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Abstract: A disturbance estimator based on the design of an extended state observer (ESO)
often considers that the time-derivative of the perturbation (or higher order time-derivatives) is
very small and can be taken equal to zero in the observer design (standard extended system). In
this paper, a better approximation of the disturbance dynamics is proposed using a backward
difference method. A new extended system is designed based on this approximation. Any
observer that makes the error dynamics exponentially stable for the standard extended system
can then be used to estimate the state of the new extended system. The efficiency of the method
is illustrated through an example.
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1. INTRODUCTION

Disturbances either external or internal (parameter un-
certainty) are always present in practice and can severely
deteriorate the performance of a system if they are not
taken into account properly. Since disturbances can not
always be measured, various methods were designed to
estimate them and then use the estimation to design a
controller. This field of control theory is widely driven
by industrial applications and conducted independently
in different areas. Some applications in aeronautics Xu
(2017), robotics Talole et al. (2010) and motor control Sun
et al. (2013) prove the strong usefulness of disturbance-
observer-based control in practice. Fault-tolerant control
also relies on disturbance observer Chen et al. (2016a),
Zhang et al. (2017). The literature on disturbances and
state estimations can be divided into three classes of meth-
ods that estimate i) the disturbance only; ii) the state only;
and/or iii) both the disturbance and the state. Note that
in this paper, our focus is on the disturbance estimation
and not on the controller design. More information about
disturbance-observer-based control can be found in survey
paper Chen et al. (2016b) or in the book Guo and Zhao
(2016).

The first class of methods is usually called a disturbance
observer (DOB). It dates back to the 80s with Ohishi
et al. (1983) and was initially designed to reject unknown
load torque in speed control Umeno and Hori (1991),
Umeno et al. (1993). It is a frequency domain approach,
where a low pass filter and an inverse of the plant are
needed to design the DOB. A special care in tuning the

low pass filter is needed in order to choose the correct
bandwidth to get a good estimation of the disturbance
in presence of noise Sariyildiz and Ohnishi (2014). The
special case of a non-minimum phase plant was treated
in Chen et al. (2004). The DOB has also been extended
to MIMO systems Güvenç et al. (2009) and to nonlinear
robotic manipulators Chen (2004). In Kim et al. (2010),
a nonlinear system with high order disturbance is also
considered. A detailed review of DOB can be found in
Shim et al. (2016). The main drawback of these methods
is that they require the full-state knowledge.

The second class of methods (state observation only) relies
on the design of an unknown input observer (UIO). The
UIO is an observer that is able to estimate the state
of a system in presence of an unknown input (can be a
disturbance) but without explicitly estimating this input.
The observer size is the same as the size of the original
system (full observer) or less (reduced observer). The first
articles on this topic go back to the 70s with Basile and
Marro (1969) and Guidorzi and Marro (1971) using a
geometric approach. After these seminal works, a vast
number of methods were developed to design a reduced-
order observer Wang et al. (1975) or a full-order observer
Darouach et al. (1994). More references can be found in
Corless and Tu (1998). Some UIO have also been designed
for nonlinear systems Chen and Zheng (2006), state-affine
systems Hammouri and Tmar (2010) or switched systems
Hou et al. (2017). A study of UIO for fault detection
and diagnosis (FDD) is given in Liu et al. (2016). With
the similar objective of observing the state of a system
in presence of an unknown input, sliding-mode observers



(SMO) have also been developed Fridman et al. (2011).
A detailed comparison between these two approaches is
given in Edwards (2004). As a by product of the state
estimation, some UIO can provide an estimation of the
perturbation as in Barbot et al. (2009) but this is not
the main objective that is why applications are mostly
in parameter identification, fault detection and isolation
(FDI) or cryptography.

The third class of methods is an extended state observer
method (ESO). The idea relies on the design of an observer
on an extended system where the disturbance is part of the
state. It was presented first by Johnson in Johnson (1971).
In these results, the external disturbance is modeled by
an LTI system. Some less general papers were presented
almost simultaneously by Hostetter and Meditch (1973)
and Meditch and Hostetter (1974) (“k-observers”). An ap-
plication to position control was presented in Ohishi et al.
(1987) in the framework of discrete control. The above
results only deal with linear systems without parameter
uncertainty. A further advance of the ESO was to lump the
external disturbance with parameter uncertainties (total
disturbance) and to estimate both at the same time Han
(2009), Peng and Wang (2018). In the context of uncertain
feedback linearization, a high-gain ESO was used for the
control of nonlinear systems Freidovich and Khalil (2008).
In the results mentioned above, the first time-derivative
of the disturbance or higher time-derivatives are usually
assumed to be equal to 0 in the design of the observer 1 .
This is usually a very rough approximation because this is
scarcely the case in practice.

The aim of this article is to improve the standard ESO
method in order to get better estimations of both the state
and the disturbance. Our contribution is to introduce an
artificial delay in the observer design that allows to get a
better disturbance approximation and as a consequence to
reduce the estimation error of the state estimation.

This paper is organized as follows. The general result is
given in Section 2. An example and some simulation results
are given in Section 3. Finally, conclusion and future works
are proposed in Section 4.

2. MAIN RESULT

Consider the system described by{
ẋ(t) = Ax(t) +Bu(t) +Dd(t)
y(t) = Cx(t)

(1)

with x(t) ∈ Rn×1, u(t) ∈ Rm×1, y(t) ∈ Rp×1, d(t) ∈ Rq×1

andA,B, C andD are constant matrices of appropriate di-
mension. The signal u is a known input. Note that Dd can
gather parameter uncertainties and external disturbances.
In the sequel, the following assumptions are made.
Assumption 1. The disturbance d is twice differentiable
and its time-derivatives are bounded. Thus, there exists
d1, d2 > 0 such that for t ≥ 0

||ḋ(t)|| ≤ d1
and

||d̈(t)|| ≤ d2.
1 These articles do not assume that the disturbance is constant they
only use this approximation in the observer design.

Considering the new stateX = [x, d]T , system (1) becomes{
Ẋ(t) = ĀX(t) + B̄u(t) + Γ1(t)
Y (t) = C̄X(t) = y(t)

(2)

with

Ā =

[
A D
0 0

]
, B̄ =

[
B
0

]
, C̄ = [C 0]

and Γ1(t) = [0, ḋ(t)]T . It is assumed that
Assumption 2. The extended system (2) is observable.

Thanks to Assumption 2, one knows that one can find a
gain L such that the observation error e(t) = X̂(t)−X(t)

where X̂ is obtained thanks to the Luenberger observer of
the form

˙̂
X(t) = ĀX̂(t) + B̄u(t) + L[C̄X̂(t)− y(t)] (3)

is exponentially stable for the nominal system (Γ1 = 0):
there exist k, λ, r0 > 0 such that

||e(t)|| ≤ k||e(0)||e−λt. (4)
Observer (3) is called an Extended State Observer (ESO).
Remark 3. In (3), it is underlying that the dynamics of
the perturbation d is assumed to be zero. Note that it
is possible to approximate higher order time-derivative of
the disturbance by choosing a different extended state in
system (2) such as X = [x, d, ḋ, ..., d(n)]T . For purpose of
clarity only the case X = [x, d]T is presented in the paper
but the results also hold for higher-order approximation.

The observation error e(t) has the following dynamics
ė(t) = (Ā+ LC̄)e(t)− Γ1(t). (5)

The comparison method in (Khalil, 2002, Lemma 9.4)
ensures that in presence of perturbation Γ1 the observation
error verifies

||e(t)|| ≤ α1||e(0)||e−β1t + γ1d1 (6)
with α1, β1, γ1 > 0 and d1 defined in Assumption 1.
Note that the bound of the convergence radius γ1d1 is
proportional to the bound of the time derivative of the
disturbance d1 which means that if the perturbation is
fast varying, the convergence ball will be larger.

Instead of using the approximation that the time-derivative
of the perturbation is zero (or higher-order time-derivative
as mentioned in Remark 3), it is proposed to use the
backward difference approximation in order to estimate
ḋ:

ḋ(t) =
d(t)− d(t− h)

h
−R(t, h) (7)

where h > 0 is a constant delay that can be arbitrarily
chosen (tuning parameter 2 ) and R(t, h) is the remainder
of the Taylor approximation. Note that R verifies the
following inequality

|R(t, h)| ≤ d2
2
h. (8)

Using (7), system (2) can be rewritten as{
Ẋ(t) = ĀX(t) + B̄u(t) +

1

h
D2[X(t)−X(t− h)] + Γ2(t)

Y (t) = C̄X(t) = y(t)
(9)

2 Some hints for the tuning of h will be given at the end of this
section.



with Γ2(t) ∈ R(n+q)×1 and Γ2(t) = [0,−R(t, h)]T and

D2 =

[
0 0
0 Iq

]
.

One can then design an observer on this new extended
system (9) as follows

˙̂
X(t) = ĀX̂(t) + B̄u(t) +

1

h
D2[X̂(t)− X̂(t− h)]

+L[C̄X̂(t)− y(t)]
(10)

where L is the same gain as in (3). In this case, the
observation error e(t) = X̂(t) − X(t) has the following
dynamics

ė(t) = (Ā+ LC̄)e(t) +
1

h
D2[e(t)− e(t− h)]− Γ2(t). (11)

Remark 4. The practical implementation of observer (10)
will be made in discrete time. As a consequence, only
a finite number of samples delayed states values will be
stored in a buffer. However, to keep a resonnable size for
the buffer, the discretization step will have to be chosen
according to the length of the artificial delay h.
Remark 5. Instead of a Luenberger observer (10), other
observers could be used. The Luenberger observer was
chosen for simplicity and clarity.

The stability condition for (11) is given in the next
theorem.
Theorem 6. Consider the system (9) with the observer
(10). There exist h∗, α2, β2, γ2 > 0 such that for all h > h∗,
the observation error verifies

||e(t)|| ≤ α2||e(0)||e−β2t + γ2d2h. (12)

Proof. Let first consider the nominal case where Γ2 = 0
Let us consider V (t) = e(t)TPe(t) where P > 0 is the
solution of the Lyapunov equation

(Ā+ LC̄)P + P (Ā+ LC̄)T = −Q (13)
with Q a positive definite matrix 3 . Taking the time
derivative of V along the trajectories of (11) leads to

V̇ (t) = −eT (t)Qe(t) +
2

h
eT (t)PD2[e(t)− e(t− h)]

(14)
Thus, one can get

V̇ (t) ≤ −c3||e(t)||2 +
c4
h
||e(t)|| (||e(t)||+ ||e(t− h)||) .

(15)
with c3, c4 > 0. As in the standard Razumikhin reasoning
Fridman (2014), the following condition is assumed: for a
given κ > 1, the inequality

V (t− s) ≤ κV (t), ∀s ∈ [0, h]. (16)
Since λmin(P )||e(t)||2 ≤ eT (t)Pe(t) ≤ λmax(P )||e(t)||2
where λmin (resp. λmax(P )) denotes the smallest (resp.
the largest) eigenvalue of P then from (16), one deduces
that

||e(t− h)|| ≤ c5||e(t)|| (17)

with c5 =
√
κλmax(P )
λmin(P ) . Using the above inequality, one

obtains
V̇ (t) ≤ −

(
c3 −

c4
h
− c4c5

h

)
||e(t)||2. (18)

Defining c6 = c3 − c4
h −

c4c5
h , one has

V̇ (t, e(t)) ≤ −c6||e(t)||2 (19)
3 The existence of matrix Q is guaranteed by Assumption 2

Provided that h is sufficiently large, it is possible to
guarantee that c6 > 0. The comparison method in (Khalil,
2002, Lemma 9.4) ensures that in presence of perturbation
Γ2 6= 0 the observation error verifies (12).
Remark 7. It is important to keep in mind that h is an
artificial delay that can be tuned by the designer. This is
different form the case where the delay is intrinsic to the
system as in Wang et al. (2002) for example. To preserve
stability, h has to be sufficiently large, however to reduce
the radius bound γ2d2h, h needs to be small. The other
way around, in practice, is to increase the observer gain.
Indeed, increasing the observer gain will make c3 in (18)
larger this will allow to keep h small enough to maintain
the desired level of precision. Removing this limitation is
a way of improvement for future works.

3. AN EXAMPLE

Consider the model of a DC drive
di(t)

dt
= −R

L
i(t)− Kv

L
ω(t) +

1

L
u(t)

dω(t)

dt
=
Kτ

J
i(t)− f

J
ω(t)− 1

J
τ(t)

y(t) = [i(t), ω(t)]T

(20)

where i is the armature current, ω is the motor speed,
u is the armature input voltage and τ is an external
disturbance torque. The viscous friction is modeled by
−fω. The definition and the numerical values of the
parameters are given in Table 1. The system (20) can be
rewritten in the form of (1) with x = [x1, x2]T = [i, ω]T

and

A =

−RL −Kv

L
Kτ

J
0

 , B =

[
1

L
0

]
, C =

[
1 0
0 1

]
, D =

[
0
1

]
and d(t) = − f

Jω(t)− 1
J τ(t). In addition, we introduce some

parameter uncertainties on the coefficients. We consider
that only a nominal value, denoted by the subscript 0, is
known for each parameter. For example, one has f = f0 +
∆f0. The nominal values are given in Table 1. As a result,
one has {

ẋ(t) = A0x(t) +B0u(t) +D0d0(t)
y(t) = Cx(t)

(21)

with

A0 =

−R0

L0
−Kv0

L0
Kτ0

J0
0

 , B0 =

[ 1

L0
0

]
, D0 =

[
1 0
0 1

]
and

d0(t) = [φ1(t), φ2(t)]
T

with φ1(t) =
(
R0

L0
− R

L

)
i +

(
Kv0
L0
− Kv

L

)
ω +

(
1
L −

1
L0

)
u

and φ2(t) = d(t)+
(
Kτ
J −

kτ0
J0

)
i. Note that the current, the

speed and their time-derivatives are bounded in practice
so Assumptions 1 holds. The input voltage u(t) is chosen
equal to Un = 110 V. The initial condition of the plant
is x(0) = [0, 0]T . The disturbance torque τ(t) is defined
by a succession of constant, ramp and sine signals (Figure
1). The dimension of the extended state will be 4 because
we observe d1 and d2. Note that the extended system is
observable so Assumption 2 is verified.



Definition Real Value Nominal Value Unit
Viscous friction coefficient f = 0.008 f0 = 0.007 Nms
Armature resistance R = 0.55 R0 = 0.6 Ω
Armature inductance L = 6 L0 = 6.2 mH
Voltage constant Kv = 0.52 Kv0 = 0.6 Vc-Nm/A
Torque constant Kτ = 0.52 Kτ0 = 0.5 Vc-Nm/A
Motor inertia J = 0.1 J0 = 0.08 Kgm2

Table 1. Parameters of the DC drive and pump
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Fig. 1. Disturbance torque applied to the system τ

3.1 Luenberger Observer

In the sequel we are going to compare observers (3) and
(10) for different values of h. This observer are design with
the nominal values A0, B0 and D0. To perform a fair
comparison, both observers are designed with the same
gain L and the same initial condition X̂(0) = [0, 0, 0, 0]T .
The gain L is chosen in order to have eigenvalues in −10,
−20, −30 and −40.

In Figure 2, the norm of the state observation error is
displayed for the Luenberger observer designed on the
standard extended system (3) and for the Luenberger ob-
server designed on the new extended system (10) (for three
artificial delays). One can see that when the perturbation
is constant, between 0 s and 20 s, the three observers
converge to the exact extended state (the perturbation
is exactly estimated). When the perturbation is a ramp,
between 20 s and 40 s, the observer designed on the stan-
dard extended system exhibits a constant error whereas
observers designed on the new extended system are able
to estimate exactly the disturbance. Finally, when the
perturbation is a sine signal, none of the observers can
cancel the observation error. However, it can be noticed
that the observers designed on the new extended system
gives a better estimation, especially for a small delay h.

Reminding that d1 and d2 are defined in Assumption 1,
one can analyze the simulation result with the theoretical
results obtained above. The simulation for the observer
designed on the standard extended system is in accordance
with equation (6) because for a constant disturbance d1 =
0 so the convergence radius (R1 = γ1d1) is equal to zero.
The results for the observer (10) designed on the new

extended system are coherent with Theorem 6 because
for a constant disturbance and a ramp d2 = 0 so the
convergence radius (R2 = γ2d2h) is equal to 0. For a
sine disturbance d2 6= 0, the estimation is better for a
small delay since the convergence radius is proportional
to h. However, note that decreasing the delay around h =
0.1 s makes the transient very oscillating and decreasing
more the delay makes the closed-loop system unstable as
expected by the condition h > h∗ given in Theorem 6.
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Fig. 2. Comparison of the estimation error for the Lu-
enberger observer designed on the standard extended
system (std. Ext. Sys) and the new extended system
with an artificial delay (new Ext. Sys). The state is
x = [i, ω]T .

In order, to assess the accuracy estimation of the external
perturbation τ , we used the real values of the parameter in
the observer so that one gets φ1(t) = 0 and φ2(t) = d(t).
In addition, we imposed f = f0 = 0 to have φ2(t) =

− τ(t)J . The results are displayed on Figures 3 and 4 (with
measurement noise). It can been seen that the disturbance
is indeed better estimated with the observer designed on
the new extended system with an artificial delay. The
estimation is all the better for small delays. In order to get
Figure 4, we have added noises on the state measurements.
The noises are white noises with an amplitude of 5% of
the maximum values of the current (resp. the velocity).
Thanks to Figure 4, one can conclude that the method
is robust to measurement noise. Obviously, in presence
of noise the artificial delay cannot be reduced too much
because it will amplify noises.
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Fig. 3. Comparison of the estimation of the external
perturbation for the Luenberger observer designed on
the standard extended system (std. Ext. Sys) and
the new extended system with an artificial delay (new
Ext. Sys).
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Fig. 4. Comparison of the estimation of the external
perturbation for the Luenberger observer designed on
the standard extended system (std. Ext. Sys) and
the new extended system with an artificial delay (new
Ext. Sys) with measurement noise.

3.2 Sliding Mode Observer

As it was mentioned in Remark 5, it is possible to apply
the same method but using a different observer. In order
to illustrate this statement, a first order sliding mode
observer as been design. The observer equations are the
same as (3) and (10) but substituting the correction term
L[C̄X̂(t)− y(t)] by Gnν(t) where

Gn =

[
L
−I2

]
and ν = ρ · sign

(
y − C̄X̂

)
. The parameters

have been chosen a follows L =

[
0 −5
−5 0

]
and ρ = 10.

More details on the method can be found in Shtessel et al.
(2014). From Figure 5, it is clear that the sliding mode
observer gives similar result as for the Luenberger observer
: the smaller h the more accurate the estimation.
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Fig. 5. Comparison of the estimation of the external per-
turbation for the sliding mode observer designed
on the standard extended system (std. Ext. Sys)
and the new extended system with an artificial delay
(new Ext. Sys) without measurement noise.

4. CONCLUSION

A new extended system that allows to improve the obser-
vation precision with respect to the the standard extended
system has been proposed for the design of ESO. The idea
is based on the approximation of the disturbance dynamics
by a backward difference method which involves an extra
delayed term in the observer. The convergence proof of
the estimation error is worked out thanks to a Lyapunov-
Razumikhin analysis. It is shown that the quality of the
estimation is closely related to the size of the artificial
delay. Simulation results illustrate the efficiency of this
new design. Improving the estimation of the disturbance
dynamics using higher order approximation and designing
a controller that takes the estimated disturbance into
account are considered for further developments.
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