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Abstract

Considering the current advances in experimental capabilities in fluid mechanics and the advances in computing power
and numerical methods in computational fluid mechanics, a question that naturally arises is whether the two sets of
techniques are approaching a level of sophistication sufficiently high to deliver results on turbulent flows in realistic
geometries that are comparable. The purpose of this paper is to give elements of answers to this question by considering
the so-called von Kármán flow where the fluid in a cylindrical container is driven by two counter-rotating impellers. We
compare in the mentioned flow the torque and the flow topology obtained by experiments, direct numerical simulations
(DNS), and large eddy simulations (LES) at various Reynolds numbers ranging from Re = O(102) to Re = O(105). In
addition to validating the proposed LES model, the level of agreement that is observed between the numerical and the
experimental data shows that the degree of accuracy of each of these techniques is reaching a threshold beyond which
it is possible to use each of them with high confidence to explore and better understand turbulence in complex flows at
Re = O(105) and beyond.

Keywords: Penalty method, Large Eddy Simulation model, Turbulent flow, Bifurcation, Transition to turbulence.

1. Introduction

The equations modeling the motion of incompressible
homogeneous fluids are well-established. Denoting by u
the three-dimensional velocity field, p the pressure, ρ the
(constant) density, f the forcing, and ν the kinematic vis-
cosity, the incompressible Navier-Stokes equations take the
following form:

∂tu + u·∇u = −1

ρ
∇p+ ν∆u + f , (1)

∇·u = 0. (2)

It is known since the pioneering work of Reynolds that
after proper rescaling of the equations by L and U , some
characteristic length and velocity scales, the Navier-Stokes
equations only depend on one parameter: the Reynolds
number Re := LU/ν. The above system of balance equa-
tions is simple to formulate, but this apparent simplicity
is deceiving since the Navier-Stokes system is the source
of the notoriously hard problem commonly referred to as
turbulence [12].
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Over the years, two competing strategies have been
used to advance the understanding of turbulence: numeri-
cal simulations and laboratory experiments. The constant
progresses made in computer technology, computing tech-
niques, and imaging softwares have pushed the limits of
applicability of both numerical simulations and labora-
tory experiments. For instance, the availability of larger
parallel computers and progresses made in parallel linear
algebra libraries now allow Direct Numerical Simulation
(DNS) and turbulence models, like Large Eddy Simula-
tion (LES), to handle larger Reynolds numbers and to per-
form longer time statistics. Recent algorithmic progresses
made on penalty methods now allow to use Fourier tech-
niques to simulate complex geometries, thereby unlocking
the power of highly performant spectral methods. Simi-
larly, technological progresses over the years have steadily
increased experimental capabilities. For instance, the use
of CCD cameras combined with the continuous increase
of the performance of computers have made digital parti-
cle image velocimetry a very accurate tool, which is now
widely available. Particle image velocimetry (PIV) gives
access to all the velocity components in laboratory exper-
iments.

A natural question that comes to mind is whether we
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are at a point where numerical techniques and laboratory
experiments have reached a common ground where both
techniques can be used at the same time to investigate the
same complex flow, at the same values of the control pa-
rameter, and be either compared to each other or used to
complement each other in order to advance the theory of
turbulence. One goal of this paper is to give elements of
answer to this question. The other two goals of the pa-
per are to validate the performance of two numerical tech-
niques: (i) an entropy viscosity LES technique and (ii) a
pseudo-penalty technique to simulate moving boundaries.
Comparisons between LES (and/or DNS) simulations and
experimental results have already been conducted on sim-
ilar setups [43, 30, 4], but the experimental data used
therein were obtained from the literature. Instead here
we produce both experimental and numerical results in
the very same configuration.

In the present paper we focus our attention on the so-
called von Kármán flow which consists of a fluid in a cylin-
drical container driven by a pair of counter-rotating im-
pellers. The turbulence generated in this setup is neither
isotropic, nor homogeneous, and is therefore an example
of turbulence in a complex geometry that is rarely dis-
cussed in the turbulence literature. To account for the
moving impellers driving the fluid in the numerical simu-
lations, we adapt the pseudo-penalty method by Pasquetti
et al. [29] to a mixed finite element/Fourier approximation
setting. We also adopt an entropy-viscosity-based LES
technique to handle large Reynolds numbers. We demon-
strate in this paper that in this setting the combination
of the pseudo-penalty method and the entropy-viscosity-
based LES model allows us to reach levels of accuracy
that are comparable to laboratory experiments. By care-
fully comparing global and local indicators of turbulence
at similar values of Re, we show that the numerical sim-
ulations and the laboratory experiments agree with each
other for Reynolds numbers ranging from Re = O(102) up
to Re = O(105). Moreover, the numerical simulations re-
produce different bifurcated states of the turbulent flows
(i.e., turbulent states that break symmetries and coexist at
the same high Reynolds number) that are experimentally
observed.

The paper is organized as follows. In §2 we describe
the von Kármán flow together with the relevant control
parameters. The numerical methods used to approximate
the Navier-Stokes equations with moving solid obstacles
are described in §3. We also briefly describe in this section
the entropy viscosity stabilization model that allows us
to approximate large Reynolds number flows with coarse
meshes. Section §4 introduces the experimental setup and
additional parameters that characterize von Kármán flows.
Comparisons between the experimental results and the
numerical simulations are done in §5. One highlight of
this section is Figure 15 where we compare experimen-
tal measurements of the global energy dissipation in the
considered setup with numerical simulations in the range
Re ∈ [10, 105]. Concluding remarks are reported in §7.

2. Setup description

The von Kármán (VK) flow is produced by the stirring
of a fluid contained in a cylindrical tank. This setup has
been extensively studied using various fluids such as glyc-
erol, water, air, helium gas, superfluid helium, etc. [21, 33,
34, 25, 36, 35], since it is a canonical configuration for the
investigation of turbulence in a confined geometry. The ra-
dius and height of the cylindrical vessel are denoted R and
Hv, respectively. The stirring is done with two counter-
rotating impellers that are separated by a distance denoted
H. A schematic representation of the experimental setup
is shown in Figure 1 and a sketch of the impellers is shown
in Figure 2. The impellers may rotate at different signed
frequencies f1 and f2. In the present paper, we focus our
attention on the cases where the two impellers are counter-
rotating at the same frequency, i.e., fi := |f1| = |f2| and
f1 = −f2. Looking at Figure 1, we adopt the follow-
ing conventions: the vertical axis is oriented upward, and
we use the right-hand rule to define the sign of rotations
about the vertical axis. For instance, for the situation
shown in Figure 1 the bottom impeller rotates in the pos-
itive direction and the top impeller rotates in the negative
direction; that is 0 ≤ f2 = −f1. This operating condition
is referred to in the rest of the paper with the adjective
CONTRA. Similarly when −f1 = f2 ≤ 0, we say that the
configuration is ANTI. Notice that the CONTRA and the
ANTI operating conditions produce different flows since
the blades are curved as shown in Figure 2. The conven-
tion adopted in Figure 2 is that the supporting disk is in
the background, the blades are in the foreground, and the
shaft is behind the supporting disk. In this figure, the
bottom impeller works in the CONTRA condition when it
rotates counter-clockwise, and it works in the ANTI con-
dition when it rotates clockwise. The ANTI flow regime
is characterized by a larger level of fluctuations and larger
energy dissipation than the CONTRA regime; as will be
shown below, it is also subject to a spontaneous symmetry
breaking bifurcation of the mean flow topology.

In the entire paper, all the velocity fields are non di-
mensionalized using the typical forcing velocity V0 := 2πRfi
based on the radius of the cylinder and the rotation fre-
quency of the impellers. The control parameter of the VK
flow is the Reynolds number, defined as:

Re := 2πfiR
2ν−1. (3)

Unless explicitly specified otherwise, all the lengths are
now expressed in units of the cylinder radius R.

3. Numerical approximation method

The simulations corresponding to the VK experimental
setup have been done using a code henceforth referred to as
SFEMaNS (for Spectral/Finite Elements code for Maxwell
and Navier-Stokes equations). This section describes the
algorithm we have adopted to represent the moving solid
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Figure 1: Experimental setup with H the distance between the
inner faces of the disks, R the cylinder radius, fi the frequency of
each disk. Impellers with 8 blades are called TM87. The arrows
show the rotation direction for the CONTRA configuration.

Top impeller

Bottom impeller

Figure 2: TM87 impellers (8 blades) with radius Rt and angle
|α| = 72◦. The supporting disks are in the background, the
blades are in the foreground, the shafts are behind the support-
ing disks.

obstacles like the counter-rotating impellers shown on Fig-
ure 2. The convergence of the method is demonstrated
with analytical tests. We also describe the LES model we
use to compute large Reynolds number flows on grids that
are not fine enough to represent the viscous dissipation
scales.

3.1. Frame of work: the code SFEMaNS

SFEMaNS uses a hybrid spatial discretization combin-
ing spectral and finite elements. In a nutshell the approx-
imation in space is done by using a Fourier decomposition
in the azimuthal direction and the continuous Hood-Taylor
Lagrange element P1-P2 (linear approximation for pressure
and quadratic approximation for the velocity in the merid-
ian section). All the discrete functions A are written in the
generic form:

A(r, θ, z, t) = A0,cos
h (r, z, t) +

M∑
m=1

Am,cos
h (r, z, t) cos(mθ)

+

M∑
m=1

Am,sinh (r, z, t) sin(mθ), (4)

with (r, θ, z) the cylindrical coordinates, t the time and
M the number of Fourier modes considered. The func-
tions Am,cos

h and Am,sinh belong to a finite element space
(piecewise linear approximation for pressure and piecewise
quadratic approximation for the velocity). The approx-
imation in time is done by using a pressure-correction
method described in Guermond and Shen [14]. The mov-
ing counter-rotating impellers are accounted for by using a
pseudo-penalty technique described in Pasquetti et al. [29].

The full algorithm is detailed in §3.2. Modulo the compu-
tations of nonlinear terms with the fast Fourier transform,
the linear problems at each time step for each Fourier mode
in the meridian section are uncoupled and are thereby par-
allelized by using the message passing interface. The solu-
tion of each linear problem in the meridian section is fur-
ther parallelized by using graph partitioning techniques
from the METIS library (Karypis and Kumar [20]) and
subroutines from the portable extensible toolkit for scien-
tific computation library (PETSc) (Balay et al. [3]), for the
linear algebra. SFEMaNS has been thoroughly validated
on numerous manufactured solutions and against other hy-
drodynamic codes (Giesecke et al. [13], Hollerbach et al.
[18], Jackson et al. [19], Marti et al. [24]).

3.2. Algorithm to enforce moving domains

Since the impellers move with opposite angular veloc-
ities, it is impossible to find a frame of reference where
the fluid domain is time-independent. This problem is ad-
dressed by combining into a single computational domain
the counter-rotating impellers, Ωsolid(t), and the fluid do-
main, Ωfluid(t). Using the cylindrical coordinate system
(r, θ, z) about the vertical axis with the convention that
the vertical axis is oriented upwards, we then define the
indicator function of the fluid domain, χ, as follows:

χ(r, θ, z, t) =

{
1 if (r, θ, z) ∈ Ωfluid(t)
0 if (r, θ, z) ∈ Ωsolid(t).

(5)

As shown in Angot et al. [1], the problem can be refor-
mulated in the global computational domain by adding
a penalty term of the form (1 − χ)(u − uobst)/α on the
left-hand side of the momentum equation (1) where α is a
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user-dependent penalty parameter and uobst the velocity
of the disks and the blades given by:

uobst(r, θ, z) =

{
−sgn(f2)reθ if z > 0,
sgn(f2)reθ if z ≤ 0,

(6)

with sgn(f2) equal to 1 if f2 > 0, 0 if f2 = 0, and −1 oth-
erwise. A significant difficulty with this formulation when
working with the Fourier approximation is that the term
χu involves FFTs and thereby cannot be made implicit.
An elegant solution to this problem has been proposed in
Pasquetti et al. [29]. It is showed therein that the problem
can also be reformulated by solving the following balance
equations:

(1− χ)
u− uobst

α
− 1

Re
∆u + ∇p

= χ(−∂tu− (∇×u)×u + f), (7a)

∇·u = 0, (7b)

where u is the velocity field, p is the pressure field, f is the
forcing term introduced in equation (1) and α is a penalty
parameter. The key idea in Pasquetti et al. [29] is the
observation that replacing α by τ , with τ the time step
used to discretize the time derivative ∂tu, gives a scheme
that is stable and does not involve the term χu on the
left-hand side.

The system (7) is approximated in time by using a
pressure-correction method. For any time-dependent func-
tion v(t), we denote by vn the approximation of v at time
tn = nτ . The velocity is updated by using the following
time-stepping scheme:

3un+1

2τ
− 1

Re
∆un+1 = −∇pn + (1− χn+1)

3un+1
obst

2τ

+ χn+1

(
4un − un−1

2τ
−∇(

4ψn − ψn−1

3
)

)
+ χn+1

(
−(∇×u∗,n+1)×u∗,n+1 + fn+1

)
, (8)

where u∗,n+1 = 2un−un−1. Then, the pressure increment
ψn+1 is obtained by solving the following Poisson problem:

∆ψn+1 =
3

2τ
∇·un+1. (9)

Finally, the pressure is updated as follows:

pn+1 = pn + ψn+1 − 1

Re
∇·un+1. (10)

The adaptation of the pseudo-penalty technique to pressure-
correction methods relies on the observation that the pres-
sure increment ψ also needs to be penalized by the function
χ in (8) to get a stable scheme. A proof of the stability of
the algorithm with uobs = 0 is established in Cappanera
[7].

Notice that the velocity and the pressure are solutions
of the Navier-Stokes equations in the region where χ =
1, i.e., in the fluid domain Ωfluid(t). In the region where

χ = 0, i.e., in Ωsolid(t), the momentum equation reduces to
3un+1

2τ −
1
Re

∆un+1 = −∇pn+
3un+1

obst

2τ ; to first order in τ , the
solution to this linear Stokes problem is u = uobst+O( τ

Re
).

The presence of a boundary layer of thickness O(( τ
Re

)
1
2 )

near the solid-fluid interface limits the global convergence
rate in time to 1

2 , but when the Reynolds number is large
enough the convergence rate in time becomes 3

2 as the

time step τ scales like Re
−1/2, see section 1. So the higher

the kinetic Reynolds number the smaller the term τ
Re

, i.e.,
the more accurate the method. Another method was used
in [2, 30, 26] based on the direct-forcing approach proposed
by [11] where boundary body forces allow the imposition
of boundary conditions on interfaces not coinciding with
the computational grid.

3.3. Manufactured tests

To illustrate the convergence properties of the algo-
rithm, we consider a set of manufactured solutions (χ,u, p)
with a relative small Reynolds number Re = 100. The do-
main of computation Ω is set to {(r, θ, z) | 0.2 ≤ r ≤
1; 0 ≤ θ ≤ 2π;−1 ≤ z ≤ 1} and the solutions considered
are defined as follows:

χ(r, θ, z, t) = 1r≥0.5,

ur(r, θ, z, t) = (2r − 1)2 sin(z + t)1r≥0.5,

uθ(r, θ, z, t) = 0,

uz(r, θ, z, t) = (2− 1

r
)(6r − 1) cos(z + t)1r≥0.5

+ (r − 0.5) sin(2θ)1r≥0.5,

p(r, θ, z, t) = r2z3 cos(t) + r cos(θ),

(11)

The source term f in the momentum equation (8) is com-
puted accordingly. It involves the first five Fourier modes,
meaning M = 4 with M defined in equation (4).

To investigate the convergence properties of the algo-
rithm, we perform two sets of tests. First we focus on the
time convergence of the method by analyzing results ob-
tained with a fixed mesh size h equal to 5×10−3. Then we
study the global convergence of the algorithm by setting
τ = 0.4h2 and by performing tests on five different grids
of mesh size h ∈ {0.05, 0.025, 0.0125, 0.005, 0.0025}. The
tests are performed using M = 4, meaning that only the
Fourier modes m ∈ {0, 1, 2, 3, 4} are computed.

Table 1 displays the L2-norm of the error on the ve-
locity and the L2-norm of the error on the pressure with a
fixed mesh size and time step τ ∈ {10−3, 5×10−4, 2.5×10−4,
10−4, 5×10−5}. The observed convergence rate is larger
than or equal to 1

2 which is expected since the Reynolds
number is not large (Re = 100). The results shown in
table 2 are performed with τ = 0.4h2. As the error is
dominated by the time error, which is of order 1

2 , we ex-
pect the global convergence rate to be equal to 1. Indeed,
the displayed L2-norms of the error on velocity and L2-
norm of the error on the pressure are compatible with the
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rate O(h). We note that the method has also been vali-
dated in Cappanera [7] against classical test cases such as
the flow past a sphere at various Reynolds numbers.

time step τ u (L2-error) rate p (L2-error) rate
10−3 6.16E-3 - 8.55E-3 -

5×10−4 4.40E-3 0.49 6.10E-3 0.49
2.5×10−4 3.14E-3 0.49 4.36E-3 0.48

10−4 1.90E-3 0.55 2.64E-3 0.55
5×10−5 1.12E-3 0.76 1.51E-3 0.81

Table 1: L2-norm of the errors on the velocity and outer pressure
at time t = 0.1 and rates of convergence. The mesh size h is set to
5×10−3 in P2.

mesh size h u (L2-error) rate p (L2-error) rate
0.05 1.91E-2 - 3.05E-2 -
0.025 1.23E-2 0.63 1.72E-2 0.83
0.0125 5.67E-3 1.12 8.10E-3 1.09
0.005 2.51E-3 0.89 3.45E-3 1.23
0.0025 5.31E-4 2.24 6.14E-4 2.49

Table 2: L2-norm of the errors on the velocity and outer pressure at
time t = 0.1 and rates of convergence. The time step is set to 0.4h2

with h the mesh size in P2.

3.4. LES Scheme: Entropy viscosity stabilization

To avoid the accumulation of energy at the grid scale
at high Reynolds numbers when the grid is not fine enough
to resolve the Kolmogorov scale, we use a LES-like tech-
nique called entropy viscosity. This method, developed
in Guermond et al. [15, 16, 17], consists of adding a local
artificial viscosity made proportional to the residual of the
kinetic energy balance. This artificial viscosity is added on
the right-hand side of (7a) in the form ∇·(νE∇u). This
induces a nonlinear diffusion proportional to the local en-
ergy imbalance that in turn allows the unresolved scales to
be better accounted for. The method has its roots in the
notion of suitable weak solutions introduced by Scheffer
[38] and which has been shown by Caffarelli et al. [6] to be
the only reasonable notion of solution currently available
for the 3D Navier-Stokes equations.

We now give some technical details on the computation
of the entropy viscosity. Since the approximation mixes
finite elements and Fourier approximation, we construct a
three-dimensional mesh by considering the tensor product
of the finite element mesh in the meridian section with
the uniform azimuthal one-dimensional mesh induced by
the Fourier approximation. Denoting by M the number
of complex azimuthal Fourier modes, the mesh size in the
azimuthal direction at the radius r is 2πr/(2M − 1). For
each two-dimensional finite element cells K, we denote by
hK = min(minx∈K

2πr
2M−1 ,diam(K)). Assuming that n ≥

2, we define the residual of the momentum equation as
follows:

ResnNS =
un − un−2

2τ
+ (un−1 ·∇)un−1

− 1

Re
∆un−1 + ∇pn−1 − fn−1. (12)

This residual is then computed at each time step and over
every mesh cell in the real space. The local artificial vis-
cosity is defined on each cell K by:

νnR|K =
h2
K‖ResnNS · un‖L∞(DK)

‖un‖2L∞(DK)

. (13)

where DK is the patch composed of the cells sharing one
face with the cell K in the real space. The quantity νnR|K is
expected to be as small as the consistency error in smooth
regions and to be large in the regions where the Navier-
Stokes equations are not well resolved. To be able to run
with CFL numbers of order O(1), we finally define the
entropy viscosity as follows:

νnE|K = min
(
cmaxhK‖un‖L∞(DK), ceν

n
R|K

)
, (14)

where cmax = 1
8 and ce is a tunable constant O(1). In

the following we set ce = 1. Thus defined, and given that
we use P2 polynomials to approximate the velocity, the
entropy viscosity scales like O(h3

K) in smooth regions and
scales like O(hK) in regions with very large gradients.

This LES technique has been validated with cmax = 1
8

and ce = 1 in Cappanera et al. [8] for flows in precessing
cylinders and in Wang et al. [42] for turbulent flows in a
flexible pipe (notice that the parameter α, defined therein
in equation (2.13), is equal to ce/2). We have used this
method in Nore et al. [28] to perform high Reynolds num-
ber computations in a magnetohydrodynamics version of
the von Kármán experiment.

4. Tools and flow description

We describe in this section the different diagnostic tools,
the von Kármán flow, the experimental setup and the nu-
merical parameters that we use.

4.1. Diagnostic tools

4.1.1. Time averages

Since we are going to regularly invoke time averages,
for any time dependent quantity A : [0, T ]→ Rn we define:

〈A〉 =
1

T

∫ T

0

A(τ)dτ . (15)

Moreover, given an experimental time series (Ak)1≤k≤N
measured at a fixed point in the inertial frame of refer-
ence of the laboratory, we define the inertial discrete time
average as follows:

〈A〉◦ =
1

N

N∑
k=1

Ak. (16)
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Notice that when the flow is time-dependent this defini-
tion implies averaging the characteristics of the quantity
A not only in time but also with respect to the azimuth.
Using the cylindrical coordinates (r, θ, z), this corresponds
to extracting the time average of the angular Fourier mode
m = 0 of A(r, θ, z, t).

4.1.2. Energy dissipation and torque

The power that is injected inside the VK flow and that
is eventually transformed into heat by viscous effects can
be estimated from the two torques C1 and C2 that are
exerted on the top and the bottom impellers, respectively;
the injected power in question is given by the expression
Pinj = 2πfi(|C1| + |C2|). In the statistically stationary
regime, the mean input power equals the mean dissipation
power. A useful diagnostic of the dissipation power can
then be derived using a non-dimensional number P ∗ as
follows:

P ∗ =
〈Pinj〉

2ρR5(2πfi)3
, (17)

where we recall that ρ is the density of the fluid. A non-
dimensionalized torque can also be defined as

Kp =
〈|C1|+ |C2|〉
2ρR5(2πfi)2

. (18)

Notice that Kp = P ∗.
In the experiment, the torque measurements at each

impeller are performed using either the engines or torque
meters. The torque applied to the top shaft is denoted
C1, and the torque applied to the bottom shaft is de-
noted C2. Following the procedure described in Marié [23],
the torques are calibrated using measurements at different
mean frequencies, so as to remove spurious contributions
from genuine offsets or mechanical frictions. The torque
measurements give the power dissipation.

Numerically, we can compute the dimensionless torque
Kp as follows:

Kp =
1

2

∫
Ωsolid

|(r×fs) · ez|dΩ, (19)

where fs is the non-dimensional body force that induces
the solid rotation of the impellers. The force fs can be
written as ∇·(pI − Re

−1∇u), where u and p are any
smooth extensions of the velocity and the pressure in the
solid. Notice that the term fs and the source term f in the
Navier-Stokes equations (1) are unrelated. In the sequel
f is set to zero. The fluid is driven by the movement of
the counter-rotating impellers, represented by the pseudo-
penalty method, and not by an exterior forcing f . Using
the notation from (5)–(6), we deduce from the expression
of the discrete momentum balance (8) that the torque at
time tn+1 is given by

Kp =
3

4

∫
Ω

r(1− χ)sgn(f2z)
un+1 − uobst

τ
·eθdΩ, (20)

where sgn is the sign function introduced in (6).

4.2. The von Kármán flow

4.2.1. Symmetries

When the two impellers counter-rotate at the same
frequency, i.e., when f1 = −f2, the VK setup is sym-
metric with respect to any rotation of angle π about any
axis in the equatorial plane that crosses the rotation axis.
This type of symmetry is henceforth referred to as Rπ-
symmetry (Nore et al. [27]), and acts as follows in cylin-
drical coordinates:

Rπ

uruθ
uz

 (r, θ, z) ≡

 ur
−uθ
−uz

 (r,−θ,−z) (21)

In the absence of blades on the supporting disks, the
setup is also axisymmetric. At very low Reynolds numbers,
the instantaneous velocity field obeys these symmetries.
At large Reynolds numbers, the time averaged velocity is
statistically axisymmetric but can experience breaking of
the Rπ-symmetry in certain conditions as we will report
below.

4.2.2. Mean flow topology

The topology of the time-averaged and azimuthally-
averaged mean flow (in short mean flow) is simple and
depends on whether the forcing conditions are CONTRA
or ANTI:

1. The CONTRA mean flow is divided into two toroidal
recirculation cells separated by an azimuthal shear
layer. In a vertical plane containing the axis of ro-
tation, the corresponding mean velocity field is sym-
metric under Rπ (i.e., 〈ur(r,−z)〉 = 〈ur(r, z)〉,
〈uθ(r,−z)〉 = −〈uθ(r, z)〉, 〈uz(r,−z)〉 = −〈uz(r, z)〉)
and there is a strong shear layer in the middle.

2. The ANTI mean flow has two possible geometries
depending on the Reynolds number and the shape
of the impellers. (1) The flow can have the same
geometric symmetries as the CONTRA mean flow.
(2) The flow can have a bifurcated geometry result-
ing from the merging of the two toroidal counter-
rotating recirculation cells into a single cell (see Rav-
elet et al. [33] and Ravelet et al. [34]). In this case,
the mean velocity field in any vertical plane contain-
ing the axis of rotation is no longer invariant un-
der Rπ. The mean flow is then mainly composed of
one cell in the vertical direction with a strong shear
layer at the impeller that rotates in the direction
opposite to the orthoradial mean flow. This bifur-
cated state only exists for Reynolds numbers that
are large enough (see Ravelet et al. [33]) and for im-
pellers that are fitted with blades that are sufficiently
curved, which is the case of the TM87 impellers stud-
ied in the present paper. This turbulent bifurcation
results in multistability between the two turbulent
flow states, with possible complex dynamics between
them (see Thalabard et al. [41], Saint-Michel et al.
[37], St-Michel et al. [40]). It is therefore a genuine
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Re 102 103 3×105 3×105 3×105

Flow type CONTRA CONTRA CONTRA ANTI symmetric ANTI bifurcated
ν(m2s−1) 4.3×10−4 4.3×10−4 1.0×10−6 1.0×10−6 1.0×10−6

f(Hz) 0.68 6.8 5.0 5.0 5.0

Table 3: Experimental parameters: kinetic Reynolds number Re, flow type, kinematic viscosity ν, rotation frequency f

Re 102 103 105 105 105

Flow type CONTRA CONTRA CONTRA ANTI symmetric ANTI bifurcated
Model DNS DNS LES LES LES
τ 2.5×10−3 2.5×10−3 1.25×10−3 1.25×10−3 10−4

hmin 2×10−2 5×10−3 5×10−3 5×10−3 2.5×10−3

hmax 2×10−2 10−2 2×10−2 2×10−2 10−2

ndf 7589 65861 46291 46291 193051
modes 128 128 128 128 512
nprocs 128 128 128 128 2048

Table 4: Numerical parameters for the computations: kinetic Reynolds number Re, flow type, numerical model DNS or LES, timestep τ ,
mesh size in the blade region hmin, mesh size at the outer boundary hmax (the meridian mesh is non-uniform), number of grid points in the
P2 meridian mesh ndf, number of real Fourier modes, number of processors.

challenge to reproduce numerically this configura-
tion.

4.3. Experimental implementation

4.3.1. Experimental setup

The VK experimental setup used for the present study
has been thoroughly described in Ravelet et al. [33, 34],
Monchaux [25], Saint-Michel et al. [36]. The fluid is con-
fined inside a cylinder of radius R = 100 mm, and put
in motion by two rotating impellers of radius 92.5 mm (see
Figure 1 and Figure 2). We recall that the lengths are non-
dimensionalized with respect to the radius of the cylinder,
R. The aspect ratio of the experiment is defined as the
(non-dimensional) distance between the inner faces of the
two disks supporting the blades, H = 1.8. The turbu-
lence properties (anisotropy, fluctuations, dissipation) are
influenced by the geometry of the impellers, their non di-
mensional radius Rt, the oriented angle α (see Figure 2)
and height hb of the blades, and the number n of blades
(Ravelet [31]). In the present paper, we consider mainly
TM87 impellers, with n = 8 blades, hb = 0.2, |α| = 72◦

and Rt = 0.925. Mixtures of water and glycerol with dif-
ferent dilution rates are used to change the viscosity of the
fluid. The temperature is maintained constant by means
of heat exchangers. A summary of the experimental cases
presented in this paper is given in Table 3.

Both the torques and the mean flow topology are very
sensitive to geometric parameters like the height and the
curvature of the blades, the radius of the impellers, the
aspect ratio, as discussed in Marié [23], Ravelet et al.
[32], Ravelet [31], Monchaux [25], Burnishev and Stein-
berg [5]. Therefore to be able to reproduce numerically
the experiments, we have observed that it is essential that
the geometry of the setup be reproduced as accurately as
possible in SFEMaNS.

4.3.2. Multi-scale velocity measurements

The velocity measurements used in the present paper
result from two types of techniques: (i) Stereoscopic Par-
ticle Image Velocimetry (SPIV) and (ii) Laser Doppler Ve-
locimetry measurements (LDV).

The SPIV system provides the three components of
the velocity field in a meridian plane on a grid of typi-
cal size 90×70 points.The optical device can be adapted
so that the horizontal and the vertical distance between
two measurement points can be controlled in the range
[2.4×10−3, 2.4×10−2]. The meridian section that can be
explored is {(r, z) ∈ [0, 1]×[−0.75, 0.75]}. The time se-
ries are composed of about 3000 to 30000 frames regularly
sampled at 15 Hz. The time average of time series of SPIV
measurements is denoted 〈.〉◦, see (16). Because of the
constraints on the measurements technique and the un-
steadiness of the velocity pattern, such time-average auto-
matically produces an azimuthal average, i.e., time aver-
aging projects the measurements onto the angular Fourier
mode m = 0.

We have also performed a few Laser Doppler Velocime-
try measurements. These measurements provide the mean
azimuthal and mean vertical components of the velocity in
a meridian plane on a grid composed of 11×17 points lo-
cated at 0 ≤ r ≤ 10∆r with ∆r = 0.1 and −8∆z ≤ z ≤
8∆z with ∆z = 0.1125.

4.4. Summary of the numerical parameters

The numerical parameters that have been used in the
various simulations reported in this paper are listed in Ta-
ble 4. The computations are done only in the TM87 con-
figuration.

The spatial resolution in the meridian plane and in az-
imuth of DNS simulations is set to match the Reynolds
number, i.e., the computational grid is refined as Re in-
creases. The meshes are usually coarser for LES runs than
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for DNS runs. Fine meshes are used to simulate the ANTI
bifurcated flow since very thin shear layers are created in
this case (see Figure 13 (b)-(e) for 0.6 ≤ z ≤ 0.8). The
mesh sizes hmin and hmax in Table 4 are the typical dis-
tance between two grid points on the velocity mesh (i.e.,
the P2 mesh). Between 128 to 512 real Fourier modes are
typically used. The shape of the impellers and a compu-
tational grid are displayed in Figure 3. The parallelization
is done with one complex Fourier mode per processor, and
the meridian plane is further divided among the proces-
sors by using a domain decomposition technique, the graph
partitioning being done by METIS. The linear algebra in

Figure 3: Shape of the impellers and the computational grid in (r,z)
plane with 128 Fourier modes, hmax = 2×10−2 and hmin = 5×10−3.

the meridian section is handled by PETSc and the fast
Fourier transforms are done with FFTW3. Depending on
the spatial resolution and the Reynolds number, one rota-
tion period (one turn) requires between 2 to 63 wall-clock
hours on the cluster IBM x3750-M4 from GENCI-IDRIS.
Each run does between 15 to 60 turns. The cumulated
computing time for the runs presented in this article is
about 7×105 CPU hours on one processor.

5. Comparisons Experiment vs. Numerics

In this section we compare experimental and numeri-
cal velocity profiles in a meridian section of the cylindrical
container at various Reynolds numbers and in different
operating conditions. The comparisons are done on snap-
shots and on the time-averaged velocity fields. In order
to have good quantitative comparisons, we always use the
same colorbars for the experimental data and the numer-
ical results. At the end of the section we also compare
torque measurements with computations over a wide range
of Reynolds numbers.

5.1. Flow topology at low Reynolds numbers

We start by investigating the VK flow at low Reynolds
numbers; i.e., Re ≤ 103.

5.1.1. Low Reynolds numbers: steady-state regime

At very low Reynolds numbers (ie Re < 5×102), the
velocity field is stationary. Moreover, the CONTRA and
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Figure 4: Stationary and axisymmetric experimental and DNS veloc-
ity field in the CONTRA configuration at Re = 102: (a)-(d) radial
component ur, (b)-(e) azimuthal component uθ, (c)-(f) vertical com-
ponent uz .

the ANTI operating conditions give very similar results.
Therefore we do not show the two cases but rather focus
on the CONTRA operating mode. We show in Figure 4
the three components of the stationary and axisymmetric
velocity field at Re = 102 using the cylindrical coordinate
representation. We compare in panels (a) and (b) the ex-
perimental measurements of the radial component of the
velocity with the computational results. The comparisons
for the azimuthal component are shown in panels (c) and
(d). The comparisons for the axial component are shown
in panels (e) and (f). The white zones in the experimental
fields correspond to areas where measurements were not
possible due to the presence of the blades. The resolution
of the LDV measurements being much lower than the nu-
merical results, we have interpolated the numerical data
on large pixels corresponding to the experimental resolu-
tion. This process allows for a better comparison between
the experiments and the numerical simulations. Figure 4
shows that the numerical data and the experimental re-
sults are very similar with slight differences close to the
border of the experimental acquisition zone.

5.1.2. Low Reynolds numbers: time-dependent regime

The flow becomes time-dependent at Re = 500. We
compare in Figure 5 the experimental and the numerical
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Figure 5: Time-averaged experimental and DNS velocity field (m =
0) in the CONTRA configuration at Re = 103: (a)-(d) radial compo-
nent ur, (b)-(e) azimuthal component uθ, (c)-(f) vertical component
uz .

time-averaged velocity fields in the CONTRA configura-
tion at Re = 103 using the same pixelization procedure as
described above. Notice that this time we use the aver-
aging operator 〈·〉◦ defined in (16) to average the experi-
mental data in time. For the numerical simulations, the
averaging is done in azimuth and in time; that is, we show
the time average of the Fourier mode m = 0.

Figure 6 shows radial profiles of averaged azimuthal
and vertical velocity components at z ∈ {−0.4, 0, 0.4}.
For the LDV experimental data, measurements are per-
formed in one meridian section. Since for all z ∈ Z :=
{−0.4, 0, 0.4} the quantities uθ(r = 0, z), uθ(r = 1, z) and
uz(r = 1, z) must be equal to zero, we estimate the ex-
perimental error on uθ at z ∈ Z as follows: ∆θ(z) :=
max{|uexp

θ (r = 0, z)|, |uexp
θ (r = 1, z)|} and the error on uz

at z ∈ Z is ∆z(z) := |uexp
z (r = 1, z)|. Our experience

is that this estimate of the experimental error is a better
alternative to using the variance of the temporal signals
since the temporal signals are short.

The agreement between the numerical profiles and the
experimental profiles is within the experimental errors.
While the DNS profiles are exactly symmetric with respect
to z, the experimental data are coarse and only approxi-
mately symmetric. In any case the comparison is satisfac-
tory: the local maximum of |uθ| is located at r ≈ 0.8 for
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Figure 6: Radial profiles of uθ and uz for time-averaged experimental
and DNS velocity field (m = 0) in the CONTRA configuration at
Re = 103: 〈uexp〉◦ in solid line with errorbars, 〈um=0〉 in dashed
line at various z as indicated. The color convention applies to all the
profiles in other figures.

z = ±0.4; the change of sign of uz for z = ±0.4 occurs at
r ≈ 0.75.

We now compare the CONTRA and the ANTI regimes
at Re = 103. In Figure 7 we compare the numerical re-
sults obtained in the CONTRA operating configuration
with the numerical results obtained in the ANTI operating
configuration. The flow patterns look different. Close to
the blades, the radial centrifugal component of the velocity
in the CONTRA case is stronger than in the ANTI config-
uration, but in the equatorial shear layer the radial veloc-
ity component is more intense and focused in the ANTI
regime. Note also that the azimuthal component of the
velocity is overall stronger in the ANTI than in the CON-
TRA regime. These features persist at larger Reynolds
numbers for the averaged velocities.

5.2. Flow topology at high Reynolds numbers

We now describe the flow topology at high Reynolds
numbers. The experimental data reported below have
been obtained at Re = 3×105 and the LES computa-
tions have been done at Re = 105. Therefore the compar-
isons are performed at sligthly different Reynolds numbers.
At these Reynolds numbers, the CONTRA configuration
gives a solution that is highly turbulent but on average
the flow is organized into two cells that are invariant un-
der the Rπ transformation. This structure is very robust
with respect to the preparation of the flow. This is not the
case for the ANTI configuration. The flow is also highly
turbulent in this operating mode, but, depending on the
preparation of the flow, one observes two possible time-
averaged states. One state is composed of two cells as in
the CONTRA operating conditions, but the other one is
composed of one cell only. We have observed this bifurca-
tion to occur in the ANTI configuration at Re ∼ 104 (see
§5.3 and Figure 15 for a detailed discussion).
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Figure 7: Time-averaged DNS velocity field (Fourier mode m = 0)
in CONTRA and ANTI operating configurations at Re = 103: (a)-
(d) radial component ur, (b)-(e) azimuthal component uθ, (c)-(f)
vertical component uz .

5.2.1. CONTRA operating mode

We start by comparing the results for the CONTRA
operating mode. We show in Figure 8 the time and az-
imuthally averaged velocity field at Re ∼ 105. The sim-
ulation has been done by using the final snapshot of a
statistically converged simulation at Re = 104 as initial
data. About 20 turns have been performed at Re = 105.

Since the simple time averages over the 20 rotation
periods of the LES computations are not long enough to
be fully converged statistically, we show in Figure 8 only
the time average of the Fourier mode m = 0 of the ve-
locity field. This corresponds to the experimental data
mean operator 〈·〉◦ which only detects the Fourier mode
m = 0 anyway. Notice that this time the image reso-
lutions are now different; one sees the blades in the nu-
merical simulations but these are not visible in the ex-
periments. The blades start at r = 0.1 as shown in Fig-
ure 2. Also the SPIV allows us to reach only r = 0.95.
This explains why we see a boundary layer in the LES
simulation close to r = 1 in panel 8(d) which is not cap-
tured by the SPIV measurements in the panel 8(a) (white
pixels indicate that there are no experimental data close

(a) 〈uexpr 〉◦ (b) 〈uexpθ 〉◦ (c) 〈uexpz 〉◦

(d) 〈um=0
r 〉 (e) 〈um=0

θ 〉 (f) 〈um=0
z 〉

Figure 8: Time and azimuthal averaged velocity field in the CON-
TRA configuration. Re = 3×105 for the experiments; Re = 105 for
the computations: (a)-(d) radial component ur, (b)-(e) azimuthal
component uθ, (c)-(f) vertical component uz .

-0.4

-0.2

0.0

0.2

0.4

 0  0.2  0.4  0.6  0.8  1

u
θ

r

(a) 〈uexpθ 〉◦ and 〈um=0
θ 〉

-0.4

-0.2

0.0

0.2

0.4

 0  0.2  0.4  0.6  0.8  1

u
z

r

(b) 〈uexpz 〉◦ and 〈um=0
z 〉

Figure 9: Radial profiles of uθ and uz for the time-averaged exper-
imental and LES velocity fields (m = 0) in the CONTRA config-
uration at Re = 3×105 for the experiment and Re = 105 for the
computation: 〈uexp〉◦ in solid line with errorbars, 〈um=0〉 in dashed
line. Color labels are defined in Figure 6.

to the boundary). Figure 9 shows averaged radial pro-
files of the azimuthal and the vertical velocity compo-
nents at z ∈ {−0.4, 0, 0.4}. For the SPIV experimental
data, measurements are performed over an entire merid-
ian plane, i.e., measurements are done simultaneously on
two diametrically opposite meridian sections. The quan-
tities displayed are uexp

z (r, z) = 1
2 (uz(r, 0, z) + uz(r, π, z))

and uexp
θ (r, z) = 1

2 (uθ(r, 0, z)− uθ(r, π, z)). The error bars
for each component are the variance of the temporal sig-
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Figure 10: Instantaneous velocity fields in the CONTRA configuration in a vertical plane passing through the axis. Top row: experiments
at Re = 3×105; bottom row: numerical simulations at Re = 105; same colorbars. Left column: ux; central column: uy ; right column: uz .
Horizontal axis: x; vertical axis: z.

nals. This estimation of the experimental error is also used
in Figure 12 and Figure 14. The numerical profiles fit the
error bar region of the experimental data. This suggests
that the difference in the Reynolds numbers (105 for the
numerical simulations and 3×105 for the experiments) has
a moderate impact on the average profiles. Furthermore
these profiles are similar to the ones obtained at the much
smaller Re = 103: the local maximum of |uθ| is around
r = 0.8 at z = ±0.4 and the change of sign of uz occurs at
r ≈ 0.75 for z = ±0.4.

We compare in Figure 10 experimental and computa-
tional snapshots of the Cartesian components of the veloc-
ity field in a vertical plane passing through the axis. These
figures clearly show that the flow is highly turbulent. Of
course, these instantaneous snapshots are not identical but
they share similar amplitudes and structures.

5.2.2. ANTI operating mode: symmetric solution

We now show in Figure 11 the time-averaged experi-
mental and numerical velocity fields for the ANTI config-
uration.

Here the experimental flow at Re = 3×105 is obtained
by progressively increasing the angular frequency of the
impellers and making sure that the two angular velocities

are all the time exactly opposite. The preparation of the
numerical simulations at Re = 105 is also done by pro-
gressively increasing the Reynolds number and by always
enforcing the two angular velocities to be exactly opposite
as explained in §5.2.1. This process leads to a highly turbu-
lent flow that is organized on average into two cells that are
Rπ symmetric. The organization into two cells is clearly
visible in panels 11(c) and 11(f). Notice, though, that the
CONTRA and ANTI mean flow fields are very different.
The differences are particularly noticeable when compar-
ing the radial component of the velocity in the panels 8(a)
and 8(d) with that in the panels 11(a) and 11(d). Also, by
comparing the panels 8(b) and 8(e) with the panels 11(b)
and 11(e), we observe that the ANTI configuration pro-
duces stronger azimuthal components of the velocity than
the CONTRA configuration. In the ANTI configuration
the large values of the azimuthal component are concen-
trated near the lateral wall. Notice also that the radial
and axial components of the velocity have smaller values
than in the CONTRA configuration.

Figure 12 compares the experimental and numerical
profiles for the symmetric ANTI configuration at high Rey–
nolds numbers. Again the agreement is good since the nu-
merical profiles are inside the error bar region of the exper-
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(a) 〈uexpr 〉◦ (b) 〈uexpθ 〉◦ (c) 〈uexpz 〉◦

(d) 〈um=0
r 〉 (e) 〈um=0

θ 〉 (f) 〈um=0
z 〉

Figure 11: Time and azimuthal averaged velocity field in the sym-
metric ANTI configuration. Experiments at Re = 3×105; numerical
simulation at Re = 105: (a)-(d) radial component ur, (b)-(e) az-
imuthal component uθ, (c)-(f) vertical component uz .

imental observations. The azimuthal profiles at z = ±0.4
show that the extrema are located at r ≈ 0.95 in the
boundary layer which the experimental SPIV cannot re-
solve. The amplitudes of the extrema of uθ are twice those
observed in the CONTRA configuration. The change of
sign of uz still occurs around r ≈ 0.75 for z = ±0.4.
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Figure 12: Radial profiles of uθ and uz for the time-averaged ex-
perimental and LES velocity fields (m = 0) in the symmetric ANTI
configuration at Re = 3×105 for the experiment and Re = 105 for
the computation: 〈uexp〉◦ in solid line with errorbars, 〈um=0〉 in
dashed line. Color labels are defined in Figure 6.
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(d) 〈um=0
r 〉 (e) 〈um=0

θ 〉 (f) 〈um=0
z 〉

Figure 13: Time and azimuthal averaged velocity field in the bifur-
cated ANTI configuration. Experiments at Re = 3×105; numerical
simulations at Re = 105: (a)-(d) radial component ur, (b)-(e) az-
imuthal component uθ, (c)-(f) vertical component uz .

5.2.3. ANTI operating mode: bifurcated solution

We now focus on the bifurcated flow for the ANTI con-
figuration. This solution is obtained by preparing the flow
in a nonsymmetric way. In the experiment, the angular
frequencies of the top and the bottom impellers are not
increased simultaneously. For some time one of the im-
pellers rotates faster than the other one. Then, eventu-
ally, exact counter-rotation is prescribed and maintained.
This produces a symmetry breaking that allows the flow
to explore another solution branch that is not invariant
under Rπ. For the numerical simulations we proceed as
follows. We use a snapshot of the ANTI configuration at
Re = 104 as initial data. We perform 15 rotation peri-
ods at Re = 5×104 in the ANTI configuration, but we
reduce the angular velocity of the top impeller by setting
f1 = − 1

2f2 with the Reynolds number defined with re-
spect to the angular velocity of the bottom impeller only.
Then we do 10 more rotation periods with f1 = 0, f2 be-
ing unchanged. After 10 rotation periods, the structure
of the mean flow shifts from two recirculation cells to a
single recirculation cell. The angular velocity of the top
impeller is then increased so as to match the angular ve-
locity of the bottom impeller: 5 rotation periods are done
with f1 = −f2. Finally the Reynolds number is increased
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Figure 14: Radial profiles of uθ and uz for the time-averaged ex-
perimental and LES velocity fields (m = 0) in the bifurcated ANTI
configuration at Re = 3×105 for the experiment and Re = 105 for
the computation: 〈uexp〉◦ in solid line with errorbars, 〈um=0〉 in
dashed line. Color labels are defined in Figure 6.

to Re = 105 and 12 periods are done at this Reynolds
number.

We show in Figure 13 the averaged velocity fields in a
meridian section at Re = 105 for the LES computations
and at Re = 3×105 for the experiments. We clearly see
that the mean flow is composed of one large recirculation
cell only, which is very different from the symmetric case.
Here again, the numerical results agree reasonably well
with the experimental observation despite the SPIV’s be-
ing blind to the impellers and to the boundary layer at
r = 1.

This statement is supported by inspecting the radial
profiles shown on Figure 14. The profiles of the azimuthal
component of the velocity from the numerical and from the
experimental data do not coincide precisely but they have
similar shapes; we observe in particular that uθ is mostly
negative at the three vertical heights z ∈ {−0.4, 0, 0.4}.
The agreement on the vertical component of the veloc-
ity is significantly better; the vertical profiles are almost
invariant with respect to z. The behavior of uθ and uz
indicates that only one cell is present and that it is the
bottom impeller that imposes its sense of rotation.

5.3. Torque vs. Re

We now compare the measurements and the numerical
computations of the non-dimensional torque Kp defined
in (18). (Recall that Kp also measures the dissipation
power as discussed in §4.1.2.) All the results are reported
in one single graph shown in Figure 15. We show there
the experimental measurements and the numerical esti-
mations of Kp as a function of the Reynolds numbers over
the range Re ∈ [10, 106]. The grey symbols, crosses and
stars correspond to measurements. The circles correspond
to numerical simulations; empty circles are for DNS sim-
ulations and yellow-filled circles are for LES simulations.
We observe three plateaus at large Reynolds numbers. The
blue line (bottom horizontal line) corresponds to data from
the CONTRA configuration, the red line (middle horizon-
tal line) corresponds to data from the symmetric flow in
the ANTI configuration, and the green line (top horizontal

10 2 10 4 10 6

10 -1

10 0

DNS
LES
Experiments

Figure 15: Non-dimensional torque Kp as a function of Re for differ-
ent forcing conditions: blue is for the symmetric CONTRA branch,
red for the symmetric ANTI branch, and green for the bifurcated
ANTI branch. Circles are numerical simulations with TM87 (empty
circles are for DNS and yellow-filled circles are for LES). The other
symbols correspond to other experimental results: stars are TM87
experiments using a mix of glycerol and water and diamonds are
TM87 experiments with water. Grey dots are TM60 experiments
(same impellers but with 16 blades rather than 8) with a mix of
glycerol and water from Ravelet et al. [32]. Dashed lines correspond
to asymptotic values measured in liquid sodium (Re ∼ 107) and in
superfluid Helium 4 at 2.3◦K obtained from the SHREK experiment.

line) corresponds to data from the bifurcated flow in the
ANTI configuration.

For Re ≤ 4×102 the CONTRA configuration (blue
symbols) and the ANTI configuration (red symbols) give
the same torque, both in the numerical simulations and
in the experiments. The two curves split at Re ∼ 4×102.
The torque for the CONTRA configuration seems to de-
crease monotonously with respect to the Reynolds num-
ber over the entire range of Reynolds numbers and to
converge to an asymptotic value K∞cont ∼ 0.05 at very
large values of Re. After reaching a minimum in the range
Re ∈ [5×102, 5×103], the torque for the ANTI configura-
tion grows again after Re = 103 and seems to converge
towards an asymptotic value K2,∞

anti ∼ 0.14 at very large
values of the Reynolds number. These asymptotic values
of the torque coincide with experimental measurements in
liquid sodium (Re ∼ 107) and in superfluid Helium, see St-
Michel et al. [40] and Dubrulle [10].

The bifurcation in the ANTI configuration discussed in
§5.2.2 and §5.2.3 occurs around Re ≈ 104. The bifurcated
ANTI solution is composed of one recirculation cell rotat-
ing somewhat in phase with one of the impellers (Ravelet
et al. [32, 33]). The bifurcated ANTI flow dissipates far
more energy than its symmetric counterpart. The prob-
able cause for this higher energy dissipation rate is that
the velocity undergoes very large shears in the vicinity
of the top impeller as can be seen in Figure 13(e). Ac-
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tually this simulation requires a finer meridian grid and
a larger number of azimuthal modes than the symmetric
ANTI flow. The mesh refinement in the meridian section
is done locally in the vicinity of the top impeller (see ta-
ble 4). The torque applied to the bifurcated ANTI flow
seems to converge to the asymptotic value K1,∞

anti ∼ 0.56
for large values of Re.

Overall the experimental measurements and the nu-
merical estimations coincide up to 10 percents over the
entire range of Reynolds numbers explored and for the
two forcing conditions, including in the bifurcated case.
The fact that we have been able to reproduce the bifur-
cated branch and to estimate accurately the torque (i.e.,
the dissipation power) at Re = 105 is quite remarkable
considering that we are using a LES model in this range.
This means that the LES model dissipates the energy prop-
erly. The method stabilizes the computation without in-
troducing excessive numerical dissipation; i.e., the energy
is allowed to cascade freely and is dissipated at the small-
est mesh scale at the correct rate. To the best of our
knowledge, it is the first time that numerical simulations
reproduce such bifurcated branches of turbulent flows.

6. Energy Spectra

This section investigates the energy spectra of the nu-
merical simulations done atRe = 105 using the LES model.
The results are interpreted in the context of the previous
studies [10, 34].

6.1. Spatial spectrum

In 3D periodic numerical simulations it is common to
compute the spatial energy spectrum as:

E(k) =

〈∫
u(x, t) · u(x + r, t)eik·rdr

〉
x,t

. (22)

Since for isotropic flows E(k) only depends on ‖k‖, it is
therefore natural to consider:

E(k) := 〈E(k)〉‖k‖=k. (23)

We use the LES simulations at Re = 105 to estimate E(k).
The value of E(k) is computed from snapshots of the nu-
merical velocity field extracted from the cube (− 1

2 ,
1
2 )3 lo-

cated at the center of the tank. The spectra are aver-
aged over the snapshots. The energy spectrum E(k) is

supposed to scale as k−
5
3 in homogeneous isotropic tur-

bulence. For the family of von Kármán flows considered
in the paper, Dubrulle [10] suggests the universal scal-

ing function E(k)/(ε
2
3 η

5
3 ) = f(kη) where ε = 2R

πHKp and

η = (Re
3ε)−1/4. Figure 16 shows E(k)/(ε

2
3 η

5
3 ) for the

three flow configurations. The low wavenumbers corre-
spond to large scales and the large wavenumbers corre-
spond to the inertial range. We observe that in the inertial
range the spectra are in agreement with the k−5/3 law (see
dotted line on Figure 16). Note that the ANTI bifurcated

flow has much less energy than the CONTRA and sym-
metric ANTI flows in the low wavenumber region. Recall
that the ANTI bifurcated flow is essentially composed of
one recirculation cell with a thin region where the velocity
gradients are very large, see the region 0.6 ≤ z ≤ 0.8 in
Figure 13. The slopes of the lines fitting best these curves
in the inertial zone are −1.7 for the CONTRA case (for
3 10−3 ≤ kη ≤ 4 10−2), −1.6 for the symmetric ANTI (for
3 10−3 ≤ kη ≤ 4 10−2), and −1.7 for the bifurcated ANTI
case (for 2 10−3 ≤ kη ≤ 1 10−1).
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Figure 16: Energy spectrum E(k) as a function of the wavenumber k
for different forcing conditions at Re = 105: blue is for the symmetric
CONTRA branch, red for the symmetric ANTI branch, and green

for the bifurcated ANTI branch. Dotted line corresponds to k−
5
3 .

6.2. Temporal spectra

In addition to spatial spectra, one can also compute
temporal spectra from time series of velocity measure-
ments at a fixed point. Following Ravelet et al. [34] we
select the following point x0(r = 0.9, θ = 0, z = 0) in the
computational domain. The power spectral density (PSD)
is then defined as:

E(f) =

〈∫
uθ(x0, t)uθ(x0, t+ s)e−2iπfsds

〉
. (24)

For the ANTI configuration and Re ≤ 6.5×103, Ravelet
et al. [34] observed the power-law f−1 in the low-frequency
regime (below the impeller frequency fi) and the power-

law f−
5
3 in the inertial range (above the impeller frequency

fi). Note that the power-law f−1 is difficult to observe be-
cause it requires very long statistics. Figure 17 presents the
PSD extracted from the numerical simulations at Re = 105

for the three flow configurations. Depending on the config-
uration, the time integration window in (24) ranges from
10 to 20 rotation periods. We observe in Figure 17 three re-
gions in the frequency domain: (i) There is a low frequency
range corresponding to slow motions of the shear-layer in
the CONTRA and symmetric ANTI cases; (ii) There is
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the intermediate inertial range. In this range the spec-
tra behave like f−5/3; (iii) There is the large frequency
range corresponding to the dissipation zone. Slope fitting
in the inertial range gives −1.7 for 1 ≤ f/fi ≤ 50 in the
CONTRA case, −1.5 for 1 ≤ f/fi ≤ 50 in the symmetric
ANTI case, and −1.7 for 6.5 ≤ f/fi ≤ 125 in the bifur-
cated ANTI case. These slopes are in agreement with the
Kolmogorov exponent.
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Figure 17: Power spectral density E(f) of uθ(x0, t) for different forc-
ing conditions at Re = 105: blue is for the symmetric CONTRA
branch, red for the symmetric ANTI branch, and green for the bifur-
cated ANTI branch. f is the analysis frequency and fi is the impeller

rotation frequency. The dashed line shows the behavior f−
5
3 in the

inertial range.

7. Conclusion

In this paper, we have compared experimental data
and numerical simulations (DNS & LES) for a complex
turbulent system which is sometimes humorously referred
to in the literature as the “French washing machine.” We
have successfully reproduced numerically the different flow
types observed experimentally in the CONTRA configura-
tion and in the ANTI configuration. We have been able to
reproduce the bifurcation observed at high Reynolds num-
bers in the ANTI regime: there is a turbulent symmetric
solution whose temporal average consists of two recirculat-
ing zones that are invariant under the Rπ transformation,
and there is a bifurcated solution whose temporal average
consists of one recirculation cell only. We have focused
our comparisons on two criteria: the torque value and the
flow topology at various Reynolds numbers. The qualita-
tive comparisons of the flows show good agreements be-
tween the numerical simulations and the experiments, ex-
cept near the edges of the experimental measurement area.
The measurements and the numerical computations of the
torque coincide over a wide range of Reynolds numbers

for the three flow types. Obtaining similar outputs for cri-
teria that are so dependent on forcing conditions makes
the comparison a successful one. Moreover spatial and
temporal spectra computed at Re = 105 for the three con-
figuration flows show an inertial range compatible with the
−5/3 Kolmogorov exponent characterizing fully turbulent
flows.

This study also proves the effectiveness of the proposed
entropy viscosity stabilization as a LES model. The sim-
ulations reported in the paper validate the performance
of the proposed model on a highly anisotropic turbulent
flow in a complex geometry that is time-dependent with
counter rotating motions that make the geometry complex
in any referential. The entropy viscosity model involves
two parameters cmax and ce (see section 3.4), but we have
observed that the following choice (cmax, ce) = (1/8, 1) is
robust in the sense that it performs well independently
of the problem. In contrast to other LES models, like
the model of Smagorinsky [39] which involves a parameter
that needs to be tuned depending of the problem (Li et al.
[22], Delafosse et al. [9]), the robustness of the entropy vis-
cosity stabilization with respect to (cmax, ce) facilitates its
use on a wide range of problems.
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flows. Theses, Université Paris-Saclay, Dec. 2015. URL
https://tel.archives-ouvertes.fr/tel-01326579.

[8] L. Cappanera, J.-L. Guermond, J. Léorat, and C. Nore. Two
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T. Lehner, P.-E. Roche, B. Saint-Michel, and M. Bon Mardion.
Superfluid high reynolds von kármán experiment. Review of
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