUMERATED-TYPE and ∀i, j τ (V i,j) ⊑ τ (E) 4. Semantics Each ENUMERATION-OF-VALUES enumerates some subset of constant values which are in the same domain as the signal defined by E, signal on which the choice is based, and which are possible values of E.

All the enumerations of values of the different branches (the "guard" values of the choice) must be mutually exclusive. When there is an "else" part, the different sub-types corresponding to the guard values of the different branches form a partition of the type of E.

The enumerations of values can take the form of explicit enumerations (used for the description below), or of intervals. The four possible forms of intervals are usable only if the values of the type of E are totally ordered: they define intervals of values that can be, for both sides of the interval, opened or closed. The bounds of an interval are optional (one of the two must be present): if the lower bound is absent, the interval represents all the values smaller than the upper bound (included or not); if the upper bound is absent, the interval represents all the values greater than the lower bound (included or not).

Definition in SIGNAL

In each branch, the guard of the choice (i.e., the condition representing the instants at which the signal defined by E on which the choice is based takes as value one of the values enumerated in the considered branch) defines a context clock B i which provides a tick (cf. section VII-5, p. 138 et seq.) for the process defined by the corresponding branch: in this process, no "visible clock" can be greater than this context clock. For this branch, the inputs of the process P i are filtered by this guard. Then, using guarded processes (cf. section VII-6, p. 140), the above choice process is equivalent to:

(| (| B 1 := when ((E = V 1,1) or ... or (E = V 1,n 1)) | on B 1 :: P 1 |) / B 1 | . . . | (| B m := when ((E = V m,1) or ... or (E = V m,nm)) | on B m :: P m |) / B m | (| B m+1 := when ((E /= V 1,1) and ... and (E /= V m,nm)) | on B m+1 :: P m+1 |) / B m+1 |)
Note that it is possible that a given shared variable or state variable be defined in different branches of the choice process. In this case, corresponding equations may appear as partial definitions.

Clocks

The values V i,j are constant expressions:

(a) ω(V i,j) = (b)
The clock of the signal defined by the expression E has to be well defined: it cannot be a context clock. In particular, E cannot be a constant expression or a non-clocked reference to a state variable.

Example

Consider the statechart:

Q i j Q2 m n j a b a b P Q1 (1) V U X Y Z R S
Note that transition labelled by event a from state Q has a higher priority (1) than transition labelled by event b (priority considered as 0 by default). Moreover, external transitions from a substate are considered of higher priority than inner ones. This statechart may be described by the following program (process models and modules are described respectively in part E, chapter XI, p. (note that the program could be better structured using several process models).

Another description of the same statechart is the following one, which uses state variables: See also another description using automaton processes in part E, section XI-1.6, p. 187 et seq.

VII-8 Assertion processes

An assertion process is a process with no output which specifies assumed properties in a model. It can be used in particular to specify assumptions on inputs of the model or guarantees on outputs. The assertions are expressed as constraints.

assert (| P 1 | ... | P n |) 1. Context-free syntax ASSERTION-PROCESS ::= assert (| [CONSTRAINT { | CONSTRAINT } *] |) 2. Profile • ! (assert (| P 1 | ... | P n |)) = ∅ • ? (assert (| P 1 | ... | P n |)) = ? (P 1) ∪ . . . ∪ ? (P n) 3. Definition in SIGNAL assert (| P 1 | ... | P n |) is equivalent to: (| assert (| P 1 |) . . . | assert (| P n |) |)
We distinguish the different sorts of constraint equations: clock relations (cf. section VI-5.3, p. 123 et seq.) and identity equations (cf. section VI-6, p. 125).

VII-8.1 Assertions of clock relations

• assert (| E 1 Op E 2 Op EE |)
(where Op is one of the operators =, <, > and #) is recursively defined by:

1. Definition in SIGNAL (| assert (| E 1 Op E 2 |) | assert (| E 1 Op EE |) | assert (| E 2 Op EE |) |)
In the following definitions, we use a clock_assert process which is defined below (cf. section p. 148 et seq.). Note that this process is not provided in the syntax of the language.

• assert

(| E 1 = E 2 |) asserts that the clock of the expression on signals E 1 is equal to that of E 2 . 1. Definition in SIGNAL clock_assert(E 1 , E 2)
Example The following example adds an assumption of clock equivalence: • assert

(| E 1 < E 2 |) asserts that the clock of the expression on signals E 1 is smaller than (or equal to) that of E 2 . 1. Definition in SIGNAL clock_assert(E 1 , E 1 * E 2) • assert (| E 1 > E 2 |)
asserts that the clock of the expression on signals E 1 is greater than (or equal to) that of E 2 .

Definition in SIGNAL

clock_assert(E 1 , E 1 + E 2) • assert (| E 1 # E 2 |)
asserts that the clocks of the expressions on signals E 1 and E 2 are mutually exclusive.

1. Definition in SIGNAL clock_assert(0, E 1 * E 2)
VII-8.2 Assertions of identity equations

assert (| E 1 :=: E 2 |)
asserts that: 1/ the clocks of the expressions on signals E 1 and E 2 are equal; 2/ at this common clock, the values of these expressions are equal.

(| clock_assert(E 1 , E 2) | assert(E 1 == E 2) |)
This definition uses the assertion on Boolean signal which is defined below (cf. section VII-8.3, p. 148 et seq.).

VII-8.3 Assertion on Boolean signal

The syntax of an INSTANCE-OF-PROCESS (cf. section VI-1.2, p. 99 et seq.) is used to assert that a given Boolean signal must have the value true each time it is present. It is a process with no output (it has the syntax of a process call with no output).

Semantics

A property specified by an assertion can be assumed by the clock calculus.

Definition in SIGNAL assert(B)

is equal to the process defined as follows:

(| B = when B |)

Examples

(a) The process assert(A < 5) expresses that the values of A must be always lower than 5 (when A is present).

• The process assert(h1 = h2) does not specify that the clocks (signals of type event) h1 and h2 are equal. In the same way, the process assert(x * y = 0) does not specify that the signals x and y are exclusive.

This is the reason why we introduced the process (or "macro") clock_assert, which is defined as follows: process clock_assert = (? event h1, h2; !)

(| b1 := h1 default not (h1 + h2) | b2 := h2 default not (h1 + h2) | assert(b1 = b2) |)
where boolean b1, b2; end;

Using the left_tt process (cf. part E, section XIII-3, p. 214), an equivalent definition is the following: process clock_assert = (? event h1, h2; !)

(| b1 := left_tt(h1, h2) | b2 := left_tt(h2, h1) | assert(b1 = b2) |)
where boolean b1, b2; end;

Using this process, for instance, clock_assert(h1, h2), the equality of the clocks h1 and h2 can be assumed by the clock calculus.

Again, note that the process clock_assert is not provided in the syntax of the language: it is only used as intermediate macro for the definition of assertion processes.

• The keyword assert may be used in two different contexts:

in an ASSERTION-PROCESS, it takes a composition of CONSTRAINTS as argument, in an INSTANCE-OF-PROCESS, it takes a Boolean signal as argument.

Example

The following example uses the intrinsic process affine_sample defined in part E, section XIII-2, p. 211 et seq., and, given general properties of affine relations such as the one encoded in the assertion, allows to synchronize resulting clocks, even if the clock calculus does not implement the corresponding synchronisability rules.

VIII-1 Constant expressions

A constant expression of tuple is an S-EXPR-TUPLE which has recursively as arguments constant expressions, or any expression defining a tuple the elements of which are constants.

VIII-2 Enumeration of tuple elements

A tuple represents a list (finite sequence) of signals or tuples. VIII-3 Denotation of field

(E 1 , . . . , E n) 1. Context-free syntax TUPLE-ENUMERATION ::= (S-EXPR { , S-EXPR } *) 2. Types (a) τ ((E 1 , . . . , E n)) = (τ (E 1) × . . . × τ (E n)) 3. Semantics The tuple (E 1 , . . . , E n) is equal to < v 1 , .
X.X i 1. Context-free syntax TUPLE-FIELD ::= S-EXPR . Name-field 2. Types (a) τ (X) = bundle({X 1 } → µ 1 × . . . × {X m } → µ m) (b) τ (X.X i) = µ i 3.
Semantics If X is a tuple with named fields X 1 , . . . , X m , X.X i designates the signal or the tuple corresponding to the field with name X i .

In particular, the denotation of field may apply on an INSTANCE-OFPROCESS when the output of the corresponding model is a tuple with named fields. It may also apply on an array element if the elements of the array are monochronous tuples with named fields.

The semantics is described formally in part B, section III-7.1, p. 44 et seq.

VIII-4 Destructuration of tuple

The syntax of an INSTANCE-OF-PROCESS is used to denote the call of predefined functions of destructuration of tuples:

• tuple(X) -If X is a tuple with named fields of type bundle({X 1 } → µ 1 × . . . × {X m } → µ m),
tuple(X) is the corresponding tuple with unnamed fields, (X 1 , . . . , X m), of type (µ 1 × . . . × µ m) -If X is a tuple with unnamed fields, the components of which are, in this order, X 1 , . . . , X m , tuple(X) is the tuple with unnamed fields (tuple(X 1), . . . , tuple(X m)) -If X is not of tuple type, then tuple(X) is equal to X.

• rtuple(X)

-If X is a tuple with named fields of type bundle({X

1 } → µ 1 × . . . × {X m } → µ m),
rtuple(X) is the tuple with unnamed fields (rtuple(X 1), . . . , rtuple(X m)) -If X is a tuple with unnamed fields, the components of which are, in this order, X 1 , . . . , X m , rtuple(X) is the tuple with unnamed fields (rtuple(X 1), . . . , rtuple(X m)) -If X is not of tuple type, then rtuple(X) is equal to X.

IX-1 Dimensions of arrays and bounded values

Dimensions of arrays

The syntax of an INSTANCE-OF-PROCESS is used to denote the call of predefined functions with constant result giving the dimension of an array and the size of a dimension:

• dim(T) If T has a type ([0..n 1 -1] × . . . × [0..n m -1]) → ν where ν is a Scalar-type or External-type or ENUMERATED-TYPE, then ϕ(dim(T)) = m.
If T has a type ν where ν is a Scalar-type or External-type or ENUMERATED-TYPE,

then ϕ(dim(T)) = 0. • size(T ,I) If T has a type ([0..n 1 -1] × . . . × [0..n m -1]) → ν where ν is a Scalar-type or External-type or ENUMERATED-TYPE,
and if 1 ≤ ϕ(I) ≤ m, then ϕ(size(T ,I)) = n I , else ϕ(size(T,I)) is not defined: it is an error in the program.

• size(T) is, by definition, equivalent to size(T ,1)

Bounded values

The syntax of an INSTANCE-OF-PROCESS is used to denote the call of a predefined function used to deliver bounded values.

bounds

(E 1 , E 2 , E 3)
The values of E 1 are compelled to evolve between that of E 2 and E 3 .

Types

(a) E 1 , E 2 and E 3 are signals of a same domain Scalar-type (other than a Complex-type), or ENUMERATED-TYPE.

(b) τ (bounds(E 1 , E 2 , E 3)) = τ (E 1) ⊔ τ (E 2) ⊔ τ (E 3) (c)
The pointwise extension is described in chapter X, p. 179 et seq.

Definition in SIGNAL

X := bounds(E 1 , E 2 , E 3)
whose right side of := represents an expression of bounded values, is equal to the process defined as follows:

(| X := if E 1 < E 2 then E 2 else if E 1 > E 3 then E 3 else E 1 |) 3. Clocks (a) ω(E 1) = ω(E 2) (b) ω(E 1) = ω(E 3) (c) ω(bounds(E 1 , E 2 , E 3)) = ω(E 1)

IX-2 Constant expressions

A constant expression of array is an S-EXPR-ARRAY which has recursively as arguments constant expressions, or any expression defining an array the elements of which are constants.

IX-3 Enumeration

The enumeration of the elements of an array defines a vector by the ordered list of its elements.

[E 1 , . . . , E n] 1. Context-free syntax ARRAY-ENUMERATION ::= [S-EXPR { , S-EXPR } *] 2. Profile ? ([E 1 , . . . , E n]) = n i=1 ? (E i) 3. Types (a) τ ([E 1 , . . . , E n]) = [0..n -1] → n i=1 τ (E i) 4.
Semantics [E 1 , . . . , E n] designates the vector the n components of which are, in this order, E 1 , . . . , E n (cf. part B, section III-7.2, p. 46 et seq.).

Clocks

(a) ω([E 1 , ..., E n]) = ω(E i) ∀i = 1, . . . , n 6. Examples (a) With M1 := [[M11,M12,M13],[M21,M22,M23]], M1[0] is equal to [M11,M12,M13].

IX-4 Concatenation

The concatenation allows to concatenate arrays along to their first dimension.

E 1 |+ E 2 1. Context-free syntax CONCATENATION ::= S-EXPR |+ S-EXPR 2. Types (a) τ (E 1) = [0..m 1 -1] → µ 1 (b) τ (E 2) = [0..m 2 -1] → µ 2 (c) τ (E 1 |+ E 2) = [0..m 1 + m 2 -1] → µ 1 ⊔ µ 2 3. Definition in SIGNAL X := E 1 |+ E 2 is
equal to the process defined as follows:

X := [E 1 [0], . . . , E 1 [m 1 -1], E 2 [0], . . . , E 2 [m 2 -1]] 4. Clocks (a) ω(E 1) = ω(E 2) (b) ω(E 1 |+ E 2) = ω(E 1)

IX-5 Repetition

The repetition is a simple form of iterative enumeration which allows the finite repetition of a value.

E | * N 1. Context-free syntax ITERATIVE-ENUMERATION ::= S-EXPR | * S-EXPR 2. Types (a) τ (E) = µ (b)
N is a positive integer expression, with a strictly positive upper bound, N max .

(c) τ (E | * N) = [0..N max -1] → µ 3.
Semantics At a given instant, all the elements of the vector defined by E | * N have the same value, which is the value of E.

The semantics is described formally in part B, section III-7.2, p. 46 et seq., using the "iterative enumeration of array". The maximum number of iterations is given by N , and the iteration function which is used here is the identity function with first value the value E itself. [START_REF]II Lexical units II-1 Characters[END_REF].

Clocks (a) ω(E) = ω(N) (b) ω(E | * N) = ω(E)
IX-6 Definition of index

E 1 ..E 2 step E 3 1. Context-free syntax INDEX ::= S-EXPR .. S-EXPR [step S-EXPR]
2. Types (a) E 1 and E 2 are bounded integers such that the difference E 1 -E 2 has always the same sign (at every instant): ∀t,

E 1t ≤ E 2t or ∀t, E 1t ≥ E 2t .
lower _bound (E 1), upper _bound (E 1), lower _bound (E 2) and upper _bound (E 2) will denote respectively the lower bounds and upper bounds of

E 1 and E 2 . (b) E 3 is an integer constant different from 0, such that if ∀t, E 1t ≤ E 2t then ϕ(E 3) > 0 and if ∀t, E 1t ≥ E 2t then ϕ(E 3) < 0.
When the step expression, E 3 , is omitted, its value is implicitly equal to 1.

(c) If ϕ(E 3) > 0, τ (E 1 ..E 2 step E 3) = [0..((upper _bound (E 2) -lower _bound (E 1))/ϕ(E 3) + 1) -1] → τ (E 1) ⊔ τ (E 2) If ϕ(E 3) < 0, τ (E 1 ..E 2 step E 3) = [0..((upper _bound (E 1) -lower _bound (E 2))/(-ϕ(E 3)) + 1) -1] → τ (E 1) ⊔ τ (E 2)
In any case, the size of the vector must be strictly positive.

Semantics

The vector of integers defined by E 1 ..E 2 step E 3 has as successive elements the values E 1t ,

E 1t + ϕ(E 3), E 1t + (2 * ϕ(E 3
)), etc., up to the last value between E 1t and E 2t (included).

The semantics is described formally in part B, section III-7.2, p. 46 et seq., using the "iterative enumeration of array".

The iteration function is the function

f such that f (x) = x + ϕ(E 3). The first value is E 1 . If ϕ(E 3) > 0, the maximum number of iterations is given by N = (E 2 -E 1) / ϕ(E 3) + 1.
If ϕ(E 3) < 0, the maximum number of iterations is given by

N = (E 1 -E 2) / (-ϕ(E 3)) + 1. 4. Clocks (a) ω(E 1) = ω(E 2) = ω(E 1 ..E 2 step E 3) (b) ω(E 3) =
A constant index is an index which is defined using only constant expressions.

IX-7 Array element

An array element is obtained by indexing following the syntax of the first rule below. Every index of array must be a positive bounded integer, whose upper bound is strictly inferior to the size n of the considered dimension; the second rule provides a syntax of "local recovery" which defines the value of the expression for the values of index outside the segment [0..n -1]. ? (E i)

2. Types (a) For all i, E i is a positive (or zero) integer, with an upper bound. Let n i the value of its upper bound.

(b) τ (T) = ([0..n 1 -1] × . . . × [0..n m -1]) → µ
(remark: µ can be an array type.)

(c) τ (T [E 1 , . . . , E m]) = µ 3. Semantics If v 1 , .
T [E 1 , ..., E m] is T (< v 1 , . . . , v m >).
The semantics is described formally in part B, section III-7.2, p. 46 et seq. [START_REF]II Lexical units II-1 Characters[END_REF]. If T has at least n dimensions (and has the basic type µ for the elements corresponding to these n first dimensions), it can be traversed using jointly n indices I 1 , . . . , I n (one per dimension), that allow to extract elements of type µ.

Clocks (a) ω(E 1) = ω(T), . . . , ω(E m) = ω(T) (b) ω(T [E 1 , ..., E m]) = ω(T) 5. Properties (a) (E 1 , . . . , E m of type integer) ⇒ (T [E 1 , . . . , E m] = T [E 1] . . . [E m]) 2. Types
Each one of the indices is an array with the same number of dimensions, let p.

The result, let X, has the same number of dimensions as the indices, which is p. Its basic elements have the type µ (type of the extracted elements).

With each "position" (j 1 , . . . , j p) in X, it is associated the element of T the position of which is given by the value of the n indices in (j 1 , . . . , j p), i.e., in the position (I 1 [j 1 , . . . , j p], . . . , I n [j 1 , . . . , j p]) in T . [START_REF]II Lexical units II-1 Characters[END_REF].

Clocks (a) ω(I 1) = ω(T), . . . , ω(I n) = ω(T) (b) ω(T [I 1 , ..., I n]) = ω(T) 5. Properties (a) If V is a vector of type [0.
.n -1] → µ and if I is an index defined by I := 0..n-1, then the expressions V and V [I] are equivalent.

Examples

(a) ([[10,20], [30,40]]) [START_REF]Polychronous definitions[END_REF]0] value is 30.

(b) (0..10)[2..4] value is [2,3,4]. (c) if M is a n × n matrix, then M[0..n-1,0..n-1]
is the vector containing its diagonal.

IX-9 Array restructuration

The array restructuration allows to define partially (in the general case) an array, by defining some indices-defined coordinate points of this array. Non defined values are any values of correct type. This operator is the "reverse" of the operator of extraction of sub-array (cf. section IX-8, p. 163 et seq.) in the following informal way: let T be the result of (I 1 ,.

• τ (S) = µ • τ ((I 1 ,. . . ,I n) : S) = ([0..a 1] × . . . × [0..a n]) → µ (b) • τ (I 1) = . . . = τ (I n) = ([0..b 1] × . . . × [0..b p]) → ν
with ν an integer type, and for 1 ≤ i ≤ n, min K∈Dom(I i) In other words,

I i (K) ≥ 0 • More
T [I 1 [k 1 ,. . . ,k p], . . . , I n [k 1 ,. . . ,k p]] = S[k 1 ,. . . ,k p]. If (I 1 [k 1 , . . . , k p], . . . , I n [k 1 , . . . , k p]
) defines the same position for several distinct values of (k 1 , . . . , k p), it is the element corresponding to the max of the (k 1 , . . . , k p) (in lexicographic order) which is used. (c) 1 : [[START_REF]Polychronous definitions[END_REF]2], [3,[START_REF]II Lexical units II-1 Characters[END_REF]] is a 3-dimensions array [[[any,any], [any,any]],[[START_REF]Polychronous definitions[END_REF]2], [3,[START_REF]II Lexical units II-1 Characters[END_REF]

Clocks

]]. Its type is ([0..1] × [0..1] × [0..1]) → integer .
(d) [3,6] : [2,4] is a vector [any,any,any,2,any,any,4].

(e) ([0,1],[2,1]) : [START_REF]II Lexical units II-1 Characters[END_REF]5] is a matrix [[any,any,4], [any,5,any]].

IX-10 Generalized indices

The syntax of an INSTANCE-OF-PROCESS is used to denote the call of a predefined function that delivers generalized "unit" indices. Such indices can be used for standard array traversal in extraction of sub-array (cf. section IX-8, p. 163 et seq.) or array restructuration (cf. section IX-9, p. 164 et seq.).

τ (I j) = ([0..ϕ(a 1) -1] × . . . × [0..ϕ(a n) -1]) → ν
where ν is an Integer-type.

Semantics

For all j = 1, . . . , n, The definition is similar when the symbol ::= is used.

for all k l such that 0 ≤ k l ≤ ϕ(a l) -1, (∀t) (I j t (k 1 , . . . , k n) = k j) 3
If one equation defines only partially an array, this array can be defined using several equations, defining different parts or elements of this array.

Independently of non defined elements (represented by nil in the semantics), like any signal, a given element cannot be defined by distinct values at a same instant.

All the elements of an array have the same clock, which is the clock of the array. In particular, if some element is undefined at a given instant at which other elements are defined, this element is considered to have any well-typed value.

IX-12 Cartesian product

The cartesian product is used mainly to define jointly indices, to be used in the provided structure of iteration of processes (cf. section IX-13, p. 168 et seq.). Intuitively, the sequence of iteration is represented by the first dimension of the indices (which are vectors). Thus, it is different from the generalized indices used in extraction of sub-array (cf. section p. 163 et seq.) or array restructuration (cf. section IX-9, p. 164 et seq.), which are, in the more general case, multi-dimensional indices.

I k) = [0..m k -1] → µ k (b) τ (≪I 1 , . . . , I n ≫) = [0.. n k=1 m k -1] → µ 1 × . . . × [0.. n k=1 m k -1] → µ n

Semantics

The cartesian product ≪I 1 , . . . , I n ≫ defines a tuple of n vectors II 1 , . . . , II n , the size of which is equal to the product of the sizes of the vectors I 1 , . . . , I n . These vectors II 1 , . . . , II n are such that the tuples obtained by their elements of same index describe successively the respective values of the elements of I 1 , . . . , I n in embedded loops such that the most external one enumerates the elements of I 1 and the most internal one enumerates the elements of I n .

The semantics is described formally in part B, section III-7.2, p. 46 et seq. Considering this iteration context, the equations affected by this context are rewritten in the following way ("expanded", in some way), as a composition of equations (XX, Y Y . . . are new variables, corresponding to the variables defined in the iteration, with the same type as the corresponding variable, but with an additional first dimension of size m + 1):

Clocks

• initialization equations:

X[u(I 1 , . . . , I p)] := E is rewritten as the composition of equations:

∀i 1 , . . . , i p , ∀ϕ(I 1 [i 1]), . . . , ϕ(I p [i p]), XX[-1][u(ϕ(I 1 [i 1]), . . . , ϕ(I p [i p]))] := E
where -1 refers to the virtual first index of the added dimension.

• equations of the body: • final results:

X[f (I 1 , . .
X := XX[m -1]
This rewritting is some sort of preprocessing. In particular, the typing of a program has to be considered on the rewritten program.

As mentioned above, the iteration indexes can be represented as some list of constant indexes. A particular case is to have such a list defined as a tuple resulting from the cartesian product of indexes. More generally, the iteration indexes can be specified by any expression denoting a function

[0..(n 1 * . . . * n p) -1] → [0..n 1 -1] × . . . × [0..n p -1]
(where the n i are integer constants).

For a given set of equations, the context of iteration is established, in some unit of compilation, by the whole embedding structure of the iterations containing these equations. As it will be easier to understand it in a regular context, let us consider as typical example the embedding of two structures of iteration, the indexing functions of them, taken separately, are given by cartesian products of indexes: let ≪I 1 , . . . , I p ≫ for the most external one, and ≪I p+1 , . . . , I p+q ≫ for the inner one. Then, for the equations which are under the scope of both structures of iteration, the indexing function (which determines the rewritting) is given by the following cartesian product: ≪I 1 , . . . , I p+q ≫. This rule is generalized following the same principle for any indexing function and for any embedding of structures of iteration.

Particular case. In order to allow "incomplete" iterations (for instance with some iteration index depending on the value of another iteration index), it may be allowed to define only partially, for a given iteration, indexes used as iterators. In that case, the "non defined" values are not considered for the resulting indexing function I: more precisely, tuples (i 1 ,. . . ,i p) where at least one i k is "non defined" are not considered. In that case, m = n 1 * . . . * n p is not the actual size of iteration but only its upper bound.

The "array" notation is a special case of the "iterate" one, inherited from the previous version of the SIGNAL language.

array I to N of P with P init end where N is an expression defining a constant integer (and for which I has not to be declared) is equal to the process defined as follows:

(The process model FILTER is declared with one input and one output of some basic type. Each input of an instance of the process FILTER is supplied by the output of the previous process FILTER (the signal X provides the input of the first process FILTER). The vector Y is delivered as output.

• array I to N of F := if I=0 then 1 else I * F[?] end defines in F the factorial of N. Note that here, N is a constant. It is also possible (in a different way) to specify in the SIGNAL language the computation of factorial for an "unbounded" integer signal N by "inserting instants" between consecutive instants of the input signal N (oversampling). • With fulladd a model of function defined as follows (cf. part E,chapter XI,p. 183

[?][i] > T[?][i+1] then T[?][i+1] else T[?][i]) next (i+1 : if T[?][i] > T[?][i+1] then T[?][i] else T[?][i+1]) |) end |) with T := A end |)
where [n-1] integer j, i; end; (note that this is an example with "incomplete" iterations).

Some other examples are given in the definition of operators on matrices (cf. section IX-16, p. 176 et seq.).

IX-14 Sequential definition

The sequential definition is used mainly for the redefinition of elements of arrays.

T 1 next T 2 1. Context-free syntax SEQUENTIAL-DEFINITION ::= S-EXPR next S-EXPR 2. Types (a) τ (T 1) = ([0..c 1] × . . . × [0..c p]) → µ 1 (b) τ (T 2) = ([0..b 1] × . . . × [0..b p]) → µ 2 with c 1 ≥ b 1 , . .

Semantics

T 1 next T 2 defines, in the general case, the array which takes the value of T 2 at each point at which T 2 is defined (i.e., is semantically different from nil), and the value of T 1 elsewhere.

The semantics is described formally in part B, section III-7.2, p. 46 et seq. [START_REF]II Lexical units II-1 Characters[END_REF].

Clocks (a) ω(T 1) = ω(T 2) (b) ω(T 1 next T 2) = ω(T 1)

Examples

(a) T := T $ next K : A defines the vector T which at each instant keeps the values it had at the previous instant, except in K where it takes the values of A (K and A can be signals).

IX-15 Sequential enumeration

The sequential enumeration is a form of iterative enumeration that allows to define arrays using sequential multi-dimensional iterations. It can be considered that the definition of D k is obtained by the following composition:

(| i 1 := b 1 ..c 1 step d 1 | iterate i 1 of (| . . . (| i p := b p ..c p step d p | iterate i p of D k [f (i 1 , . . . , i p)] := E end |) . . . |) end |) / i 1 , ..., i p If the denotation of the indices, [f (i 1 , . . . , i p)], is omitted, it is equivalent to [(i 1 ,. . . ,i p)].
If the lower bound of an index is omitted, it is by default equal to 0. An upper bound can be omitted if it corresponds without ambiguity to the upper bound of the corresponding dimension of the array. If a step is omitted, it is by default equal to 1. The name of an index can be omitted if it has not to be used explicitly.

A D k with the simple form:

a) τ (E) = ([0..l -1] × [0..m -1]) → µ (b) τ (tr E) = ([0..m -1] × [0..l -1]) → µ

Definition in SIGNAL

X := tr E whose right side of := represents an expression of transposition of matrix, is equal to the process defined as follows:

array i to m -1 of array j to l -1 of X[i,j] := E[j,i] end end 3. Clocks (a) ω(tr E) = ω(E)

Transposition on vector

To create a matrix-column, it is possible to create a matrix-line and then to transpose it as follows: tr [V] IX-16.2 Matrix products

Types

(a) The elements of the operands of an expression of matrix product have a basic type which is a Numeric-type.

Clocks

(a) The operators of matrix product are synchronous.

2-a Product of matrices

E 1 * . E 2 1. Types (a) τ (E 1) = ([0..l -1] × [0..m -1]) → µ 1 (b) τ (E 2) = ([0..m -1] × [0..n -1]) → µ 2 (c) τ (E 1 * . E 2) = ([0..l -1] × [0..n -1]) → µ 1 ⊔ µ 2 2. Definition in SIGNAL X := E 1 * . E 2
whose right side of := represents an expression of product of matrices, is equal to the process defined as follows:

array i to l -1 of array j to n -1 of array k to m -1 of X[i,j] := X[?][i,j] + E 1 [i,k] * E 2 [k,j] with X[i,j] := 0 end end end 2-b Matrix-vector product E 1 * . E 2 1. Types (a) τ (E 1) = ([0..l -1] × [0..m -1]) → µ 1 (b) τ (E 2) = [0..m -1] → µ 2 (c) τ (E 1 * . E 2) = [0..l -1] → µ 1 ⊔ µ 2 2. Definition in SIGNAL X := E 1 * . E 2
whose right side of := represents an expression of matrix-vector product, is equal to the process defined as follows:

array i to l -1 of array k to m -1 of X[i] := X[?][i] + E 1 [i,k] * E 2 [k] with X[i] := 0 end end 2-c Vector-matrix product E 1 * . E 2 1. Types (a) τ (E 1) = [0..l -1] → µ 1 (b) τ (E 2) = ([0..l -1] × [0..m -1]) → µ 2 (c) τ (E 1 * . E 2) = [0..m -1] → µ 1 ⊔ µ 2 2. Definition in SIGNAL X := E 1 * . E 2
whose right side of := represents an expression of vector-matrix product, is equal to the process defined as follows:

array j to m -1 of array k to l -1 of X[j] := X[?][j] + E 1 [k] * E 2 [k,j] with X[j] := 0 end end 2-d Scalar product E 1 * . E 2 1. Types (a) τ (E 1) = [0..l -1] → µ 1 (b) τ (E 2) = [0..l -1] → µ 2 (c) τ (E 1 * . E 2) = µ 1 ⊔ µ 2 2. Definition in SIGNAL X := E 1 * . E 2
whose right side of := represents an expression of scalar product, is equal to the process defined as follows:

array i to l -1 of X := X[?] + E 1 [i] * E 2 [i] with X := 0 end

CHRONY

The operators defined in the SIGNAL language are termwise extended to arrays and tuples, provided that there is no possible ambiguity between the new operator resulting from the extension and some other operation 1 .

The extension of a given operator defines a new operator, so that termwise extension may be applied recursively.

The semantics of the extension on tuples is described formally in part B, section III-7.1, p. 44 et seq. The semantics of the extension on arrays is described formally in part B, section III-7.2, p. 46 et seq.

Instances of processes and conversions follow the same rules of extension than operators.

A given extension is either an extension on tuples, or an extension on arrays. Mixed extensions are not defined. If the types of the arguments of an operator are such that both extension on tuples and extension on arrays can be applied, the extension on tuples applies first.

When an extension is applied, the rules associated with the operator (type relations, clock relations. . .) apply element by element. Moreover, for the arrays, the constraint that all the elements have the same clock has to be respected.

For tuples, there are different categories of tuples: monochronous tuples, which are signals, and polychronous tuples, which are gatherings of signals (they have not, in general, one proper clock). Monochronous tuples are tuples with named fields and polychronous tuples may be tuples with named or unnamed fields. Whatever is the type of the arguments, the results of an extension on tuples are always tuples with unnamed fields (remind that a tuple with unnamed fields can always be assigned to a tuple with named fields with a compatible type). Moreover, if the extension applies on tuples with named fields, the operator applies on the elements of these tuples, independently of their names in the considered tuples. In other words, if X is such a tuple with named fields on which the extension applies, this extension applies effectively on tuple(X).

The possibly existing extensions for the operators of the SIGNAL language are deduced from the examination of authorized types for the arguments of there operators.

For example, the operator == is defined on signals of any types (in particular, on arrays and on monochronous tuples with named fields) and has always a Boolean result. Thus the extension of == on arrays or on monochronous tuples with named fields has no purpose. On the other hand, this extension is defined on polychronous tuples (in that case, the result is a polychronous tuple with unnamed fields of Booleans).

Concerning the other equality operator, = , it is defined only on signals of scalar types. Thus the extension on arrays (for example) can apply and in this case, the result is an array of Booleans. The extension on tuples (monochronous or polychronous) applies too.

The extension of the operator when on polychronous tuples applies, on the first argument as well as on the second one. But the extension on arrays is not defined in the general case on the second argument since the resulting array would have elements with different clocks.

X-2 Examples

• If V1 and V2 are two vectors, the expression V1 * V2 defines the termwise product of the vectors V1 and V2.

• If K is a scalar and V a vector, the expression K * V defines the vector each element of which is equal to the product of K with the corresponding element of V.

• If M1 and M2 are two matrices, the expression M1 * M2 defines the termwise product of the matrices M1 and M2.

• If P designates a process model which defines two outputs X and Y, the expression P() when C defines the signals X when C and Y when C.

• If P designates a process model with two inputs, the expression P ((A,B) when C) specifies a subsampling by the condition C on each one of the inputs of P.

Part E THE MODULARITY

Chapter XI

Models of processes

The language allows to describe signals (synchronized sequences of typed values) and relations between signals by equations; these equations can be grouped together in parameterized models of systems of equations: the models of processes. The call of a model in a system is, in principle (when the corresponding model is not compiled separately), equivalent to the direct writing of the equations of this model.

XI-1 Classes of process models

A process model establishes a designation between a name and a set of parameterized equations; any reference to this name is formally replaced by the designated equations.

The set of equations may be simply defined by the keyword external (cf. section XII-1, p. 207 et seq.). In that case, it is an external process model (or model of external process). Its definition should be provided in the environment of the program.

The set of equations may also be empty. In that case, it is a virtual process model. It means that its actual definition is defined elsewhere (the virtual process model is "overridden") in the context or is provided in a module (cf. section XII-1, p. 207 et seq.).

If the process model is external, or if the considered model is compiled separately, the replacement of a reference to this model by its equations remains partial. Such a partial replacement is limited to the EXTERNAL-GRAPH of the called process (cf. section p. 195 et seq.). The result of the invocation of a model of external process or of a separately compiled process model (which could be not in accordance with its description) can be only theoretically described. The tick characteristic clock of the invocation of an external process model is described in part C, section VII-5, p. 138 et seq.

For a model of external process, its graph properties are established by the EXTERNAL-GRAPH. For a described process model, the graph properties are established by the composition of the EXTERNAL-GRAPH and the body of the model. A good situation is that the EXTERNAL-GRAPH verifies the properties deduced from the body of the model.

The following classes of processes are distinguished:

• A process is said safe if it is an iteration of function (on the inputs), such as highlighted in part B, section III-8.1, p. 52.

It does not make any "side effect":

(| Y 1 := f (X) | Y 2 := f (X) |) ≡ (| Y 1 := f (X) | Y 2 := Y 1 |)
Two different instantiations of a safe process with the same input values will provide the same results. Such a process is memoryless. It cannot call external processes that are not safe.

• A process is said deterministic automaton-or more shortly, deterministic-(or memory safe), if it is a function of sequences, from initial states, trajectories of the inputs and trajectories of the clocks of the outputs (considered, in some sense, as inputs), into trajectories of the outputs.

This corresponds to the notion of deterministic process (on the inputs), highlighted in part B, section III-8.3, p. 52 et seq.

Its only possible "side effects" are changes to its private memory.

Two different instantiations of a deterministic automaton process with the same sequences of input values (and output clocks), and in the same initial conditions, will provide the same sequences of outputs. It cannot call external processes that are not safe.

Any safe process is deterministic automaton.

• A process is unsafe in all other cases.

Two different calls of an unsafe process are never supposed to return the same results.

The following SIGNAL processes are examples of unsafe processes:

- The class of the process described by a process model may be precised by a specific keyword in the EXTERNAL-GRAPH of the model.

In addition, it is possible to specify complementary non-standardized information in the DIREC-TIVES (cf. section p. 198 et seq.).

Besides the above characterization of processes, different classes of process models are syntactically distinguished. These are models of:

• processes,

• actions,

• procedures,

• nodes,

• functions,

• automata.

Any process model called in the program must have a declaration visible in the syntactic context of the call.

A process MODEL is defined according to the following syntax: There are no required particular relations regarding clocks as well as dependences. It is the job of the compilation (clock calculus, dependence calculus) to synthesize these relations.

A process may be safe, deterministic automaton, or unsafe. This may be specified in the EXTERNAL-GRAPH. By default, unless it can be proved different, it is considered as unsafe.

XI-1.2 Actions

Actions are processes that are called (activated) at a specific clock, that may be designated via a label, which is the tick of the action (cf. part C, section VII-5, p. 138 et seq.). Syntactically, the invocation (or activation) of an action has to be under the scope of such a label, in a labelled process.

An action (described by a model of action) has to respect some relations regarding its clocks and dependences:

• Its tick is the clock designated by the label under the scope of which the action call is. If the action is not an external one, this tick is also equal, as usual, to the upper bound of the ticks of its components.

The tick of the action is not necessarily available through the interface of the model of the action.

• For the dependence relation, each input of an action precedes each output of that action at the product (intersection) of their clocks.

An action may be safe, deterministic automaton, or unsafe. This may be specified in the EXTERNAL-GRAPH. By default, unless it can be proved different, it is considered as unsafe.

XI-1.3 Procedures

Procedures are special cases of actions. The tick of a procedure is defined as the upper bound of the clocks of its inputs and outputs (the procedure is called at this tick).

A procedure must have at least one input or one output.

XI- 1.4 Nodes Roughly speaking, an endochronous process knows when it has to read its inputs, thus it is autonomous when run in a given environment.

It may be shown that if the clock relations associated with a process can be organized as a tree of clocks, the root of the tree representing the most frequent clock (which is the single greatest clock) of the system, then this process is endochronous.

Besides the property that it is endochronous, a node (described by a model of node) has to respect some relations regarding its clocks and dependences:

• Its tick (cf. part C, section VII-5, p. 138 et seq.) is necessarily the clock of an input or output of the node.

• For the dependence relation, each input of a node precedes each output of that node at the product (intersection) of their clocks.

A model of node must provide an abstraction (cf. section XI-6, p. 195 et seq.) of its interface clock functional hierarchy.

A node must have at least one output.

A node may be safe or deterministic automaton. This may be specified in the EXTERNAL-GRAPH. By default, unless it can be proved safe, it is considered as deterministic automaton. This automaton has two states, S_1 and S_2, declared as labels and specified as labelled processes. The initial state (S_1) is designated through the intrinsic process Automaton_Initial_State.

Here, the actions associated with the state S_1 (resp., S_2) are supposed to be defined in the process ACTIONS_S1 (resp., ACTIONS_S2), which produces an output RESULT_1 (resp., RESULT_2). The outputs of the automaton (here, the signal RESULT) are defined by usual equations. The transitions between states are specified thanks to the intrinsic process Automaton_Transition. The first input of the process corresponds to the source of the transition, the second input to its target, and the third input, which has to be of type event, is the trigger of the transition. A fourth input, optional, can represent a static priority. Like any process, a transition can be labelled. Then, referring to these labels, actions can be associated to transitions. Here, actions are associated with two of the transitions, in the form of guarded processes.

The following intrinsic process models are used to express the definition of an automaton process. They are supposed to be used in a consistent way.

• process Automaton_Initial_State = (? S1; !); Description: This process defines the initial state of the automaton as being S1.

• process Automaton_IsIn = (? S; ! boolean b); Description: This process provides a non clocked Boolean signal which is true when the automaton is in state S.

• process Automaton_Transition = (? S1, S2; event trigger; !); or process Automaton_Transition = (? S1, S2; event trigger; integer prio; !); Description: This process specifies a transition S1 -[trigger]-> S2.

As Automaton_IsIn(S1) represents a Boolean signal which is true when the automaton is in state S1, the clock of the transition is equal to ω([Automaton_IsIn(S1)] * trigger).

The input prio is optional. It provides a (static) priority to the specified transition. Its value must be a constant integer. When this input is not specified, the priority of the transition is supposed to be equal to 0. A fireable transition t_1 from a given state has a higher priority than a fireable transition t_2 from the same state if the priority associated with t_1 is greater than the priority associated with t_2. Values of priorities can be negative.

For two transitions having a common source, the trigger of the highest priority transition is implicitly removed from the trigger of the lowest priority transition.

• process Automaton_SetClock = (? event clockExpr; !); Description: This process defines the clock (or control clock) of the automaton as being clockExpr. By default, the clock of the automaton is equal to the upper bound of the clocks of its input signals.

• process Automaton_Clock = (? ! event vAutomatonclk;);

Description: This process returns in vAutomatonclk the clock (or control clock) of the automaton.

• process Automaton_SetCurrentStateId = (? id; !);

Description: This process specifies the internal state variable of the automaton (used to represent the state of the automaton) as being id.

The specification of an automaton process is translated into the SIGNAL language without automaton processes.

An enumerated type (StateType) is used to represent the states of the automaton. The enumerated values are those given by the names used as first and second arguments in the Automaton_Transition intrinsic process calls which specify the transitions of the automaton. For the example described above, the enumerated type is: type StateType = enum (S_1, S_2);

An internal state variable (by default, _CurState) is used for the management of the state of the automaton. Its type is the enumerated type StateType. Its name may be defined using the intrinsic process Automaton_SetCurrentStateId. It is initialized with the initial state provided in the Automaton_Initial_State intrinsic process. For the above example, the internal state variable is declared as: statevar StateType _CurState init StateType#S_1;

The evolution of the automaton, specified with the Automaton_Transition intrinsic process calls, is managed by assignments to the internal state variable. For example, a transition specified by Automaton_Transition (S_1, S_2, e) is translated as: _CurState ::= StateType#S_2 when (_CurState? == StateType#S_1) when e where _CurState? is the expression that expresses the value of the state variable _CurState at the previous instant (cf. part C, section VI-2.3, p. 108 et seq.).

Concerning the actions P i associated with a given state S i (for example, ACTIONS_S1() in state S_1), their translation can be expressed using guarded processes (cf. part C, section VII-6, p. 140). The position of the automaton in a given state S i defines a context clock (the clock of the label S i) for P i . This clock H i , which is the guard of the guarded process on H i :: P i , is defined by the condition when (_CurState? == StateType#S i). Thus, each input of the process P i is filtered by this condition.

For actions associated with transitions, they are usual guarded processes, whose guard is the clock of the transition.

Example

The statechart described in part C, section VII-7, p. 141 et seq. can be alternatively specified using automaton processes: The constants declared in a given level are visible in this whole level and in all lower levels, everywhere they are not hidden by a declaration with the same name in a lower level.

The types declared in a given level are visible in this whole level and in all lower levels, everywhere they are not hidden by a declaration with the same name in a lower level.

The declaration of labels and their visibility obey to specific rules, which are more detailed in section p. 192. As a general rule, the local declarations of signals (or tuples)-including shared variables-and state variables correspond to the confining of these objects (cf. part C, section p. 137 et seq.) to the corresponding level and the lower ones. However, the visibility of signals, tuples and state variables obey to specific rules, which are more detailed in section XI-4, p. 192 et seq.

The names of declared objects (models, signals or tuples, state variables, parameters, constants, types, labels) can mutually mask themselves. In a given level, there cannot have two such identical names.

Note that the scope of the declarations is statically defined by the syntax: it does not depend on instantiations of process models.

A given compiler may adapt the visibility rules for some classes of objects in the following way: in the level where it is declared, a given object can be used only in a syntactic position that follows its declaration (in this case, the order of declarations is significant). The rules for names redefinitions may be adapted accordingly. The labels declared in a process model, at any declaration level of this model, are visible (and can be referenced) anywhere in this model, except in its interface (parameters, inputs and outputs, external graph). The labels declared in the external graph of a process model are visible (and can be referenced) anywhere in this model.

XI-3 Declarations of labels

However, the labels declared in a process model are not visible in the sub-models of that model.

A label declared in a model cannot have the same name as any other object declared in that model (it cannot be masked). The rules for the visibility of signals in the previous versions of SIGNAL were that this visibility was always limited to the process model in which the signal was declared, excluding the sub-models of that model.

XI-4 References to signals with extended visibility

This version offers the possibility to extend the visibility of signals (or tuples) and state variables, with the same rules as for most of the other objects of the language. In that case, a signal (or tuple, or state variable) declared in a given level is visible in this whole level and in all lower levels, everywhere it is not hidden by a declaration with the same name in a lower level. A signal with extended visibility is assimilated to a shared variable (cf. part C, section V-10, p. 90 et seq.) with at most one definition (but it can be declared in the interface of a process model).

However, some freedom is left to the compilers to accept or not (possibly according to specific options) signals with extended visibility. The three following cases may be distinguished:

1. Signals with extended visibility are not allowed.

2. Signals with extended visibility are allowed, but the use of such a signal must be explicitly referenced as such when it crosses a frontier of process model with respect to its declaration.

Such a use is pointed by a "ref" declaration, under the scope of which is the considered use (with the general scoping rules, restricted here to the considered process model).

A signal with extended visibility cannot be used if it has been hidden by the declaration of another object with the same name.

A "ref" declaration cannot mask some object with the same name.

3. Signals with extended visibility are allowed, and their use may be explicitly referenced (previous case), though it is not mandatory.

XI-5 Interface of a model

The interface of a model contains an optional description of its formal static parameters, followed by a description of its visible part. This one is composed of the lists (possibly empty) of its input and output signals, and an optional description of the external behavior of the model. The formal parameters of the interface of a model can contain type parameters. These type parameters necessarily appear under the form of names of types, without a DESCRIPTION-OF-TYPE definition (cf. part C, section V-7, p. 86 et seq.).

Types

The list of inputs (respectively, outputs) declared in the interface of a process model named P constitutes a tuple the type of which is denoted τ (?P) (respectively, τ (!P)).

The type of the tuple of inputs and the type of the tuple of outputs are tuples with unnamed fields.

Thus:

(a) if the inputs and outputs of a process model P appear as (? µ 1 E 1 ; . The invocation of a model sets up an expansion context in which:

• an effective type is associated with the parameter types, in a similar way to the definition of type obtained by a DESCRIPTION-OF-TYPE (cf. part C, section V-7, p. 86 et seq.): if µ is the effective parameter corresponding, positionally, to the formal parameter type type A; then the type A is defined as being equal to the type µ in the context of this invocation of model;

• a value (or a tuple of values) is associated with each identifier of formal parameter, and a signal (or a tuple of signals) is associated with each name of input or output signal (or tuple).

The declaration of a process model induces the existence of a given order on the parameters (whatever they are parameter types or not), an order on the input signals of the model, and an order on its output signals. Each one of these orders is the order of specification of the objects of the considered class (parameter, input or output) in the interface. Any positional invocation of the either ! XX (that is preceded by all the signals that are defined in the process labelled by XX), or ? XX (that precedes all the signals that are defined in the process labelled by XX), depending that XX appears at the left side or at the right side of the dependence arrow. In the following, ! XX and ? XX are only notations used to designate the corresponding signals.

If XX is a label:

• XX --> E 1. Definition in SIGNAL ! XX --> E • E --> XX 1. Definition in SIGNAL E --> ? XX
Then, with the designated signals:

• E 1 --> E 2 --> E 3 1. Definition in SIGNAL (| E 1 --> E 2 | E 2 --> E 3 |)
Note that for the particular case where a label XX appears as E 1 --> XX --> E 3 this expression is equivalent to:

(

| E 1 --> ? XX | ! XX --> E 3 |) • {X 1 , ..., X n } --> E 1. Definition in SIGNAL (| X 1 --> E . . . | X n --> E |) • E --> {Y 1 , ..., Y m } 1. Definition in SIGNAL (| E --> Y 1 . . . | E --> Y m |) • {E --> {Y 1 , ..., Y m }} when B 1. Definition in SIGNAL (| {E --> Y 1 } when B . . . | {E --> Y m } when B |) • {X --> Y } when B 1. Types (a) τ (B) ⊑ boolean

Semantics

The result of the expression {X --> Y } when B is to add to the dependence graph a dependence from X to Y labelled by the condition B, representing the clock at which B has the value true.

The semantics of such a dependence is described formally in part B, section IV-3.1, p. 62 et seq.

Graph

XI-7 Directives

The DIRECTIVES allow to associate specific information, or pragmas, with the objects of a program. This information may be used by a compiler or another tool.

A PRAGMA contains a Name, the list of the designations of objects with which it is associated, and a Pragma-statement. in its calling process. If the model refers to outer shared variables or state variables, then no more than one instance can be active at each instant: in this case, the actual greatest clocks of two instances of the same unexpanded process must be exclusive.

• SIGNAL_Thread

-Associated with the current model -Means that the model represents a "thread". It is used in particular to denote the translation to SIGNAL of AADL1 thread components. The first input signal of the model is supposed to be the "dispatch" signal of the thread; the last output signal is supposed to be the "complete" signal of the thread (end of execution, waiting for a new dispatch). The corresponding model should be compiled as "Unexpanded" (see above).

• DefinedClockHierarchy

-Associated with the current model.

-Means that the corresponding process is endochronous, without clock constraints, and that its clock hierarchy is explicit (it may be the result of a previous compilation). When it is compiled, its clock hierarchy can be rebuilt without clock synthesis.

(c) Partitioning information

• RunOn -Associated with the current model, P , or with a list of labels of labelled processes partitioning the subprocesses of this model. -The statement of this pragma is a string representing a constant integer value i.

-If the pragma is associated with the current model P , each "node" (or vertex) of the internal representation of P (this internal representation is a graph) is attributed by the value i.

If the pragma is associated with a list of labels, each "node" (or vertex) of the internal representation of the processes labelled by one of these labels is attributed by the value i.

When a partitioning based on the use of the pragma RunOn is applied on an application, the global graph of the application is partitioned according to the n different values of the pragmas RunOn so as to obtain n sub-graphs, corresponding to n submodels. The tree of clocks and the interface of these sub-models may be completed in such a way that they represent endochronous processes.

• Topology

-Associated with a list of input or output signals.

-The statement of this pragma is a string representing a constant integer value i. This value must be a value used also in a pragma RunOn. -Read or write "nodes" (or vertices), corresponding to the considered input or output signals, of the internal representation of the process model (this internal representation is a graph) are attributed by the value i. This pragma may be used when a partitioning based on the use of the pragma RunOn is applied on an application.

(d) Separate compilation

• BlackBox -Associated with the current model.

-Qualifies the "black box" abstraction of a model (may be the result of a compilation).

Only the interface of the model, including its external graph, is represented: its body is empty.

• GreyBox

-Associated with the current model.

-Qualifies a "grey box" abstraction of a model. It contains an external graph that represents clock and dependence relations of the interface, but also a restructuring of the model into clusters together with a representation of the scheduling of these clusters (clock and dependence relations between these clusters). Each cluster is represented as a "black box" abstraction which is such that any input of the cluster precedes any of its outputs.

• Cluster

-Associated with the current model.

-Qualifies the "black box" abstraction of a model. It may be added to the BlackBox pragma to represent the fact that the abstracted model is one cluster in a "grey box" abstraction.

• DelayCluster

-Associated with the current model.

-May qualify one of the clusters of a "grey box" abstraction when code generation is expected from this abstraction: in that case, one of the clusters, the "delay cluster" (represented, like the other ones, by its "black box" abstraction), groups together the delay operations of the model and is preceded by each one of the other clusters (in the generated code, memories will be updated at the end of one instant).

(e) Code generation directives The pragmas C_Code, C_Code_Import, C_Code_declare, CPP_Code, CPP_Code_Import, CPP_Code_declare, Java_Code, Java_Code_Import, Java_Code_declare are specific to code generation. They are associated with the current model. Their statement is a possibly "parameterized" string representing a piece of code in the considered implementation language (see below for the description of parameters).

For C_Code, CPP_Code, and Java_Code: each call of the model is translated by the associated string in the generated code, after substitution of the encoded parameters by the corresponding signals in the considered call.

For C_Code_Import, CPP_Code_Import, and Java_Code_Import: the associated string is inserted as import in the generated code.

For C_Code_declare, CPP_Code_declare, and Java_Code_declare: the associated string is added as a declaration in the generated code.

• C_Code, C_Code_Import, C_Code_declare are used for C code generation.

• CPP_Code, CPP_Code_Import, CPP_Code_declare are used for C++ code generation. • Java_Code, Java_Code_Import, Java_Code_declare are used for Java code generation.

(f) Distribution

• Target -Associated with the current model.

-The statement of this pragma is a string representing some communication system (for example, "MPI"). -When distributed code is generated, the corresponding communication system is used.

• Environment

-Associated with an input or output signal, which corresponds to an input or output of the application. -The statement of this pragma is a string representing a logical tag.

-The logical tag represents the channel used for the communication with the environment when distributed code is generated.

• Receiving

-Associated with an input signal, x, of the current process model, P 1 . This input has to be received from another process model, P 2 , of the application. -The statement of this pragma is a string constant composed of two substrings: the first one, say "s1", represents a logical tag; the second one, say "s2", is the name of the process model P 2 . -When distributed code is generated, the component corresponding to the process model P 1 receives the signal x from the component named "s2", using the channel represented by the logical tag "s1".

• Sending

-Associated with an output signal, x, of the current process model, P 1 . This output has to be sent to another process model, P 2 , of the application. -The statement of this pragma is a string constant composed of two substrings: the first one, say "s1", represents a logical tag; the second one, say "s2", is the name of the process model P 2 . -When distributed code is generated, the component corresponding to the process model P 1 sends the signal x to the component named "s2", using the channel represented by the logical tag "s1".

(g) Profiling directives

• Morphism -Associated with the current model ("operator").

-This pragma is used to describe homomorphisms of programs in the SIGNAL language. An homomorphism associates a new program in the SIGNAL language with an original one. A typical example is profiling for performance evaluation, for which the homomorphic program represents time evaluation for the original program. A new signal is associated with each original signal and a new operator is associated with each original operator. For example, an operator "CostPlus" can be associated with the operator "+". Associated with a model represented as an "operator", the pragma Morphism specifies the homomorphic image of each reference to this operator. The statement of the pragma is a "parameterized" string representing this image. See below for the description of parameters. Note Although they do not belong to the official syntax of the SIGNAL language, operators may be described as follows: where Operator-symbol represents reserved words or symbols of operators.

• ProcessorType -Associated with the current model.

-The statement of this pragma is a string representing a name, for example, "DSP", that should be the name of a file DSP.LIB containing a module that defines the cost of each operator by particular models. -When profiling (performance evaluation) is required on a given program implemented on some processor represented as a model with the ProcessorType pragma, a morphism of this program is applied, that defines a new program representing cost evaluation of the original program. The image of the original program by this morphism uses the library designated by the pragma to interpret the cost evaluation operators.

(h) Link with the SIGALI prover

• Sigali -Associated with the current model.

-The statement of this pragma is a "parameterized" string that may represent the way a call of this model has to be viewed by the SIGALI prover. See below for the description of parameters. -This pragma is in particular associated with models contained in a specific library dedicated to the SIGALI prover. The calls of these models are external calls that are interpreted when translated into the SIGALI representation. These are models used for verification purpose or for controller synthesis.

Parameters of pragmas

The statements of some of the pragmas (for example, code generation directives, profiling directives, link with the SIGALI prover) are strings that may be "parameterized". Generally, such a string describes a model of translation in which parameters serve to transmit the names of designated objects. In this case, the pragma is associated with a model (process model, "operator") and describes the translation that has to be associated with each call of this model (i.e., with each reference to this model). The resulting translation is obtained after substitution of the encoded parameters by the corresponding objects in the considered call.

The following encoded parameters are recognized:

-&pj (where j is a constant integer value) represents the j th parameter of the call; -&ij (where j is a constant integer value) represents the j th input signal of the call; -&oj (where j is a constant integer value) represents the j th output signal of the call;

Semantics

• The same scoping rules as for other types apply to model types.

Models as parameters

The following rules for a FORMAL-PARAMETER extend those given in section p. 193. The rule for S-EXPR-PARAMETER extends those given in part C, section VI-1.2, paragraph 2-a, p. 100. Pragmas may be associated with the objects of a module in the same way they can be associated with the objects of a model (cf. section p. 198 et seq.). When there is no designated object for a pragma specified in a module, it is by default associated with the current module.

The set of declarations of a module constitutes a same level of declarations: the level of a module. The level of a module is greater than the level of any model declared in this module. With the usual rule, there cannot be two objects with the same name declared in a module.

The visibility of the objects declared in a module may be restricted to this module using the attribute private: when a declaration of constants, types or model is preceded by the keyword private (private constant . .., private type ..., private process ..., etc.), then the visibility of the corresponding objects is confined to the module that contains that private declaration, even if this module is referenced by a use command.

In a module M , but also in a model, the description of a constant, a type or a model can be given by an expression of the SIGNAL language, or it can be described as external by using the external attribute, or it can be specified as virtual by the absence of description.

The objects declared in a module can be totally or partially imported from a model or another module thanks to the use command. Such a module provides a context of definition for some of the objects described as virtual in the model or the module containing the use command (and visible at this level). These virtual objects are redefined (or overridden) in this way if they are imported (as corresponding objects with the same name) from a used module, or transitively, from a module imported in an imported module. The overridden constants must have a smaller type (or the same one) as that appearing in their declaration as virtual (or an overriding of this type if it is a virtual type). In the same way, the overridden models must have compatible interfaces.

More generally, any object described as virtual in some zone of declarations L may inherit a (re)definition from any context, visible in L, that provides such a definition.

Though it is not mandatory, it may be a good policy to systematically declare as virtual in a module M the objects referenced in M , but imported by a use command from another module. However, in this case, they should be used only as virtual objects: for example, if some signal is declared with a virtual type, only polymorphic operators could be applied to it.

A model or a module are a compilation unit when all the objects they use (except predefined or intrinsic ones) have a declaration (which may be that of a virtual object) in this entity, taking into account the use commands contained in it. In any case, a module necessarily constitutes a compilation unit.

Note that for code generation purpose, it may be necessary that all the virtual objects of a compilation unit have been overridden.

The objects whose definitions or redefinitions are imported in a model or module P by a use command situated in a zone of local declarations of P are made visible at the level of the expression containing these local declarations and at all lower levels (with the usual scoping rules, everywhere another object with the same name is not declared at such a level). More precisely, a use command inside the local declarations of an expression establishes a new level of declaration which is just greater than that of the expression. For example, an expression E where L; use M ; end may be considered, from the point of view of the scoping rules, as equivalent to the following one: (E where L; end) where Decl(M) end where Decl(M) represents the declarations of M . This equivalence holds wherever the use command is located in the local declarations.

A similar rule also applies for a use command located in the declarations of a module.

The importable objects of a module are the objects of this module that are not declared as private. The objects imported by a use command are all the importable objects of the module.

When several use commands appear at a same level of declaration, their syntactic order determines a corresponding nesting of the importations, thus avoiding multiple definitions of a same object at a given level. For example, to: E where L; use M 1 ; ...; use M n ; end corresponds the following nesting: (((E where L; end) where Decl(M n) end) . ..) where Decl(M 1) end (the declarations of M 1 are visible in M n , but the converse is not true).

In this way, if several objects with the same name are imported in a given context from different modules, the single one which is effectively visible is the one from the last module containing it in the ordered list of the use commands. Note that the rule applies differently for virtual objects since virtual definitions are overridden by corresponding non virtual ones. 1. Construct a new clock c ′ as the union of the set of instants of c 1 with the set of instants obtained by introducing n -1 fictive instants between any two successive instants of c 1 (and -φ fictive instants before the first instant of c 1 when φ is negative). A particular case of affine relation is R (1,φ,d) , with φ ≥ 0. In this case, the relation c 1 R P (n,φ,d) c 2 in a process P can be denoted c 2 = [c 1] (φ,d) to express that c 2 is a subsampling of positive phase φ and strictly positive period d on c 1 .

The clock calculus may implement synchronisability rules based on properties of affine relations, against which synchronization constraints can be assessed.

The following affine_sample, affine_clock_relation and affine_unsample processes are defined as intrinsic process models.

Affine sample process

The process affine_sample is defined as follows: The signal y is defined as an affine subsampling of phase phi and period d on the signal x. The phase phi is a positive integer (ϕ(phi) ≥ 0) and the period d is a strictly positive integer (ϕ(d) ≥ 1).

The following affine relation holds between the clocks of x and y: 25,221 def,25,107,230 def,25,221 Character,27,222,223 def,21,219 character,21,219 def,21,107,230 def,27,27,222 def,27,27,222 def,27,222 CharacterCode,21,219 def,24,220 Comment def,27,27,223 def,27,223 CommentCharacter,27,223 def,27,71,223 def,74,224 delimitor,21,219 def,23,26,222 def,26,26 def,26,24,220 def,24,71,223 def,75,24,221 def,24,221 HexadecimalCode,24,220 def,24,26,107,222,230 def,26,71,223 def,72,224 Label,107,138,140,196,199,230,237,247,248 def,139,21,219 def,21,23,27,220,def,23,21,219 def,22,219 mark,21,219 def,23,220 Name,25,[75][76][77]81,[86][87][88][89]94,95,97,98,100,101,103,107,136,139,154,155,169,175,185,192,199,[203][204][205][206][207][208][224][225][226][227][228][229][230]236,237,239,[243][244][245][246][248][249][250]25,21,25,219,def,21,21,[24][25][26]219,221 def,22,71,223 def,71,24,220 def,24,221 OctalCode,24,220 def,24,203 def,21,21,219 def,22,199,def,199,25,107,230 def,26,71,223 def,73,26,def,26,71,103,223,229 def,71,223 separator,21,219 def,23,220 signalkw def,26,222 def,26,26 def,26,107,199,208,230,248,250 def,27,27,222 def,27,27,222 def,27,71,223 def,72,103,229 def,103,21,219 def,21,219 Symbol * ,23,130,220,235 * * ,130,235 * .,176,244 +,23,26,130,131,220,222,23,26,73,130,131,220,222,196,247 /,23,130,220,235 / =,128,234 <,23,128,220,<<=,128,234 <=,128,234 =,23,128,220,==,128,234 >,23,128,220,>=,128,234 (,23,76,79,95,98,100,101,103,104,148,153,155,167,169,193,220,225,228,229,238,239,242,243,246),23,76,79,95,98,100,101,103,104,148,153,155,167,169,193,220,225,228,229,238,239,242,243,246 .,23,26,154,155,220,222,239 ..,161,241 .], 141,238 /,136,236 :,23,141,165,175,220,237,241,243,244 ::,138,140,237 ::=,97,98,155,167,228,239,242 :=,94,95,155,167,228,239,242 :=:,125,233 ;,23,[87][88][89][90][91]185,192,203,207,208,220,226,227,245,246,249,250 =,87,88,185,203,204,207,208,226,245,[248][249][250]23,107,169,193,220,230,243,247 [,23,78,159,162,163,167,169,175,220,225,[240][241][242][243]141,238 [/:,121,233 [:,121,233 #,23,77,220,225 $,23,110,113,220,230,231 %,23,27,220,223 \,24,25,220,221 \x,24,221 {,23,100,141,175,193,196,199,220,228,238,244,[246][247][248]23,100,141,193,196,199,220,228,238,[246][247][248]23,78,121,159,162,163,167,169,175,220,225,233,[240][241][242][243]162,241 * ,122,233 +,122,122,233 0,122,233 <,123,233 =,123,233 >,123,233 ,23,120,220,232 #,123,233 " 23,76,78,81,[87][88][89][90][91]95,98,100,101,136,141,153,155,159,162,163,[167][168][169]175,192,196,199,207,208,220,[225][226][227][228][229]236,[238][239][240][241][242][243][244][246][247][248][249][250]23,131,220,235 |+,160,240 D,26,222 d,26,222 ",23,27,220,222 E,26,222 e,26,222 !,23,193,220,247 >>,168,242 <<,168,242 (|,136,145,236,238 |,23,136,145,220,236,238 | * ,160,240 |),136,145,236,238 ',23,27,220,222 _,21,219 Syntax ACTION,185,244 def,185,208,245,157,240 def,162,157,240 def,159,168,242 def,169,157,240 def,176,162,241 def,162,157,240 def,165,71,223 def,78,135,236 def,145,238 AUTOMATON,185 def,185,245 BODY,185,203,208,245,249,250 def,185,245 CASE,141,237 def,141,135,236 def,141,121,232 def,121,233 COMPONENT,155,167,239,242 def,155,239 COMPOSITION,135,236 def,136,236 CONCATENATION,157,240 def,160,135,236 def,137,236 CONSTANT,107,230 def,107,230 CONSTRAINT,120,145,232,238 def,123,125,233 CONVERSION,103,229 def,103,229 COUNTER,114,231 def,118,232 DECLARATION,137,207,236,249 def,191,208,246,137,236 def,137,191,246 def,88,207,226,191,246 def,192,191,246 def,90,191,246 def,91,191,193,246,247 def,87,207,226,167,169,196,242,243,247 def,167,88,207,226,249 def,88,175,244 def,175,185,203,204,208,245,[248][249][250]193,205,246,[89][90][91]227 def,89,94,227 def,94,95,97,98,155,167,228,239,87,207,226,249 def,87,204,226,130,235 def,131,235 DEPENDENCES def,196,88,226 def,88,185,245 def,185,87,226 def,87,226 DIRECTIVES,185,203,204,207,208,245,[248][249][250]198,135,236 def,94,99,120,196,227,228,232,196,247 def,196,141,237 def,141,230 def,77,71,223 def,76,141,237 def,141,238 EXPANSION,100,101,228,229 def,100,193,246 def,195,87,88,185,226,245 def,208,250 EXTRACTION,114,231 def,115,206,193,246 def,193,205,247,248 FUNCTION,185,244 def,185,208,245,[135][136][137]141,185,195,236,237,245,247 def,135,168,236,109,230 def,113,135,236 def,140,237 HIDING,135,136,236 def,136,208,250 def,208,208,250 def,208,250 INDEX,157,240 def,161,241 INPUTS,193,246 def,193,99,102,228,229 def,100,101,148,228,229,238 INTERFACE,193,246 def,193,246 ITERATION,175,243 def,175,168,242 def,169,168,242 def,169,168,242 def,168,157,240 def,160,175,240,135,236 def,138,237 MEMORIZATION,114,231 def,116,231 MERGING,114,231 def,114,231 MODEL,191,246 def,185,203,101,229 def,101,229 MODULE def,207,157,240 def,168,79,225 def,79,225 NODE,185,244 def,185,208,245,250 OPERATOR,203 def,203 OUTPUTS,193,246 def,193,136,138,140,168,169,236,237,242,243 def,135,236 PARAMETERS,193,246 def,193,175,243 def,175,175,244 def,175,244 PRAGMA,198,248 def,199,199,248 def,199,248 PROCEDURE,185 def,185,245 PROCESS,185,244 def,185,208,245,195,247 def,195,247 PRODUCTION,101,229 def,101,157,240 def,169,243 REFERENCES,191,246 def,192,246 RELATION,127,234 def,128,79,191,193,225,246 def,153,78,88,89,94,95,97,98,100,101,103,104,110,111,[113][114][115][116][117][118][120][121][122][123]125,126,128,[130][131][132]140,141,148,[153][154][155][159][160][161][162][163]165,[167][168][169][174][175][176]196,[225][226][227][228][229][230][231][232][233][234][235][237][238][239][240][241][242][243][244]157,def,174,120,232 def,120,78,[87][88][89][90][91]100,207,[225][226][227][228]249 def,71,86,223,226 SIGNALS,196,247 def,196,109,230 def,110,79,195,225,247 def,195,157,240 def,163,241 TRANSPOSITION,157,240 def,176,153,def,153,153,238 def,154,71,223 def,79,87,226 def,87 VARIABLE,114,231 def,117,232 WINDOW,109,230 def,111,230 Terminal action,28,185,204,206,208,245,[248][249][250]28,118,232 and,28,126,234 array,28,168,242 assert,28,145,148,238 automaton,185,204,206,245,248,boolean,28,72,224

1

 1 Dimensions of arrays and bounded values . IX-2 Constant expressions . IX-3 Enumeration . IX-4 Concatenation . IX-5 Repetition . IX-6 Definition of index . IX-7 Array element . IX-7.1 Access without recovery . IX-7.2 Access with recovery . IX-8 Extraction of sub-array . IX-9 Array restructuration . IX-10 Generalized indices . IX-11 Extended syntax of equations of definition . IX-12 Cartesian product . IX-13 Iterations of processes .

 . XI-3 Declarations of labels . XI-4 References to signals with extended visibility . XI-5 Interface of a model . XI-6 Graph of a model . XI-6.1 Specification of properties . XI-6.2 Dependences . XI-7 Directives . XI-8 Models as types and parameters . XII Modules XII-1 Declaration and use of modules . XIII Intrinsic processes XIII-1 Minimal clock . XIII-2 Affine transformations . XIII-3 "Left true" process . XIII-4 Mathematical functions . XIII-5 Complex functions . XIII-6 Input-output functions .

 are rewritings of the variable STRUCTURE (respectively, of the variable Terminal). SET1, SET2 are rewritings of the variable terminal; they are Derivations reduced to one single element (cf. below).

1 .

 1 Context-free syntax character ::= name-char | mark | delimitor | separator | other-character (i) The set name-char of characters used to build identifiers: (a) Context-free syntax name-char ::= letter-char | numeral-char | _ letter-char ::= upper-case-letter-char | lower-case-letter-char | other-letter-char

.

 separating character in real constants and distinctive character of matrix products | ' start and end of character constants | " start and end of strings | % start and end of comments | : character used in the definition symbol | = equality sign | < inferior sign | > superior sign and end of the dependency arrow | + positive and additive sign |negative and subtractive sign, and dash of the dependency arrow | * product sign | / division sign, mark of difference, and sign of confining | @ construction of complex | $ delay sign | clock sign | # exclusion sign | | composition symbol (iii) The delimitors are terminals of the syntactic level built with other characters than letters and numerals: (a) Context-free syntax delimitor ::= (|) parenthesizing, tuple delimitors | { | } parameter delimitors, dependencies parenthesizing | [|] array delimitors | ? input delimitor | ! output delimitor | , separation of units | ; end of units (iv) The separators given here in their ASCII hexadecimal code (the space character and the longseparators are distinguished) : (a) Context-free syntax separator ::= \x20 space | long-separator long-separator ::= \x9 horizontal tabulation | \xA new line | \xC new page | \xD carriage return

1 .

 1 Context-free syntax CharacterCode ::= OctalCode | HexadecimalCode | escape-code OctalCode ::= \ octal-char [octal-char [octal-char]] octal-char ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 HexadecimalCode ::= \x hexadecimal-char [hexadecimal-char] hexadecimal-char ::= numeral-char | A | B | C | D | E | F | a | b | c | d | e | f escape-code ::= \a audible signal double quote | \' single quote | \? question mark | \% percent

1 .

 1 Context-free syntax Name ::= begin-name-char [{ name-char } +] begin-name-char ::= { name-char \ numeral-char } 2. Examples (a) a and A are distinct Names. (b) X_25, The_password_12Xs3 are Names.

1 .

 1 Context-free syntax Boolean-cst ::= true | false

1 .

 1 Context-free syntax Real-cst ::= Simple-precision-real-cst | Double-precision-real-cst Simple-precision-real-cst ::= Integer-cst Simple-precision-exponent | Integer-cst . Integer-cst [Simple-precision-exponent] (a Simple-precision-real-cst may have an exponent) Double-precision-real-cst ::= Integer-cst Double-precision-exponent | Integer-cst . Integer-cst Double-precision-exponent (a Double-precision-real-cst must have an exponent) Simple-precision-exponent ::= e Relative-cst | E Relative-cst Double-precision-exponent ::= d Relative-cst | D Relative-cst Relative-cst ::= Integer-cst | + Integer-cst | -Integer-cst 2. Examples (a) The notations contained in the following tables are simple precision representations respectively equivalent to the unit value and to the centesimal part of the unit. 0.001e1 0.001e+1 1.0e-2

1 .

 1 Context-free syntax Character-cst ::= ' Character-cstCharacter ' Character-cstCharacter ::= { Character \ character-spec-char } character-spec-char ::= ' | long-separator II-2.6 String constant value A String-cst value is composed of a list of sequences of characters surrounded by two occurrences of the character " (list of substrings). 1. Context-free syntax String-cst ::= { " [{ String-cstCharacter } +] " } + String-cstCharacter ::= { Character \ string-spec-char } string-spec-char ::= " | long-separator

 . . . , I m are signals of type integer, the term Y :=: X[I 1 ,. . . ,I m]

 JJ) :=: ≪I,J≫ defines a monochronous tuple of signals, (II, JJ), with II and JJ of respective types τ (II) = [0..m * n -1] → µ and τ (JJ) = [0..m * n -1] → ν, such that:

 Remark: ≪I 1 ,. . . ,I m ≫ = ≪I 1 ,≪I 2 ,. . . ,I m ≫≫ Partial definition of array The term Y :=: (I 1 , . . . , I n) : X where I 1 , . . . , I n are integers or arrays of integers: τ (I 1) = . . . = τ (I n) = ([0..b 1] × . . . × [0..b p]) → ν with ν an integer type, and the basic integer values of the I i are positive or zero, τ (X) = ([0..c 1] × . . . × [0..c p]) → µ with c 1 ≥ b 1 , . . . , c p ≥ b p , and τ (Y) = ([0..a 1] × . . . × [0..a n]) → µ ∪ {nil} with for 1

 . . = τ (a n) = boolean: b :=: f (a 1 , . . . , a n) → b :=: f (a 1 , . . . , a n) else: b :=: f (a 1 , . . . , a n) → b = a 1 = . . . = a n • Clock: b :=: a → b :=: a • Delay: if τ (b) = boolean : b :=: a $ init v → b :=: a $ init v else: b :=: a $ init v → b = a 1-b Polychronous definitions • Extraction: if τ (b) = boolean : b :=: a 1 when a 2 → b :=: a 1 when a 2 else: b :=: a 1 when a 2 → b = a 1 when a 2 • Merging: if τ (b) = boolean : b :=: a 1 default a 2 → b :=: a 1 default a 2 else: b :=: a 1 default a 2 → b = a 1 default a 2 1-c Hiding Clock (P where a) = Clock (P) where a 1-d Composition

Figure B-IV. 1 :

 1 Figure B-IV.1: Formal meaning of the dependence statement

••

 B-IV.1. In the figure, the clock equations in states can be read as follows: y 2 (c + c 2) = 0 means "absent(y) ∨ (absent(c) ∨ c = false)" (at the considered instant); y 2 = 0 means "absent(y)"; c + c 2 = 0 means "(absent(c) ∨ c = false)". This figure describes a non deterministic automaton which represents the legal schedulings of calculi in one instant as conform with statement y c -→ x. States of the automaton are made of dependence graphs and clock equations. Clock equations can be represented as equations in F 3 . Transitions are labelled by signals (y, c, x), or by the empty word ε. A transition labelled by y reads: "signal y occurs, with any legal value". A transition labelled by c(1) (respectively, c(-1))

2 ❀ s 3 ∈

 23 is the set of transitions, m 1 is the label of the transition), and s 2 m Γ, and . . . and s n mn ❀ s n+1 ∈ Γ, then:

Figure

 Figure B-IV.2: Micro automaton of x :=: y $ init v

1 .

 1 Context-free syntax SIGNAL-TYPE ::= Scalar-type | External-type | ENUMERATED-TYPE | ARRAY-TYPE | TUPLE-TYPE

1 .

 1 Context-free syntax Scalar-type ::= Synchronization-type | Numeric-type | Alphabetic-type Numeric-type ::= Integer-type | Real-type | Complex-type Alphabetic-type ::= char τ (event) = event (b) τ (boolean) = boolean

 τ (string) = string

1 .

 1 Context-free syntax ENUMERATED-TYPE ::= enum (Name-enum-value { , Name-enum-value } *) 2. Types (a) The type of the enumerated type is:

 color#orange and fruit#orange designate two different enumerated values (of two different types) with the same name.

1 .

 1 Context-free syntax ARRAY-TYPE ::= [S-EXPR { , S-EXPR } *] SIGNAL-TYPE 2. Types (a) The elaborated values of n 1 (ϕ(n 1)), . . . , n m (ϕ(n m)) are strictly positive integers. (b) The type of the array is:

3 .

 3 Clocks The integers n i must be constant expressions.

 The types [n 1 , n 2]ν and [n 1] [n 2]ν are the same.5. Examples(a)[10,10] integer is a two dimensions integer array (the bounds of the array begin implicitly at index 0 in each dimension).(b)[n] pointer is a vector of values of external type pointer.

1 .

 1 Context-free syntax TUPLE-TYPE ::= struct (NAMED-FIELDS) | bundle (NAMED-FIELDS) [SPECIFICATION-OF-PROPERTIES] NAMED-FIELDS ::= { S-DECLARATION } + 2. Types (a) From the point of view of the domains of associated values, the polychronous or monochronous tuple types with named fields are designated in the same way in this document. The domain is a non associative product (i.e., preserving the structuring) of typed named fields.

(

 (a) struct (integer X1, X2;) is a tuple of two synchronous integers. (b) bundle (integer A; boolean B;) spec (| A # B |) defines a union of types as a tuple the fields of which are mutually exclusive.

 short denotes the type short integer denotes the type integer long denotes the type long Real-type real denotes the type real dreal denotes the type dreal Complex-type complex denotes the type complex dcomplex denotes the type dcomplex Alphabetic-type char denotes the type character string denotes the type string External-type Name-type Generic form of the external types: name ENUMERATED-TYPE enum (Name-enum-value { , Name-enum-value } *) Generic form of the enumerated types: A × {a 1 , . . . , a m } ARRAY-TYPE [S-EXPR { , S-EXPR } *] SIGNAL-TYPE Generic form of the array types:

1 :

 1 Figure C-V.1: Order and conversions on scalar and external types

A 1 .

 1 Context-free syntax SIGNAL-TYPE ::= Name-type 2. Types (a) The type designated by a Name-type A is the type associated with A in the declaration of the type A. Declarations of types type A = µ; or type A = external; or type A; DECLARATION-OF-TYPES ::= type DEFINITION-OF-TYPE { , DEFINITION-OF-TYPE } * ; DEFINITION-OF-TYPE ::= Name-type | Name-type = DESCRIPTION-OF-TYPE DESCRIPTION-OF-TYPE ::= SIGNAL-TYPE | EXTERNAL-NOTATION [TYPE-INITIAL-VALUE] TYPE-INITIAL-VALUE ::= init Name-constant 2. Types (a) The declaration type A = µ; defines the type A as being equal to the type µ: τ (A) = τ (µ) (b) The declaration type A = external; specifies the type A as an externally defined type.

1 .

 1 Context-free syntax DECLARATION-OF-CONSTANTS ::= constant SIGNAL-TYPE DEFINITION-OF-CONSTANT { , DEFINITION-OF-CONSTANT } * ; DEFINITION-OF-CONSTANT ::= Name-constant | Name-constant = DESCRIPTION-OF-CONSTANT DESCRIPTION-OF-CONSTANT ::

 a) The declaration constant real PI = 3.14; defines the identifier PI of type real and with value ϕ(3.14). (b) The declaration constant [2,2] real UNIT = [[1.0,0.0],[0.0,1.0]]; defines the identifier UNIT as a unit real matrix. (c) The declaration constant RECTANGLE BASE;

1 .

 1 Context-free syntax S-DECLARATION ::= SIGNAL-TYPE DEFINITION-OF-SEQUENCE { , DEFINITION-OF-SEQUENCE } * ; DEFINITION-OF-SEQUENCE ::= Name-signal | Name-signal init S-EXPR 2. Types (a) The declared names must be mutually distinct. The same type τ (µ) is given to the identifiers ID 1 , . . . , ID n in the context of the declaration.

1 .

 1 Context-free syntax DECLARATION-OF-SHARED-VARIABLES ::= shared SIGNAL-TYPE DEFINITION-OF-SEQUENCE { , DEFINITION-OF-SEQUENCE } * ; 2. Types (a) The declared names must be mutually distinct. The same type τ (µ) is given to the identifiers ID 1 , . . . , ID n in the context of the declaration.

1 .

 1 Context-free syntax DECLARATION-OF-STATE-VARIABLES ::= statevar SIGNAL-TYPE DEFINITION-OF-SEQUENCE { , DEFINITION-OF-SEQUENCE } * ; 2. Types (a) The declared names must be mutually distinct. The same type τ (µ) is given to the identifiers ID 1 , . . . , ID n in the context of the declaration.

A

 definition of signals allows to define a signal or a set of signals with the syntax given below. A definition of signals is an expression of processes.

1 .

 1 E -→ X 8. Examples (a) if x, y, z designate signals: x := y + z defines the signal designated by x, equal to the sum of the signals designated respectively by y and z; this expression has as inputs y and z and as output x.1-b Equation of multiple definition of signals (X 1 ,. . . ,X n) := E Context-free syntax DEFINITION-OF-SIGNALS ::= (Name-signal { , Name-signal } *) := S-EXPR

 a) if x, y, z, a designate signals and P a model with one formal parameter, one input and three outputs: (x,y,z) := P{n}(a+5) defines the signals designated by x, y and z, equal respectively to the first, second and third output of the model P instantiated with the parameter n and taking a t +5 as input at each occurrence of a; this expression has as input a and as outputs x, y and z; (b) if w, v, b also designate signals: (w,x,y,z,v) := (a,P{n}(a+5),b) defines the signals w, x, y, z and v, equal respectively to the signal a, to the first, the second and the third output of the process P, and to the signal b; this expression has as inputs a and b and as outputs w, x, y, z and v; it is equivalent to the composition (| (w,v) := (a,b) | (x,y,z) := P{n}(a+5) |); (c) if x designates a tuple with named fields whose fields are respectively x1 and x2, and a, b designate signals: (a,b) := (x.x1,x.x2) defines the signals a and b equal respectively to the first and the second component of the tuple x; (d) if x designates a tuple with named fields and a, b designate signals: x := (a,b) defines the tuple x the components of which are respectively equal to the signals a and b.

X

 ::= E X ::= defaultvalue E 1. Context-free syntax DEFINITION-OF-SIGNALS ::= Name-signal ::= S-EXPR | Name-signal ::= defaultvalue S-EXPR

(X 1

 1 ,. . . ,X n) ::= E (X 1 ,. . . ,X n) ::= defaultvalue E 1. Context-free syntax DEFINITION-OF-SIGNALS ::= (Name-signal { , Name-signal } *) ::= S-EXPR | (Name-signal { , Name-signal } *) ::= defaultvalue S-EXPR

 P{V 1 ,. . . ,V m }) is equal to the set of the names of the outputs of the visible declaration of P , let {Y 1 , . . . , Y q }.

 (a) Let, in this order, P 1 , . . . , P l be the names of the formal parameters of the visible declaration of P . (b) The actual parameters (S-EXPR-PARAMETER) of the invocation of the model must correspond positionally to the formal parameters of the declaration of the model (cf. part E, section p. 193 et seq.). In particular, to the parameter types can only correspond types (SIGNAL-TYPE), and to the "constant sequences" parameters can only correspond expressions on sequences (S-EXPR).

1 .

 1 Context-free syntax INSTANCE-OF-PROCESS ::= PRODUCTION PRODUCTION ::= MODEL-REFERENCE (S-EXPR { , S-EXPR } *) MODEL-REFERENCE ::= EXPANSION | Name-model 2. Profile • ! (P {V 1 ,. . . ,V m }(E 1 ,. . . ,E n)) is equal to the set of the names of the outputs of the visible declaration of P , let {Y 1 , . . . , Y q }.

 integer(3.14) has the value 3.

 The tables C-VI.3 and C-VI.4 contain a sum- mary of the properties of expressions on signals. In these tables:

 [a] for types belonging to the same domain[b] for Op = or / = [c] for Op <= or >= or < or >, a partial order being defined in the type compar[d] matrix products [e] cmplx 1 is of type complex if both arguments are of type real , it is of type dcomplex otherwise [f] for any 2 ⊑ any 1 [g] Iterative enumeration [h] Conversion [i] τ (Id) is the type of the declaration of the signal identifier Id int i is an integer type (i.e., among short , integer , long)

 Dynamic expressions allow the handling of values of signals having distinct dates. They require the definition of the value of the signals at their initial instants. 1. Context-free syntax S-EXPR-DYNAMIC ::=

 E is a signal of any type.(b) I is a positive or equal to zero integer, with an upper bound.

 (a) The values taken by y for y defined by y := x $ 3 init [-2,-1,0] are described below for the corresponding values of x in input: The values taken by y for y defined by y := x $ i init [-2,-1,0] are described below for the corresponding values of x and i in input:

 τ (E 1) and τ (E 2) are signals of a same domain. (b)

 a) the values taken by Y defined by Y := E1 default E2 are described below for the corresponding values of E1 and E2 in input: E1 = 1 3 ⊥ 5 7 . . . E2 = 2 4 6 ⊥ 8 . . . Y = 1 3 6 5 7 . . .

 E is a signal of any type.

(

1 .

 1 Context-free syntax MEMORIZATION ::= S-EXPR cell S-EXPR [init S-EXPR]2. Types(a) E is a signal of any type.

(

 E is a signal of any type.

(

1 .

 1 Context-free syntax COUNTER ::= S-EXPR after S-EXPR | S-EXPR from S-EXPR | S-EXPR count S-EXPR 2. Types

(

E 3 .

 3 The clock of a signal (of any type) is obtained by applying the operator to this signal. E is a signal of any type. (b) τ (E) = event Definition in SIGNAL E == E Remark: this definition uses the operator of relation == defined on any type (cf. section VI-7.2, p. 127 et seq.).

 the values taken by X are described below for the corresponding values of X in input: expression E and the conversion event (E) have the same result.

 The extraction of the true values of a Boolean condition are obtained by applying the operator unary when on the condition; the extraction of the false values of a Boolean condition are obtained by applying the operator unary when on the negation of the condition:

3 . 4 .

 34 (a) τ (B) ⊑ boolean (b) τ (when B) = event Definition in SIGNAL when B, or equivalently [:B], is equal to: B when B Definition in SIGNAL [/:B] is equal to: B when not B 5. Clocks(a) ω(when B) = ω(B) * (-1 -B) (b) ω([:B]) = ω(B) * (-1 -B) (c) ω([/:B]) = ω(B) * (1 -B) 6. Examples(a) the values taken by [:C] (or when C) and [/:C] are described below for the corresponding values of C in input: C = T T F F T . . . when C = [:C] = T T ⊥ ⊥ T . . . [/:C] = ⊥ ⊥ T T ⊥ . . .

3 .

 3 Definition in SIGNAL 0 is the lexical expression of the empty clock; it is equal to the solution of the following equation: when not (0) E 1 and E 2 are signals of any types.

(

4 .

 4 arguments E i are signals of any types, possibly distinct. Definition in SIGNAL E 1 Op E 2 Op EE (where Op is one of the operators =, <, > and #, and where EE is an expression on clocks or recursively a relation on clocks), builds the composition of the expressions E i Op E j , for any pair of distinct indices i and j, and thus expresses the conjunction of the associated relations.

VI

 the mutual exclusion of the clocks of the expressions on signals E 1 and E 2 ; hence ω(E 1) * ω(E 2) = 0. This expression is equal to the process with no output defined as follows:0 = E 1 * E 2Identity equations are expressions on processes describing equality constraints between the sequences of values (and clocks) of two expressions. 1. Context-free syntax CONSTRAINT ::= S-EXPR :=: S-EXPR

E 1 E 2 1 .

 11 Op Context-free syntax S-EXPR-BOOLEAN ::= S-EXPR or S-EXPR | S-EXPR and S-EXPR | S-EXPR xor S-EXPR 2. Types

(

 = S-EXPR | S-EXPR / = S-EXPR | S-EXPR > S-EXPR | S-EXPR >= S-EXPR | S-EXPR < S-EXPR | S-EXPR <= S-EXPR | S-EXPR == S-EXPR | S-EXPR <<= S-EXPR 2. Types

E 1 E 2 1 .

 11 Op Context-free syntax S-EXPR-ARITHMETIC ::= S-EXPR + S-EXPR | S-EXPR -S-EXPR | S-EXPR * S-EXPR | S-EXPR / S-EXPR | S-EXPR modulo S-EXPR | S-EXPR * * S-EXPR | DENOTATION-OF-COMPLEX

1 .

 1 Context-free syntax S-EXPR-CONDITION ::= if S-EXPR then S-EXPR else S-EXPR 2. Types (a) τ (B) ⊑ boolean (b) E 1 and E 2 are signals of a same domain Scalar-type, External-type or ENUMERATED-TYPE.

1 .

 1 Context-free syntax CONFINED-PROCESS ::= GENERAL-PROCESS DECLARATION-BLOCK DECLARATION-BLOCK ::= where { DECLARATION } + end The DECLARATIONs are local to the CONFINED-PROCESS; they are described in part E, section XI-2, p. 191 et seq. (chapter "Models of processes").

XX :: P 1 .

 1 Context-free syntax LABELLED-PROCESS ::= Label :: P-EXPR

1 .

 1 Context-free syntax GUARDED-PROCESS ::= on S-EXPR :: P-EXPR | on Label :: P-EXPR

1 .

 1 Context-free syntax CHOICE-PROCESS ::= case S-EXPR in { CASE } + [ELSE-CASE] end CASE ::= ENUMERATION-OF-VALUES : GENERAL-PROCESS ELSE-CASE ::= else GENERAL-PROCESS ENUMERATION-OF-VALUES ::= { S-EXPR { , S-EXPR } * } | [. [S-EXPR] , [S-EXPR] .] | [. [S-EXPR] , [S-EXPR] [. | .] [S-EXPR] , [S-EXPR] .] | .] [S-EXPR] , [S-EXPR] [.

 183 et seq., and part E, chapter XII, p. 207 et seq.): module P_statechart = type P_states = enum (Q, R, S); type Q1_states = enum (U, V); type Q2_states = enum (X, Y, Z); : (| P_nextState ::= (#R when a) default (#S when b) |) {#R}: (| P_nextState ::= #S when b |) {#S}: (| P_nextState ::= #Q when a |) end | P_nextState ::= defaultvalue P_currentState | P_currentState := P_nextState $ init #Q | P_currentState ^= Tick |) | clk_Q_chart := when (P_currentState = #Q) | start_Q_chart := when (P_nextState = #Q) when (P_currentState /= #Q) | Q1_State ^= Q2_State ^= clk_Q_chart ^+ start_Q_chart | (| case Q1_State in {#U}: (| Q1_newState ::= #V when i |) {#V}: (| Q1_newState ::= #U when j

 | P_currentState := P_State? when Tick | case P_currentState in {#Q}: (| P_State ::= (#R when a) default (#S when b) |) {#R}: (| P_State ::= #S when b |) {#S}: (| P_State ::= #Q when a | : (| Q2_State ::= #Y when m |) {#Y}: (| Q2_State ::= #Z when n |) {#Z}: (| Q2_State ::= #X when j |

 := affine_sample {phi1, n1} (e) | s2 := affine_sample {phi2, n2} (e) | s3 := affine_sample {phi3, n3} (s2) | s := s1 + s3 | (| b := ^s1 default not (s1 ^+ s3) | bb := ^s3 default not (s1 ^+ s3) | assert ((b = bb) when (n2 * phi3+phi2 = phi1) when (n1 = n2 * n3))An expression of tuple is an enumeration of elements of tuple, or a designation of field. 1. Context-free syntax S-EXPR-TUPLE ::= TUPLE-ENUMERATION | TUPLE-FIELD

1 .

 1 Context-free syntax ARRAY-ELEMENT ::= S-EXPR [S-EXPR { , S-EXPR } *] | S-EXPR [S-EXPR { , S-EXPR } *] ARRAY-RECOVERY ARRAY-RECOVERY ::= \\ S-EXPR IX-7.1 Access without recovery T [E 1 , . . . , E m] 1. Profile ? (T [E 1 , . . . , E m]) = ? (T) ∪ m i=1

 (a) τ (I 1) = . . . = τ (I n) = ([0..b 1] × . . . × [0..b p]) → ν with ν an integer type, and the basic integer values of the I i are positive or zero. (b) More generally, the list of indices I 1 , . . . , I n can be specified by any expression denoting a function ([0..b 1] × . . . × [0..b p]) → ν n (with ν an integer type).

 (c) τ (T) = ([0..a 1] × . . . × [0..a n]) → µ (µ can be an array type).(d) τ (T [I 1 , . . . , I n]) = ([0..b 1] × . . . × [0..b p]) → µ 3. Semantics T [I 1 , .. . , I n] extracts some sub-array from T . The semantics is described formally in part B, section III-7.2, p. 46 et seq. (non defined values, represented by nil in the semantics, are any values of correct type).

 generally, the tuple of indices (I 1 ,. . . ,I n) can be specified by any expression denoting a function ([0..b 1] × . . . × [0..b p]) → ν n (with ν an integer type). • τ (S) = ([0..c 1] × . . . × [0..c p]) → µ with c 1 ≥ b 1 , . . . , c p ≥ b p • τ ((I 1 ,. . . ,I m) : S) = ([0..a 1] × . . . × [0..a n]) → µ with for 1 ≤ i ≤ n, a i = max K∈Dom(I i) I i (K) 3. Semantics (I 1 ,. . . ,I n) : S specifies a partial definition of array, using the coordinate points defined by the tuple of "generalized indices" (I 1 , . . . , I n) and the values of S obtained by skimming through these coordinates. The semantics is described formally in part B, section III-7.2, p. 46 et seq. (non defined values, represented by nil in the semantics, are any values of correct type). Let T be the array defined by the expression (I 1 ,. . . ,I n) : S. If the indices I 1 , . . . , I n are such that they allow to scan exactly the array T (each position is visited only once using these indices), then the restructuration T := (I 1 ,. . . ,I n) : S defines the array T such that the extraction of sub-array T [I 1 , . . . , I n] (cf. section IX-8, p. 163 et seq.) is equal to S.

 (a) ω(I 1) = ω(S),. . . , ω(I n) = ω(S) (b) ω((I 1 ,...,I n) : S) = ω(S) [any,any,1].where any represents any well-typed value (nil in the semantics).Its type is [0..2] → integer since the maximal value of 2 is 2. (b) (1,2) : 3 is a matrix [[any,any,any],[any,any,3]]. Its type is ([0..1] × [0..2]) → integer .

 indices(a 1 ,. . . ,a n) Let the expression indices(a 1 ,. . . ,a n) define jointly n indices I 1 , . . . , I n : (I 1 ,. . . ,I n) := indices(a 1 ,. . . ,a n) 1. Types (a) The elaborated values of a 1 (ϕ(a 1)), . . . , a n (ϕ(a n)) are strictly positive integers. (b) For all j = 1, . . . , n,

.

 Definition in SIGNAL (I 1 ,. . . ,I n) := indices(a 1 ,. . . ,a n) may be obtained by the process defined as follows: (| (II 1 ,...,II n) := ≪0..a 1 -1,...,0..a n -1≫ | iterate (II 1 ,...,II n) of (I 1 [II 1 ,...,II n], ..., I n [II 1 ,...,II n]) := (II 1 , ..., II n) end |) / II 1 , ..., II n (cf. section IX-12, p. 168 and section IX-13, p. 168 et seq.).

 ω(a 1) = , . . . , ω(a n) = (b) ω(indices(a 1 , . . . , a n)) = 5. Examples (a) if M is a 4 × 5 matrix, then M[indices(3,4)] is the 3 × 4 submatrix of M that contains the three first lines and the four first columns of the matrix M. 1 extends the syntax of DEFINITION-OF-SIGNALS given in VIII-5, page 155: 1. Context-free syntax DEFINITION-OF-SIGNALS ::= DEFINED-ELEMENT := S-EXPR | DEFINED-ELEMENT ::= S-EXPR | DEFINED-ELEMENT ::= defaultvalue S-EXPR | (DEFINED-ELEMENT { , DEFINED-ELEMENT } *) := S-EXPR | (DEFINED-ELEMENT { , DEFINED-ELEMENT } *) ::= S-EXPR | (DEFINED-ELEMENT { , DEFINED-ELEMENT } *) ::= defaultvalue S-EXPR DEFINED-ELEMENT ::= COMPONENT | COMPONENT [S-EXPR { , S-EXPR } *] An equation X[I 1 ,. . . ,I m] := E is another way to write: X := (I 1 ,. . . ,I m) : E

≪I 1 ,

 1 . . . , I n ≫ 1. Context-free syntax MULTI-INDEX ::= << S-EXPR { , S-EXPR } * >> 2. Types (a) ∀k, τ (

 (a) ω(I 1) = . . . = ω(I n) (b) Each one of the defined II k has the same clock as I k . ITERATION-OF-PROCESSES ::= array ARRAY-INDEX of P-EXPR [ITERATION-INIT] end | iterate ITERATION-INDEX of P-EXPR [ITERATION-INIT] end and in P : X[f (I 1 , . . . , I p)] := k(X[?][h(I 1 ,. . . ,I p)], Y [g(I 1 ,. . . ,I p)], . . .)(X, Y represent any variable-Y may be Xdefined in the iteration, the functions f , g, h, u. . . on indexes can represent tuples. . . ; note that besides the representation of the iteration in an added dimension for the signals, each defined element has several definitions along the iteration.)

 . , I p)] := k(X[?][h(I 1 ,. . . ,I p)], Y [g(I 1 ,. . . ,I p)], . . .) is rewritten as the composition of equations: ∀l = 0, . . . , m -1, -XX[l][f (I 1 [l], . . . , I p [l])] := k(XX[l -1][h(I 1 [l], . . . , I p [l])], Y Y [l][g(I 1 [l], . . . , I p [l])], . . .) -∀j = f (I 1 [l], . . . , I p [l]), XX[l][j] := XX[l -1][j]

 | I := 0..N | iterate I of P with P init end |) / I Examples • array I to N-1 of array J to N-1 of U[I,J] := if I=J then 1 else 0 end end defines U as a unit matrix. • array I to N-1 of array J to N-1 of T[I,J] := if J>=I then I+J else 0 end end defines T as a triangular matrix. • array I to N-1 of D[I] := M[I,I] end defines D as a vector equal to the diagonal of matrix M. • array I to N-1 of T[I] := if I=K then A else (T$)[I] end defines the vector T which at each instant keeps the values it had at the previous instant, except in K where it takes the values of A (K and A can be signals). • array I to N-1 of V[I] := T[I] + V[?][I-1]\\0 end defines the vector V in which each element, of index i, contains the sum of the first i elements of a vector T. • array I to N-1 of R := op(T[I],R[?]) with R := v0 end defines in R the scalar obtained by the reduction of the vector T by the operator op (v0 is the initial value). • array I to N-1 of Y[I] := FILTER(Y[?][I-1]\\X) end defines a cascade of N processes FILTER connected in series.

 of the element ELEM in an unsorted TABLE.

•

 et seq.): function fulladd = (? boolean cin, x, y; ! boolean cout, s;) (| s := x xor y xor cin | cout := (x and y) or (y and cin) or (cin and x) |) ; then the following model of function defines an unsigned byte adder: Using the model of function exchg: function exchg = (? integer a, v; ! integer aa, w;) (| aa := v | w := a |) ; then the following model of function defines in W a circular permutation of V: function Rotate = { integer n; } (? [n] integer V; ! [n] integer W;) (| array i to n-1 of (aa, W[i]) := exchg (aa[?], V[i]) with aa := V[n-1] end |) where integer aa; ... end ; • The following model of function sorts the vector A in increasing order in T: function Sort = { integer n; } (? [n] integer A; ! [n] integer T;) (| array j to n-2 of array i to (n-2)-j of (| T := T[?] next (i : if T[?][i] > T[?][i+1] then T[?][i+1] else T[?][i]) next (i+1 : if T[?][i] > T[?][i+1] then T[?][i] else T[?][i+1]expression is defined in section IX-14, p. 174).It can be written as follows, using iterate: function Sort = { integer n; } (? [n] integer A; ! [n] integer T

 . , c p ≥ b p and µ 1 and µ 2 are comparable types (T 1 and T 2 are, in the general case, arrays with the same number of dimensions, but on each of them, T 2 may be smaller than T 1)(c) τ (T 1 next T 2) = ([0..c 1] × . . . × [0..c p]) → µ 1 ⊔ µ 2

 ITERATION { , PARTIAL-ITERATION } * : DEFINITION-OF-ELEMENT | { PARTIAL-ITERATION { , PARTIAL-ITERATION } * : S-EXPR PARTIAL-ITERATION ::= [Name] [in S-EXPR] [to S-EXPR] [step S-EXPR] Let us consider the following definition of an array T by sequential enumeration: T := [D 1 ,. . . ,D m] (note: this is not an enumeration such as described in section IX-3, p. 159). This definition is equivalent to: T := D 1 next . . . next D m where D 1 should be a complete definition of the array. Let us now consider the following general form of a given D k (the typing rules for lower bounds, upper bounds and steps are those of section IX-6, p. 161): {i 1 in b 1 to c 1 step d 1 ,. . . ,i p in b p to c p step d p } : [f (i 1 , . . . , i p)] : E

(

1 .

 1 Context-free syntax ARRAY-PRODUCT ::= S-EXPR * . S-EXPR

 x := a or x -(| x := a default ((x$1 init 0)+1) | b:= x when b |)/x

 A process (described by a model of process) belongs to the most general class of processes.

 endochronous processes (cf. part B, section III-8.2, p. 52).

1 .

 1 Context-free syntax DECLARATION-OF-LABELS ::= label Name-label { , Name-label } * ;

 ref Name-signal { , Name-signal } * ;

 S-DECLARATION } +] OUTPUTS ::= ! [{ S-DECLARATION } +]

 -> S2 |) allows to sequentialize the actions ERASE and DISPLAY.

PR

 {X 1 ,...,X n } "Y Y Y " 1. Context-free syntax DIRECTIVES ::= pragmas { PRAGMA } + end pragmas

 The declaration type process T = I; defines the model type with name T as being equal to the interface of process model I. Let us denote this equality: τ (T) = interface process (I) (b) When a named interface (model type) is used for a process model declaration, both classes of process models (function, node, action or process) must be coherent.

 the declarations type process A = I; and type process B = I; then τ (A) = τ (B) = interface process (I). Some implementations may not ensure this property. On the opposite, the declarations type process A = I; and type function B = I; (for instance) define distinct model types. 5. Examples (a) type process T = (? integer a; ! integer b;); declares the process model type T. (b) type process TT = T; declares the process model type TT which is equal to T. (c) process PP = T (| ...|); declares the process model PP with its interface specified by T.

1 .

 1 Context-free syntax FORMAL-PARAMETER ::= -MODULES ::= use IMPORTED-OBJECTS { , IMPORTED-OBJECTS } * ; IMPORTED-OBJECTS ::= Name-module

2.

 Define the clock c 2 as the set of instants {dt + φ|t ∈ c ′ }, with c ′ = {t|t ∈ II N}: in other words, counting every d instant, starting with the instant φ of c ′ (or with the first instant of c ′ when φ is negative). Clocks c 1 and c 2 are then said to be in an (n, φ, d)-affine relation: c 1 R P (n,φ,d) c 2 . It can be expressed as follows: clocks c 1 and c 2 are in an (n, φ, d)-affine relation if there exists a clock c ′ such that c 1 and c 2 can be respectively expressed using the affine functions λ.(nt+φ 1) and λ.(dt+φ 2), with φ 2φ 1 = φ, with respect to the time indices of c ′ : c ′ = {t|t ∈ II N}, c 1 = {nt + φ 1 |t ∈ c ′ }, c 2 = {dt + φ 2 |t ∈ c ′ }.

 ω(y) = [ω(x)] (ϕ(phi),ϕ(d))

 Rules of extension .. X-2 Examples . Classes of process models . XI-1.1 Processes . XI-1.2 Actions . XI-1.3 Procedures . XI-1.4 Nodes . XI-1.5 Functions . XI-1.6 Automata . XI-2 Local declarations of a process model .

	X	Extensions of the operators
		X-1
	E THE MODULARITY
	XI	Models of processes
		XI-1

Matrix products . 2-a Product of matrices . 2-b Matrix-vector product . 2-c Vector-matrix product . 2-d Scalar product .

 Characters .. . XIV-1.2 Vocabulary . XIV-2 Domains of values of the signals .

XIV-2.1 Scalar types . XIV-2.2 External types . XIV-2.3 Enumerated types . XIV-2.4 Array types . XIV-2.5 Tuple types .

 | P2 where P1 and P2 belong to PROC}

	(composition process),		
	-PR = {P1 / a	(denoted also	P1 where a)	where P1 belongs to PROC and a
	belongs to A}			
	(restriction process).		

 . . , µ m , m names of variables A 1 , . . . , A m , and a process of synchronization C.

	The term
	bundle (µ 1 A

1 ; . . . ; µ m A m ;) spec C defines a tuple type (with named fields A 1 , . . . , A m) as the set of functions:

 . . ,

. µ km and ..

 (II 1 , . . . , II p , JJ), with, if II designates the tuple (II 1 , . . . , II p), II and JJ of respective types

	.n -1] → ν,
	the term
	(II 1 ,. . . ,II p ,JJ) :=: ≪I,J≫
	defines a monochronous tuple of signals,

 Since the system of clock relations handles only values of Boolean signals, and presence/absence for the other types of signals, there is a natural encoding of these values in the field Z/3Z of integers modulo 3 (or Galois field F 3 with three elements):

	IV-1.3 Clock calculus
	Clock (P 1 | P 2) = Clock (P 1) | Clock (P 2)
	IV-1.2 Verification
	As a consequence, if R is a safety property satisfied by Clock (P),
	which is expressed by R | Clock (P) = Clock (P),
	R is also satisfied by P since P = Clock (P) | P .

 .., ID n ; declares the sequences (signals or parameters) ID 1 , . . . , ID n . If µ designates a polychronous tuple type then the identifiers ID 1 , . . . , ID n designate tuples of signals (and not, strictly speaking, signals); the signals represented by these tuples are, recursively, the fields of the tuples (the fields can be themselves tuples). For example, if µ designates a tuple type with named fields bundle (µ 1 X

1 ; ...; µ m X m ;) ... then each tuple ID i gathers the signals (or, recursively, the tuples of signals) designated by ID i .X 1 , . . . , ID i .X m (cf. part D, section VIII-3, p. 154), which have respectively the types µ 1 , . . . , µ m .

 n, the clock of any expression E i cannot be a context clock: in particular, E i cannot be a constant expression or a direct reference to a state variable. The clock of E n+1 can be a context clock.

 . . , X n designate signals or tuples of signals declared as shared variables, or state variables (only signals or tuples of signals for (X 1 ,. . . ,X n) ::= defaultvalue E)

Table C -

 C VI.1: Syntactic forms of an invocation of modelThe different forms are detailed below.One has to take care that this basic form is used here to describe the semantics of any invocation of model. The composition with the context is made by identity of names. However, this form is not necessarily available as an external form in the language, except if the corresponding model of process does not have inputs.P {V 1 ,. . . ,V m } The static parameters are parenthesized by { and } ; these parameters are types or constant expressions mainly used as initial values of signals or array size. Note that parameters can also be models (cf. part E, section XI-8, p. 204 et seq.).

1. Context-free syntax ELEMENTARY-PROCESS ::= INSTANCE-OF-PROCESS 2-a Macro-expansion of a model

 Definition in SIGNAL P {V 1 ,. . . ,V m }(E 1 ,. . . ,E n) is equal to the process defined below in which {SX i } is a set of signal names that do not belong to the inputs of the expressions E i ()), or to the sets of input or output names of P .(| (SX 1 ,...,SX p) := (E 1 ,...,E n) | (| (X 1 ,...,X p) := (SX 1 ,...,SX p) | P {V 1 ,...,V m } |) / X 1 , ..., X p |) / SX 1 , ..., SX p 6. Clocks The actual parameters of sequences V i must be constant expressions.

	n
	? (E i
	i=1

part E, section

 p. 193 et seq.)

4. Semantics

The form P (E 1 ,. . . ,E n) is used when P has no parameters.

5.

(a) ω(

V i) = 2-c Call of a model (SS 1 ,. . . ,SS r) := P {V 1 ,. . . ,V m }(E 1 ,. . . ,E n) (the form P {V 1 ,. . . ,V m }(E 1 ,.

. . ,E n) is used here generically to represent one of the forms defined in 2-a or in 2-b; moreover, it can also appear as argument of any expression on signals) 1. Context-free syntax S-EXPR ::= INSTANCE-OF-PROCESS 2. Definition in SIGNAL (SS 1 ,. . . ,SS r) := P {V 1 ,. . . ,V m }(E 1 ,. . . ,E n), with the model P having the output signals {Y 1 , . . . , Y q }, is equal to the process defined below in which {SY i } is a set of signal names that do not belong to the inputs of the expressions E i (n i=1

Table C -

 C VI.4: Expressions on signals

Table C -

 C VI.5: Types of the constants E 27

		event
	false	boolean
	Integer-cst	Integer-type following its value
	Simple-precision-real-cst	real
	Double-precision-real-cst	dreal
	Character-cst	character
	String-cst	string

 The signal N counts the number of occurrences of the signal H 1 (o 1) since the last occurrence of the signal H 2 (o 2); but the occurrences o 1 which are simultaneous to occurrences o 2 are not counted.

	| newCount := (1 when H 2 when H 1) default (0 when H 2) default incrCount
	| incrCount := (count_state? + 1) when counting_active? when H 1
	| N := (newCount when H 1) default (0 when H 1)
	|) where
	statevar boolean counting_active init false;
	statevar integer count_state init 0;
	integer newCount, incrCount;
	|) where
	statevar boolean counting_active init false;
	statevar integer count_state init 0;
	integer newCount, incrCount;

| counting_active ::= H 2 | count_state ::= newCount | newCount := (0 when H 2) default incrCount | incrCount := (count_state? + 1) when counting_active? when H 1 | N := (newCount when H 1) default (0 when H 1)

4. Definition in SIGNAL

N := H 1 from H 2 whose right side of := represents an expression of counter of the events H 1 since the reinitialization H 2 , is equal to the process defined as follows:

(| counting_active ::= H 2 | count_state ::= newCount

 E 2 are signals of a same domain, which is any domain.

(c) For E 1 = E 2 and E 1 / = E 2 : E 1 and E 2 are signals of a same domain Scalar-type or ENUMERATED-TYPE. (d) For E 1 <<= E 2 : E 1 and E 2 are signals of a same domain Scalar-type (other than a Complex-type), or of ENUMERATED-TYPE, or of a same type for which the environment defines this operator while respecting the properties enounced in this section. (e) For E 1 > E 2 , E 1 >= E 2 , E 1 < E 2 , and E 1 <= E 2 : E 1 and E 2 are signals of a same domain Scalar-type (other than a Complex-type), or of ENUMERATED-TYPE.

 .., A n 1 ; ...; µ m A 1 , ..., A nm ... end The names A 1 , . . . , A n 1 , . . . , A 1 , . . . , A nm must be mutually distinct. 1. Profile • ? (P where µ 1 A 1 , ..., A n 1 ; ...; µ m A 1 , ..., A nm ... end) = ? (P) • ! (P where µ 1 A 1 , ..., A n 1 ; ...; µ m A 1 , ..., A nm ... end) = ! (P) -{A 1 , . . . , A n 1 , . . . , A 1 , . . . , A A 1 , ..., A n 1 ; ...; µ m A 1 , ..., A nm end are called "local declarations" for P .(a) In this context, the type τ (µ i) is that associated with the signals A 1 , . . . , A n i , in accordance with the rules defined in part C, chapter V, "Domains of values of the signals".3. Definition in SIGNALP / A 1 , ..., A n 1 , ..., A 1 , ..., A nm with, in the context of P , the associations of types defined above.

nm }

2. Types

The expression P where µ 1 A 1 , ..., A n 1 ; ...; µ m A 1 , ..., A nm end establishes a new syntactic context of P . The declarations where µ 1

 .., e ′

n

where P [e

′

1 /e 1 , . . . , e ′ n /e n] represents the process P in which new identifiers e ′ i are substituted to the identifiers e i which are inputs of P . The new identifiers e ′ i are mutually distinct and do not appear elsewhere.

 . . , v m represent respectively the self-corresponding elements in the sequences of values represented by E 1 , . . . , E m , the corresponding element in the sequence represented by

 is used only once by the definition, then T [I 1 , . . . , I n] value is S. (I 1 ,. . . ,I n) : S Types Depending on I 1 , . . . , I n being integers or arrays of integers, one of the following sets of relations on types applies: (a) • For any k, τ (I k) is a positive or null integer, with an upper bound. Let a k this upper bound.

	1. Context-free syntax
	ARRAY-RESTRUCTURATION ::=
	S-EXPR : S-EXPR
	2.

. . ,I n) : S; if the indices are such that each element of S

 .. µ m E m ; ! ν 1 S 1 ; ... ν n S n ;) (to simplify the presentation, we consider that each designation of type qualifies one single name of signal or tuple; the generalization to the case with lists of names is trivial) then • a type is associated with the declared parameters, input signals, and output signals, in a similar way to the association of a type to local signals of a process (cf. part C, chapter VII, "Expressions on processes", p. 135 et seq.), according to the rules defined in the chapter "Domains of values of the signals".

τ (?P) = (τ (µ 1) × . . . × τ (µ m)) τ (!P) = (τ (ν 1) × . . . × τ (ν n)) 3. Semantics A model must have at least one input, or one output, or one communication with non null clock with some external process. The names of parameters, input signals and output signals must be mutually distinct. The declarations of the input signals (INPUTS) and the output signals (OUTPUTS) of a model are declarations of sequences. The declarations of formal parameters (PARAMETERS) can contain declarations of parameter types (DECLARATION-OF-TYPES) and declarations of constant sequences (S-DECLARATION). In particular, the declarations of sequences can contain tuples of parameters or signals. The declaration of a model sets up a context in which:

• the parameter types define formal types, in a way similar to the declarations of types described in part C, chapter V, "Domains of values of the signals", p. 71 et seq.;

Dassault Systèmes. Technopôle Brest-Iroise, 120 rue René Descartes, F-29280 Plouzané, France.

∅ is denoted ε in IV-3.1.

Context-free syntax

not yet implemented in POLYCHRONY: intervals of values.

Definition in SIGNAL

not yet implemented in POLYCHRONY: multiple partial definitions for different elements of an array.

not yet implemented in POLYCHRONY: creation of the implicit added dimension when necessary; multiple associated indices.

not yet implemented in POLYCHRONY: extensions to tuples; some extensions to arrays.

Architecture Analysis & Design Language.

XIV-2.6 Denotation of types . Declarations of constant identifiers . Declarations of sequence identifiers . Declarations of shared variables . of state variables .

Chapter VII

Expressions on processes

The expressions on processes allow to compose systems of equations on signals with the following syntax:

VII-1 Elementary processes

An elementary process is an instance of process (cf. section VI- 1.2, p. 99 et seq.), a definition of signals (cf. section VI- 1.1, p. 93 et seq.), a constraint on clocks (cf. section VI-5, p. 120 et seq.) or on values (cf. section VI-6, p. 125), or an expression of dependence (cf. part E, section XI- 6.2, p. 196 et seq.).

VII-2 Composition

The composition of two processes P 1 and P 2 produces a process for which each execution observed on the variables of P 1 (respectively, P 2) is an execution of P 1 (respectively, P 2). This composition is similar to the aggregation of two systems of equations in a single one.

2.

Types • Each signal or tuple X i .A i is respectively equal to the signal or tuple v i that corresponds positionally to it in output of E.

4.

Clocks A signal and the signal v i that defines it are synchronous. In that case:

Chapter IX

Spatial processing

Spatial processing is obtained by manipulations of arrays.

The following operators are provided:

• operators of definition by enumeration (ARRAY-ENUMERATION, CONCATENATION, ITERATIVE-ENUMERATION);

• an operator of definition of indices (INDEX);

• operators of access to elements of arrays (ARRAY-ELEMENT, SUB-ARRAY);

• an operator of array restructuration (ARRAY-RESTRUCTURATION);

• operators of sequential definition (SEQUENTIAL-DEFINITION, ITERATIVE-ENUMERATION);

• global operators on matrices such as transposition (TRANSPOSITION) and products (ARRAY-PRODUCT).

Moreover, structures of iteration are also defined on processes (ITERATION-OF-PROCESSES), with an associated operator of definition of multiple indexes (MULTI-INDEX).

Context-free syntax

S-EXPR-ARRAY

whose right side of := represents an expression of access to an array element with recovery, is equal to the process defined as follows:

IX-8 Extraction of sub-array

The expression of extraction of sub-array is a generalization, with the same syntax, of the expression of access to an array element (cf. section IX-7, p. 162 et seq.). Only the form where the accesses are obtained via "generalized indices" (represented as arrays of integers) is given here; when they are integers, the description of the corresponding expression is given in section IX-7. The structure of array is used in the SIGNAL language to represent a notion of iteration.

The signals which are defined iteratively have a virtual additional first dimension (with respect to their declaration), the size of which is the number of iterations. Moreover, a virtual index -1 in this first dimension is used to represent the initial value of the considered signal, at the beginning of the iterations. The current value of the signal at a given iteration step may be a function of its value at the previous iteration step.

Note that this representation of bounded iterations using an additional spatial dimension is only a means to represent simply such iterations within the existing semantic context. In practice, this added dimension has not necessarily to be created.

Let us first consider the following form: iterate (I 1 ,. . . ,I p) of P with P init end where P is a process expression with equations that may contain the following occurrences of signal expressions:

• in the left hand side:

X[f (I 1 , . . . , I p)] (or just X)

• in the right hand side: X[g(I 1 , . . . , I p)] (or just X) and:

P init is also a process expression with equations that may contain signal expressions of the form X[u(I 1 , . . . , I p)] (or just X) in the left hand side.

The equations which are under the scope of a structure of iteration ("iteration of processes") in a given unit of compilation are rewritten as a new system of equations according to the context of rewritting established by the embedding of iteration structures. An indexing function (which can be represented as some list of constant indexes-cf. section IX-6, p. 161 et seq.) corresponds to such a context. The indexing function is a function:

(where the n i are integer constants). For simplicity, let this function be represented here by the tuple of constant indexes I 1 , . Let us consider also the following "generic" forms of equations in P init : X[u(I 1 , . . . , I p)] := E

XI-1.5 Functions

A function is a process that specifies an iteration of function such as defined in part B, section III-8.1, p. 52.

A function (described by a model of function) is a particular case of node and has to respect all the relations respected by a node regarding its clocks and dependences (cf. section XI- 1.4, p. 186). In addition, all the inputs and outputs of a function must have the same clock.

A function must have at least one output. A function is constant on time and does not produce any side effect. In particular, it cannot contain delay operators (or other operators derived from delay), that define some memory.

Note that it is nevertheless possible to specify some assertions on the input signals (for instance) of a function. For example, the equation x = when (x > 0) specifies that when it is present, x must be positive.

A function is necessarily safe (this has not to be specified in the EXTERNAL-GRAPH).

XI-1.6 Automata

Automata are processes representing explicitly finite-state automata. In these automata (automaton processes), labelled processes (cf. part C, section VII-5, p. 138 et seq.) represent states and specific intrinsic processes (cf. chapter XIII, p. 211 et seq.) are used to represent other automaton features such as transitions. Usual equations can be used in these automaton processes to specify constraints or to define computations.

A basic statement for these automaton processes is that state change is supposed to take time: at a given level, an automaton is in a single state at each logical instant and there is no immediate transition.

An automaton is clocked: it is controllable by an external clock (that can be explicit), its control clock. The tick (cf. part C, section VII-5, p. 138 et seq.) of the automaton is at most equal to this control clock. By default, the control clock of the automaton is equal to the upper bound of the clocks of its input signals (including the inputs possibly non declared in the interface of the automaton process but declared in some upper level and referenced in the automaton process-cf. section p. 192 et seq.).

For the dependence relation, each input of an automaton precedes each output of that automaton at the product (intersection) of their clocks.

An automaton process is necessarily deterministic automaton.

The following simple example illustrates how an automaton process can be specified:

XI-2 Local declarations of a process model

The local declarations of a process model may be declarations of signals (or tuples), declarations of shared variables, declarations of state variables, declarations of constants, declarations of types, declarations of labels, declarations of references to signals with extended visibility, or declarations of local models.

1. Context-free syntax

A given zone of local declarations constitutes a given level of declarations; this level is that of the process expression that defines this zone. When this expression is the expression that defines the process model, this zone is said the zone of the local declarations of the model. When this expression is the expression that defines the external graph of the model, this zone is said the zone of the local declarations of the external graph.

The zones of declaration of the formal parameters and of the inputs and outputs of a process model constitute a same level of declarations, the one of the model.

The levels of declarations are ordered in the following way:

• the level of a model is greater than the level of the local declarations of the external graph;

• the level of the local declarations of the external graph is greater than the level of the local declarations of the model;

• the level of a model is greater than the level of any sub-expression of this model;

• the level of an expression is greater than the level of any sub-expression of this expression;

• the level of a model is greater than the level of any local model declared in this model.

A local declaration of a model in a given level is visible (and thus, this model can be called as INSTANCE-OF-PROCESS) in this whole level and in all lower levels, everywhere it is not hidden by a declaration with the same name in a lower level. In particular, a model Q declared in the zone of the local declarations of a model P can be called in the expression associated with P and in the expressions associated with the other sub-models of P . For these expressions, it possibly hides a model with the same name that, without it, would be visible.

The set of sub-models declared in a model P cannot contain two models with the same name. More generally, any two objects (models, types, signals, etc.) declared in a same level of declaration cannot have the same name (see below).

The parameters declared in a process model are visible (and thus, may be referenced) in this whole process model (in particular, the other parameters, the inputs and outputs, etc.) and in all the embedded process models, everywhere they are not hidden by a declaration with the same name in a lower level.

model is made respectively to these orders.

Example: a process model P the interface of which is specified as

where each signal or parameter XX i corresponds to the signal or parameter X i .

XI-6 Graph of a model

The EXTERNAL-GRAPH of a model allows to specify clock and graph properties of the model, such as the properties necessary and sufficient to be able to use this model after a separate compilation. These properties may be provided by the designer or calculated by the compiler. They refer to input and output signals of the model. The PROCESS-ATTRIBUTE allows to qualify the corresponding model as safe (keyword safe), deterministic automaton (keyword deterministic), or unsafe (keyword unsafe)-cf. section XI-1, p. 183 et seq. It must be in accordance with the syntactic class of the model.

The SPECIFICATION-OF-PROPERTIES of an EXTERNAL-GRAPH uses a process expression that can make reference to the formal parameters and input and output signals of the MODEL. Any other identifier used in this expression is that of a local object (signal, process model, etc.), that must have a declaration in this expression.

When the EXTERNAL-GRAPH is that of a described process model, the process defined by the model is obtained, at the semantic level, by the composition of the process defined by this EXTERNAL-GRAPH and of the process defined by the body of this model. By construction, the process defined by the EXTERNAL-GRAPH is thus an abstraction of the process defined by composing itself with the one of the body of the process model. A particular case may be the one for which the properties established by the EXTERNAL-GRAPH are deduced from the properties verified by the body of the model (i.e., the process defined by the EXTERNAL-GRAPH is an abstraction of the process defined by the body of the model).

When the EXTERNAL-GRAPH is that of an external process model, the properties it describes establish the properties of the model for any invocation of this model.

MODELS OF PROCESSES

In that case, the invocation X {V 1 , ..., V l } of an external process model process X = {F 1 ; ... F l ;} (? E 1 ; ... E m ; ! S 1 ; ... S n ;) spec C; is equal to the process defined as follows:

(

If C 1 is the syntactic context of expansion established by the invocation of the model of external process by the association of a value with each identifier of formal parameter, and by the association of a signal with each input or output signal name, then, the invocation of this model results in the context of expansion C 2 equal to C 1 enriched by the equations (in particular, clock equations and dependences) resulting from the construction of the EXTERNAL-GRAPH.

XI-6.1 Specification of properties

The SPECIFICATION-OF-PROPERTIES is described by a usual process expression, the elementary expressions of which are typically an instance of process (which may be, in that case, an instance of a model of synchronization), a definition of signals, a clock equation, or an expression of dependence.

XI-6.2 Dependences

An expression of explicit DEPENDENCES may appear in the EXTERNAL-GRAPH of a MODEL, but also in its body. The purpose of a specification of dependences in the external graph is to make explicit dependences between input and output signals of the model, or to establish these dependences in the case of a model of external process. The explicit dependences between signals are defined with the following syntax: We distinguish first the case where some of the "signals" for which dependences are specified are labels (cf. part C, section VII-5, p. 138 et seq.). In that case, for a label XX, the designated signal is

Semantics

The pragma with name P R and with (optional) statement "Y Y Y " is associated with each one of the objects designated by X 1 , . . . , X n .

The designations (that should reference objects which are visible at the level of the model, model type or module) can be:

• labels (in that case, the designated object is a process expression),

• names of signals, parameters, constants, types, etc. (the designated object is the corresponding signal, parameter, constant, type, etc.).

By default (when there is no designated object), the pragma is associated with the current process model (cf A pragma has no semantic effect. It can be ignored by a compiler, or it can trigger a specific processing.

Examples

The following pragmas are recognized in the INRIA POLYCHRONY environment:

(a) General information

• Comment -Associated with the current model.

-Comment on this model.

(b) Compilation directives

• Main -Associated with the current model.

-In a module, means that the corresponding model is an "entry point" of this module: it may constitute a compilation unit (cf. section XII-1, p. 207 et seq.).

• Unexpanded

-Associated with the current model (used for traceability and code generation purpose).

-Means that the model is not expanded when it is called. The corresponding process must be endochronous, its greatest clock must be the clock of an input signal, and every output signal is preceded by every input signal. Moreover, if the model has inner memorization or static parameters, then no more than one instance is allowed -&n represents the name of the model; -&m represents the name of the higher level model which is the current compilation unit.

A few parameters are followed by other parameters to which they apply:

-&t represents the type of the considered object (for example, &t&i1 represents the type of the first input signal of the call); -&b represents the scalar basic type for an object which is an array; -&lexp represents a list of objects (for example, &lexp&o represents the list of output signals of the call); -&ck represents the clock of the considered object; -&h represents the image of the considered object in the considered homomorphism when the translation describes an homomorphism (for example, &h&i1 represents the first input signal of the image of the call in the homomorphic program); -&hck represents the clock of the image of the considered object in the considered homomorphism when the translation describes an homomorphism.

XI-8 Models as types and parameters

The notion of type presented so far is enriched with the notion of model type, that represents the interface of a process model. Then model types can be used to specify formal process models as formal parameters of process models: a process model with the corresponding model type as interface must then be provided as effective parameter.

Model types

A model type is an interface of process model.

The following rules for a DEFINITION-OF-TYPE extend those given in part C, section V-7, p. 86 et seq. (these rules do not concern formal parameters, which are described below).

Pragmas may be associated with the objects of a model type in the same way they can be associated with the objects of a model (cf. section XI-7, p. 198 et seq.). When there is no designated object for a pragma specified in a model type, it is by default associated with the considered model type.

The rule for a DEFINITION-OF-INTERFACE extends those given in section XI-5, p. 193. The formal parameters of the interface of a model P can contain model parameters, that appear as a formal name of model, say Q, typed with a model type, say T , which is visible in the current syntactic context: typically, process T Q.

Semantics

To complete the description that was given in section XI-5, p. 193 et seq., the declaration of a model sets up a context in which the model parameters define formal models, that is to say, models for which only the interface (described by a model type) is known (analogous to model of external processes).

The same scoping rules as for other parameters apply to model parameters.

In the body of the process model P , the formal model Q is invoked using the usual syntax for the invocation of models.

The invocation of a model sets up an expansion context in which an effective model, designated by its name (which must be the name of a process model visible in the context of this invocation), is associated with each model (positional association, just like other parameters).

Examples

(a) process P = { process T Q; } (? ... ! ...) (| ... x := Q(y) ... |); declares the process model P wich has a model parameter Q, the interface of which is described by the model type T (in that case, it has, for instance one input and one output). The model P must be called with a visible process model as effective parameter; the interface of this process model must be equal to T. For example: ... P{PP}(...)...

Chapter XII

Modules XII-1 Declaration and use of modules

A module is a named set of declarations of constants, types and models.

The syntax of DECLARATION-OF-CONSTANTS, DECLARATION-OF-TYPES, PROCESS, ACTION, NODE and FUNCTION given below extends the syntax of these declarations such as defined in part C, section V-8, p. 88, part C, section V-7, p. 86 et seq., and part E, section XI-1, p. 183 et seq. The presence of the private attribute is reserved to declarations which are in a module. The syntax of EXTERNAL-NOTATION may be used as well for a DESCRIPTION-OF-CONSTANT, a DESCRIPTION-OF-TYPE or a DESCRIPTION-OF-MODEL, either they appear in a model or in a module. It is provided in this section.

The importation of objects of a module in another module or in a model is done via a use importation command that may be found in a list of DECLARATIONs. Then, the syntax of DECLARATION given below extends that defined in section XI-2, p. 191 et seq.

MODULES

The nesting of declarations also allows to override, in some way, declarations of imported modules (libraries) by local declarations, since the local ones have priority.

When several modules are specified in a same use command, the corresponding declarations are imported at the same level. For example, E where L; use M 1 , ..., M p ;end would correspond to: (E where L; end) where Decl(M 1) ... Decl(M p) end In this case, there is a potential risk of conflicts of the declarations imported from different modules.

In a given compilation unit, when an object is described as virtual, then:

• either it is defined in an imported module,

• or it is defined in the context in which this compilation unit is used.

In a given compilation unit, when an object is described as external (using the external notation), then it means that it is externally defined, in another language for instance, in the implementation environment of the compilation unit.

The description of an object as external may be followed by a string, such as external "X", which is an attribute allowing to describe specific characteristics of the implementation of this object: implementation language, for instance (this is indeed a short notation for a specific pragma).

The name M used in a command "use M ;" is the name of a module visible in the design environment. The way this module is made available is not normalized.

As an example, in the INRIA POLYCHRONY environment, there is an environment variable, SIGNAL_LIBRARY_PATH, which defines the paths at which library files may be found in the design environment. Such a file has the name "M", with the suffixe ".LIB" or ".SIG" (i.e., "M.LIB" or "M.SIG"), and contains the definition of a module named M , in SIGNAL.

Intrinsic processes

Intrinsic process models constitute libraries of processes that may be used in SIGNAL programs. These models have not to be declared. The names of the intrinsic process models are not reserved words of the SIGNAL language. In addition to the following general intrinsic processes (described in the present chapter), specific intrinsic processes (described in section XI- 1.6, p. 187 et seq.) may occur only in automata.

XIII-1 Minimal clock

The intrinsic process min_clock is a process with no output which is used to fix the clock of a signal in the current compilation unit. When the considered clock has some freedom, which is expressed by a recursive definition of this clock, a solution of the equation is chosen, which is the non null minimal clock.

min_clock(X)

1. Types (a) X is a signal of any type.

Semantics

A call to the intrinsic process model process min_clock = (? x; !); expresses a directive for the clock calculus.

Using min_clock(X), the clock of the signal X is replaced by the non null minimal solution of the system of equations that defines it.

In this way, if ω(X) = Q * ω(X) + R, the solution ω(X) = R is chosen.

XIII-2 Affine transformations

Consider (n, φ, d) such that n, d ∈ II N * , the set of strictly positive integers, and φ ∈ Z, the set of integers. Given some process P , an (n, φ, d)-affine transformation from a clock c 1 to a clock c 2 may be obtained through the following steps:

The process affine_clock_relation is defined as follows: The clock clk_i is a clock defined by the process, such that the following affine relations hold between clk_i and the clocks of x and y:

Affine unsample process

The process affine_unsample is defined as follows: The signal y is defined as an oversampling from the signal x1. The signal x2 provides the values of y when x1 is not present; note that though x2 is an input signal of affine_unsample, its clock has not to be defined as input of this process: it is internally defined as equal to the clock of the output.

The value of n is a strictly positive integer (ϕ(n) ≥ 1) and the value of phi is an integer. The clock clk_i is a clock defined by the process, such that the following affine relations hold between clk_i and the clocks of x1 and y:

The clocks of x2 and y are equal:

XIII-3 "Left true" process

The following left_tt process is defined as intrinsic process model: process left_tt = (? boolean b1, b2; ! boolean c;) (| c := b1 default false when b2 |) ;

It may be used to define some clock (represented by the true values of a Boolean b1) at an other clock (the upper bound of the clocks of b1 and b2): with respect to this upper bound, the true values of b1 are retained, the false values are retained, and the absence is represented as false values.

XIII-4 Mathematical functions

The following mathematical functions are defined as intrinsic process models. They correspond to functions of the "math.h" library of the language C. A full description of them may be found in the documentation of this library.

• arc cosine function:

function acos = (? dreal x; ! dreal y;);

• arc sine function: function asin = (? dreal x; ! dreal y;);

• arc tangent function: function atan = (? dreal x; ! dreal y;);

• arc tangent function of two variables: function atan2 = (? dreal x1; dreal x2 ! dreal y;);

• cosine function: function cos = (? dreal x; ! dreal y;);

• sine function: function sin = (? dreal x; ! dreal y;);

• tangent function: function tan = (? dreal x; ! dreal y;);

• hyperbolic cosine function: function cosh = (? dreal x; ! dreal y;);

• hyperbolic sine function: function sinh = (? dreal x; ! dreal y;);

• hyperbolic tangent function: function tanh = (? dreal x; ! dreal y;);

• exponential function: function exp = (? dreal x; ! dreal y;);

• multiply floating-point number by integral power of 2: function ldexp = (? dreal x; integer i ! dreal y;);

• logarithmic function: function log = (? dreal x; ! dreal y;);

• base-10 logarithmic function: function log10 = (? dreal x; ! dreal y;);

• power function: function pow = (? dreal x1; dreal x2; ! dreal y;);

• square root function: function sqrt = (? dreal x; ! dreal y;);

• smallest integral value not less than x: function ceil = (? dreal x; ! dreal y;);

• absolute value of an integer: function abs = (? integer x; ! integer y;);

• absolute value of floating-point number: function fabs = (? dreal x; ! dreal y;);

• largest integral value not greater than x: function floor = (? dreal x; ! dreal y;);

• floating-point remainder function: function fmod = (? dreal x1; dreal x2; ! dreal y;);

• convert floating-point number to fractional and integral components: function frexp = (? dreal x; ! dreal y1; integer y2;);

• extract signed integral and fractional values from floating-point number: function modf = (? dreal x; ! dreal y1; dreal y2;);

XIII-5 Complex functions

The following complex functions are defined as intrinsic process models.

• conjugate of a complex: function conj = (? complex x; ! complex y;); and function conjd = (? dcomplex x; ! dcomplex y;);

• module of a complex: function modu = (? complex x; ! real y;); and function modud = (? dcomplex x; ! dreal y;);

• argument of a complex: function arg = (? complex x; ! real y;); and function argd = (? dcomplex x; ! dreal y;);

• real part of a complex: function rpart = (? complex x; ! real y;); and function rpartd = (? dcomplex x; ! dreal y;);

• imaginary part of a complex: function ipart = (? complex x; ! real y;); and function ipartd = (? dcomplex x; ! dreal y;);

XIII-6 Input-output functions

The following input-output functions are defined as intrinsic process models of the INRIA POLYCHRONY environment. They allow to read and write signals of basic types on standard input and output.

The read and write processes below are described with no explicit type for the input or output signal x: it means that they are polymorphic processes for which the effective type of the considered argument is provided by the type of the corresponding signal in the call of the process.

• process read = (? string message; ! x) spec (| message ^= x | message --> x |); A message is displayed and a value is read for x.

A standard read function is used in the generated code for the following possible types of x: boolean , short , integer , long , real , dreal , complex , dcomplex , character , string.

• process write = (? string message; x; !) spec (| message ^= x |); A message is displayed and the value of x is written. A standard write function is used in the generated code for the following possible types of x: boolean , short , integer , long , real , dreal , complex , dcomplex , character , string.

• process writeString = (? string message; !); A message is displayed on the standard output.