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Chapter 1

Few examples of hidden convexity, away from PDEs

Two elementary examples

Theorem 1.1.1. Let K be a compact metric space and f be a continuous real function on K. We denote by P (K) the convex space of all Borel probability measures on K. Then, it is equivalent to say that f achieves its minimum at some point x 0 in K and that δ x 0 achieves on P (K) the minimum of the linear functional µ ∈ P (K) → F (µ) = K f (x)dµ(x) P roof . Since x 0 achieves the minimum of f on K, then, for every µ ∈ P (K), one has on one hand,

F (µ) ≥ K f (x 0 )dµ(x) = f (x 0 )
and, on the other hand F (δ x 0 ) = f (x 0 ).

Thus δ x 0 minimizes F on P (K). Conversely, if δ x 0 minimizes F on P (K), we get for every x ∈ K, f

(x 0 ) = F (δ x 0 ) ≤ F (δ x ) = f (x),
which shows that the minimum of f is achieved by x 0 .

Remark : observe that if the minimum of f is achieved at once by several points x 0 , • • •, x N then the minimum of F is achieved by any convex combination of the δ x i .

Remark : this result extends to the case when f is only l.s.c on K and valued in ] -∞, +∞], but not identically equal to +∞. In that case, F can no longer be considered as a linear functional but rather as an l.s.c convex functional (with respect to weak-* convergence on P (K)), valued in ] -∞, +∞] and not identically equal to +∞.

Theorem 1.1.2. Let H be a separable Hilbert space of infinite dimension. Then, the closed unit ball of H is the weak closure of the unit sphere.

Remark : in finite dimension, there is no difference between the concepts of weak and strong convergence. Therefore, the unit sphere is weakly closed and certainly not weakly dense in the unit ball.

P roof : In infinite dimension, we can find an infinite sequence of orthonormal vectors u n ∈ H, i.e. such that (u n |u m ) = δ nm . This sequence weakly converges to zero. Indeed, for each x ∈ H, one has:

0 ≤ |x - N i=1 (x|u n )u n | 2 = |x| 2 - N i=1 (x|u n ) 2 .
Thus the series of the (x|u n ) 2 is sommable. Therefore, its generic term (x|u n ) 2 goes to zero which is enough to show that u n weaky goes to zero. Let us now fix x such that |x| ≤ 1. For each n, let us introduce x n = x + r n u n where r n ∈ R is chosen so that |x n | = 1. This is possible, since it amounts to solving

|x| 2 + 2r n (x|u n ) + r 2 n = 1, i.e. (r n + (x|u n )) 2 = 1 -|x| 2 + (x|u n ) 2 ,
and a solution is given by

r n = -(x|u n ) + 1 -|x| 2 + (x|u n ) 2
(since |x| ≤ 1). As a consequence,

|r n | ≤ |x| + 1,
which shows that, up to the extraction of a subsequence, still labelled by n for notational simplicity, we may assume r n → r for some real r. So, we have found a sequence x n of points of the unit sphere that weakly converges to x. Indeed, for each y ∈ H, one has (x n -x|y) = (r n u n |y) = (r n -r)(u n |y) + r(u n |y)

where |(r n -r)(u n |y)| ≤ |r n -r||y| → 0 and (u n |y) → 0 since u n weakly converges to zero. So, we may weakly approximate any point of the unit ball by a sequence of points of the unit sphere. This has been possible because the infinite dimension of H has left a lot of room available to us!

Convexity and Combinatorics: the Birkhoff theorem

Theorem 1.2.1. Let DS N be the convex set of all N ×N real matrices with nonnegative entries such that every row and every column add up to one. (Such matrices are frequently called doubly stochastic matrices). Then DS N exactly is the convex hull of the subset of all permutation matrices, i.e. of all doubly stochastic matrices with entries in {0, 1}.

P roof. It is obvious that the convex hull of all permutation matrices is a subset of DS N . The converse part, as shown by G. Birkhoff [START_REF] Birkhoff | Tres observaciones sobre el algebra lineal[END_REF], is a rather direct consequence of the famous "marriage lemma" in combinatorics. that asserts that a necessary and sufficient condition to marry N girls to N boys without dissatisfaction is that, for all subset of r ≤ N girls, there are at least r convenient boys. Now, let us consider a doubly stochastic matrix (ν ij ). There is a permutation σ such that inf i ν i,σ(i) is a positive number α > 0. (In other words the "support" of σ is contained in the support of ν.) Then, we have the following alternative. Either α = 1 and ν is automatically a permutation matrix. Or α < 1 and

ν ij = (ν ij -αδ j,σ(i) ) 1 1 -α
defines a new doubly stochastic matrix with a strictly smaller support and ν is a convex combination of ν and a permutation matrix. Recursively, after a finite number of steps, ν is written as a convex combination of permutation matrices which completes the proof.

Application to combinatorial optimization Theorem 1.2.2. Let c ij be a real N × N fixed matrix. Then it is equivalent to solve 1) The so-called "linear assignment problem"

inf σ∈S N i=1,N c iσ i
where S N denotes the symmetric group (i.e. the group of all permutations of the first N integers);

2) The "linear program"

inf s∈DS N N i,j=1 c ij s ij .
This result is striking since it reduces a combinatorial optimization problem to a simple "linear program" (i.e. the minimization of a linear functional with linear equality or inequality constraints) [START_REF] Strang | Introduction to applied mathematics[END_REF]. Remark : There are algorithms of sequential computational cost O(N 3 ) for this problem [START_REF] Balinski | A competitive (dual) simplex method for the assignment problem[END_REF], which is usually considered as very simple in Combinatorial Optimization. Just to quote an example of a "hard" combinatorial optimization problem that cannot be reduced to a convex optimization problem, let us mention the "quadratic assignment problem", where a second N × N real matrix γ ij is given, which amounts to solving:

inf σ∈S N i,j=1,N c ij γ σ i σ j .
This "NP" problem contains as a particular case the famous traveling salesman problem. (Nevertheless, in some special cases, related problems discussed in [START_REF] Brenier | Connections between optimal transport, combinatorial optimization and hydrodynamics[END_REF] can be addressed by somewhat conventional "gradient flow" strategies related to the "Brockett" flow [START_REF] Bloch | Completely integrable gradient flows[END_REF].)

The Least Action Principle for 2nd order ODEs

Let us consider the 2nd order ODE, typical of Classical Mechanics, X"(t) = -(∇p)(t, X(t)).

where X = X(t) ∈ R d describes the trajectory of a particle of unit mass moving under the action of a time-dependent potential p = p(t, x) ∈ R. We may, as well, write this ODE as a 1st order system of ODEs:

X (t) = V (t), V (t) = -(∇p)(t, X(t)).
In order to keep our discussion as simple as possible, let us assume that p is smooth and that its second order derivatives in x are uniformly bounded in (t, x). This is enough, according to the Cauchy-Lipschitz theorem, to justify the globlal existence of a unique solution t ∈ R → (X(t), V (t)), once its value (X(t 0 ), V (t 0 )) is known at some fixed time t 0 ∈ R.

As a matter of fact, this 2nd order ODE X"(t) = -(∇p)(t, X(t)) obeys the famous "Least Action Principle" (LAP), which means, in modern words, that, for every fixed t 0 < t 1 , its solutions X are critical points of "functional"

u ∈ C 1 ([t 0 , t 1 ]; R d ) → J t 0 ,t 1 ,p [u] = t 1 t 0 ( 1 2 |u (t)| 2 -p(t, u(t)))dt
subject to u(t 0 ) = X(t 0 ) and u(t 1 ) = X(t 1 ). By critical point, we simply mean that for any "perturbation" y ∈ C 1 ([t 0 , t 1 ]; R d ) such that y(t 0 ) = y(t 1 ) = 0, the derivative of (-X"(t) • y(t) -∇p(t, X(t))) • y(t)dt = 0.

s ∈ R → f (s) = J t 0 ,
Since y has been arbitrarily chosen, we therefore have exactly recovered the 2nd order EDO X"(t) = -(∇p)(t, X(t)). (To check it, just observe that a dense subset of L 2 ([t 0 , t 1 ]; R d ) is formed by all y ∈ C 1 ([t 0 , t 1 ]; R d ) such that y(t 0 ) = y(t 1 ) = 0.)

(The discovery of the LAP was attributed by Euler [230], when he was a member of the "Académie Royale des Sciences de Berlin", to Maupertuis, who currently was the president of the same Academy. At some stage, a mathematician, Koenig, claimed that he had a letter proving that the LAP had been discovered earlier by Leibniz. The Academy, and Euler himself, accused Koenig of fraud and a violent dispute started for a while. Voltaire took advantage of the situation to write a pamphlet -where Maupertuis was nicknamed as Dr. Akakia-which became very popular in France. Furious, Friedrich the second, king of Prussia, decided to destroy all copies available in his kingdom.)

The LAP has been extended to many PDEs of Physics and Mechanics: solutions are characterized as critical points of some suitable functional. In most examples, this critical points are not minimizers of the functional and it would be more accurate to speak of "Critical Action Principle", although the expression LAP has been kept since the 18th century. However, in the very special case of our 2nd order ODE, it turns out that solutions are really minimizers provided the time interval [t 0 , t 1 ] is sufficiently short. This follows from the fact that function s → f (s), as defined above, is convex for small values of t 1 -t 0 . More precisely Theorem 1.3.1. Let p = p(t, x) be a smooth function on R × R d for which we assume that the 2nd order derivatives in x are uniformly bounded, so that

K(p) = sup t,x,|y|=1 d i,j=1
∂ 2 p(t, x) ∂x i ∂x j y i y j or, in short,

K(p) = sup t,x,|y|=1 D 2
x p(t, x) : y ⊗ y, is finite. Let X be a solution of X"(t) = -(∇p)(t, X(t)). Then, provided that (t 1 -t 0 ) 2 K(p) < π 2 , any curve u ∈ C 1 ([t 0 , t 1 ]; R d ), different from de X, such that u(t 0 ) = X(t 0 ), u(t 1 ) = X(t 1 ), satisfies

J t 0 ,t 1 ,p [u] > J t 0 ,t 1 ,p [X]
where From the Poincaré inequality, we deduce

J t 0 ,
f "(s) ≥ ( π 2 (t 1 -t 0 ) 2 -K(p)) t 1 t 0 |y(t)| 2 dt > 0
as soon as K(p)(t 1 -t 0 ) 2 < π 2 , since y is not identically null. So, f (s) is a strictly convex function of s. We already saw that f (0) = 0. So s = 0 is a strict minimum for f , which completes the proof. Finally observe that the "hidden" convexity is directly related to the Poincaré inequality.

A continuous version of the Birkhoff theorem

Let us consider the unit cube D = [0, 1] d . We may split it in N = 2 nd dyadic subcubes of equal volume D α for α = 1, • • •, N and attach to each permutation π ∈ S N the map T π : D → D which rigidly translates the interior of each subcube D α to the interior of D π(α) . This makes T π an element of the set V P M (D) of all volume preserving maps T : D → D, defined as follows: It is fairly easy to check the following properties of V P M (D):

1) V P M (D) can be seen as a closed subset of the Hilbert space H = L 2 (D; R d ), contained in the sphere

{ T ∈ H; D |T (x)| 2 dx = D |x| 2 dx }
and, therefore, cannot be a convex set.

2) V P M (D) is a semi-group for the composition rule. However, it is not a group since it contains many non invertible maps T , such as, for example in the case d = 1,

T (x) = 2x mod. 1.
As a matter of fact, the subset of all invertible maps in V P M (D) forms a group but is not a closed subset of H.

3) V P M (D) contains the group P N (D) of all "permutation maps" T π constructed as above, for each permutation π ∈ S N , after splitting D in N = 2 nd dyadic subcubes.

The collection of all these P N (D) forms a group P (D). 4) V P M (D) also contains the group SDif f (D) of all orientation and volume preserving diffeomorphisms T of D, in the sense that T is the restriction of a diffeomorphism of R d , still denoted by T , such that T (D) = D and det(DT (x)) = 1, ∀x ∈ D.

This group is trivially reduced to the identity map as d = 1.

Nevertheless, V P M (D) in spite of being a closed bounded subset of the Hilbert space H = L 2 (D; R d ), is not compact. However, there is a natural "compactification" of V P M (D) [START_REF] Neretin | Categories of bistochastic measures and representations of some infinite-dimensional groups[END_REF][START_REF] Brenier | L p approximation of maps by diffeomorphisms[END_REF] which involves the convex set DS(D), defined as follows. This Corollary is a straightforward consequence of the easy lemma:

Lemma 1.4.5. A sequence T n ∈ V P M (D) converges to T ∈ V P M (D) in L 2 norm, if and only if

D f (x, T n (x))dx → D f (x, T (x))dx, ∀f ∈ C 0 (D × D).
which exactly means that i(T n ) weak-* converges to i(T ) in DS(D).

Observe the similarity of Theorem 1.4.3 with Theorem 1.1.2, DS(D) and V P M (D) somehow playing the respective role of the unit ball and the unit sphere. We also see here another manifestation of the concept of "hidden convexity", where behind V P M (D), we have exhibited the convex set DS(D) as a natural weak-* compactification through injection i. Finally, Theorem 1.4.3 can be interpreted as a continuous version of the Birkhoff theorem where the concept of weak-* closure substitutes for the concept of convex hull. However, notice that i(V P M (D)) is strictly contained in the set of all extremal points of the convex set DS(D). Indeed, each time T ∈ V P M (D) is not invertible, we get automatically two extremal points µ, μ of DS(D), respectively defined by Remark. It turns out [START_REF] Neretin | Categories of bistochastic measures and representations of some infinite-dimensional groups[END_REF] (see also [START_REF] Brenier | L p approximation of maps by diffeomorphisms[END_REF]) that DS(D) is also the weak-* closure of i(SDif f (D)) provided that d ≥ 2, and, as a consequence V P M (D) is the closure of SDif f (D) with respect to the L 2 norm. This has the disturbing consequence that any orientation reversing volume-preserving diffeomorphism of D (which clearly belongs to V P M (D)) -such as

T (x) = (1 -x 1 , x 2 ), x = (x 1 , x 2 ) ∈ [0, 1] d , d = 2,
can be approximated in L 2 norm by a sequence of orientation and volume preserving diffeomorphism of D.

Proof of Theorem 1.4.3 Given µ ∈ DS(D), we want to find a sequence of "permutation" maps p such that the corresponding doubly stochastic measures i(p) weak-* converge to µ. Let n > 0 be a fixed integer. We split D = [0, 1] d into N = 2 nd subcubes of equal volume denoted by D n,i for i = 1, ..., N . We set

ν ij = N µ(D n,i × D n,j ),
for i, j = 1, ..., N so that ν is a doubly stochastic matrix. By Birkhoff's theorem, such a matrix always can be written as a convex combination of at most K = K(N ) (where, as a matter of fact, K(N ) = O(N 2 )) permutation matrices. Thus, there are coefficients θ 1 , ..., θ K ≥ 0 and permutations σ 1 , ..., σ K such that

K k=1 θ k = 1, ν ij = K k=1 θ k δ j,σ k (i) .
Let us introduce L = 2 ld , where l will be chosen later, and set

θ k = 1 L ([Lθ k ] + k ),
where [.] denotes the integer part of a real number and k ∈ [0, 1[ is chosen so that

K k=1 θ k = 1, sup k |θ k -θ k | ≤ 1 L .
By setting

ν ij = K k=1 θ k δ j,σ k (i) ,
we get a new doubly stochastic matrix which satisfies i,j

|ν ij -ν ij | ≤ N K L .
Up to a relabelling of the list of permutations, with possible repetitions, we may assume all coefficients θ k to be equal to 1/L and get a new expression

ν ij = 1 L L k=1 δ j,σ k (i) .
Now, we can split again each D n,i into L subcubes, denoted by D n+l,i,m , for i = 1, ..., N , m = 1, ..., L, with size 2 -(n+l) and volume 2 -(n+l)d . Then, we define p(x) = x -x n+l,i,m + x n+l,σm(i),m , for each x ∈ D n+l,i,m . By construction, (i, m) → (σ m (I), m) is one-to-one. Thus, p belongs to P n+l (D). Let us now estimate, for any fixed f ∈ C(D),

I 1 -I 2 = D 2 f (x, y)µ(dx, dy) - D f (x, p(x))dx.
We denote by η the modulus of continuity of f . I 1 is equal, up to an error of η(2 -n+d/2 ), to

I 3 = 1 N i,j f (x n,i , x n,j )ν ij .
I 3 is equal, up to an error of sup |f |K/L to

I 4 = 1 N i,j f (x n,i , x n,j )ν ij = 1 N L i,m f (x n,i , x n,σm(i) ).
Up to η(2 -n+d/2 ), I 4 is equal to

I 5 = 1 N L i,m
f (x n+l,i,m , x n+l,σm(i),m ).

I 5 , up to η(2 -n-l+d/2 ), is equal to

I 6 = i,m D n+l,i,m f (x, x -x n+l,i,m + x n+l,σm(i),m ),
which is exactly I 2 , by definition of p. Finally, we have shown

|I 1 -I 2 | ≤ sup |f |2 (2n-l)d + 3η(2 -n-l+d/2 ), since L = 2 ld , K = N 2 = 2 2nd
. This completes the proof, after letting first l and then n to +∞.

Chapter 2

Hidden convexity in the Euler equations of incompressible fluids

The central place of the Euler equations among PDEs

This section, where we discuss the importance of the Euler equations of fluids among PDEs, can be skipped by the reader in a hurry who may go directly to section 2.2...Anyway, as Laplace used to say:

"Lisez Euler, il est notre maître à tous !"

In our opinion, it is very difficult to question the priority and the centrality of the Euler equations of fluids in Mathematics, Mechanics, Physics and Geometry:

1) Euler's theory of fluids, entirely described in terms of density, velocity and pressure fields, governed by a self-consistent set of partial differential equations, provides the first "Field Theory" ever in Physics, before the theories later developed by Mawxell (Electromagnetism), Einstein (Gravitation), Schrödinger and Dirac (Quantum Mechanics).

2) The Euler model is the backbone of a very large part of Natural Sciences (Fluid Mechanics, Oceanography, Weather Forecast, Climatology, Convection Theory, Dynamo Theory...).

3) To the best of our knowledge, Euler's equations form the first self-consistent system of PDEs ever written, in 1755-57 [230], except the 1D linear wave equation which was introduced and solved by d'Alembert few years earlier in 1746 [START_REF]Recherches sur la courbe que forme une corde tendue mise en vibration[END_REF]. (See also [START_REF] Brezis | Partial differential equations in the 20th century[END_REF].) It is striking to compare the style of [START_REF]Recherches sur la courbe que forme une corde tendue mise en vibration[END_REF] and [230]. Euler introduced remarkably modern notations that are still easily readable. On top of that, while the 1D wave equation is now considered as a rather trivial equation (which in no way diminishes the merit of d'Alembert for his elegant solution at such an early stage of mathematical Analysis!), the solution of the Euler equations, after a quarter of millennium, is still considered as one of the most challenging problem in PDEs (typ-ically, together with the solution of the Einstein and the Navier-Stokes equations).

4) The Euler equations already (implicitly) contain the wave, heat and Poisson equations, which are the basic equations of respectively hyperbolic, parabolic and elliptic type, according to the traditional terminology of PDEs [START_REF] Evans | EDP Partial differential equations[END_REF][START_REF] Hörmander | The analysis of linear partial differential operators[END_REF][START_REF] Klainerman | PDE as a unified subject[END_REF][START_REF] Taylor | Partial differential equations. III. Nonlinear equations[END_REF], and, also, the advection equation (which is just an ODE rephrased as a PDE).

5) The Euler model of incompressible fluids admits a remarkable geometric interpretation due to Arnold [START_REF] Arnold | Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications a l'hydrodynamique des fluides parfaits[END_REF][START_REF] Arnold | Topological methods in hydrodynamics[END_REF][START_REF] Ebin | Groups of diffeomorphisms and the notion of an incompressible fluid[END_REF] that makes it an archetype of Geometry in infinite dimension (for which me may refer, among many others, to [START_REF] Arguillère | Shape deformation analysis from the optimal control viewpoint[END_REF][START_REF] Arnaudon | An entropic interpolation problem for incompressible viscid fluids preprint[END_REF][START_REF] Constantin | On geodesic exponential maps of the Virasoro group[END_REF][START_REF] Ebin | Groups of diffeomorphisms and the notion of an incompressible fluid[END_REF][START_REF] Ebin | The initial value problem for elastodynamics of incompressible bodies[END_REF][START_REF] Th | Generalized Compressible Flows and Solutions of the H(div) Geodesic Problem[END_REF][START_REF] Gay-Balmaz | Geometric dynamics of optimization[END_REF][START_REF] Gibbon | Quaternions and particle dynamics in the Euler fluid equations[END_REF][START_REF] Michor | An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach[END_REF][START_REF] Misiołek | Fredholm properties of Riemannian exponential maps on diffeomorphism groups[END_REF][START_REF] Rouchon | The Jacobi equation, Riemannian curvature and the motion of a perfect incompressible fluid[END_REF][START_REF] Tao | On the universality of the incompressible Euler equation on compact manifolds[END_REF][START_REF] Vanneste | Two-dimensional Euler flows in slowly deforming domains[END_REF]...). Indeed, in the case of a fluid moving in a compact Riemannian manifold M, the Euler equations just describe constant speed geodesic curves along the (formal) Lie group SDif f (M) of all volume and orientation preserving diffeomorphisms of M, with respect to the L 2 norm on its (formal) Lie Algebra, made of all divergence-free vector fields along M.

In the case of a fluid moving inside the unit cube, D = [0, 1] d , this amounts, in more elementary terms, to looking for curves t ∈ R → X t ∈ SDif f (D) ⊂ H = L 2 (D; R d ) that minimize

t 1 t 0 || dX t dt || 2 H dt,
on short enough intervals [t 0 , t 1 ], as the time-boundary values X t 0 , X t 1 are fixed. These geodesic curves can also be seen as "harmonic maps" from R to SDif f (D).

Remark

This immediately suggests a generalization to "harmonic maps" or, rather, "wave maps" from an open set of R 2 to SDif f (D), which, as a matter of fact, corresponds to the particular ideal incompressible model in the wider field of Electromagnetohydrodynamics for which we refer, among many other references, to [START_REF] Arnold | Topological methods in hydrodynamics[END_REF][START_REF] Ch | A model hierarchy for ionospheric plasma modeling[END_REF][START_REF] Gerbeau | Mathematical methods for the magnetohydrodynamics of liquid metals[END_REF][START_REF] Jüngel | A hierarchy of hydrodynamic models for plasmas: zerorelaxation-time limits[END_REF][START_REF] Moffatt | Self-exciting fluid dynamos[END_REF]. We may also consider the corresponding "harmonic heat flow" which more or less correspond to the model of magnetic relaxation [START_REF] Arnold | Topological methods in hydrodynamics[END_REF][START_REF] Brenier | Optimal transport, convection, magnetic relaxation and generalized Boussinesq equations[END_REF][START_REF] Brenier | Topology-preserving diffusion of divergence-free vector fields and magnetic relaxation[END_REF][START_REF] Moffatt | Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology[END_REF].

To the best of our knowledge, "harmonic maps" valued in the infinite dimensional group SDif f (D) have never been investigated so far, in spite of the paramount importance in geometric analysis of harmonic maps when they are valued in finite dimensional Riemannian manifolds [START_REF] Brezis | Harmonic maps with defects[END_REF][START_REF] Hélein | Régularité des applications faiblement harmoniques entre une surface et une variété riemannienne[END_REF][START_REF] Rivière | Partial regularity for harmonic maps and related problems[END_REF][START_REF] Schoen | A regularity theory for harmonic maps[END_REF].

The Euler equations

Here below are the equations written by Euler in 1755/57 [230], where we use the familiar notation ∇ for the partial derivatives. (They are denoted more explicitly by Euler, with a notation already modern. See below a fac simile of [230].)

∂ t ρ + ∇ • (ρv) = 0, ∂ t v + (v • ∇)v = - 1 ρ ∇(p(ρ))
where (ρ, p, v) ∈ R 1+1+3 denote the density, pressure and velocity fields of the fluid, the pressure being assumed by Euler to be a given function of the density. They can also be written is "conservation form"

∂ t ρ + ∇ • (ρv) = 0, ∂ t (ρv) + ∇ • (ρv ⊗ v) = -∇(p(ρ))
and also "in coordinates" (which can be easily extended to the framework of Riemannian manifolds)

∂ t ρ + ∂ j (ρv j ) = 0, ∂ t (ρv i ) + ∂ j (ρv j v i ) = -∂ i (p(ρ)).
(In the Euclidean case v i is just a notation for δ ij v j , but in the Riemannian case v i = g ij v j definitely involves the metric tensor g.) It is important to emphasize that, in the same paper, Euler also addresses the case of incompressible fluids, for which

∂ t v + ∇ • (v ⊗ v) + ∇p = 0, ∇ • v = 0,
or, equivalently,

∂ t v i + ∂ j (v j v i ) = -∂ i p, ∂ i v i = 0,
which corresponds, grosso modo, to a constant unit density field and where p becomes an unknown field that balances the divergence-free condition on v. As a matter of fact, p can be eliminated (up to boundary conditions that we do not discuss at this stage) by applying the divergence operator, which leads to the Poisson equation for p

-∆p = (∇ ⊗ ∇) • (v ⊗ v),
(Note that the passage from the compressible case to the incompressible case is now very well understood at the mathematical level [START_REF] Klainerman | Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids[END_REF][START_REF] Kreiss | Problems with different time scales for partial differential equations[END_REF][START_REF] Métivier | The incompressible limit of the non-isentropic Euler equations[END_REF].)

In fact, it is important for many applications, in particular in Geophysics, to consider incompressible inhomogeneous fluids. This means that the velocity is still considered to be divergence-free but the density may vary. The resulting equation are

∂ t ρ + ∇ • (ρv) = 0, ∂ t (ρv) + ∇ • (ρv ⊗ v) + ∇p + ρ∇Φ = 0, ∇ • v = 0,
where we have included an external potential Φ (typically the gravity potential). Note that, due to the divergence-free condition, such a potential has no effect in the homogeneous case when ρ is constant. (This is why the feeling of gravity is so weak for us when we are swimming under water because our density is essentially the same as water.) However, for inhomogeneous fluid, the impact of Φ may be considerable. As a matter of fact, this is the origin of convective phenomena, which play an amazingly important role in Natural Sciences (climate, volcanism, earthquakes, continental drift, terrestrial magnetism,..) and daily life (weather, heating, boiling etc...) and will be considered in Chapter 7.

The Euler system as a master equation

Let us now formally check that the most basic PDEs (heat, wave, Poisson and advection equations [START_REF] Evans | EDP Partial differential equations[END_REF][START_REF] Hörmander | The analysis of linear partial differential operators[END_REF][START_REF] Klainerman | PDE as a unified subject[END_REF][START_REF] Taylor | Partial differential equations. III. Nonlinear equations[END_REF]) are hidden behind the Euler equations.

From Euler to the heat equation

We may recover the heat equation (and more generally the "porous medium" equation) from the Euler equations of compressible fluids, through a very simple process that does not seem to be so well-known in the PDE literature, just by a straightforward, quadratic, change of time. This technique will be used later in this book, in Chapter 9. We start from a solution, denoted by (ρ, ṽ)(t, x), of the Euler equations

∂ t ρ + ∇ • (ρṽ) = 0, ∂ t (ρṽ) + ∇ • (ρṽ ⊗ ṽ) = -∇(p(ρ))
(where, following Euler, the pressure p is a known function of the density). We perform the quadratic change of time:

t → τ = t 2 /2, dτ dt = t, (ρ, ṽ)(t, x) = (ρ(τ, x), dτ dt v(τ, x)),
(so that ṽ(t, x)dt = v(τ, x)dτ ). We easily obtain

∂ τ ρ + ∇ • (ρv) = 0, ρv + 2τ (∂ τ (ρv) + ∇ • (ρv ⊗ v)) = -∇(p(ρ)).
For very short times τ << 1, we get an asymptotic equation by withdrawing all terms in factor of τ . We are left with

∂ τ ρ + ∇ • (ρv) = 0, ρv = -∇(p(ρ))
which, in the "isothermal" case when p is linear in ρ, i.e. p = γ 2 ρ , with "sound speed" " γ, is nothing but the heat equation (solved by Fourier in the 19th century, half of a century after Euler's work on fluids):

∂ τ ρ = γ 2 ∆ρ, ∆ = ∇ • ∇.
In the general case, we get the so-called "porous medium" equation [START_REF] Vázquez | The Porous Medium Equation[END_REF] ∂ τ ρ = ∆(p(ρ)), that will be addressed later in this book, in Chapter 5.

From Euler to the wave equation

By inputing

(ρ, ṽ)(t, x) = (ρ * + ρ(t, x), v(t, x)),
(where is small and ρ * is a constant density of reference) in the Euler equations of compressible fluids

∂ t ρ + ∇ • (ρṽ) = 0, ∂ t (ρṽ) + ∇ • (ρṽ ⊗ ṽ) = -∇(p(ρ)),
we find

∂ t ρ + ∇ • ((ρ * + ρ)v) = 0 ∂ t ((ρ * + ρ)v) + ∇ • ((ρ * + ρ) v ⊗ v) = -∇ p(ρ * + ρ) -p(ρ * ) .
In the regime << 1, for "small density and velocity fluctuations", one obtains an asymptotic equation by dropping the smallest terms and using

p(ρ * + ρ) = p(ρ * ) + p (ρ * )ρ + O( 2 ).
We are left with

∂ t ρ + ρ * ∇ • v = 0, ρ * ∂ t v + p (ρ * )∇ρ = 0
which is nothing but the famous wave equation (that d'Alembert had solved in one space dimension, few years before Euler's work on fluids [START_REF]Recherches sur la courbe que forme une corde tendue mise en vibration[END_REF]) :

∂ 2 tt ρ = γ 2 ∆ρ
(after eliminating v), with "sound speed" γ = p (ρ * ).

2D Euler equations as a coupling of two linear PDEs

In the case of incompressible fluids, where ∇ • v = 0, and in two space dimensions, we may write (at least locally)

v = (-∂ 2 ψ, ∂ 1 ψ)
for some scalar function ψ = ψ(t, x) (usually called "stream function"). By setting

ω = ∂ 2 v 1 -∂ 1 v 2 , we easily get both -∆ψ = ω and ∂ t ω + (v • ∇)ω = 0.
In this case, the Euler equations can be interpreted as a non-trivial coupling of two elementary linear PDEs:

1) The Poisson equation, prototype of elliptic PDEs,

-∆ψ = ω
where ψ is unknown and ω given;

2) The transport (or advection) equation

∂ t ω + (v • ∇)ω = 0.
where ω is unknown while v = (-∂ 2 ψ, ∂ 1 ψ) is given.

Euler equations and ODEs

By integrating the velocity field v of the fluid, we may recover the trajectory of each fluid parcel, labeled by a, through

dX t dt (a) = v(t, X t (a)).
(It is common, but not necessary, to use the initial position as a label, so that X 0 (a) = a.) Thanks to the chain rule, we immediately see that the Euler equation

∂ t v + (v • ∇)v = - ∇p ρ
has no other meaning that the 2nd order ODE

d 2 X t dt 2 (a) = -( ∇p ρ )(t, X t (a)).
In the case of homogeneous incompressible fluids of unit density, we just get

d 2 X t dt 2 (a) = -(∇p)(t, X t (a)).
As a matter of fact, in his paper [230], Euler starts from this 2nd order EDO and gets his famous equations after introducing the key concept of velocity field. (This fact is frequently ignored in the literature.) The link with ODEs is even more striking in the special case of homogeneous incompressible fluids in two space dimensions. Indeed, the "vorticity equation"

∂ t ω + (v • ∇)ω = 0 just means that Ω(t, a) = ω(t, X t (a)
) is time independent. Indeed, the vorticity equation is just equivalent to the trivial ODE

dΩ dt = 0.
This can be very fruitfully exploited at the computational level [START_REF] Chorin | Numerical solution of the Navier-Stokes equations[END_REF][START_REF] Cottet | Vortex methods[END_REF][START_REF] Pironneau | On the transport-diffusion algorithm and its applications to the Navier-Stokes equations[END_REF].

Few words on the analysis of the Euler equations

So far, we have not addressed the Euler equations from the Analysis viewpoint. This is somewhat consistent with the prophetic conclusion of Euler's paper [230]:

"Tout ce que la théorie des fluides renferme est contenu dans les deux équations rapportées ci-dessus, de sorte que ce ne sont pas les principes de Mécanique qui nous manquent dans la poursuite de ces recherches, mais uniquement l'Analyse, qui n'est pas encore assez cultivée, pour ce dessein."

A quarter of millennium later, progresses have been indeed significant but not yet conclusive (cf. [START_REF] Chemin | Perfect incompressible fluids[END_REF][START_REF] Chorin | A mathematical introduction to fluid mechanics[END_REF][START_REF] Lions | Incompressible models[END_REF][START_REF] Majda | Vorticity and incompressible flow[END_REF][START_REF] Marchioro | Pulvirenti Mathematical theory of incompressible non viscous fluids[END_REF]...). So, the Analysis of the Euler equations, which are essentially the first PDEs ever written, persists as a major challenge in the field of nonlinear PDEs. Let us start with the case of homogeneous incompressible fluids and quote what we believe to be some of the most noticable results obtained so far (mostly in the case D = T d , for simplicity):

1) A unique smooth classical solution always exists for a short while, as long as the initial velocity field v 0 is smooth (i.e. with Hölder continuous derivatives) and this solution is global in the 2D case d = 2 [START_REF] Lichtenstein | Über einige Existenzprobleme der Hydrodynamik[END_REF][START_REF] Wolibner | Un théorème sur l'existence du mouvement plan d'un fluide parfait, homogène, incompressible[END_REF]. However the vorticity gradient may exhibit a double exponential growth in time (at least as D is a disk) [START_REF] Kiselev | Small scale creation for solutions of the incompressible two-dimensional Euler equation[END_REF]. In addition, the trajectories of the fluid are known to be time-analytic [419] (see [START_REF] Besse | A constructive approach to regularity of Lagrangian trajectories for incompressible Euler flow in a bounded domain[END_REF] for a recent account).

2) In the 2D case, a unique global solution exists (in a suitable generalized sense) as soon as the initial vorticity ω 0 (i.e. the curl of v 0 ) is essentially bounded on D [START_REF] Yudovich | Non-stationary flows of an ideal incompressible fluid[END_REF]. Moreover, the smoothness of the vorticity level sets is preserved during the evolution [START_REF] Chemin | Existence globale pour le problème des poches de tourbillon[END_REF] (which has been a very striking result going very much again numerical simulations which predicted formation of singularities in finite time). There are always global weak solutions in the special class of vorticity fields ω(t, x) that stay, at any time t, a nonnegative bounded measure up to the addition of an L 1 function in x [START_REF] Delort | Existence de nappes de tourbillon en dimension deux[END_REF].

3) Weak solutions v ∈ L 2 in the sense of distributions globally exist for any fixed initial condition v 0 ∈ L 2 (D; R d ), but there are uncountably many of them [START_REF] Wiedemann | Existence of weak solutions for the incompressible Euler equations[END_REF]! This is a rather direct consequence of the analysis by "convex integration" of the Euler equations performed in [START_REF] De Lellis | The Euler equations as a differential inclusion[END_REF][START_REF] De Lellis | On admissibility criteria for weak solutions of the Euler equations[END_REF]; through similar methods, there exist weak solutions v(t, x) that are Hölder continuous of exponent α less than 1/3 in x and do not preserve their kinetic energy (resolution of the so-called "Onsager conjecture" [297, 135]) although, whenever α > 1/3, the kinetic energy is necessarily conserved [START_REF] Constantin | Onsager's conjecture on the energy conservation for solutions of Euler's equation[END_REF][START_REF] Eyink | Energy dissipation without viscosity in ideal hydrodynamics[END_REF].

4) Global generalized solutions, called "dissipative solutions", always exist in [START_REF] Lions | Incompressible models[END_REF] ; they are not necessarily weak solutions but their kinetic energy cannot exceed its initial value and they enjoy the "weak-strong uniqueness principle" in the sense that if there is a classical solution with initial condition v 0 then this solution is unique in the class of dissipative solutions staring from v 0 . (See [START_REF] Brenier | Weak-strong uniqueness for measure-valued solutions[END_REF][START_REF] Diperna | Majda Oscillations and concentrations in weak solutions of the incompressible fluid equations[END_REF][START_REF] Duchon | Relaxation of the Euler equations and hydrodynamic instabilities[END_REF] for related concepts of generalized solutions.) 5) From a more geometric viewpoint, the geodesic flow on the group SDif f (D) is well defined, in a classical sense, but only in a tiny neighborhood of the identity map for a very fine (Sobolev) topology [START_REF] Ebin | Groups of diffeomorphisms and the notion of an incompressible fluid[END_REF]. Nevertheless, as d = 3, one can prove the existence of many orientation and volume preserving diffeomorphisms, that are trivial in the third space coordinate, i.e. of form h(x 1 , x 2 , x 3 ) = (H(x 1 , x 2 ), x 3 ), that can be connected by smooth paths of finite length to the identity map but none of them has minimal length [START_REF] Shnirelman | On the geometry of the group of diffeomorphisms and the dynamics of an ideal incompressible fluid[END_REF] (see also the related work [START_REF] Eliashberg | The diameter of the symplectomorphism group is infinite[END_REF]). In this case, the minimizing geodesic problem can be relaxed as a convex minimization problem in a suitable space of measures, which always admits generalized solutions, with the additional property that there is a unique pressure gradient attached to them, that only depends on H and approximately "accelerates" all paths of approximately minimal length [START_REF] Brenier | Minimal geodesics on groups of volume-preserving maps[END_REF]. Thanks to an appropriate density result [START_REF] Shnirelman | Generalized fluid flows, their approximation and applications[END_REF], this result still applies to more general data, in particular to all h in SDif f (D) [START_REF] Ambrosio | Geodesics in the space of measure-preserving maps and plans[END_REF].

C 0 (R + ; L 2 w (D)), as soon as v 0 ∈ L 2 (D; R d )
In the case of compressible fluids, the results are less complete. Roughly speaking, the 4th first results extend, except that the second one, proving global existence of suitable "entropy" solutions, is valid only for d = 1 and for initial data that are small enough in total variation. Both the existence part [START_REF] Glimm | Solutions in the large for nonlinear hyperbolic systems of equations[END_REF] and the well-posedness (uniqueness and stability) part [START_REF] Bianchini | Vanishing viscosity solutions of nonlinear hyperbolic systems[END_REF][START_REF] Bressan | Hyperbolic systems of conservation laws. The one-dimensional Cauchy problem[END_REF] are remarkable achievements of the theory of hyperbolic nonlinear systems of conservation laws.

Hidden convexity in the Euler equations:

The geometric viewpoint A simple geometric definition (going back to Arnold [START_REF] Arnold | Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications a l'hydrodynamique des fluides parfaits[END_REF]) of the Euler equations of an incompressible fluid, confined in a compact domain D ⊂ R d without any external force, amounts to finding curves [230]), the "configuration space" being SDif f (D).

t ∈ R → X t ∈ SDif f (D) ⊂ H = L 2 (D; R d ) that minimize
We 

H = L 2 (D; R d ), is neither compact nor convex.
As a matter of fact, it is not difficult to attach to any curve t → X t ∈ SDif f (D) a corresponding curve of doubly stochastic measures t → c t ∈ DS(D), just by setting

D 2 f (x, a)dc t (x, a) = D f (X t (a), a)da, ∀f ∈ C 0 (D 2 )
or, in short,

dc t (x, a) = δ(x -X t (a))da.
However, this is not enough to define a reasonable dynamical system describing geodesics on DS(D). So we also attach a curve of vector-valued Borel measures

t → q t ∈ C 0 (D 2 ; R d ) by setting D 2 f (x, a) • dq t (x, a) = D dX t dt (a) • f (X t (a), a)da, ∀f ∈ C 0 (D 2 ; R d )
where dXt dt (a) just denotes the partial derivative ∂ t X t (a). We may also write, more briefly,

dq t (x, a) = dX t dt (a)δ(x -X t (a))da.
Notice that q t is automatically absolutely continuous with respect to c t so that we can write its Radon-Nikodym derivative as (x, a) → v t (x, a) ∈ R d and denote:

dq t (x, a) = v t (x, a)dc t (x, a).
(This idea is not new, it is just an avatar of the concept of "current", familiar in Geometric Measure Theory. See [START_REF] Federer | Geometric measure theory[END_REF][START_REF] Morgan | Geometric measure theory. A beginner's guide[END_REF] and [START_REF] Ambrosio | Currents in metric spaces[END_REF] as a recent reference. Let us also quote the related concept of Young's measures [START_REF] Ball | A version of the fundamental theorem for Young measures[END_REF][START_REF] Tartar | Compacité par compensation: résultats et perspectives, Nonlinear partial differential equations and their applications[END_REF][START_REF] Young | Lectures on the calculus of variations[END_REF].) An important property of measures c and q is their link through the following linear PDE

∂ t c t + ∇ x • q t = 0,
satisfied in the sense of distributions. Indeed, for every test function f = f (x, a) defined on D × D, we have

d dt D 2 f (x, a)dc t (x, a) = d dt D f (X t (a), a)da = D (∇ x f )(X t (a), a) • dX t dt (a)da = D 2 f (x, a)dq t (x, a).
Another key point is that we can rewrite the "kinetic energy" just in terms of c and q = cv:

1 2 || dX t dt || 2 H = 1 2 D 2 |v t (x, a)| 2 dc t (x, a).
To check this identity, let us write the right-hand side in a dual way as:

1 2 D 2 |v t (x, a)| 2 dc t (x, a) = sup{ D 2 - 1 2 |f (x, a)| 2 + f (x, a) • v t (x, a) dc t (x, a); f ∈ C 0 (D 2 ; R d )}
(here we use the density of continuous functions in the space of L 2 functions with respect to measure c t )

= sup{ D 2 - 1 2 |f (x, a)| 2 dc t (x, a) + f (x, a) • dq t (x, a) ; f ∈ C 0 (D 2 ; R d )}. = sup{ D - 1 2 |f (X t (a), a)| 2 + f (X t (a), a) • dX t dt (a) da; f ∈ C 0 (D 2 ; R d )}.
(by definition of c and q = cv)

= 1 2 D | dX t dt (a)| 2 da
(by completion of squares, using that a → X t (a) is one-to-one since X t belongs to SDif f (D)). These relations are of particular interest, since they provide a convex expression in terms of (c, q):

sup{ D 2 - 1 2 |f (x, a)| 2 dc t (x, a) + f (x, a) • dq t (x, a) ; f ∈ C 0 (D 2 ; R d )}.
We may even go a little further, in defining for a any pair (c, q) ∈ C 0 (D

2 ; R × R d ) K(c, q) = sup{ D 2
A(x, a)dc(x, a) + B(x, a) • dq(x, a);

(A, B) ∈ C 0 (D 2 ; R × R d ) s.t. 2A + |B| 2 ≤ 0},
which defines a l.s.c convex function valued in ] -∞, +∞] without any restriction on (c, q) ∈ C 0 (D 2 ; R × R d ) , not even that c ≥ 0. Indeed, it can be shown that K(c, q) takes the value +∞ unless c ≥ 0, q is absolutely continuous with respect to c, with Radon-Nikodym derivative v, square integrable in c, in which case

1 2 D 2 |v(x, a)| 2 dc(x, a).
(This can be shown by elementary arguments of Measure Theory. See [START_REF] Brenier | A homogenized model for vortex sheets[END_REF] for more details.) So, we are now ready to formulate the LAP entirely in terms of (c, q) by requiring the minimization on each sufficiently short time interval [t 0 , t 1 ] of

t 1 t 0 K(c t , q t )dt,
under the constraints that c t is doubly stochastic, i.e. c t ∈ DS(D), and satisfies, together with q t the linear PDE

∂ t c t + ∇ x • q t = 0,
while the time-boundary values c t 0 , c t 1 are fixed in DS(D). The novelty of this formulation is that we may now ignore that c and q have be derived from some curve t → X t ∈ SDif f (D). In other words, we have a possible relaxed version of the LAP, with the remarkable advantage that the formulation is now entirely convex! In a more geometric wording, we can interpret this relaxed problem as the "minimizing geodesic" problem along DS(D) between two given points of DS(D). Although the detailed study of this problem will be done in Chapter 4, we may already at this stage provide a synthesis of the results obtained in [START_REF] Brenier | Minimal geodesics on groups of volume-preserving maps[END_REF], extended and improved in [START_REF] Ambrosio | On the regularity of the pressure field of Brenier's weak solutions to incompressible Euler equations[END_REF][START_REF] Ambrosio | Geodesics in the space of measure-preserving maps and plans[END_REF][START_REF] Baradat | Continuous dependence of the pressure field with respect to endpoints for ideal incompressible fluids[END_REF][START_REF] Baradat | Small noise limit and convexity for generalized incompressible flows, Schrödinger problems, and optimal transport[END_REF][START_REF] Brenier | Remarks on the Minimizing Geodesic Problem in Inviscid Incompressible Fluid Mechanics[END_REF][START_REF] Buffoni | Generalized flows satisfying spatial boundary conditions[END_REF][START_REF] Lopes Filho | Least action principle and the incompressible Euler equations with variable density[END_REF].

For notational simplicity, it is convenient to normalize t 0 = 0, t 1 = 1 and denote c t 0 , c t 1 by c 0 , c 1 . We will also use the following notations: i) c(t, x, a), q(t, x, a), v(t, x, a) instead of c t (x, a), q t (x, a), v t (x, a); ii) x,a f (x, a)c(t, x, a) rather than D 2 f (x, a)dc t (x, a), etc... Theorem 2.2.1. Let D be the periodic cube D = T d . Given any data c 0 and c 1 in the convex compact set of all doubly stochastic measure on D, the relaxed minimizing geodesic problem always admits at least one solution (c, cv) and there is a unique pressure gradient

(t, x) ∈]0, 1[×D → ∇p(t, x) ∈ R, depending only on c 0 and c 1 such that ∂ t a (cv)(t, x, a) + ∇ x • a (cv ⊗ v)(t, x, a) = -∇p(t, x)
whatever solution (c, cv) is.

In addition, ∇p has some limited regularity: it is locally square integrable in time with values in the space of bounded measures on D = T d . Moreover, whenever d ≥ 2, each optimal solution (c, cv) can be weakly-* approximated by a family of smooth curves t ∈ [0, T ] → T t ∈ SDif f (D), in the sense that, denoting

v = dT t dt • (T t ) -1 ,
the corresponding measures

(1, dT t dt (a))δ(x -T t (a))
weakly-* converge to (c, cv)(t, x, a) and without gap of energy, in the sense

1 0 D |v (t, x)| 2 dxdt → 1 0 x,a (c|v| 2 )(t, x, a)dt.
Finally, the v are almost solutions to the Euler equations in the sense that

∂ t v + ∇ • (v ⊗ v ) → -∇p,
where ∇p is the unique pressure gradient attached to the data (c 0 , c 1 ).

Let us emphasize that it is very surprising that the pressure gradient is uniquely determined by the data. Indeed, let us consider, as Arnold did in his founding paper [START_REF] Arnold | Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications a l'hydrodynamique des fluides parfaits[END_REF], the finite dimensional counterpart of the Euler model of incompressible fluids, namely the model of rigid bodies, where the finite dimensional Lie group SO(3) substitutes for SDif f (D), and a non-degenerate quadratic form (corresponding to the matrix of inertia of the rigid body) substitute for the L 2 metric. Then the geodesic curves precisely describe the motion of a perfect rigid body moving in vaccuum (without external forces). There is also a substitute for the pressure gradient, which turns out to be a 3 × 3 symmetric time dependent matrix which is attached to each geodesic, and acts in order to preserve the rigidity of the body. Then one can find examples of two minimizing geodesics having the same endpoints for which these matrices are not the same [START_REF] Brenier | Remarks on the Minimizing Geodesic Problem in Inviscid Incompressible Fluid Mechanics[END_REF]. As a matter of fact, the uniqueness of the pressure gradient is, in our opinion, a striking manifestation of "hidden convexity" due to to the infinite dimension of SDif f (D) and the convexity of its weak completion DS(D). So, in some sense, we have a rather sophisticated avatar of Theorem 1.1.2 (stating that, in Hilbert spaces, the unit ball is the right weak completion of the unit ball if only if the dimension of the space is infinite). There is certainly some room to improve the results we have just mentioned. In particular, it would be very useful to know the precise regularity of the pressure field. There is some evidence [START_REF] Brenier | Remarks on the Minimizing Geodesic Problem in Inviscid Incompressible Fluid Mechanics[END_REF] that the pressure p(t, x) should be, locally in time in ]0, 1[, semi-concave in x, and not more in general, which means that the derivatives in x of p should be Borel measures up to second order and not only to first order as in the Theorem! To conclude this sub-section, let us just us mention a striking additional property: the "Boltzmann entropy"

x,a

(c log c)(t, x, a)
is convex in t along every generalized minimizing geodesic. This has been conjectured in [START_REF] Brenier | Extended Monge-Kantorovich theory[END_REF] and proven first by Lavenant [START_REF] Lavenant | Time-convexity of the entropy in the multiphasic formulation of the incompressible Euler equation[END_REF] (with some restrictions) and then by . In our opinion, this convexity might be an indication that SDif f (D) has, in some suitable sense, a nonnegative Ricci curvature (in the spirit of Lott-Sturm-Villani [START_REF] Lott | Ricci curvature for metric-measure spaces via optimal transport[END_REF][START_REF] Sturm | On the geometry of metric measure spaces[END_REF]). This would be another striking manifestation of "hidden convexity", since, in the classical framework, the measures c(t, x, a) are delta measures and their Boltzmann entropy is always infinite! Example of a minimizing geodesic along DS(D), D = [0, 1]. Note that only the end points belong to V P M (D). (Numerical approximation using permutation maps.)

Hidden convexity in the Euler equations: the Eulerian viewpoint

Let us go back to the classical setting, where the Euler equations of incompressible fluids read

∂ t v + ∇ • (v ⊗ v) + ∇p = 0, ∇ • v = 0,
and mention the remarkable results of De Lellis et Székelyhidi [START_REF] De Lellis | The Euler equations as a differential inclusion[END_REF][START_REF] De Lellis | On admissibility criteria for weak solutions of the Euler equations[END_REF][START_REF] De Lellis | On turbulence and geometry: from Nash to Onsager[END_REF], based on the concepts of differential inclusions and convex integration that go back to the work of Gromov, Nash et Tartar [START_REF] Gromov | Partial Differential Relations[END_REF][START_REF] Nash | C1 isometric imbeddings[END_REF][START_REF] Tartar | Compacité par compensation: résultats et perspectives, Nonlinear partial differential equations and their applications[END_REF]. (See also [START_REF] Dacorogna | General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial cases[END_REF].) They follow earlier works by Constantin-E-Titi, Eyink, Scheffer, Shnirelman, about the socalled "Onsager conjecture" [START_REF] Constantin | Onsager's conjecture on the energy conservation for solutions of Euler's equation[END_REF][START_REF] Eyink | Energy dissipation without viscosity in ideal hydrodynamics[END_REF] and the existence of non trivial space-time compactly supported weak solutions [START_REF] Scheffer | An inviscid flow with compact support in space-time[END_REF][START_REF] Shnirelman | On the nonuniqueness of weak solution of the Euler equation[END_REF]. Let also quote subsequent papers [START_REF] Buckmaster | Onsager's conjecture for admissible weak solutions[END_REF][START_REF] De Lellis | On admissibility criteria for weak solutions of the Euler equations[END_REF][START_REF] De Lellis | On turbulence and geometry: from Nash to Onsager[END_REF]297] among many others.

A key point in the analysis is the convex concept of subsolution to the Euler equations. We say that a pair (V, M ) is such a subsolution if 1) There is a scalar function p (the "pressure") such that

∂ t V + ∇ • M + ∇p = 0, ∇ • V = 0
holds true, in the sense of distributions. In coordinates, this reads

∂ t V i + ∂ j M ij + ∂ i p = 0, ∂ i V i = 0.
ii) M ≥ V ⊗ V holds true in the sense of distributions and symmetric matrices.

We immediately note that a subsolution (V, M ) becomes a weak solution as soon as inequality M ≥ V ⊗ V is saturated:

M = V ⊗ V .
In terms of functional spaces, the concept of subsolution requires a very limited amount of regularity. Typically, in the simple case when Q = [0, T ] × D with D = T d , it makes sense as soon as V ∈ L 2 (Q; R d ) and M is a bounded Borel measure valued in the convex cone of all nonnegative symmetric matrices. We may add an initial condition V 0 , typically an L 2 divergence-free vector field, to the concept of subsolution (V, M ) by requiring

Q ∂ t A i (t, x)V i (t, x)dtdx + ∂ j A i (t, x)M ij (dtdx) + D V i 0 (x)A i (0, x)dx = 0,
for all smooth divergence-free vector field

A = A(t, x) ∈ R d such that A(T, x) = 0.
Notice, however, that since a priori M is just a measure, V (t, x) may not depend continuously on t (just enjoying a bounded variation) and, therefore, there is no reason that V (t, x) achieves V 0 as t ↓ 0. We will discuss this kind of problem later in Chapter 5. This is also a situation that specialists of hyperbolic conservation laws have to face when they deal with space boundary conditions, as discussed in the classical paper by Bardos, Le Roux et Nédelec [START_REF] Bardos | First order quasilinear equations with boundary conditions[END_REF]. Let us also observe that the set of subsolutions with initial condition V 0 is trivially convex.

As inequality M ≥ V ⊗ V is always strict, we speak of strict subsolutions. Conversely, when this inequality is saturated, we recover standard weak solutions. So the situation reminds us very much of Theorem 1.1.2 that we discussed at the beginning of this book in Chapter 1. As a consequence of the works by De Lellis et Székelyhidi [START_REF] De Lellis | The Euler equations as a differential inclusion[END_REF], we have the following result [START_REF] De Lellis | On turbulence and geometry: from Nash to Onsager[END_REF] :

Theorem 2.3.1. Let (V, M ) be a strict smooth subsolution to the Euler equations on [0, T ] × T d . Then, there exists a sequence of weak solutions v n (t, x) (which we can even assume to be Hölder continuous in x of small exponent -no more than 1/3 anyway-) such that (v n -V )(t, x) and (v n ⊗ v n -M )(t, x) weak-* converge to zero in L ∞ (T d ), uniformly in t. We may further assume that, for all t ∈ [0, T ],

T d (v n ⊗ v n )(t, x)dx = T d M (t, x)dx.
This is a highly non-trivial result which requires a large amount of Analysis. We will not even try to sketch a proof and we invite the interested reader to look at De Lellis et Székelhydi papers [START_REF] De Lellis | The Euler equations as a differential inclusion[END_REF][START_REF] De Lellis | On turbulence and geometry: from Nash to Onsager[END_REF].

As already mentioned, this result can be seen as a very sophisticated version of Theorem 1.1.2 in Chapter 1, strict subsolutions and weak solutions playing respectively the role of the points lying in the interior of the unit ball and the points of the unit sphere.

More results on the Euler equations

In this section, that can be skipped at a first stage, we provide more informations on the Euler equations. We start by describing various formulations of the Euler equations.

The trajectorial viewpoint

It is very instructive to look at the Euler equations of incompressible homogeneous fluids at the level of trajectories (in so-called "Lagrangian coordinates"). As we already saw, they just read

d 2 X t dt 2 (a) = -(∇p)(t, X t (a)), ∀t L • X -1 t = L = Lebesgue,
where a denotes the label of a typical fluid particle and X t (a) its location in the domain D at time t. (Let us recall that this is the very starting point of Euler's paper [230]! The main point of his paper was precisely the derivation of the Eulerian equations that have become so popular that many people ignore their origin which is definitely on the trajectorial -or so-called "Lagrangian"-side.) Indeed, Euler postulated the existence of a vector field v = v(t, x), the so-called "Eulerian velocity field" such that

v(t, X t (a)) = dX t dt (a).
Thus, by the chain rule and assuming X t to be one-to-one in D, one easily gets, as Euler did,

(∂ t + v • ∇)v + ∇p = 0, ∇ • v = 0,
which is the "non-conservative" form of the Euler equations, usually written as

∂ t + ∇ • (v ⊗ v) + ∇p = 0, ∇ • v = 0.
Very much as we did in the geometrical framework, let us introduce the "mixed Eulerian-Lagrangian" measures c(t, x, a) = δ(x -X t (a)), q(t, x, a) = dX t dt (a)δ(x -X t (a)), which are defined on the space [0, T ] × D × A, where A is the space of "fluid particle labels". (It is customary, but in no way necessary, as will be seen later on, to define A as D itself, with the convention that a is nothing but the "initial position" X 0 (a) of the particle with label a. We just assume A to be a compact metric space with a probability measure on it, denoted by da for simplicity.) As observed before, from its very definition, q is absolutely continuous with respect to c and therefore it makes sense to consider its Radon-Nikodym derivative that will be denoted by v = v(t, x, a), so that we will write

q(t, x, a) = v(t, x, a)c(t, x, a) = (cv)(t, x, a).
With such notations, we may write 

x,a f (x, a)c(t, x, a) = A f (X t (a), a)da, x,a f (x, a)q(t, x, a) = x,a f (x, a)(cv)(t, x, a) = A dX t dt (a)f (X t (
d 2 X t dt 2 (a) = -(∇p)(t, X t (a)),
holds true for all a ∈ A and t ∈ [0, T ].

Then the measures (c, q = cv), associated with

(X t , t ∈ [0, T ]) through x,a f (x, a)c(t, x, a) = A f (X t (a), a)da, x,a f (x, a)q(t, x, a) = x,a f (x, a)(cv)(t, x, a) = A dX t dt (a)f (X t (a), a)da,
for all continuous function f on D × A and all t ∈ [0, T ], satisfy the following set of equations

a c(t, x, a) = 1, ∂ t c(t, x, a) + ∇ x • (cv(t, x, a)) = 0, (∂ t (cv) + ∇ x • (cv ⊗ v))(t, x, a) = -c(t, x, a)∇ x p(t, x).
In addition, by integrating these equations in a, we also have

∇ • a (cv)(t, x, a) = 0, -∆ x p(t, x) = ∇ x ⊗ ∇ x • a (cv ⊗ v)(t, x, a).

Proof:

First, since X t is volume-preserving, we get for all test functions f = f (x):

x,a

f (x)c(t, x, a) = D f (X t (a))da = D f (x)dx.
Thus: a c(t, x, a) = 1 immediately follows. Next,

d dt x,a f (x, a)c(t, x, a) = d dt f (X t (a), a)da = (∇ x f )(X t (a), a) • dX t dt (a)da = x,a ∇ x f (x, a) • (cv)(t, x, a)
, for all test functions f = f (x, a). Similarly:

d dt x,a f (x, a)(cv)(t, x, a) = d dt f (X t (a), a) dX t dt (a)da = (∇ x f )(X t (a), a) • ( dX t dt ⊗ dX t dt )(a)da -f (X t (a), a)(∇ x p)(t, X t (a))da = x,a ∇ x f (x, a) • (cv ⊗ v)(t, x, a) -f (x, a)c(t, x, a)∇ x p(t, x).
as announced. Finally,

-∆p(t, x) = ∇ x ⊗ ∇ x • a (cv ⊗ v)(t, x, a). just follows from a c(t, x, a) = 1, ∇ • a (cv)(t, x, a) = 0.
End of proof. So, the relaxed equations we have derived by pure differential calculus from the original Euler's model, written in terms of trajectories rather than in terms of "eulerian" fields, are nothing but the optimality conditions we have stated for the relaxed version of the minimizing geodesic, as just seen in section 2.2. Let us recall that this relaxed problem reads, in short,

inf{ 1 0 dt x,a c|v| 2 ; ∂ t c + ∇ x • (cv) = 0, a c = 1}
with c(t, x, a) prescribed at t = 0 and t = 1, and is convex in (c, cv).

Remark.

As a matter of fact (we will go back to that later on), the optimality conditions contain an extra condition: ∇ x × v(t, x, a) = 0, that has a variational interpretation in terms of principle of least action (in relationship with Noether's celebrated invariance theorem) and says that the velocity field v(•, •, a) attached to the label a is curl-free. This does not contradict that the averaged velocity a (cv)(t, x, a)

is divergence-free. As a matter of fact, this provides a striking example of a macroscopic divergence-free vector field that can written as a linear superposition of a family of curl-free vector fields. End of remark.

Relaxed solutions versus sub-solutions

By averaging out the relaxed solutions of the Euler equations, we immediately get some sub-solutions of the Euler equations, just by setting

V (t, x) = a (cv)(t, x, a), M (t, x) = a (cv ⊗ v)(t, x, a).
Indeed,

∂ t V + ∇ • M + ∇p = 0, ∇ • v = 0,
just follow from the relaxed equations

∂ t c(t, x, a) + ∇ x • (cv)(t, x, a) = 0, a c(t, x, a) = 1, (∂ t (cv)(t, x, a) + ∇ x • (cv ⊗ v))(t, x, a) = -c(t, x, a)∇ x p(t, x),
after integration in a and, M ≥ V ⊗ V is just a consequence of Jensen's inequality since a c(t, x, a) = 1. Notice that these sub-solutions have no reason to be strict and, therefore, the De Lellis-Székelyhidi Theorem 2.3.1 a priori does not apply to them.

Relaxed versus kinetic solutions

There is a parallel formulation of the relaxed equation, of Vlasov or "kinetic" type, involving the "kinetic" "phase-density"

f (t, x, ξ) = a δ(ξ -v(t, x, a))c(t, x, a), (x, ξ) ∈ T d × R d .
(Here f is a traditional notation in kinetic theory for the phase density and the letter f should not be used to denote test functions!) It is easy to get a self-consistent system of equations for f together with the pressure gradient, provided we go back, as we did for the relaxed equations, to the trajectorial formulation of the Euler equations,

d 2 X t dt 2 (a)) = -(∇p)(t, X t (a))
, where X t is volume-preserving in the sense that

A φ(X t (a))da = T d φ(x)dx,
for all test functions φ on T d . Setting

f (t, x, ξ) = A δ(ξ - dX t dt (a))δ(x -X t (a))da,
we get

∂ t f (t, x, ξ) + ∇ x • (ξf (t, x, ξ)) = ∇ ξ • (∇ x p(t, x)f (t, x, ξ)), ξ∈R d f (t, x, ξ) = 1.
Once again, this is an easy consequence of the chain rule, and we only need ∇p(t, x) to be Lipschitz in x ∈ T d to make it rigorous. Indeed, for every test φ function depending only on x, we first find

(x,ξ)∈T d ×R d φ(x)f (t, x, ξ) = A φ(X t (a))da = T d φ(x)dx,
and, therefore,

ξ∈R d f (t, x, ξ) = 1.
Next, we get for any test function φ depending on both x and ξ,

d dt (x,ξ)∈T d ×R d φ(x, ξ)f (t, x, ξ) = d dt A φ(X t (a), dX t dt (a))da = A dX t dt (a) • (∇ x φ)(X t (a), dX t dt (a))da - A (∇p)(t, X t (a)) • (∇ ξ φ)(X t (a), dX t dt (a))da = (x,ξ)∈T d ×R d (ξ • ∇ x φ(x, ξ) -(∇p)(t, x) • ∇ ξ φ(x, ξ)) f (t, x, ξ).
This "kinetic formulation" of the Euler equations was already introduced in [START_REF] Brenier | Une formulation de type Vlassov-Poisson pour les équations d'Euler des fluides parfaits incompressibles[END_REF] and was, in some sense, the departure points of [START_REF] Brenier | The least action principle and the related concept of generalized flows for incompressible perfect fluids[END_REF][START_REF] Brenier | The dual least action principle for an ideal, incompressible fluid Arch[END_REF][START_REF] Brenier | A homogenized model for vortex sheets[END_REF][START_REF] Brenier | Minimal geodesics on groups of volume-preserving maps[END_REF].

Well-posedness issues

As we have seen, the relaxed Euler equations:

∂ t c(t, x, a) + ∇ x • (cv(t, x, a)) = 0, a c(t, x, a) = 1, (∂ t (cv) + ∇ x • (cv ⊗ v))(t, x, a) = -c(t, x, a)∇ x p(t, x),
are very well suited for the "minimizing geodesic problem". It is therefore tempting to think that the relaxed Euler equations, or their kinetic counterpart,

∂ t f (t, x, ξ) + ∇ x • (ξf (t, x, ξ)) = ∇ ξ • (∇ x p(t, x)f (t, x, ξ)), ξ∈R d f (t, x, ξ) = 1,
might be good candidates to substitute for the usual Euler equations when we address the initial value problem (IVP), i.e. when we try to get a solution (c, cv) (or f , in kinetic terms), just by prescribing its value at time 0. Unfortunately, it turns out that the relaxed Euler equations are not even well-posed in short time, unless severe restrictions are imposed to the initial conditions (c 0 , c 0 v 0 ) (or f 0 in kinetic terms).

Positive and negative results have been obtained in the last 20 years, with many contributors such as Baradat, Bardos and Besse, Brenier, Grenier, Han-Kwan and Iacobelli, Han-Kwan and Rousset, Masmoudi and Wong [START_REF] Baradat | Nonlinear instability in Vlasov type equations around rough velocity profiles[END_REF][START_REF] Bardos | The Cauchy problem for the Vlasov-Dirac-Benney equation and related issues in fluid mechanics and semi-classical limits[END_REF][START_REF] Grenier | On the derivation of homogeneous hydrostatic equations[END_REF][START_REF] Han-Kwan | Quasineutral limit for Vlasov-Poisson via Wasserstein stability estimates in higher dimension[END_REF][START_REF] Han-Kwan | Quasineutral limit for Vlasov-Poisson with Penrose stable data[END_REF][START_REF] Masmoudi | On the H s theory of hydrostatic Euler equations[END_REF].

Strictly speaking some of these papers, in particular [START_REF] Bardos | The Cauchy problem for the Vlasov-Dirac-Benney equation and related issues in fluid mechanics and semi-classical limits[END_REF][START_REF] Han-Kwan | Quasineutral limit for Vlasov-Poisson with Penrose stable data[END_REF], are rather devoted to the "compressible" version of the relaxed Euler equations, which reads, in kinetic terms,

∂ t f (t, x, ξ) + ∇ x • (ξf (t, x, ξ)) = ∇ ξ • ( ∇ x p ρ (t, x)f (t, x, ξ)), ρ(t, x) = ξ f (t, x, ξ),
where the pressure p is a given function of the density ρ.

Comparison with the Muskat equations

The Euler equations of incompressible inhomogeneous fluids admit a "friction dominated" version which reads (in terms of trajectories)

dX t dt (a) = -ρ 0 (a)G -(∇p)(t, X t (a)), L • X -1 t = L, ∀t,
where we assume, for a moment, that each X t belongs to SDif f (D). Here, the external force, denoted by G, is a given constant vector in R d (typically along the vertical axis, if one considers the gravity force in the simplest possible situation). Notice that the density ρ 0 exclusively features in front of the external force. This corresponds to the so-called "Boussinesq approximation" (see [START_REF] Cullen | A mathematical theory of large-scale atmosphere/ocean flow[END_REF]394]). As a matter of fact, assuming the existence of a velocity field v and a density field ρ such that dX t dt (a) = v(t, X t (a)), ρ(t, X t (a)) = ρ 0 (a), then the equations admit the following "Eulerian" version:

∂ t ρ + ∇ • (ρv) = 0, ∇ • v = 0, v = -ρG -∇p.
This set of equations is sometimes called "incompressible porous media equations" or "Muskat's equations" [START_REF] Cordoba | Lack of uniqueness for weak solutions of the incompressible porous media equation[END_REF][START_REF] Székelyhidi | Relaxation of the incompressible porous media equation[END_REF], and we will come back to them in section 9.3. Notice that they get trivial when there is no external force. (Indeed, in such a case v is both potential and divergence-free.) These equations are very useful for applications (typically, they are the basic equations for "reservoir simulations" in Civil Engineering and Oil Industry [START_REF] Chavent | Mathematical Models and Finite Elements for Reservoir Simulation[END_REF][START_REF] Brenier | Upstream differencing for multiphase flow in reservoir simulation[END_REF]). They have been studied in many different ways recently in the mathematical literature, in particular in the framework of convex integration theory. Note that the concept of sub-solutions is not so clearly defined as for the Euler equations, as explained in [START_REF] Székelyhidi | Relaxation of the incompressible porous media equation[END_REF] (that we also quote for the many references it contains).

Anyway, following what we did for the Euler equations, we can easily get a relaxed version for these equations:

Proposition 2.4.2. The Muskat equations admit the following relaxed formulation:

∂ t c(t, x, a) = ∇ x • (c(t, x, a)(ρ 0 (a)G + ∇p(t, x))) a c(t, x, a) = 1, -∆p(t, x) = ∇ x • a c(t, x, a)ρ 0 (a)G .
P roof (just as before): For all test functions f = f (x, a), we have

d dt (x,a) f (x, a)c(t, x, a) = d dt f (X t (a), a)da = (∇ x f )(X t (a), a) • dX t dt (a)da = (∇ x f )(X t (a), a) • (-ρ 0 (a)G -(∇p)(t, X t (a))) = (x,a) c(t, x, a)∇ x f (x, a) • (-ρ 0 (a)G -∇p(t, x)).
leading to

∂ t c(t, x, a) = ∇ x • (c(t, x, a)(ρ 0 (a)G + ∇p(t, x))) ,
as announced. Then

-∆p(t, x) = ∇ x • a c(t, x, a)ρ 0 (a)G ,
immediately follows from a c(t, x, a) = 1 by integrating the previous equation with respect to a. End of proof.

In sharp contrast with the relaxed Euler equations, the relaxed Muskat equations enjoy a well-posedness property for the IVP. This follows from: [This is just a straightforward calculation, since:

∂ t a (c log c)(t, x, a) = a (1 + log c(t, x, a))∇ x • ((ρ 0 (a)G + ∇p(t, x))c(t, x, a)) = - a ∇ x c(t, x, a) • (ρ 0 (a)G + ∇p(t, x)) = -∇ x • ( a c(t, x, a)ρ 0 (a)G), using that a c(t, x, a) = 1.]
Since the Boltzmann entropy is strictly convex in c, the existence of this extra conservation law essentially suffices to guarantee the local well-posedness of the relaxed Muskat equations (at least as label a is discrete), following the general theory of entropic system of conservation laws [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF] 

Solution of the IVP by convex minimization

It is now quite clear that the relaxed Euler equations are much more adequate for the generalized minimizing geodesic problem, where c is prescribed at the end points t = 0 and t = 1, for which the solutions are successfully obtained by convex minimization (with a very convincing existence and uniqueness result for the pressure gradient), than for the initial value problem (IVP), when (c, cv) is prescribed at time 0, which is very likely to be ill-posed. Anyway, it seems foolish to solve the IVP problem by a space-time convex minimization technique. Indeed, this way, we are very likely to get optimality equations of space-time elliptic type and therefore illposed, although there is a little room left if the convexity is sufficiently degenerate (which is, by the way, the case of the generalized minimizing geodesic problem where the convex functional to be minimized is homogeneous of degree one and, therefore, degenerate). However, as will be discussed later in Chapter 5, there is a (limited) possibility of that sort which actually involves the cruder concept of sub-solutions we have discussed in the framework of "convex integration" à la De Lellis-Székelyhidi.

The idea amounts to minimizing, on a given time interval [0, T ],

[0,T ]×T d (trace M )(dtdx)
among all (V, M ), where V is square-integrable space-time and M is a bounded Borel space-time measure valued in the set of semi-definite symmetric d×d matrices, which satisfy M ≥ V ⊗ V and solve

∂ t V + ∇ • M + ∇p = 0, ∇ • V = 0,
with given initial condition V 0 in the sense

Q ∂ t A i (t, x)V i (t, x)dtdx + ∂ j A i (t, x)M ij (dtdx) + D V i 0 (x)A i (0, x)dx = 0,
for all smooth divergence-free vector-fields A = A(t, x) ∈ R d that vanish at t = T . It will be shown that: 1) Any smooth solution of the Euler equations can be obtained this way, at least for small enough T .

2) Il may happen that the optimal solution is a classical solution to the Euler equations, but for a dif f erent initial condition than V 0 ! This strange phenomenon is related to the fact that M is just a space-time measure which prevents V (t, x) to be weakly continuous at t = 0. Interestingly enough, in some special situations, the resulting solution at time T can be seen as a "relaxed solution", not in the sense we have discussed so far, but rather in the sense developed by Otto [START_REF] Otto | Evolution of microstructure in unstable porous media flow: a relaxational approach[END_REF] for incompressible fluid motions in porous media and recently revisited in [START_REF] Gigli | Entropic Burgers' equation via a minimizing movement scheme based on the Wasserstein metric[END_REF][START_REF] Székelyhidi | Relaxation of the incompressible porous media equation[END_REF]. Let us just give an explicit example, due to Helge Dietert [204], with d = 2, not on T 2 but rather on T × [-1/2, 1/2] (to make the example easier to handle) and we assume T ≤ 1/2. We take as initial condition

V 0 (x 1 , x 2 ) = (sign(x 2 ), 0),
which is an exact, time-independent, discontinuous, trivial solution to the Euler equations, but well known to be "physically unstable" ("Kelvin-Helmholtz instability"). Then, the convex optimization problem provides a completely different solution, which is stationary (i.e. time independent), Lipschitz continuous and explicitly depends on the final time T , namely

V T (x 1 , x 2 ) = max(-1, min( x 2 T , 1 
)), 0 .

This looks non sense. However, if we consider this family of stationary solutions as a time dependent solution (the final time T playing the role of the current time), we recover the kind of relaxed solutions advocated by Otto in the (quite different but closely related) framework of incompressible fluid motion in porous media [START_REF] Otto | Evolution of microstructure in unstable porous media flow: a relaxational approach[END_REF][START_REF] Székelyhidi | Relaxation of the incompressible porous media equation[END_REF]. These topics will be discussed in Chapter 5.

Chapter 3

Hidden convexity in the Monge-Ampère equation and Optimal Transport Theory

As we have seen earlier in this book, the Euler model of incompressible fluids crucially relies on the ODE

d 2 X(t) dt 2 = -(∇p)(t, X(t)),
where p is the pressure field and adjusts itself in order to enforce the incompressibility condition. In the simpler case when p = p(t, x) is a given potential, this ODE can be derived from the Least Action principle (LAP) as explained in Chapter 1. As a matter of fact, the LAP also applies to many PDEs and not only to ODEs (see, for instance, [START_REF] Arnold | Topological methods in hydrodynamics[END_REF][START_REF] Dobrouvine | Géométrie contemporaire, 1re partie[END_REF][START_REF] Marsden | Introduction to Mechanics and Symmetry[END_REF][START_REF] Struwe | Variational methods. Applications to nonlinear partial differential equations and Hamiltonian systems[END_REF][START_REF] Taylor | Partial differential equations. III. Nonlinear equations[END_REF][START_REF] Willem | Minimax theorems[END_REF]....). More precisely, many PDEs can be interpreted as optimality equation of a suitable optimization problem. One of the simplest example is the Poisson (or Laplace) equation

∆u = f
where f is a given function on a compact domain D ⊂ R d with suitable boundary conditions, typically for the unknown u = u(x) ∈ R to vanish along the boundary, i.e. as x ∈ ∂D. It is very well known that the solution can be obtained as the unique minimizer of the functional

D |∇u(x)| 2 2 + f (x)u(x) dx
on a suitable functional space. (Typically, the Sobolev space H 1 0 (D).) As we are going to see in the present chapter, such a variational principle may apply, in a not so obvious way, to fully nonlinear equations such as the Monge-Ampère equation (MAE),

detD 2 u = f.
where

D 2 u(x) = ∂ 2 u ∂x i ∂x j (t, x), i, j = 1, • • •, d ,
at least for some suitable boundary conditions. Surprisingly enough, this variational structure of the MAE may be suggested by the study of the Euler equations of incompressible fluids! (So that we may add the MAE to the long list of PDEs that can be derived from the Euler equations, such as the wave or the heat equations, as we have seen in Chapter 2.)

The Least Action Principle for the Euler equations

Let us go back for a short while to the Euler equations of incompressible fluids.

Inspired by Arnold's geometric interpretation (as seen in section 2.2), we introduce the functional

J t 0 ,t 1 [X] = t 1 t 0 D 1 2 |∂ t X t (a)| 2 dxdt where D ⊂ R d is a compact convex domain, t 0 < t 1 are given, t → X t ∈ V P M (D)
is prescribed at t = t 0 and t = t 1 , where V P M (D) is the semi-group of all volumepreserving maps of D, i.e. all Borel maps X :

D → R d such that D φ(X(a))da = D φ(x)dx, ∀φ ∈ C 0 (R d ).
Then we have the following version of the LAP:

Theorem 3.1.1. Let (X, p) be a solution of the Euler equations, in the sense:

d 2 dt 2 X t (a) = -(∇p)(t, X t (a)), D φ(t, X t (a))dx = D φ(x)dx, ∀φ ∈ C 0 (R d ), ∀t.
Assume that the pressure field p is smooth enough so that K(p) is finite, where

K(p) = sup (t,x)∈[t 0 ,t 1 ]×D sup k=1,•••,d λ k (t, x),
where we denote by λ k ∈ R the eigenvalues of D 2 x p(t, x). Then, if the time interval [t 0 , t 1 ] is small enough so that

(t 1 -t 0 ) 2 π 2 K(p) < 1, then, for all curves t ∈ [t 0 , t 1 ] → Xt ∈ V P M (D) such that Xt 0 = X t 0 , Xt 1 = X t 1 ,
different from X, one has

J t 0 ,t 1 [ X] > J t 0 ,t 1 [X].

Proof

The proof follows almost immediately from Theorem 1.3.1 already seen in Chapter 1. Indeed, for (almost) every fixed a ∈ D, we have, by setting u(t) = X t (a) and ũ(t) = Xt (a),

t 1 t 0 [-p(t, u(t)) + 1 2 |u (t)| 2 ]dt ≤ t 1 t 0 [-p(t, ũ(t)) + 1 2 |ũ (t)| 2 ]dt,
and, thus,

t 1 t 0 [-p(t, X t (a))) + 1 2 |∂ t X t (a)| 2 ]dt ≤ t 1 t 0 [-p(t, Xt (a))) + 1 2 |∂ t Xt (a)| 2 ]dt,
with equality only if u = ũ. Then integrating in a ∈ D and using that both X and X are valued in V P M (D), we get

D t 1 t 0 1 2 |∂ t X t (a)| 2 dtda ≤ D t 1 t 0 1 2 |∂ t Xt (a)| 2 dtda
with equality only if X = X, which completes the proof.

A dual Least Action Principle

We can go a little further by observing that the pressure field itself obeys a sort of LAP in the following sense:

Theorem 3.1.2. Let us use the same notations as in Theorem 3.1.1 and assume

(t 1 -t 0 ) 2 π 2 K(p) ≤ 1.
Then the pressure field p is a maximizer of functional

K t 0 ,t 1 [p] = t 1 t 0 D p(t, x)dxdt + D K t 0 ,t 1 ,p (X t 0 (a), X t 1 (a))da,
where

K t 0 ,t 1 ,p (u 0 , u 1 ) = inf{ t 1 t 0 ( 1 2 |u (t)| 2 -p(t, u(t)))dt, u ∈ C 1 ([0, T ], D), u(t 0 ) = u 0 , u(t 1 ) = u 1 }

Proof

Let p be a "competitor" for p. By definition, we have

K t 0 ,t 1 ,p (u 0 , u 1 ) = inf{ t 1 t 0 ( 1 2 |u (t)| 2 -p(t, u(t)))dt, u ∈ C ( [0, T ], D), u(t 0 ) = u 0 , u(t 1 ) = u 1 }, so that, for each fixed a ∈ D, K t 0 ,t 1 ,p (X t 0 (a), X t 1 (a)) ≤ t 1 t 0 1 2 |∂ t X t (a)| 2 -p(t, X t (a)) dt.
By integration in a ∈ D, we get

D K t 0 ,t 1 ,p (X t 0 (a), X t 1 (a)) da ≤ D t 1 t 0 1 2 |∂ t X t (a)| 2 -p(t, X t (a)) dtda = D t 1 t 0 1 2 |∂ t X t (a)| 2 -p(t, a)) dtda
(using that X t is volume preserving). For p itself, we get equality:

K t 0 ,t 1 ,p (X t 0 (a), X t 1 (a)) = t 1 t 0 1 2 |∂ t X t (a)| 2 -p(t, X t (a)) dt
(because of Theorem 1.3.1) and, therefore, integrating in a,

D K t 0 ,t 1 ,p (X t 0 (a), X t 1 (a)) da = D t 1 t 0 1 2 |∂ t X t (a)| 2 -p(t, a)) dtda.
So, by subtraction, we have obtained

t 1 t 0 D p(t, x)dxdt + D K t 0 ,t 1 ,p (X t 0 (a), X t 1 (a))da ≤ t 1 t 0 D p(t, x)dxdt + D K t 0 ,t 1 ,p (X t 0 (a), X t 1 (a))da,
which completes the proof.

Remark. So, we have obtained a "dual" optimization problem that enjoys two remarkable properties: i) it is concave in p, which shows that, behind the original optimization problem in X, which was definitely not convex in X, we have exhibited some hidden convexity; ii) it does not involve any partial derivatives in p!

Monge-Ampère equation and Optimal Transport

The maximization problem solved by the pressure field in the framework of the Euler equations of incompressible fluid suggests the study of a very similar but simpler problem, namely the maximization of functional

φ → R d φ(x)ρ 0 (x)dx + R d inf x∈R d 1 2 |y -x| 2 -φ(x) ρ 1 (y)dy,
where ρ 0 ≥ 0 and ρ 1 ≥ 1 are given compactly supported functions of unit Lebesgue integral on R d . Remarkably enough, this simpler problem is related to the famous, fully nonlinear, real Monge-Ampère equation, well known in both Riemannian and Kählerian geometries [START_REF] Berman | A variational approach to complex Monge-Ampère equations[END_REF][START_REF] Cheng | On the regularity of the solution of the n-dimensional Minkowski problem[END_REF]:

ρ 1 (x + ∇φ(x))det(I d + D 2 φ(x)) = ρ 0 (x)
End of remark.

It is quite amazing that a fully non-linear equation such as the Monge-Ampère equation can be solved by a concave optimization problem which does not involve any partial derivative! Theorem 3.2.1. Let B a closed ball in R d centered at 0. Let µ 0 and µ 1 be to Borel probability measures on B. Assume that µ 0 is absolutely continuous with respect to the Lebesgue measure, i.e. there exists ρ 0 ≥ 0 in L 1 (B) such that µ 0 (dx) = ρ 0 (x)dx.

Then, there is a unique Borel map T : B → B that transports µ 0 toward µ 1 and can be written T (x) = ∇a(x), ρ 0 (x)dx almost everywhere, where a is a Lipschitz convex function on B.

Remark

This result tells us, at least in the simpler case, where µ 1 (dy) = ρ 1 (y)dy for some

ρ 1 ∈ L 1 (B), that the MAE ρ 1 (∇a(x))det(D 2 a(x)) = ρ 0 (x),
is solved, in a generalized sense, for some convex Lipschitz function a on B. Indeed, assuming the change of variable

x ∈ B → y = ∇a(x) ∈ B, dy = det(D 2 a(x))dx to be valid, we get for each u ∈ C 0 (B),

B u(y)ρ 1 (y)dy = B u(∇a(x))ρ 1 (∇a(x))det(D 2 a(x))dx = B u(∇a(x))ρ 0 (x)dx,
which means that x → ∇a(x) transports ρ 0 (x)dx toward ρ 1 (y)dy as the MAE is satisfied. Theorem 3.2.1, that admits many variations (see for instance [START_REF] Brenier | Décomposition polaire et réarrangement monotone des champs de vecteurs[END_REF][START_REF] Brenier | Polar factorization and monotone rearrangement of vector-valued functions[END_REF][START_REF] Gangbo | The Geometry of Optimal Transportation[END_REF][START_REF] Knott | On the optimal mapping of distributions[END_REF][START_REF] Mccann | Polar factorization of maps on Riemannian manifolds[END_REF]) can be proven through the study of the "Monge-Kantorovich" problem [START_REF] Rachev | Mass transportation problems[END_REF][START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF]451,[START_REF] Villani | Optimal Transport[END_REF]]

inf{ B a(x)µ 0 (dx) + B b(y)µ 1 (dy), (a, b) ∈ C 0 (B) × C 0 (B)}, under constraint a(x) + b(y) ≥ x • y, ∀x, y ∈ B.
So, the solution of a fully nonlinear geometric PDE will be optained by solving a "linear program" without any partial derivative!

Nonlinear Helmholtz decomposition and polar factorization of maps

A rather direct application of Theorem 3.2.1 can be obtained in the special case when: i) µ 0 is just the (normalized) Lebesgue measure restricted to a compact subdomain D of B; ii) µ 1 is the image measure of µ 0 by a given bounded Borel map Y : D → B. Moreover, X is characterized as the unique L 2 projection of Y on the set V P M (D) of all volume-preserving Borel maps of D, i.e.

D |Y (x) -X(x)| 2 dx < D |Y (x) -X(x)| 2 dx, for each X ∈ V P M (D) different from X.
In addition, T : D → R d is characterized as the unique map with a convex potential such that sending the Lebesgue measure on D to ν.

This result [START_REF] Brenier | Décomposition polaire et réarrangement monotone des champs de vecteurs[END_REF][START_REF] Brenier | Polar factorization and monotone rearrangement of vector-valued functions[END_REF] deserves to be called "nonlinear Helmholtz decomposition" for the following reason. The usual Helmholtz decomposition asserts that every vector field z ∈ L 2 (D; R d ) can be uniquely written z = w + ∇p, where w is some L 2 divergence-free vector field on D, parallel to ∂D, and p some scalar function on D. This can be seen as the linearization of the "polar factorization" of maps about the identity map. Indeed, at least formally, the factorization Y = ∇Φ • X, for a map Y close to the identity map, so that Y (x) = x + z(x), with ε small, first returns

Φ(x) = |x| 2 /2 + p(x), X(x) = x + w(x) + O( 2 ), with z = ∇p + w. Next, since X is volume-preserving, one has, for all test function f , 0 = D f (x + w(x) + O( 2 ))dx - D f (x)dx = D ∇f (x) • w(x)dx + O( 2 )
which means, in a weak sense, that w is divergence-free and parallel to ∂D.

Furthermore, the name "polar factorization" comes form the fact that, in the very special case, when D = B is the unit ball and Y (x) = Ax, ∀x ∈ D, for some real d × d matrix A, one has

T = ∇Φ • X, Φ(x) = 1 2 x • √ AA t x,
and, whenever A is non-degenerate (i.e. invertible),

X(x) = U x, U = (AA t ) -1/2 A,
where U is an orthogonal matrix since

U U t = (AA t ) -1/2 AA t (AA t ) -1/2 = I d = U t U,
I d denoting the identity matrix. (By the way, in this very peculiar case, X is not only a volume-preserving map of B, but also an isometry!)

Note that the polar factorization theorem, established in [START_REF] Brenier | Décomposition polaire et réarrangement monotone des champs de vecteurs[END_REF][START_REF] Brenier | Polar factorization and monotone rearrangement of vector-valued functions[END_REF], admits an important generalization to compact Riemannian manifolds due to R. McCann [START_REF] Mccann | Polar factorization of maps on Riemannian manifolds[END_REF].. Finally, let us also mention [START_REF] Burton | Uniqueness of the polar factorisation and projection of a vector-valued mapping[END_REF] and finally [START_REF] Ghoussoub | Symmetric Monge-Kantorovich problems and polar decompositions of vector fields[END_REF] as a non trivial generalization of the concept of polar factorization. Proof of Theorem 3.2.1

The proof relies on the Rademacher theorem that asserts that any Lipschitz function on R d is Lebesgue-almost everywhere differentiable [START_REF] Evans | Measure theory and fine properties of functions[END_REF] and on a well-known result of Convex Analysis, which is a rather direct consequence of the Hahn-Banach Theorem, namely the Fenchel-Rockafellar duality theorem, as stated in [START_REF] Brezis | Analyse fonctionnelle appliquée[END_REF].

The Fenchel-Rockafellar duality theorem Theorem 3.3.2. Let E be a real Banach space and consider two functions K 1 , K 2 : E → R ∪ {+∞} which are both convex. Assume that there exists a point u 0 ∈ E such that both K 1 and K 2 are finite at u 0 while K 2 is continuous at u 0 . Then we have the duality equality

sup u∈E (-K 1 (u) -K 2 (u)) = inf f ∈E (K * 1 (-f ) + K * 2 (f )) ,
where E is the dual of E and the Legendre-Fenchel dual

K * : E → R ∪ {+∞} of a function K : E → R ∪ {+∞} is defined by K * (f ) = sup u∈E [ f, u E ,E -K(u)] .
Moreover, the infimum in the duality equality is achieved by some point f ∈ E .

Remark. Surprisingly enough, this duality theorem is quite similar to the Plancherel formula in harmonic analysis. Indeed, at least formally, one can consider the correspondence between the algebraic structures with operations, respectively, [+, •] and [max, +] (sometimes in this correspondence, inequalities can show up instead of equalities). Then, the Legendre-Fenchel transform is analogous to the Fourier transform and the duality equality just corresponds to the Plancherel formula:

u • v = û • v,
where u → û stands for the Fourier transform. This "Fenchel-Fourier" dictionary is now well established in Mathematics ("Tropical Geometry" in Algebraic Geometry being probably the most famous example [START_REF]Quand la géométrie devient tropicale[END_REF], sell also [START_REF] Brenier | Un algorithme rapide pour le calcul de transformées de Legendre-Fenchel discretes[END_REF][START_REF] Corrias | Fast Legendre-Fenchel transform and applications to Hamilton-Jacobi equations and conservation laws[END_REF][START_REF] Lucet | Faster than the fast Legendre transform, the linear-time Legendre transform[END_REF].)

Application of the Fenchel-Rockafellar theorem

We introduce

E = C 0 (B × B),
which is a Banach space for the sup norm. We are given a continuous function c on B × B (that later will be simply taken as c(x, y) = x • y). We define two convex functions Φ, Ψ on E, valued in ] -∞, +∞] and respectively given, for each w ∈ E by:

Φ(w) = 0, if w ≥ c, +∞ otherwise, Ψ(w) = B a(x)µ 0 (dx) + B b(y)µ 1 (dy) if w = a ⊕ b,
for some continuous functions a, b on B, and +∞ otherwise. [Note that Ψ is defined without ambiguity since µ 0 and µ 1 have the same, unit, mass.] Observe that there is at least one point w ∈ E where Φ is continuous and Ψ finite. [Take, for instance, the constant function w = 1 + sup c on B × B.] Since Φ are Ψ obviously convex, we may apply the Fenchel-Rockafellar theorem 3.3.2 and get:

inf{Φ(w) + Ψ(w), w ∈ E} = max{-Φ * (-µ) -Ψ * (µ), µ ∈ E }
where the dual space E is just the space of all real-valued bounded Borel measures µ on B × B (By Riesz' Theorem), and Φ * , Ψ * are the Legendre-Fenchel transforms:

Φ * (µ) = sup{< µ, w > -Φ(w), w ∈ W} Ψ * (µ) = sup{< µ, w > -Ψ(w), w ∈ W},
where the duality bracket is defined by

< µ, w >= B×B w(x, y)µ(dx, dy), ∀w ∈ W, ∀µ ∈ W .
Observe that notation "max" is used on purpose to emphasize that the sup is achieved on the right-hand side (which is a priori not true for the infimum on the left-hand side).

Let us now compute Φ * and Ψ * . We first get

Φ * (-µ) = +∞, unless µ ≥ 0, in which case Φ * (-µ) = - B×B c(x, y)µ(dx, dy).
Next, Ψ * (µ) = +∞, unless both projections of µ on B are respectively µ 0 and µ 1 , in which case Ψ * (µ) = 0. So, we have obtained the existence of µ opt ≥ 0, with projections µ 0 and µ 1 , that maximizes B×B c(x, y)µ(dx, dy) among all nonnegative Borel measures on B × B with projections µ 0 , µ 1 . Furthermore, we have the duality equality:

B×B c(x, y)µ opt (dx, dy) = inf{ B a(x)µ 0 (dx) + B b(y)µ 1 (dy), a ⊕ b ≥ c}.
Existence part of Theorem 3. (by using the same process as above). We immediately see that (a, b) minimizes the continuous functional on C(B) × C(B) defined by:

(a, b) → B a(x)µ 0 (dx) + B b(y)µ 1 (dy)
among all pairs (a, b) such that a ⊕ b ≥ c. Therefore, we have obtained

B×B c(x, y)µ opt (dx, dy) = B a(x)µ 0 (dx) + B b(y)µ 1 (dy),
from which we deduce

B×B (a(x) + b(y) -c(x, y))µ opt (dx, dy) = 0, since µ 0 , µ 1 are projections of µ opt . Since µ opt is a nonnegative measure, this implies a(x) + b(y) = c(x, y)
for µ opt -every x, y in B.

At this stage, we limit ourself to the special choice c(x, y) = x • y and assume that µ 0 is absolutely continuous with respect to the Lebesgue measure and can be written

µ 0 (dx) = ρ 0 (x)dx,
for some Lebesgue integrable function ρ 0 ≥ 0 on B, with integral 1. Thus, we may write

a(x) = sup y∈B x • y -b(y)
which shows that a is both Lipschitz continuous and convex on B. The Rademacher Theorem [START_REF] Evans | Measure theory and fine properties of functions[END_REF] tells us that a is almost everywhere integrable in the interior of

B. Since B is smooth, its boundary ∂B is a set of zero Lebesgue measure in R d .
Therefore the set of all points x in B which either lie on ∂B or in the interior of B without being a point of differentiability for a is of zero µ 0 measure (since µ 0 is absolutely continuous with respect to the Lebesgue measure). Since µ opt admits µ 0 as first projection, we deduce that, for µ opt -almost every point (x * , y * ) ∈ B × B, x * belongs to the interior of B and is a differentiability point for a. We may further assume que

a(x * ) + b(y * ) = x * • y * ,
since, as already seen, thus property is true µ opt -almost everywhere. Since

a(x) + b(y * ) ≥ x • y *
is true for every x ∈ B, we see that x * is a minimizer for function x → a(x) -x • y * . Thus, by differentiation, we have

∇a(x * ) = y * .
This property is therefore true µ opt -almost everywhere, which implies

µ opt (dx, dy) = δ(y -∇a(x))ρ 0 (x)dx, in the precise sense that B×B w(x, y)µ opt (dx, dy) = B w(x, ∇a(x))ρ 0 (x)dx, ∀w ∈ C(B × B).
(Observe that this already enforces the uniqueness of the optimal solution µ opt .) By projection (i.e. by setting w(x, y) = u(y)), we deduce

B u(y)µ 1 (dy) = B u(∇a(x))ρ 0 (x)dx, ∀u ∈ C(B),
which exactly tells that x → ∇a(x) transports ρ 0 (x)dx toward µ 1 (dy). Since a is Lipschitz continuous and convex, we have already proven the existence part of Theorem 3.2.1. We have

Uniqueness part of

B×B x • yµ(dx, dy) = B x • ∇ã(x)ρ 0 (x)dx = B (ã(x) + b(∇ã(x))ρ 0 (x)dx = B×B (ã(x) + b(y))µ(dx, dy) = B×B (ã(x) + b(y))µ opt (dx, dy)
(since µ opt and µ have the same projections)

≥ B×B x • yµ opt (dx, dy) (because ã(x) + b(y) ≥ x • y).
Thus µ is optimal, just as µ opt , which is, as already noticed, is the unique optimal solution. We therefore have, by definition of µ:

δ(y -∇ã(x))ρ 0 (x)dx = µ(dx, dy) = µ opt (dx, dy) = δ(y -∇a(x))ρ 0 (x)dx,
and this is possible only if ∇ã(x) = ∇a(x) for ρ 0 (x)dx-almost every x, which is exactly the uniqueness part of our Theorem. So, the proof of Theorem 3.2.1 is now complete.

An application to the best Sobolev constant problem

In this section, that can be skipped without affecting the rest of the book, we sketch just one remarkable application of the Monge-Ampère equation in the framework of Optimal transportation. We are motivated by the non-convex minimization problem

I(U, p, q) = inf{ U |∇u(x)| p dx, u ∈ C ∞ c (U ), t.q. U |u(x)| q dx = 1 } where p, q ∈]1, +∞[ and U is an open subset of R d .
It is rather straightforward, by using linear changes of variable of type x → rx + a with r > 0 and

a ∈ R d on functions u ∈ C ∞ c (U ), to see that: i) in case U = R d , I(U, p, q) = 0 except if 1 -d/p = 0 -d/q ;
ii) whenever U is bounded (in which case, we only use retractions for which r > 1)

I(U, p, q) = 0 unless if 1 -d/p ≥ 0 -d/q.
When U is bounded and 1 -d/p > 0 -d/q, traditional compactness methods may be used and we rather easily get the existence of an optimal generalized solution in the Banach space obtained by completion of C ∞ c (D) for the norm

u → ||u|| L q (U ) + ||∇u|| L p (U ) .
Such a solution can be easily shown to satisfy, in the sense of distributions in U ,

-∇(|∇u| p-2 ∇u) = λu|u| q-2
where constant λ has to be chosen so that ||u|| L q (U ) = 1. In particular, in the most usual case p = 2, we find the semi-linear PDE

-∆u = λu|u| q-2 .
In the critical case, 1 -d/p = 0 -d/q , il is also easy to see that I(U, p, q) does not depend on U ! It is more subtile (and this is strongly connected to the "concentrationcompactness" theory [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case[END_REF]) to figure out, that when U is bounded, there is no optimal solution, even in the completed space! Furthermore, one can prove that the minimizing sequences u n have the strange property that, up to the extraction of a subsequence, they concentrate in the sense that one can find a point x ∞ in U such that |u n | q converges as a Borel nonnegative measure to the Dirac mass at point x ∞ .

(This is a prototype of the "bubble" phenomenon, that occurs so often in Geometric Analysis [START_REF] Struwe | Variational methods. Applications to nonlinear partial differential equations and Hamiltonian systems[END_REF].)

For a more positive result, we limit ourself to the simplest case when U is unbounded, namely U = R d . Then:

Theorem 3.4.1. In the critical case 1 -d/p = 0 -d/q, I(R d , p, q) = inf{ R d |∇u(x)| p dx, u ∈ C ∞ c (R d ), t.q. R d |u(x)| q dx = 1 }
is achieved by a unique (up to translations and dilations) solution u in the Banach E obtained by completion of C ∞ c (R d ) with respect to the norm

||u|| E = ||u|| L q (R d ) + ||∇u|| L p (R d ) .
As a consequence, equation

-∇(|∇u| p-2 ∇u) = λu|u| q-2
admits a unique (up to translations and dilations) solution in E, where constant λ has to be fixed so that

||u|| L q (R d ) = 1.
There are several possible proof, in particular by the "concentrationcompactness" method [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case[END_REF]. A remarkable and very simple proof follows directly (up to a lot of technicalities) from Theorem 3.2.1 and is due to Dario Cordero-Erausquin, Bruno Nazaret and Cédric Villani [START_REF] Cordero-Erausquin | A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities[END_REF]. Let us sketch this proof (while skipping many technicalities).

Consider two functions

u et v dans C ∞ c (R d ) such that ||u|| L q (R d ) = ||v|| L q (R d ) = 1 and consider the Borel probability measures F (x)dx = |u(x)| q dx, G(y)dy = |v(y)| q dy.
According to Theorem 3.2.1, there is a unique Borel map T that transports the first measure to second one and can be written, for F (x)dx-almost every x,

T (x) = ∇Φ(x),
where Φ is a convex Lipschitz function on R d . In addition, in the generalized sense of Theorem 3.2.1, Φ satisfies the Monge-Ampère equation

G(∇φ(x))det(D 2 Φ(x)) = F (x).
Let us now simply evaluate

J = R d G(y) 1-1/d dy
and, remarkably enough, all the results we are interested in (existence, uniqueness and explicit formulae for a solution to best Sobolev constant problem) will follow from two elementary inequalities, namely Young's inequality

|a| p p + |b| p p ≥ a • b, ∀a, b ∈ R d , 1/p + 1/p = 1, p ∈]1, ∞[
(with equality if and only if b = a|a| p-2 or a = b|b| p -2 ) and the domination of the geometric mean by the arithmetic mean for any finite sequence of nonnegative real numbers, with equality only if all these numbers are equal.)

By construction of T = ∇Φ, we first get

J = R d G(y) 1-1/d dy = R d G(∇Φ(x)) -1/d F (x)dx = R d det(D 2 Φ(x)) 1/d F (x) 1-1/d dx.
(Here the proof is only formal, since the Monge-Ampère equation is a priori not satisfied in the classical sense. For a rigorous proof, more work is needed, as in [START_REF] Cordero-Erausquin | A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities[END_REF].) Since Φ is convex, the eigenvalues of D 2 Φ are nonnegative which leads to the point-wise inequality

det(D 2 Φ(x)) 1/d ≤ 1/d ∆Φ(x).
We deduce J ≤ J where

J = 1/d R d ∆Φ(x)F (x) 1-1/d dx = -1/d R d ∇Φ(x) • ∇(F (x) 1-1/d )dx
(by integration by part)

= -s/d R d ∇Φ(x) • u(x)|u(x)| s-2 ∇u(x)dx (by setting s = (1 -1/d)q and by definition of F = |u| q ) ≤ s/d||∇u|| L p (R d ) R d |u(x)| (s-1)p |∇Φ(x)| p dx 1/p (by Young-Hölder, with 1/p = 1 -1/p) = s/d||∇u|| L p (R d ) R d F (x)|∇Φ(x)| p dx 1/p , (using that (s -1)p = q and F = |u| q ) = s/d||∇u|| L p (R d ) R d G(y)|y| p dy 1/p , (since G(y)dy is the image measure by T = ∇Φ of F (x)dx). So, we have obtained that, for all u, v of unit norm in L q , R d |v(y)| s dy ≤ s/d||∇u|| L p (R d ) R d |v(y)| q |y| p 1/p
with s = (1-1/d)q, which extends by completion to all u, v in the completed Banach space E. Observe, furthermore, that this inequality becomes an equality if only if the geometric-arithmetic inequality and the Hölder inequality are both saturated. Then, one finds (after some calculations) a constant r > 0 and a point x 0 such that

T (x) = (x -x 0 )r, u(x) = r -d v((x -x 0 )r) and, finally, u(x) = (µ + |x -x 0 | α ) β ν
for some constants α, β, µ, ν to be fixed in terms of p and d via q and s (in fact, α = p and β = 1 -d/p = -d/q). [Observe that, concerning u and v, we have exited space

C ∞ c (R d )
and entered the completed space E.] This amounts to the following non convex duality equality

max v∈S 1 (L q ) R d |v(y)| s dy R d |v(y)| q |y| p dy 1/p = s/d min u∈S 1 (L q ) ||∇u|| L p (R d ) , s = (1 -1/d)q, 1 -d/p = -d/q,
where S 1 (L q ) denotes the unit sphere of L q intersected with E. Existence, uniqueness (up to translations and dilations) of solutions in the completed Banach space E to the best Sobolev constant problem are just direct corollary of this truly remarkable non convex duality formula.

Chapter 4

The optimal incompressible transport problem

This chapter is entirely devoted to the analysis of the relaxed minimizing geodesic problem, already presented in section 2.2, that we can call, as well, the "optimal incompressible transport" (OIT). This problem is substantially more complicated than the regular optimal transport problem, which is related to the Monge-Ampère equation, as discussed in Section 3.2. However, there are many similarities, in particular the crucial use of convexity tools, as the Fenchel-Rockafellar duality theorem.

We consider pairs of measures

(c, q) ∈ C 0 ([t 0 , t 1 ] × D 2 ; R × R d
) and use systematically the folllowing notation for duality brackets:

< c, A > + < q, B >= t,x,a A(t, x, a)c(t, x, a) + B(t, x, a) • q(t, x, a) for all (A, B) ∈ C 0 ([t 0 , t 1 ] × D 2 ; R × R d ).
The OIT problem amounts to finding such a pair (c, q) that minimizes

K(c, m) = 1 2 t,x,a |v(t, x, a)| 2 c(t, x, a),
subject to the following constraints: i) (c, q) satisfies the "microscopic continuity equation"

∂ t c(t, x, a) + ∇ • q(t, x, a) = 0 and c(t 0 , •, •) and c(t 1 , •, •) are given in DS(D)
and are respectively denoted by c t 0 and c t 0 . (The word microscopic refers to the variable a which plays the role of a parameter in the equation and the ∇ operator only involves the space variable x.) This can be expressed in weak form by t,x,a

∂ t ϕ(t, x, a)c(t, x, a) + ∇ϕ(t, x, a)q(t, x, a) = x,a ϕ(T, x, a)c t 1 (x, a) -ϕ(0, x, a)c t 0 (x, a),
for all ϕ = ϕ(t, x, a) ∈ R which are continuous and

C 1 in (t, x). ii) at each t ∈ [t 0 , t 1 ], c(t, •, •) is doubly stochastic, i.e. x c(t, x, a) = 1, a c(t, x, a) = 1.
This first constraint is automatically satisfied because of the continuity equation (to check it, just take ϕ in the weak formulation as a function of t and a only), while the second one can be simply expressed by t,x,a p(t, x)c(t, x, a)

+ [t 0 ,t 1 ]×D p(t, x)dxdt, ∀p ∈ C 0 ([t 0 , t 1 ] × D).
Let us now recall the precise definition of K:

K(c, q) = sup{ t,x,a A(t, x, a)c(t, x, a) + B(t, x, a) • q(t, x, a); (A, B) ∈ C 0 ([t 0 , t 1 ] × D 2 ; R × R d ) s.t. 2A + |B| 2 ≤ 0},
which is a l.s.c. function (with respect to the weak-* topology), valued in ] -∞, +∞], with value K(c, q) = +∞, unless c ≥ 0, q is absolutely continuous with respect to c, with a vector-valued Radon-Nikodym density v squareintegrable in c, in which case

K(c, m) = 1 2 t,x,a |v(t, x, a)| 2 c(t, x, a).
(The proof of this fact is a rather elementary exercise in measure theory. See [START_REF] Brenier | A homogenized model for vortex sheets[END_REF] for a detailed proof.)

Saddle-point formulation and convex duality

Using Lagrangian multipliers, our optimization problem can therefore be written as the following "inf-sup" problem:

K opt (t 0 , t 1 , c t 0 , c t 1 ) = inf c,q sup A,B,ϕ,p [0,T ]×D p(t, x)dxdt + x,a ϕ(T, x, a)c t 1 (x, a) -ϕ(0, x, a)c t 0 (x, a) + t,x,a (A(t, x, a) -∂ t ϕ(t, x, a) -p(t, x))c(t, x, a) + (B(t, x, a) -∇ϕ(t, x, a)) • q(t, x, a), subject to A(t, x, a) + |B(t, x, a)| 2 2 ≤ 0, ∀(t, x, a) ∈ [t 0 , t 1 ] × D 2 .
Notice that the optimal value can be easily rescaled, by homogeneity and translation invariance in t, as

K opt (t 0 , t 1 , c t 0 , c t 1 ) = (t 1 -t 0 ) -1 K opt (0, 1, c t 0 , c t 1 )
so that we may consider only the case t 0 = 0, t 1 = 0 and, consistently, denote c t 0 and c t 1 by c 0 and c 1 and K opt (0, 1, c 0 , c 1 ) just by K opt (c 0 , c 1 ), as will be done subsequently. Notice that the sup-inf problem can be trivially computed (because we just have to minimize in (c, q) without any constraint thanks to the Lagrange multipliers (A, B, ϕ, p)), which leads to the maximization problem in (ϕ, p):

sup ϕ,p [0,T ]×D p(t, x)dxdt + x,a ϕ(1, x, a)c 1 (x, a) -ϕ(0, x, a)c 0 (x, a),
where

∂ t ϕ(t, x, a) + |∇ϕ(t, x, a)| 2 2 + p(t, x) ≤ 0, ∀(t, x, a) ∈ [0, 1] × D 2 .
(after elimination of A = ∂ t ϕ + p and B = ∇ϕ). Notice that we keep using the ∇ notation only for the derivation in x. As a matter of fact, there will be subsequently never any derivation performed in the "microscopic" variable a. The first step in our analysis is now to justify that the inf-sup and the sup-inf coincide, thanks to the Fenchel-Rockafellar duality theorem 3.3.2 that we have already used for the Monge-Ampère equation in Chapter 3.

Rockafellar duality

We introduce

E = C 0 ([0, 1] × D 2 ; R × R d ),
which is a Banach space for the sup norm, and define two convex functions K 1 and K 1 on E, valued in ]0, +∞], as follows. We first set

K 1 (A, B) = - [0,1]×D p(t, x)dxdt - D 2 ϕ(1, x, a)dc 1 (x, a) -ϕ(0, x, a)dc 0 (x, a), whenever there are p ∈ C([0, 1] × D) and ϕ ∈ C([0, 1] × D 2 ), which is C 1 in (t, x) such that A(t, x, a) = ∂ t ϕ(t, x, a) + p(t, x), B(t, x, a) = ∇ϕ(t, x, a),
and K 1 (A, B) = +∞ otherwise. Then, we define

K 2 (A, B) = 0, if A(t, x, a) + |B(t, x, a)| 2 2 ≤ 0, ∀(t, x, a) ∈ [0, 1] × D 2 .
and K 2 (A, B) = +∞ otherwise. Notice that the first definition is consistent, in the sense that if A, B are represented as above by two different couples (ϕ, p), ( φ, p), then the value of

K 1 (A, B) is unchanged. Lemma 4.1.1. The functionals K 1 , K 2 : E → R ∪ {+∞} verify the hypotheses of Theorem 3.3.2.
Proof. The convexity condition is clear. Next, we have to find a function u 0 in E having the required properties in the Theorem. We observe here that there is no chance that K 1 is continuous (for the C 0 -norm) because arbitrarily near any function where K 1 < +∞ there is some function with K 1 = +∞. On the other side, in the point (A 0 , B 0 ) = (-1, 0) we have A 0 = ∂ t ϕ 0 + p 0 , B 0 = ∇ϕ 0 for ϕ 0 = 0, p 0 = -1, so K 1 is finite at this point. On the other side, K 2 (A 0 , B 0 ) = 0 and this condition is preserved for small perturbations of (A 0 , B 0 ) in the C 0 -norm. Therefore the assumptions of Theorem 3.3.2 are satisfied.

We now want to exploit Theorem 3.3.2 in our setting. We start by noticing that

K * 2 (c, q) = K(c, q),
where K is nothing but the functional introduced at the beginning of this chapter.

Let us now compute K * 1 (-c, -q). By definition,

K * 1 (-c, -q) = sup ϕ,p t,x,a (-∂ t ϕ(t, x, a) -p(t, x))c(t, x, a) -∇ϕ(t, x, a) • q(t, x, a) + t,x p(t, x)dxdt + x,a ϕ(1, x, a)dc 1 (x, a) -ϕ(0, x, a)dc 0 (x, a).
This exactly means that

K * 1 (-c, -q) takes value ∞ unless a c(t, x, a) = 1, ∂ t c + ∇ • q = 0, c(0, x, a) = c 0 (x, a), c(1, x, a) = c 1 (x, a), in which case K * 1 (-c, -q) = 0. So, we conclude that sup c,q K * 1 (-c, -q) + K * 2 (c, q) = K opt (c 0 , c 1 )
which corresponds to the inf-sup problem while

sup A,B -K 1 (A, B) -K 2 (A, B)
is (almost by definition) just the value of the sup-inf problem that we have computed earlier. So the inf-sup and the sup-inf have the same optimal value and we can state:

Theorem 4.1.2. The optimal incompressible transport (OIT) problem can be successively written in primal (sup) and dual (inf ) form:

sup ϕ,p [0,1]×D p(t, x)dxdt - D 2 ϕ(1, x, a)dc 1 (x, a) -ϕ(0, x, a)dc 0 (x, a), subject to ∂ t ϕ(t, x, a) + |∇ϕ(t, x, a)| 2 2 + p(t, x) ≤ 0, ∀(t, x, a) ∈ [0, 1] × D 2 and inf c,q K(c, q), K(c, q) = 1 2 t,x,a |v(t, x, a)| 2 c(t, x, a), q = cv, subject to ∂ t c + ∇ • q = 0, a c(t, x, a) = 1, c(0, x, a) = c 0 (x, a), c(1, x, a) = c 1 (x, a),
and there is at least an optimal solution (c, q) to the second one.

Existence and uniqueness of the pressure gradient

Theorem 4.2.1. There is a unique distribution, ∇p depending only on the data c 0 , c 1 such that ∇p ε → ∇p in the sense of distributions in the interior of [0, 1] × D, for any (ϕ ε , p ε ) ε-solution to the primal problem. In addition, ∇p is characterized by

∇p(t, x) = -∂ t a (cv)(t, x, a) -∇ • a (cv ⊗ v)(t, x, a)
for all optimal solutions (c, q = cv) of the dual problem.

We introduce a short notation for the boundary data:

BT (f ) = x,a f (1, x, a)c 1 (x, a) -f (0, x, a)c 0 (x, a)
and denote

J(p, ϕ) = [0,1]×D p(t, x)dxdt - D 2 ϕ(1, x, a)dc 1 (x, a) -ϕ(0, x, a)dc 0 (x, a).
We consider a minimizer (c, q = cv) for the dual problem, which exists by Rockafellar's duality theorem, and we denote by (CE) the "continuity equation" with boundary data, namely, in weak form,

∀f, BT (f ) = t,x,a (∂ t f + (v • ∇)f )c,
and by (IC) the "incompressibililty" constraint a c = 1.

Lemma 4.2.2. For all optimal pairs (c, cv), for all pairs (c, ṽc) satisfying (CE) but not necessarily (IC) and for any ε-solution (p ε , ϕ ε ) of the primal problem, we have (with meaning t,x,a )

p ε (c -c) + 1 2 c|∇ϕ ε -ṽ| 2 + c ∂ t ϕ ε + 1 2 |∇ϕ ε | 2 + p ε ≤ 1 2 c|ṽ| 2 -1 2 c|v| 2 + ε 2
Proof. We use inequality

∂ t ϕ ε + 1 2 |∇ϕ ε | 2 + p ε ≤ 0,
defining the ε-solutions, together with the fact that c ≥ 0, and rewrite

-BT (ϕ ε ) = -(∂ t ϕ ε + (ṽ • ∇)ϕ ε ) c = ∂ t ϕ ε + 1 2 |∇ϕ ε | 2 + p ε c + 1 2 |∇ϕ ε -ṽ| 2 c - 1 2 |ṽ| 2 c + p ε c.
By definition of an ε-solution, and since (c, cv) realizes the supremum in the dual problem, we have

-BT (ϕ ε ) -p ε = -J(p ε , ϕ ε ) ≤ - 1 2 |v| 2 c + ε 2 ,
which inserted in the previous inequality gives the wanted result.

If in Lemma 4.2.2 we take (c, ṽ) = (c, v) we obtain

1 2 c|v -∇ϕ ε | 2 + c ∂ t ϕ ε + 1 2 |∇ϕ ε | 2 + p ε ≤ ε 2 . (4.2.1)
If we were able to pass to the limit in this inequality, we would obtain, as optimality conditions for the OIT problem:

                       v = ∇φ, ∂ t ϕ + 1 2 |∇ϕ| 2 + p = 0, c -a.e. , ∂ t c + ∇ • (cv) = 0, a c(t, x, a) = 1, ∂ t ϕ(t, x, a) + 1 2 |∇ϕ(t, x, a)| 2 + p(t, x) ≤ 0 , ∀(t, x, a) ∈ [0, 1] × D 2 c(0, x, a) = c 0 (x, a), c(1, x, a) = c 1 (x, a) . (4.2.2)
Unfortunately, it is unclear that the limit φ can be defined in a reasonable sense (this is an open question in the OIT theory). However, we will be shortly able to prove the convergence of ∇p ε to a definite limit ∇p. To achieve this goal, we first perform smooth deformations of a given pair (c, v) (typically a solution of the dual OIT problem) into another pair (c, ṽ) satisfying (CE) but not necessarily (IC). This turns out to be a good way to "feel" how p ε acts on test functions. We use a definition by duality, requiring that, for all test functions f (t, x, a) ∈ R and

B(t, x, a) ∈ R d , t,x,a f (t, x, a)c(t, x, a) + B(t, x, a) • (cṽ)(t, x, a) = (f (t, M (t, x), a) + B(t, M (t, x), a) • [(∂ t + v(t, x, a) • ∇)M (t, x)]) c(t, x, a)
,

where (t, x) ∈ [0, T ] × D → M (t, x) ∈ D is smooth and so that M (t, x) = x near ∂ ([0, T ] × D) and M (t, •) is a diffeomorphism of D for all t ∈ [0, T ].
We first observe that under such hypotheses (c, ṽ) satisfies (CE) as soon as (c, v) satisfies it. Indeed, denoting f (t, x, a) = f (t, M (t, x), a), we find:

[∂ t f + (ṽ • ∇)f ] c = ((∂ t f )(t, M (t, x), a) +(∇f )(t, M (t, x), a) • [∂ t + v(t, x, a) • ∇]M (t, x))c(t, x, a) = ∂ t f + v • ∇ f c = BT ( f ) = BT (f ),
where we have used (CE) for (c, v) and the chain rule for f . Now, let us rewrite the conclusion of Lemma 4.2.2 where (c, ṽ) is as above. We first treat the term:

p ε c = p ε (t, M (t, x))c(t, x, a) = p ε (t, M (t, x))dtdx,
where we used the (IC) condition for c. Next, we write

1 2 c|ṽ| 2 = sup A+ 1 2 |B| 2 ≤0 A(t, x, a)c + B(t, x, a) • cṽ = sup B - 1 2 |B| 2 + B • ṽ c = sup B [- 1 2 |B(t, M (t, x), a)| 2 + B(t, M (t, x), a) • (∂ t + v(t, x, a) • ∇)M (t, x)]c(t, x, a) = sup B - 1 2 | B| 2 + B • (∂ t + v • ∇)M ) c = 1 2 |(∂ t M (t, x) + (v(t, x, a) • ∇)M (t, x)| 2 c(t, x, a),
where B(t, x, a) = B(t, M (t, x), a).

So we have obtained

Lemma 4.2.3. For all optimal pairs (c, cv), for all smooth function

(t, x) ∈ [0, T ] × D → M (t, x) ∈ D such that M (t, x) = x near ∂ ([0, T ] × D) and M (t, •) is a diffeomorphism of D for all t ∈ [0, T ], we have t,x (p ε -p ε ) + t,x,a c| ∂ t ϕ ε + 1 2 | ∇ϕ ε | 2 + pε | + 1 2 t,x,a | ∇ϕ ε -∂ t M -(v • ∇)M | 2 c ≤ 1 2 t,x,a c|∂ t M + (v • ∇)M | 2 -1 2 t,x,a c|v| 2 + ε 2 ,
where we still use notation f (t, x, a) = f (t, M (t, x), a) for generic functions f .

Although less general, this Lemma is much more tractable than Lemma 4.2.2, since, the dependence on (c, ṽ) we had is now substituted for by the dependence on the simpler smooth function M .

Application of Moser's lemma

Let us now use the following variant of "Moser's Lemma" [START_REF] Moser | On the volume elements on a manifold[END_REF][START_REF] Dacorogna | On a partial differential equation involving the Jacobian determinant[END_REF][START_REF] Rivière | Resolutions of the prescribed volume form equation[END_REF] Lemma 4.2.4 (Moser's Lemma for T d ). Let σ 0 , σ 1 ∈ C ∞ (T d ) be strictly positive probability densities (i.e. σ i > 0, T d σ i dx = 1 for i = 0, 1). Then there exists a diffeomorphism M : T d → T d with det(DM ) > 0 such that for all continuous test functions ϕ there holds

T d ϕ(M (x))σ 0 (x)dx = T d ϕ(x)σ 1 (x)dx.
Proof. We will find an expression of M as the flow N (t, x) at time t = 1 of a vectorfield z(t, x):

∂ t N (t, x) = z(t, N (t, x)) N (0, x) = x
To impose the right conditions on z, we express the pushforward density obtained from σ 0 (x)dx via N (t, •) :

ϕ(N (t, x))σ 0 (x)dx = ϕ(x)σ(t, x)dx for all t, ϕ ∈ C ∞ (T d )
The flow equation then gives us the evolution equation

∂ t σ + ∇ • (zσ) = 0 for σ(t, x).
If we ask that σ(t, x) = (1 -t)σ 0 (x) + tσ 1 (x), then the above equation assumes a much simpler form:

(σ 1 -σ 0 )(x) = -∇ • [σ(t, x)z(t, x)] = -∇ • Z(x).
We make the extra Ansatz that Z = ∇ζ, and we obtain the equation

∆ζ + σ 1 -σ 2 = 0 on T d .
The integrability condition for this equation is (σ 1 -σ 0 ) = 0, which is satisfied in our case. Therefore we obtain a smooth solution ζ. The vectorfield z can now be expressed in terms of ζ, σ 0 , σ 1 and it is bounded because of the strict positivity condition on σ 0 , σ 1 :

z(t, x) = ∇ζ(x) (1 -t)σ 0 (x) + tσ 1 (x)
, and since z is smooth and bounded, also N is smooth, therefore M (x) = N (1, x) is smooth, as wanted.

Remark 4.2.5.

• For this version of Moser's Lemma, we needed σ 0 , σ 1 to be strictly positive.

• In [START_REF] Dacorogna | On a partial differential equation involving the Jacobian determinant[END_REF] a richer variant of the lemma is done on a compact domain D ⊂ R d and is followed by a second step where the boundary condition M (x) = x on ∂D is ensured. This somehow hints at the fact that the possible constructions are more flexible, and that the results could be ameliorated as done in [START_REF] Rivière | Resolutions of the prescribed volume form equation[END_REF].

We will need the following refinement of Moser's Lemma:

Lemma 4.2.6. Let θ ∈ C ∞ c (]0, 1[) be a nonnegative function and w ∈ C ∞ (D, R d ). If ||θ|| L ∞ is small enough, we can find a family of diffeomorphisms M (t, x) such that M (t, x) = x near ∂([0, 1] × D) and for all ϕ ∈ C 1 c (R d ) there holds D ϕ(M (t, x))dx = D ϕ(x)dx + θ(t) D ∇ϕ(x) • w(x)dx.
Moreover M will be representable as a flow, i.e. there will hold

∂ t M (t, x) = z(t, M (t, x)), where z(t, x) = θ (t)w(x) 1-θ(t)[∇•w(x)] . Proof. Call S = ||θ|| L ∞ , so that θ([0, 1]) = [0, S].
We observe that since θ has compact support, θ(0) = 0. We start by defining

σ(s, x) = 1 -s∇ • w(x) w(s, t) = w(x) σ(s, x) , so that ∂ s σ + ∇ • ( wσ) = 0.
We then consider the flow of w. We define

∂ s M (s, x) = w(s, M (s, x)) for s ∈ [0, S] M (0, x) = x
Then clearly M (s, x) = x for x near ∂D. We observe that σ(0, x) = 1 and that for all ϕ ∈ C 0 (D)

ϕ( M (s, x))dx = ϕ(x)σ(s, x)dx.
We then define M (t, x) = M (θ(t) -θ(0), x) = M (θ(t), x), and we have

∂ t M (t, x) = ∂ t M (θ(t), x) = w(θ(t), M (t, x))θ (t) = w(M (t, x)) σ(θ(t), M (t, x)) θ (t) = w(M (t, x)) 1 -θ(t)∇ • w(M (t, x)) θ (t) = z(t, M (t, x))
We can also compute

ϕ(M (t, x))dx = ϕ( M (θ(t), x))dx = ϕ(x)σ(θ, x)dx = ϕ(x)dx -θ(t) ϕ(x)(∇ • w(x))dx = ϕ(x)dx + θ(t) ∇ϕ(x) • w(x)dx,
as wanted.

Now we can rewrite the pressure terms in Lemma 4.2.3 as

[p ε (t, M (t, x)) -p(t, x)]dx = θ(t) ∇p ε (t, x) • w(x)dx.
Thus, we deduce from Lemma 4.2.3:

Lemma 4.2.7. ∇p ε , viewed as a distribution on the interior of [0, 1] × D, satisfies ∇p ε , θ ⊗ ω = t,x ∇p ε (t, x)θ(t) • w(x) ≤ ε 2 + 1 2 t,x,a |∂ t M + v • ∇M | 2 -|v| 2 c.
So, we see that, as a distribution, ∇p ε is bounded in the interior of [0, 1] × D uniformly in ε. Up to a subsequence we then have ∇p ε ∇p in the sense of distributions, combining Banach-Steinhaus and Banach-Alaoglu theorems.

Uniqueness of the limit ∇p

Let us use again the inequality in Lemma 4.2.7, but we now take a limit in the time-dependent test function θ(t) more carefully:

θ(t) = δζ(t)for ζ ∈ C ∞ c (]0, T [),
and for |δ| small therefore M (t, x) = δζ(t)w(x). We now want to take the limit as δ → 0. Therefore we start by computing:

M (t, x) -x = O(δ) ∂ t M (t, x) = δζ (t)w(x) + O(δ 2 ) M (t, x) = x + δζ(t)w(x) + O(δ 2 ) ∂ ∂x j M (t, x) = δ ij + δζ(t) ∂w ∂x j (x) + O(δ 2 ),
and inserting this in the integrand in the right hand side of the inequality of Lemma 4.2.7, we obtain

|∂ t M + v • ∇M | 2 -|v| 2 = 1 2   δζ (t)w j (x) + v i + j v j δζ(t)∂ j w i + O(δ 2 ) 2 -|v| 2   = i δ ζ (t)w i (x) + j v j ζ∂ j w i v i + O(δ 2 ),
and since the inequality should hold along the subsequence ε n → 0 such that ∇p εn ∇p found in the previous section and for all δ small enough, we obtain (first passing n → ∞ then δ → 0)

∇p, θ ⊗ w = i t,x,a ζ w i + j v j ∂ j w i ζ cv i = - i ∂ t a cv i + j ∂ j a cv i v j , ζ ⊗ w i ,
which means that in the sense of distributions,

∇p = -∂ t a cv -∇ • a cv ⊗ v.
Since this is true for every optimal solution (c, cv), ∇p is uniquely defined. This means that the limit ∇p is unique as a distribution, and in particular it does not depend on the sequence ∇p εn which we choose. Therefore ∇p ε → ∇p.

Remark 4.2.8 (regularity of the pressure field). From the above discussion we obtain that ∇p is the derivative of a measure. By working substantially harder, in [START_REF] Brenier | Minimal geodesics on groups of volume-preserving maps[END_REF], ∇p(t, x) was shown to be itself a locally bounded measure in the interior of [0, 1] × D, and an improvement on the time integrability was achieved in [START_REF] Ambrosio | Geodesics in the space of measure-preserving maps and plans[END_REF][START_REF] Ambrosio | On the regularity of the pressure field of Brenier's weak solutions to incompressible Euler equations[END_REF], where ∇p(t, x) is an L 2 loc function ot t valued in the set of bounded measures in x ∈ D. ∇p ∈ L 2 (]0, T [, C 0 (D; R d ) ) was shown.

Convergence of approximate solutions

Definition 4.3.1. We say that a couple (c ε , q ε ) ∈ E (we recall that

E = C 0 ([0, 1] × D 2 ; R × R d ), is an approximate solution if: i) c ε ≥ 0, q ε c ε , q ε = c ε v ε and K(c ε , q ε ) = 1 2 t,a,x |v ε (t, x, a)| 2 c ε (t, x, a) < +∞
ii) the continuity equation and the incompressibility constraint -we denote them respectively by (ACE) and (AIC)-hold in the limit ε → 0 (in the sense of distributions)

; ii) K(c ε , q ε ) → K opt (c 0 , c 1 ) as ε → 0. Theorem 4.3.2.
There is a unique pressure gradient ∇p which depends only on the data (c 0 , c 1 ), such that, for all approximate solutions (c ε , q ε = c ε v ε ), we have in the sense of definition (4.3.1),

∂ t a c ε v ε + ∇ • a c ε v ε ⊗ v ε → -∇p,
as ε → 0, in the sense of distributions. This pressure gradient is precisely the one just found in the study of the OIT problem.

Proof. We first observe that, from the assumption, the positive measures c ε form a precompact set since (beacuse of condition (ACI))

t,x,a c ε (t, x, a) → [0,T ]×D dxdt = 1.
For the measures |q ε | we get

|q ε | ≤ |q ε | 2 c ε c ε = 2K(c ε , q ε ) c ε → 2K opt (c 1 , c 0 ).
From the above two boundedness results it follows that up to extracting a subsequence we may assume that (c ε , q ε ) converge to a measure (c, q) weakly. Passing to the limit in the equations (ACE) and (AIC) we obtain (CE), (IC), which makes (c, q) an admissible solution for the OIT problem. Next, by lower semicontinuity (looking at K in its dual formulation), we obtain

K(c, q) ≤ lim inf K(c ε , q ε ) = K opt (c 1 , c 0 ),
which the optimal value of the OIT problem. Since (c, q) is an admissible solution, we obtain that the equality should hold and, therefore, (c, q) is an optimal solution of the OIT problem. Now, let us show the convergence of a c ε v ε ⊗ v ε to a cv ⊗ v in the sense of distributions. To do this we first observe that by compactness, there exist a symmetricmatrix valued measure ν(t, x, a) and a subsequence ε n → 0 such that

c εn v εn ⊗ v εn → ν weakly.
Then by lower semicontinuity we have cv ⊗ v ≤ ν in the sense of symmetric-matrix valued measures. But since we already know that

t,x tr(ν) = lim t,a,x c εn |v εn | 2 = 2K(c, q) = a cv ⊗ v, we get ν = a cv ⊗ v. So ∇ • a c ε v ε ⊗ v ε → ∇ • a cv ⊗ v.
Since we have c ε v ε = q ε → q = cv, we deduce

∂ t a c ε v ε + ∇ • a c ε v ε ⊗ v ε → ∂ t a cv + ∇ • a cv ⊗ v.
But, as we have seen, (c, q = cv) is optimal and therefore satisfies

∂ t a cv + ∇ • a cv ⊗ v = ∇p,
where ∇p is unique pressure gradient of the OIT problem. This completes the proof.

Shnirelman's density theorem

In this section, we want to show how the convex OIT problem is a good way to treat the minimizing geodesic problem leading to the Euler equation according to Arnold [START_REF] Arnold | Topological methods in hydrodynamics[END_REF]. We consider two maps X 0 and X 1 in V P M (D), the semi-group of volume preserving maps of D, and associate the corresponding doubly stochastic measures c 0 and c 1 defined by

c 0 (x, a) = δ(x -X 0 (a)), c 1 (x, a) = δ(x -X 1 (a)).
For simplicity we assume X 0 (a) = a and simply denote X 1 by X. This is not a restriction from the geometric viewpoint. Indeed, in that case, we restrict ourself to two maps X 0 , X 1 in the group SDif f (D), and see that the minimizing geodesic problem from X 0 to X 1 is strictly equivalent to the one from

I d to X 1 • X -1 0 .
Let us now quote a crucial result due to Shnirelman [START_REF] Shnirelman | Generalized fluid flows, their approximation and applications[END_REF] (or, more precisely, the version used in [START_REF] Ambrosio | Geodesics in the space of measure-preserving maps and plans[END_REF])

Theorem 4.4.1 (Shnirelman's approximation theorem). Assume d ≥ 2.
Let (c, q) ∈ E be an admissible solution to the OIT problem with data c 0 , c 1

c 0 (x, a) = δ(x -a), c 1 (x, a) = δ(x -X(a)), X ∈ VPM(D),
i.e. satisfying (IC) and (CE) conditions with K(c, q) < +∞. Then, we can find, for every small ε > 0, a smooth divergence-free vector field v ε (t, x), compactly supported in the interior of [0, 1] × D, with associated volume-preserving flow g ε t (x), defined by

d dt g ε t (x) = v ε (t, g ε t (x)), g ε 0 (x) = x, such that    D |X(a) -g ε 1 (a)| 2 da ≤ ε 2 , 1 2 1 0 D |v(t, x)| 2 dxdt ≤ K(c, q) + ε 2 .
From this result, we immediately obtain approximate solutions as in Definition 4.3.1, by setting:

c ε (t, x, a) = δ(x -g ε t (a)) q ε (t, x, a) = ∂ t g ε t (a)c ε (t, x, a) = v ε (t, g ε t (a))c ε (t, x, a) = v ε (t, x)c ε (t, x, a)
We easily verify (ACE):

t,x,a [∂ t f + v ε • ∇f ] c ε = t,a [∂ t f (t, g ε t (a), a) + ∂ t g ε t (a) • (∇f )(t, g ε t (a), a)] = a [f (1, g ε 1 (a), a) -f (0, g ε 0 (a), a)] = a [f (1, g ε 1 (a), a) -f (0, a, a)] → a f (1, X(a), a) - a f (0, a, a) = c 1 , f (1, •, •) -c 0 , f (0, •, •) ,
as wanted. As for the verification of (AIC), we have:

t,x,a f (t, x)c ε (t, x, a) = t,a f (t, g ε t (a)) = t,x f (t, x),
since g ε t is volume preserving. Finally, we verify the convergence of the energy:

K(c ε , q ε ) = inf A+ 1 2 |B| 2 ≤0 t,x,a [Ac ε + B • q ε ] = inf A+ 1 2 |B| 2 ≤0 t,x [A(t, g ε t (a), a) + ∂ t g ε t (a) • B(t, g ε t (a), a)] = 1 2 t,a |∂ t g ε t (a)| 2 = 1 2 t,a |v ε (t, g ε t (a))| 2 = 1 2 t,x |v ε (t, x)| 2 → K opt (c 1 , c 0 ).
From the existence of such "Shnirelman" approximate solutions, combined with the convergence theorem 4.3.2, we conclude that the OIT problem provides the correct "relaxation" of the minimizing geodesic problem. (Here, we use the word "relaxation" in the sense that we have substituted, for a given optimization problem, a suitable extended problem set up in a larger framework where solutions can be more easily obtained and shown to be the correct limits of all approximate solutions of the original problem. Let us mention, just as an example, the theory of "optimal design" where such techniques have been used [5,[START_REF] Kohn | Optimal design and relaxation of variational problems[END_REF].) For the sake of completeness we provide in the next section a rather explicit ersatz of Shnirelman's theorem, for admissible solutions (c, m) to the OIT problem on D = T 3 such that m • e = 0 where e is the vertical direction, e = (0, 0, 1), of the unit torus.

Let us call them "flat" admissible solutions. (Actually they can be identified to the admissible solutions of the OIT problem in one less space dimension, i.e. on T 2 .) This flatness property allows us to play with the vertical coordinate to construct, rather explicitely, a smooth time-dependent vector field u on D which, in general, needs a tiny but non-trivial component e • v to do the approximation correctly. As a matter of fact, the flatness condition is sufficient to cover all data X that are trivial in the third coordinate e, namely: e • (X(a) -a) = 0. This is precisely for this kind of data that Shnirelman was able in 1985 to prove the non-existence of classical solutions to the minimizing geodesic problem [START_REF] Shnirelman | On the geometry of the group of diffeomorphisms and the dynamics of an ideal incompressible fluid[END_REF]. Therefore, the flatness condition is perfectly meaningful with respect to this fundamental negative result of Shnirelman. In addition, from the physical point of view, the flatness condition is directly related to the popular "hydrostatic approximation" of the Euler equations used in geo-sciences to describe fluid motions in thin domains, such as lakes, oceans or the atmosphere [START_REF] Cullen | A mathematical theory of large-scale atmosphere/ocean flow[END_REF]394], as will be discussed subsequently.

Approximation of a generalized flow by introduction of an extra dimension

This section is devoted to the proof of a variant of Shnirelman's density theorem 4.4.1, using the introduction of an additional space dimension. More precisely, we consider here an optimal solution of the OIT (or generalized geodesic) problem, (c, m)(t, x, a), where t is valued in [0, 1] and the space variable x belongs to D = T d , with typically d = 2. So far, the space of labels a has always been considered to be D itself. However, since in the OIT theory, there is never any differential calculus performed in the a variable, but only integrations, we may use any abstract space of labels A instead of D. It turns out to be very convenient to take A = T, the one dimensional torus T, instead of D. This will allow us to substitute for a an extra space variable z ∈ T and, through a rather explicit construction, to approximate (c, m) by a classical flow of volume preserving diffeomorphisms living no longer on the former spatial domain D = T d but rather on the new domain D×T with an extra dimension. From a physical viewpoint, this approach is quite natural, in particular in the geophysical context of fluid motions on very thin domains (typically the atmosphere and the oceans) where "reduced" models are frequently used, involving only two space variables [START_REF] Chemin | Mathematical geophysics. An introduction to rotating fluids and the Navier-Stokes equations[END_REF][START_REF] Cullen | A mathematical theory of large-scale atmosphere/ocean flow[END_REF]394], as will be discussed in section 4.6.

Step 1: mollification

We first prove the following approximation result: 

E = C 0 (Q ; R × R d ), such that c ≥ 0, a c = 1, ∂ t c + ∇ • (cv) = 0, K(c, m) = 1 2 |v| 2 c < +∞.
Then, we can find a sequence (c n , m n = c n v n ), made of smooth functions on Q, valued in R × R d , such that the following hold:

• (c n , m n ) (c, m)
, for the the weak- * convergence of measures;

• c n ≥ 1 n and α c n (t, x, a)da = 1; • ∂ t c n + ∇ • m n = 0, • K(c n , m n ) ≤ K(c, m) + o(1) as n → +∞.
Proof. The proof will consist in first extending the time variable t to R, while shrinking the temporal interval t ∈ [0, 1] to t ∈ [ε, 1 -ε], where ε = 1/n, n ≥ 2, and finally performing a suitable mollification by convolution in all variables (t, x, a). Every step will keep the action arbitrarily close to K(c, m) while both the continuity equation and the incompressibility condition will be preserved.

Extension and retraction

We first extend and retract (c, m) to R × D × T, i.e. to all t ∈ R, by setting for all (x, a) ∈ D × T,

c ε (t, x, a) = c( t -ε 1 -ε , x, a) ∀t ∈ [ε, 1 -ε], c ε (t, x, a) = c 0 (x, a), ∀t < ε, c(t, x, a) = c 1 (x, a), ∀t > 1 -ε, m ε (t, x, a) = 0, ∀t ∈ R \ [ε, 1 -ε], m ε (t, x, a) = 1 1 -ε m( t -ε 1 -ε , x, a) ∀t ∈ [ε, 1 -ε].
By doing so, we keep for (c ε , m ε ) the main properties of (c, m) namely the nonnegativity of c, the continuity equation (extended to R × D × T) , the incompressibility condition and the time boundary conditions. In addition, K(c ε , m ε ) differs from K(c, m) only by O(ε).

Positivity of c ε and convolution. We first perform a convex interpolation by substituting for (c ε , m ε ) the new pair

(ε + (1 -ε)c ε , (1 -ε)m ε ), which maxes c ε ≥ ε > 0,
without affecting the continuity equation and the incompressibility condition, while 

K(c ε , m ε ) is reduced since K is convex and K(1, 0) = 0.
K(c ε , m ε ) (by convexity of K).
Let us emphasize that, at each step, we have only performed small, controlable, modifications of (c, m) in the weak-* sense of measures, which completes the Proof.

Step 2: Construction of a classical incompressible flow with one more space dimension

Now we take (c n , m n = c n v n ), for some fixed n big enough, as in the previous section, and we temporarily denote it by (c, m = cv) to make notations lighter. We now consider the new spatial domain D × T where D = T d , whose variable will be denoted by (x, z) ∈ D × T = T d+1 . The new vertical coordinate z ∈ T is going to substitute, in a non-trivial way, for the label variable a ∈ T.

To pass from the label a ∈ T to the vertical variable z ∈ T representing the "extra dimension", we consider the monotone rearrangement map R(t, x, •) : T → T sending c(t, x, a)da to the 1D Lebesgue measure on T. More precisely, we implicitly define the unique smooth function

z ∈ R → R(t, x, z) ∈ R, such that ∂ z R > 0, R(t, x, z)-z is T-periodic in z with zero mean and, T f (R(t, x, z))dz = T f (a)c(t, x, a)da,
for all bounded Borel T-periodic function f and for all (t, x) ∈ [0, 1] × D. We then define a smooth time-dependent divergence-free vector field

(t, x, z) ∈ [0, 1] × D × T → (u(t, x, z), w(t, x, z)) ∈ R d × R by setting first u(t, x, z) = v(t, x, R(t, x, z)), v = m c ,
and then defining w to be, for each fixed (t, x) the unique T-periodic function z ∈ T → w(t, x, z), with zero mean, such that

∂ z w(t, x, z) = -∇ x • u(t, x, z).
which exactly means that (u, w) is divergence-free on D × T. Next, we introduce the volume-preserving flow (ξ t , η t ) generated on D × T by (u, w) through:

∂ t ξ = u(t, ξ, η) ∂ t η = w(t, ξ, η). By construction of R, t,x,a f (t, x, a)c(t, x, a) = t,x,z f (t, x, R(t, x, z)), ∀f ∈ C 0 (Q).
Since (ξ t , η t ) is a volume-preserving diffeormorphism, this can be also written

t,x,a f (t, x, a)c(t, x, a) = t,x,z f (t, ξ t (x, z), R(t, x, z))
where

R(t, x, z) = R(t, ξ t (x, z), η t (x, z)).
Similarly, by definition of R and u,

t,x,a f (t, x, a)m(t, x, a) = t,x,z f (t, x, R(t, x, z))v(t, x, R(t, x, z)) = t,x,z f (t, x, R(t, x, z))u(t, x, z) = t,x,z f (t, ξ t (x, z), R(t, x, z))u(t, ξ t (x, z), η t (x, z)) = t,x,z f (t, ξ t (x, z), R(t, x, z)) d dt ξ t (x, z).
Now, let us use that (c, m) = (c n , m n ) satisfies the continuity equation so that, tor all sufficiently smooth function f (t, x, a), t,x,a

∂ t f c + ∇ x f • m = BT n (f ) ∼ BT (f ), n → ∞, where BT n (f ) = x,a f (T, x, a)c n (1, x, a) -f (0, x, a)c n (0, x, a), BT (f ) = a f (1, x, a)c 1 (x, a) -f (0, x, a)c 0 (x, a).
Using the new expression of c in terms of ξ and R, we get

BT n (f ) = t,x,z (∂ t f )(t, ξ t (x, z), R(t, x, z)) + (∇ x f )(t, ξ t (x, z), R(t, x, z)) d dt ξ t (x, z) = t,x,z d dt [f (t, ξ t (x, z), R(t, x, z))] -(∂ a f )(t, ξ t (x, z), R(t, x, z))∂ t R(t, x, z) = x,z [f (T, ξ T (x, z), R(T, x, z)) -f (0, x, R(0, x, z))] - t,x,z (∂ a f )(t, ξ t (x, z), R(t, x, z))∂ t R(t, x, z).
In particular, whenever f vanishes at t = 0 and t = T , we get

0 = t,x,z (∂ a f )(t, ξ t (x, z), R(t, x, z))∂ t R(t, x, z),
The right-hand side can also be written, using the definition of R t,x,z

(∂ a f )(t, ξ t (x, z), R(t, ξ t (x, z), η t (x, z)))(D t R)(t, ξ t (x, z), η t (x, z)), ( where 
D t R is a short notation for (∂ t + u • ∇ x + w∂ z )R) which is nothing but t,x,z (∂ a f )(t, x, R(t, x, z))D t R(t, x, z) (since (ξ t , η t ) is a volume-preserving diffeoorphism).
Introducing g(t, x, z) = f (t, x, R(t, x, z)), so that

∂ z g(t, x, z) = (∂ a f )(t, x, R(t, x, z))∂ z R(t, x, z), we deduce t,x,z ∂ z g(t, x, z) D t R(t, x, z) ∂ z R(t, x, z) = 0, which is possible only if D t R(t, x, z) = ∂ z R(t, x, z)β(t, x) for some function β(t, x).
In other words

(∂ t + u • ∇ x + (w -β)∂ z )R = 0.
Since w(t, x, z) is T-periodic in z with zero mean we deduce that β(t, x) = 0 and get:

(∂ t + u • ∇ x + w∂ z )R = 0.
This means that R(t, ξ t (x, z), η t (x, z)) = R(0, x, z) and widely simplifies the formulae we have obtained for (c, m). Indeed, we may now write

t,x,a f (t, x, a)c(t, x, a) = t,x,z f (t, ξ t (x, z), R(0, x, z)) t,x,a f (t, x, a)m(t, x, a) = t,x,z f (t, ξ t (x, z), R(0, x, z)) d dt ξ t (x, z),
Finally, denoting (R, ξ) by (R n , ξ n ), in order to remind their dependence on n, we have obtained the following behavior for the time-boundary term

BT n (f ) = x,z f (1, ξ n 1 (x, z), R n (0, x, z)) -f (0, x, R n (0, x, z)) ∼ BT (f ) = a f (1, x, a)c(1, x, a) -f (0, x, a)c 0 (x, a),
for all f , as n → ∞.

Step 3: matching of the time-boundary data At this stage, we limit ourself to the case when the time-boundary data (c 0 , c 1 ) are of special form

c 1 (1, x, a) = δ(x -X 1 (a)), c 0 (x, a) = δ(x -X 0 (a))
where a ∈ T → X 0 (a) ∈ D and a ∈ T → X 1 (a) ∈ D are two given Lebesgue-measure preserving maps such that, for each ε, there is a smooth map h ε :

D → D with T |X 1 (a) -h ε (X 0 (a))| 2 da ≤ ε 2 .
(Notice that the domain of definition T and the range D = T d of these maps may be of different dimension, so that X 0 and X 1 cannot be expected to be smooth.) Let us now introduce smooth approximation for X 0 and X 1 , respectively denoted by X ε 0 and X ε 1 , so that

T |X ε 0 (a) -X 0 (a)| 2 da ≤ ε 2 , T |X ε 1 (a) -X 1 (a)| 2 da ≤ ε 2 . By choosing successively f (t, x, a) = (1-t)|x-X ε 0 (a)| 2 and f (t, x, a) = t|x-X ε 1 (a)| 2 in the asymptotic formula we have just obtained, namely lim n x,z f (1, ξ n 1 (x, z), R n (0, x, z)) -f (0, x, R n (0, x, z)) = x,a f (1, x, a)c(1, x, a) -f (0, x, a)c 0 (x, a),
we get

lim n x,z |ξ n 1 (x, z) -X ε 1 (R n (0, x, z))| 2 = [0,1] |X ε 1 (a) -X 1 (a)| 2 da ≤ ε 2 , lim n x,z |x -X ε 0 (R n (0, x, z))| 2 = [0,1] |X ε 0 (a) -X 0 (a)| 2 da ≤ ε 2 .
By the triangle inequality, we have

x,z |x -X ε 0 (R n (0, x, z))| 2 - x,z |x -X 0 (R n (0, x, z))| 2 ≤ x,z |X ε 0 (R n (0, x, z)) -X 0 (R n (0, x, z))| 2 = T |X ε 0 (a) -X 0 (a)| 2 da ≤ ε (by construction of R n ). Similarly, we get x,z |ξ n 1 (x, z) -X ε 1 (R n (0, x, z))| 2 ≤ x,z |ξ n 1 (x, z) -X 1 (R n (0, x, z))| 2 + ε .
So, we can pass to the limit in ε and get

x,z

|ξ n 1 (x, z) -X 1 (R n (0, x, z))| 2 → 0, x,z |x -X 0 (R n (0, x, z))| 2 → 0 .
At this stage, we limit ourself to the case when X 0 is one-to-one (this looks strange since X 0 maps T to D = T d , but is perfectly plausible: this just means that X 0 is a measure preserving Borel isomorphism between T equipped with the 1D Lebesgue measure and D = T d equipped with the d-dimensional Lebesgue measure (cf. [START_REF] Royden | Real analysis[END_REF]). Thus we may consider h = X 1 • X -1 0 as a volume preserving map of D = T d , which, for every ε > 0 admits some approximation by a smooth map

h ε : D → D with respect to the L 2 (D; R d ) norm: D |X 1 • X -1 0 (x) -h ε (x))| 2 dx ≤ ε 2 .
which also means

T |X 1 (a) -h ε (X ( 0 a))| 2 da ≤ ε 2 .
Thus,

x,z

|ξ n 1 (x, z) -X 1 (R n (0, x, z))| 2 - x,z |ξ n 1 (x, z) -h ε (X 0 (R n (0, x, z)))| 2 ≤ x,z |X 1 (R n (0, x, z)) -h ε (X 0 (R n (0, x, z)))| 2 = a |X 1 (a) -h ε (X 0 (a))| 2 ≤ ε.

Using that

x,z

|h ε (x) -h ε (X 0 (R n (0, x, z)))| 2 ≤ Lip(h ε ) 2 x,z |x -X 0 (R n (0, x, z)))| 2 → 0,
we have obtained

lim sup n x,z |ξ n 1 (x, z) -h ε (x)| 2 ≤ ε 2 ,
which can also be written

lim sup n a,z |ξ n 1 (X 0 (a), z) -h ε (X 0 (a))| 2 ≤ ε 2 ,
By passing to the limit in ε, we have finally obtained:

Proposition 4.5.2. lim a,z |ξ n 1 (X 0 (a), z) -X 1 (a)| 2 = 0. (4.5.1)
Step 5: rescaling the vertical direction

In this last and very simple step, we just rescale the vertical variable by substituting R/εZ for T = R/Z. Accordingly, we define

ũ(t, x, z) = u(t, x, z/ε), w(t, x, z) = εw(t, x, z/ε),
where, ũ(t, x, z) and w(t, x, z) are now εT-periodic in z. and we introduce the corresponding flow ξ, η as above. The action of this classical volume-preserving flow can be easily estimated as follows:

1 2 |∂ t ξ| 2 + |∂ t η| 2 = 1 2 |ũ| 2 + | w| 2 ∼ 1 2 |u| 2 + ε 2 |w| 2 ≤ K(c, m) + o(1),
while the previous estimates on the time-boundary conditions, as well as the continuity and incompressibility equations, continue to hold by straightforward computations, which completes the proof of our variant of Theorem 4.4.1 using one extra space dimension.

Hydrostatic solutions to the Euler equations

In this section, we want to relate, following [START_REF] Brenier | Generalized solutions and hydrostatic approximation of the Euler equation[END_REF], the concept of generalized solution to the Euler equations on a two dimensional domain D to the concept of classical solution to the so-called "hydrostatic approximation", somewhat in the same spirit as in the previous section.

More precisely, let us consider a "classical" solution (v(t, x), p(t, x)) of the Euler equations, in a very thin three-dimensional domain such as D ε = D × T ε , where D, for simplicity is just D = T 2 and T ε is just the 1D torus with period ε:

T ε = R/εZ.
Let us rescale the vertical coordinate x 3 and the third component v 3 of the velocity field: (x 3 , v 3 ) → (εx 3 , εv 3 ). After this rescaling we get, on the rescaled 3D domain D × [0, 1], no longer the Euler equations but a rescaled version of them, namely

I ε D t v + ∇p = 0, D t = ∂ t + v • ∇, ∇ • v = 0,
where I ε denotes the diagonal matrix

I ε = diag(1, 1, ε 2 ).
Notice that the operators D t and ∇• are unchanged and ε only features in I ε . It is very customary in geosciences to neglect ε by substituting I 0 = diag(1, 1, 0) for I ε . This is the so-called hydrostatic approximation, for which the pressure does not depend on the vertical coordinate x 3 :

I 0 D t v + ∇p = 0, D t = ∂ t + v • ∇, ∇ • v = 0.
This approximation of the 3D Euler equations in a thin domain is very commonly used in ocean-atmosphere computationar models [START_REF] Chemin | Mathematical geophysics. An introduction to rotating fluids and the Navier-Stokes equations[END_REF][START_REF] Cullen | A mathematical theory of large-scale atmosphere/ocean flow[END_REF]394]. As an evolution equation, the hydrostatic limit of the Euler equations is much more singular than the original Euler equations: it is ill-posed, in some sense, on any linear Sobolev space, but well-posed on some adequate functional convex cone [START_REF] Brenier | Homogeneous hydrostatic flows with convex velocity profiles[END_REF][START_REF] Brenier | Remarks on the derivation of the hydrostatic Euler equations[END_REF][START_REF] Grenier | On the derivation of homogeneous hydrostatic equations[END_REF][START_REF] Masmoudi | On the H s theory of hydrostatic Euler equations[END_REF]. (See also [START_REF] Bresch | On the two-dimensional hydrostatic Navier-Stokes equations[END_REF][START_REF] Gérard-Varet | Well-posedness for the Prandtl system without analyticity or monotonicity[END_REF][START_REF] Han-Kwan | Quasineutral limit for Vlasov-Poisson with Penrose stable data[END_REF][START_REF] Lions | On the equations of the large-scale ocean[END_REF][START_REF] Cao | Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics[END_REF] for closely related problems.) Of course, all smooth solutions of the 2D Euler equations on the 2D domain D are particular solutions of this hydrostatic limit, but there are many other solutions that are genuinely three dimensional.

Let us consider a smooth solution (v(t, x), p(t, x)) of this hydrostatic limit of the Euler equations on the 3D domain D ×T. We denote by g t (x) the volume-preserving flow in D × T generated by

d dt g t (x) = v(t, g t (x)), g 0 (x) = x, x ∈ D × T.
Let us now consider an arbitrarily chosen one-to-one Borel map X 0 : D → D × T that transports the 2D Lebesgue measure on D to the 3D Lebesgue measure on

D × T, i.e. D f (X 0 (a))da = D×T f (x)dx, ∀f ∈ C 0 (D × T).
(Such maps do exist but cannot be smooth. See [START_REF] Royden | Real analysis[END_REF] for more details. Many examples can be easily obtained just by using binary notations and {0, 1} N as an intermediate space between D and D × T.) Next, we define X t (a) = g t (X 0 (a)) ∈ D, for all a ∈ D. Let us now denote

X t (a) = (X 1 t (a), X 2 t (a)) ∈ D the two first components of X t (a)
. This defines a time-dependent family of maps D → D that preserves the 2D Lebesgue measure on D. Indeed, if we consider a continuous function f on T 2 , we can trivially lift it as a continuous function F on T 3 by setting

F (x 1 , x 2 , x 3 ) = f (x 1 , x 2 ) and we get D f (X t (a))da = D F (X t (a))da = D×T F (x 1 , x 2 , x 3 )dx 1 dx 2 dx 3 = D×T f (x 1 , x 2 )dx 1 dx 2 dx 3 = D f (x 1 , x 2 )dx 1 dx 2 ,
which is enough to show that X t preserves the 2D Lebesgue measure on D. Meanwhile, since (v, p) is solution of the hydrostatic limit of the Euler equations, we get for X: d 2 dt 2 X t (a) + (∇p)(t, X t (a)) = 0 where ∇ denotes the two-dimensional gradient on the two-dimensional domain D. (We again have used that p(t, x) does not depend on x 3 and, therefore, can be seen as a time-dependent function on the two-dimensional domain D.) So, we have obtained that (X t (a), p(t, x)) is a solution of the Euler equations on the 2D domain D, in a generalized sense (already discussed in section 2.4), although they are not solutions of the 2D Euler equations in the classical sense. Even more provocative is the perspective of 1D solutions to the Euler equations. Indeed, in the classical setting, there are only trivial solutions of the Euler equations, because of the divergence-free condition. Indeed, on the 1D torus T, the only possible solutions are constant velocity fields v. However, there are many non-trivial 1D solutions to the Euler equations with the generalized definition we have just used. Once again, such solutions can be obtained by rescaling a thin 2D domain and by passing to the hydrostatic limit in the 2D Euler equations, by dimension reduction, exactly as we did from three to two dimensions.

Explicit solutions to the OIT problem

Let us finish this chapter devoted to the OIT problem by providing very few examples of explicit solutions. So far, we have systematically made the assumption D = T d and we limited ourself to the time normalized time interval [0, 1] for simplicity. However, it is easier to provide explicit examples on domains with boundary such as the unit cube or the unit disk and on more general time intervals [0, T ]. The simplest non trivial explicit 1D generalized solution to the Euler equations, in the sense of the OIT, known to us, can be written as follows. We take D = [-1, 1] equipped with the normalized 2D Lebesgue measure dx. We set T = π and define, for ã = (a, ω)

∈ D × [0, 1] and (t, x) ∈ [0, T ] × D, X t (ã) = X t (a, ω) = a cos t + √ 1 -a 2 sin t cos(2πω), p(t, x) = p(x) = x 2 /2.
One can check (easily) that

d 2 dt 2 X t (ã) = -X t (ã) = -p (X t (ã))
and (not so easily but crucially) that X t transports the Lebesgue measure on D × [0, 1] to the Lebesgue measure on D. At T = π, we have X 0 (ã) = X 0 (a, ω) = a and X T (ã) = X T (a, ω) = -a, while p (x) = 1. Then, the corresponding measures (c, q) defined by A closely related generalized solution can be defined in 2D on the unit disk D (with normalized Lebesgue measure). The formulae are very similar. (Actually the previous 1D solution can be interpreted just as the projection from the unit disk to

c(t, x, ã) = δ(x -X t (a, ω)), q(t, x, ã) = ∂ t X t (a, ω)δ(x -X t (a, ω)), ã = (a, ω),
[-1, 1] of this one.) We define ã = (a, ω) = (a 1 , a 2 , ω) ∈ D × [0, 1] X t (ã) = X t (a, ω) = a cos t + 1 -|a| 2 sin t exp(2πiω), p(t, x) = |x| 2 /2.
with an abusive complex notation and, again, set

c(t, x, ã) = δ(x -X t (a, ω)), q(t, x, ã) = ∂ t X t (a, ω)δ(x -X t (a, ω)), ã = (a, ω).
Observe that we have D 2

x p(t, x) = Id, X 0 (a, ω) = a, X T (a, ω) = -a, if we choose T = π. Once again, this provides a generalized solution to the Euler equations and (c, q) can be shown to be optimal for the OIT on [0, T ] × D with data

c 0 (x, ã) = δ(x -a), c T (x, ã) = δ(x + a), ã = (a, ω) ∈ D × [0, 1].
This OIT amounts to transfering all particles from their initial position to the opposite one on the unit disk D, during the time interval [0, π], in an incompressible fashion inside D. Of course the obtained motion is not at all conventional: every "particle" issued from x in the unit disk get split according to the "microscopical" (or "hiddem") variable ω and follow a continuum of different trajectories parameterized by ω ∈ [0, 1], with equal probability, and eventually reaches its destination -x at time T = π. This strange motion looks much more conventional, once lifted as a 3D incompressible motion by adding a vertical coordinate x 3 along a small interval of length ε, and projecting back to the 2D basis. This is just another example of hydrostatic limit of the 3D Euler equation. The multiplicity of trajectories observed on the 2D domain D just correspond to the projection of three dimensional trajectories in D × [0, ε]. Accordingly, the "hidden" variable ω is just keeping record (in a non-trivial way) of the missing vertical coordinate x 3 .

It is interesting to notice, that in the 2D case, there are two other solutions X + and X -to the very same OIT problem, namely

X + t (a, ω) = a exp(it), X - t (a, ω) = a exp(-it), p(t, x) = |x| 2 /2,
with an obvious complex notation. They actually do not depend on the "micro" variable ω and correspond to two classical solutions of the 2D Euler equations with (stationary) velocity fields v + (x) = (-x 2 , x 1 ), v -(x) = (x 2 , -x 1 ). Geometrically, they correspond to simple rigid rotations of the unique disk. We further point out that these three different solutions to the same IOT problem share the same pressure field, which is fully consistent with Theorem 4.2.1. Surprinsingly enough, there is a very rich family of other solutions to the same OIT problem, obtained by M. Bernot, A.Figalli and F. Santambrogio [START_REF] Bernot | Generalized solutions for the Euler equations in one and two dimensions[END_REF]. In particular, our generalized solution can be "decomposed" as the average of two more "fundamental" generalized solutions of the Euler equations (which was very surprizing to us). Chapter 5

Solutions of various initial value problems by convex minimization

Least square methods are quite common in the important field of data assimilation (which is of key importance for weather prediction, cf., among many others, [START_REF] Auroux | A Diffusive back and forth nudging algorithm for data assimilation[END_REF][START_REF] Blum | Data assimilation for geophysical fluids, Handbook of numerical analysis[END_REF][START_REF] Chorin | Optimal prediction for Hamiltonian partial differential equations[END_REF][START_REF] Majda | Introduction to turbulent dynamical systems in complex systems[END_REF]...). Solving initial value problems by convex minimization is an old idea going back to the least square method for linear equations. For nonlinear systems of PDEs, in particular for parabolic equations and various gradient flows, there has been many contributions, including Brezis-Ekeland, Ghoussoub, Mielke-Stefanelli, Visintin [START_REF] Brezis | Un principe variationnel associé à certaines équations paraboliques[END_REF][START_REF] Ghoussoub | Self-dual partial differential systems and their variational principles[END_REF][START_REF] Mielke | Weighted energy-dissipation functionals for gradient flows[END_REF][START_REF] Visinitin | Structural compactness and stability of semi-monotone flows[END_REF] etc... In a recent work [START_REF] Brenier | The initial value problem for the Euler equations of incompressible fluids viewed as a concave maximization problem[END_REF], we have introduced a different approach, essentially based on the concept of weak, distributional solutions, that works for systems of hyperbolic conservation laws with a convex entropy, including the Euler equations of fluid mechanics, and the simple Burgers equation without viscosity. This has been further extended by Vorotnikov [START_REF] Vorotnikov | Partial differential equations with quadratic nonlinearities viewed as matrix-valued optimal ballistic transport problems[END_REF] to a large class of Fluid Mechanics models.

More recently, we figured out how the method also applies to some parabolic problems, one of them being the quadratic porous medium equations. This case is so simple and the analysis is so straightforward that we have decided to describe it as our first example, although the strategy was first defined for the Euler equations of incompressible fluids.

In addition, let us mention that the convex optimization problems obtained by this method can be seen as some generalized variational mean-field games à la Lasry-Lions [START_REF] Lasry | Mean field games[END_REF] (see also [1,[START_REF] Cardaliaguet | The Master Equation and the Convergence Problem in Mean Field Games[END_REF]), with the peculiarity that they usually involve matrixvalued rather than scalar density fields, which is, to the best of our knowledge, still unusual in the theory of MFGs.

The porous medium equation with quadratic non linearity

The porous media equations with quadratic non linearity (QPME, in brief), set on the periodic cube T d (for simplicity), reads

∂ t u = ∆u 2 /2, u = u(t, x) ∈ R, t ≥ 0, x ∈ T d ,
where u is, a priori, a nonnegative function that can be interpreted as a "density" function for some fluid moving in a porous medium. N.B. From a statistical mechanics viewpoint, this equation, set on the entire euclidean space R d , can be obtained, as, more or less, in [START_REF] Lions | Une méthode particulaire déterministe pour des équations diffusives non linéaires[END_REF], as the macroscopic limit of the properly rescaled very simple (deterministic) system of N interacting particles:

dX k dt = -1 j=1,N (X k -X j ) exp(- |X k -X j | 2 ), u(t, x) ∼ 1 N j=1,N δ(x -X j (t)), 1/N << d << 1.
This equation admits a Ljapunov (or "entropy") functional, namely

T d u 2 (t, x)dx,
for which we get, at least formally

d dt T d u 2 (t, x)dx = - T d u(t, x)|∇u| 2 (t, x)dx,
We start with the rather absurd problem of minimizing, on a given finite time interval [0, T ], the time integral of the "entropy"

Q u 2 (t, x)dxdt, Q = [0, T ] × T d , among all weak (i.e. distributional) solutions in L 2 ([0, T ] × T d ) of the QPME ∂ t u = ∆u 2 /2, u = u(t, x) ≥ 0, t ≥ 0, x ∈ T d ,
with a prescribed initial condition u 0 ≥ 0, given, for simplicity, in L ∞ (T d ). A priori this problem is absurd since it is well known since the 80s that the Cauchy problem is uniquely solvable, for nonnegative distributional solutions, in L 1 (R d ) [START_REF] Brezis | Uniqueness of solutions of the initial-value problem for u t -∆φ(u) = 0[END_REF], and that all L p spaces (in particular L 2 ) are preserved by the corresponding semi-group of (nonnegative) solutions. Therefore, once u 0 is prescribed, there is a unique nonnegative admissible solution and the minimization problem looks trivial. However, we do not require that the weak solutions are nonnegative, which makes the problem more uncertain. Anyway, this strange minimization problem admits a saddle point formulation which reads

I(u 0 ) = inf u sup φ Q u 2 -2∂ t φu -∆φ u 2 + 2u 0 ∂ t φ ,
where the only constraints are: i) for test function φ to be smooth and vanish at t = T ; ii) for function u to be square integrable on Q. By reversing the inf and the sup, we get a (non trivial!) relaxed problem

J(u 0 ) = sup φ inf u Q u 2 -2∂ t φu -∆φ u 2 + 2u 0 ∂ t φ .
At this level, we may just claim that I(u 0 ) ≥ J(u 0 ) and there may be a "duality gap" since the problem we started from is not formulated as a convex problem. The relaxed problem is very simple. Indeed, it is enough to perform the minimization in u pointwise in (t, x), since there is no more constraint on u:

J(u 0 ) = sup φ inf u Q u 2 -2∂ t φu -∆φ u 2 + 2u 0 ∂ t φ = sup φ Q - (∂ t φ) 2 1 -∆φ + 2u 0 ∂ t φ , ∆φ ≤ 1, φ(T, •) = 0.
Notice that the optimal value of u, for a given point (t, x), is given by

u = ∂ t φ(t, x) 1 -∆φ(t, x) ,
under the condition that ∆φ(t, x) < 1 (otherwise the infimum in u is -∞, unless both ∆φ(t, x) = 1 and ∂ t φ(t, x) = 0 hold true simultaneously.). Setting q = ∂ t φ, σ = 1 -∆φ, we get an alternative formulation:

J(u 0 ) = sup σ,q Q - q 2 σ + 2u 0 q , ∂ t σ + ∆q = 0, σ ≥ 0, σ(T, •) = 1.
Remark. This optimization problem is strongly reminiscent of the optimal transport problem (with quadratic cost), in its temporal (also known as Benamou-Brenier) formulation. Furthermore, in the 1D case, it is identical (up to the time-boundary conditions) to the optimization problem introduced by Huesmann and Trevisan in [START_REF] Huesmann | A Benamou-Brenier formulation of martingale optimal transport[END_REF]. In their paper, the authors obtain a "Benamou-Brenier" formulation of the so-called martingale optimal transport problem (a very popular subject in the last years, initially motivated by financial mathematics, that will not be covered in this book [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF][START_REF] Beiglböck | Monotone martingale transport plans and Skorokhod embedding[END_REF][START_REF] Ghoussoub | Structure of optimal martingale transport plans in general dimensions[END_REF]) and they already point out a connection with the 1D porous medium equation.

Analysis of the relaxed concave optimization problem

Let us now perform a rough analysis of our relaxed concave optimization problem, using what is already known about the QPME. To make our reasoning easier, we limit ourself to the easy case when u 0 is smooth and positive on T d . We want to prove Theorem 5.1.1. Any smooth positive solution

(t, x) ∈ Q = [0, T ] × T d → u(t, x)
of the quadratic porous medium equation QPME

∂ t u = ∆u 2 /2 can be recovered as u = ∂ t φ 1 -∆φ ,
where φ solves the concave optimization problem

J(u 0 ) = sup φ Q - (∂ t φ) 2 1 -∆φ + 2u 0 ∂ t φ , ∆φ ≤ 1, φ(T, •) = 0,
and satisfies 1 -∆φ ≥ (t/T ) d/(d+2) .

P roof. By standard parabolic regularity theory, the unique nonnegative weak solution u(t, x) with smooth positive initial condition u 0 is a smooth and positive function of (t, x) ∈ Q = [0, T ]×T d . It is known [START_REF] Vázquez | The Porous Medium Equation[END_REF] that all (nonnegative) solutions u = u(t, x) of the QPME satisfy the Aronson-Bénilan estimate ∆u ≥ -κ/t , where κ = d/(d + 2) just depends on d. Let us try to find a solution φ to the concave optimization problem just by solving the final value problem

∂ t φ = (1 -∆φ)u, φ(T, •) = 0, i.e., in terms of α = 1 -∆φ, ∂ t α + ∆(αu) = 0, α(T, •) = 1.
We claim that α(t, x) ≥ (t/T ) κ follows from the Aronson-Bénilan estimate. Indeed, since u is smooth, we can write

∂ t α + ∆(αu) = ∂ t α + u∆α + 2∇α • ∇u + α∆u = 0
and, using both the maximum principle and the Aronson-Bénilan estimate, we get for A(t) = inf x∈T d α(t, x) the differential inequality

A (t) ≤ κA(t)/t.
So, log A(T )-log A(t) ≤ κ(log T -log t), and therefore A(t) ≥ (t/T ) κ (since A(T ) = 1). This estimate shows that the function α = 1 -∆φ stays positive on ]0, T ] × T d . Let us now finally show that φ is optimal for the concave maximization problem. For that purpose, let us just evaluate

j = Q - (∂ t φ) 2 1 -∆φ + 2u 0 ∂ t φ .
which, by definition of J(u 0 ), is certainly bounded from above by J(u 0 ). Since u solves the QPME with initial condition u 0 , we have

Q 2∂ t φu + ∆φu 2 -2∂ t φu 0 = 0. Thus, since φ solves ∂ t φ = (1 -∆φ)u, j = Q - (∂ t φ) 2 1 -∆φ + 2u∂ t φ + ∆φu 2 = Q u 2
which shows that φ is optimal since, by construction,

J(u 0 ) ≥ j = Q u 2 ≥ I(u 0 ) ≥ J(u 0 ).
End of P roof.

Various comments

1) Through additional technical work, this proof should extend to all initial conditions in L 2 (R d ). The theory should also apply to the case of the entire euclidean space R d and to the famous "Barenblat profiles", that have compact support and saturate the Aronson-Bénilan estimate [START_REF] Vázquez | The Porous Medium Equation[END_REF].

2) Notice that, strictly speaking, we have not shown the uniqueness of a maximizer for the concave maximization problem.

3) Our formulation in terms of convex optimization might be a useful way of getting new regularity results for the QPME. This problem is of current interest since new regularity results have been obtained: a) in [START_REF] Gess | Optimal regularity in time and space for the porous medium equation[END_REF] by Gess, Sauer and Tadmor, for the porous medium equation, through quite unusual methods in the elliptic setting such as "average lemmas" coming from kinetic theory [START_REF] Golse | Regularity of the moments of the solution of a transport equation[END_REF]; b) in [START_REF] Goldman | A variational proof of partial regularity for optimal transportation maps[END_REF] by Goldman and Otto, for the quadratic optimal transport problem in its temporal "Benamou-Brenier" formulation, which looks very similar to the relaxed concave optimization problaim we have just obtained for the QPME.

The viscous Hamilton-Jacobi equation and the Schrödinger problem

The analysis performed for the porous medium equation also applies to the viscous quadratic Hamilton-Jacobi equation

∂ t φ + 1 2 |∇φ| 2 = 2 ∆φ,
with initial condition φ 0 where > 0 is the viscosity coefficient. (Let us just mention the paramount importance of the vanishing viscosity limit of this equation and the related theory of "viscosity solutions" [START_REF] Crandall | Some properties of viscosity solutions of Hamilton-Jacobi equations[END_REF]. See Appendix 11.) We set Q = [0, T ] × D, with D = T d for simplicity, and assume the initial condition B 0 to be the gradient of a periodic function φ 0 of zero mean on D. This scalar equation can be written in divergence form by introducing the vector field B = ∇φ, which leads to the IVP

∂ t B + ∇( |B| 2 -∇ • B 2 ) = 0, B(0, •) = B 0 = ∇φ 0 .
Then, we want to minimize Q |B| 2 among all weak solutions B of the IVP with initial condition B 0 . Using Lagrange multipliers, we get the saddle-point problem

inf B sup A Q |B| 2 2 -∂ t A • (B -B 0 ) -∇ • A |B| 2 2 - 2 ∇(∇ • A) • B
where the vector field A = A(t, x) ∈ R d is just subject to A(T, •) = 0. (Notice that we do not have to enforce that B is a gradient, since it automatically follows from the weak formulation.) The dual problem is just obtained by exchanging the sup and the inf and can be very easily computed (since there is no constraint on B). We get

sup A Q - |∂ t A + ∇(∇ • A)/2| 2 2(1 -∇ • A) + ∂ t A • B 0 ,
where A is subject to A(T, •) = 0 and inequality ∇ • A ≤ 1. This dual problem can be nicely formulated in terms of

ρ(t, x) = 1 -∇ • A(t, x) ≥ 0, q(t, x) = ∂ t A(t, x) ∈ R d ,

More precisely:

Proposition 5.2.1. The dual problem generated by the viscous Hamilton-Jacobi equation reads

sup ρ,q Q - |q -∇ρ/2| 2 2ρ + q • B 0 ,
where the fields ρ ≥ 0, q ∈ R d are constrained by

∂ t ρ + ∇ • q = 0, ρ(T, •) = 1.
In addition, there is no duality gap in the saddle-point formulation.

Before proving that there is no duality gap, let us make several observations.

Connection with the Schrödinger problem

The optimization problem we have derived from the viscous Hamilton-Jacobi equation can be written in a slightly different way by noticing first that

Q - |q -∇ρ/2| 2 2ρ + Q |q| 2 + | ∇ρ/2| 2 2ρ = Q q • ∇ρ ρ = Q -log ρ∇ • q = Q log ρ ∂ t ρ = Q ∂ t (ρ log ρ -ρ) = Q ∂ t (ρ log ρ) = - D (ρ log ρ)(t = 0, •) (using that ρ(T, •) = 1) and, next, that Q q • B 0 = Q -∇ • q φ 0 (since B 0 = ∇φ 0 ) = Q ∂ t ρ φ 0 = D (1 -ρ(t = 0, •))φ 0 = D -ρ(t = 0, •))φ 0
(using that ρ(T, •) = 1 and that φ 0 has zero mean). So, the maximization problem now reads

sup ρ,q Q - |q| 2 + | ∇ρ/2| 2 2ρ + D -ρ(t = 0, •)φ 0 -(ρ log ρ)(t = 0, •),
where (ρ, q) are constrained by

∂ t ρ + ∇ • q = 0, ρ(T, •) = 1.
At this stage, we have obtained a variant (with a different time-boundary term) of the famous Schrödinger problem [418], intensively studied in the recent years, in particular after Ch. Léonard [START_REF] Ch | A survey of the Schrödinger problem and some of its connections with optimal transport[END_REF], as a natural "entropic regularization" of the optimal transport problem (with quadratic cost) [START_REF] Benamou | Nenna Generalized incompressible flows, multimarginal transport and Sinkhorn algorithm[END_REF][START_REF] Benamou | Iterative Bregman projections for regularized transportation problems[END_REF][START_REF] Peyré | Computational optimal transport[END_REF], with a stochastic interpretation in terms of brownian clouds. In that framework, the regularization term is the well-known "Fisher information" ρ → |∇ρ| 2 2ρ which plays an important role in various fields (information theory, statistics, functional analysis, quantum mechanics...).

Connection with the Schrödinger equation

Not so surprisingly, the Schrödinger problem (1931) is closely related to the Schrödinger equation (1925). Indeed the solutions of the Schrödinger equation, written in the hydrodynamical formulation due to [START_REF] Madelung | Quantentheorie in hydrodynamischer Form[END_REF] [START_REF] Madelung | Quantentheorie in hydrodynamischer Form[END_REF], exactly correspond to the critical points (ρ, q) of the following action -featuring a crucial change of sign-

|q(t, x)| 2 -|∇ρ(t, x)| 2 2ρ(t, x) dxdt
under space-time compactly supported perturbations and constraint

∂ t ρ + ∇ • q = 0,
one of the optimality equation being

q = ρ∇θ,
for some scalar potential θ = θ(t, x) ∈ R. (See [START_REF] Renesse | An optimal transport view of Schrödinger's equation[END_REF]) for more details.) Then, the wave function ψ = ψ(t, x) solution of the Schrödinger equation is simply recovered by polar factorization through the Madelung transform (1926) [START_REF] Madelung | Quantentheorie in hydrodynamischer Form[END_REF] as

ψ(t, x) = ρ(t, x) e iθ(t,x) ∈ C.
Notice that there is a degeneracy of this transform when the wave function vanishes, which makes the Madelung formulation of the Schrödinger equation not entirely satisfactory [START_REF] Bresch | On Navier-Stokes-Korteweg and Euler-Korteweg systems: application to quantum fluids models[END_REF]149].

No duality gap in the saddle-point formulation

To conclude this section, let us check that there is no duality gap between the inf-sup and the sup-inf in the saddle-point formulation, namely let us prove that

sup A inf B = inf B sup A inf B Q |B| 2 2 -∂ t A • (B -B 0 ) -∇ • A |B| 2 2 - 2 ∇(∇ • A) • B.
For simplicity, we assume the initial condition φ 0 to be smooth so that the viscous Hamilton-Jacobi equation admits a unique smooth solution that we denote φ s = φ s (t, x) on the compact set Q = [0, T ] × D, where D = T d , and we set B s (t, x) = ∇φ s (t, x) so that B s (0, x) = B 0 (x) = ∇φ 0 (x).

(The superscript s means "solution".) The proof is very elementary and even simpler that in the case of the porous medium equation discussed in the previous section. By definition, we first get

1 2 Q |∇φ s | 2 = 1 2 Q |B s | 2 ≥ inf sup .
Next, we notice that a good guess for the optimal solution (ρ, q) of the dual problem is obtained by minimizing in B in the saddle-point problem. This leads to solving the backward linear PDE in A:

(1 -∇ • A)B s = ∂ t A + 2 ∇(∇ • A)
with final condition A(T, •) = 0, where we have input B s for B. We get, after taking the divergence of the equation, the backward transport-diffusion equation

∇ • (ρB s ) = -∂ t ρ - 2 ∆ρ.
for ρ(t, x) = 1 -∇ • A(t, x), with final condition ρ(T, x) = 1. This standard PDE admits a unique smooth positive solution ρ s (t, x), since the field B s is smooth. The previous equation now reads:

ρ s B s = ∂ t A - 2 ∇ρ s so that A(t, x) = - T t (ρ s B s + 2 ∇ρ s )(τ, x)dτ since A(T, •) = 0. Next, we define q s (t, x) = ∂ t A(t, x) = ρ s B s (t, x) + 2 ∇ρ s (t, x)
We have

-∂ t ρ s = ∇ • (ρ s B s ) + 2 ∆ρ s = ∇ • q s ,
so that the continuity equation is satisfied which makes (ρ s , q s ) an admissible solution for the dual problem:

sup inf = sup ρ,q Q - |q -∇ρ/2| 2 2ρ + q • B 0 . Thus sup inf ≥ Q - |q s -∇ρ s /2| 2 2ρ s + q s • B 0 = Q - ρ s |B s | 2 2 + q s • B 0 (using the definition of q s ) = Q - ρ s |B s | 2 2 + ∂ t ρ s φ 0
(using the continuity equation and that

B 0 = ∇φ 0 ) = Q - ρ s |B s | 2 2 + D (1 -ρ s (0, •))φ 0
(using that ρ s (T, •) = 1 and that φ 0 does not depend on t).

= Q - ρ s |∇φ s | 2 2 + D (1 -ρ s (0, •))φ 0 .
Now, we use both the transport-diffusion equation for ρ s and the viscous Hamilton-Jacobi equation for φ s , to get

∂ t ((1 -ρ s )φ s ) = (∇ • (ρ s ∇φ s ) + 2 ∆ρ s )φ s -(1 -ρ s )( |∇φ s | 2 2 - 2 ∆φ s )
and deduce (using integration by part)

d dt D (1 -ρ s )φ s = D (-ρ s -1) |∇φ s | 2 2 . So D (ρ s (0, •) -1)φ 0 = Q (-ρ s -1) |∇φ s | 2 2
(by integration in t ∈ [0, T ], using that ρ s (T, •) = 1). Since we had just obtained

sup inf ≥ Q - ρ s |∇φ s | 2 2 + D (1 -ρ s (0, •))φ 0 ,
we finally get

sup inf ≥ Q |∇φ s | 2
2 and conclude that indeed there is no duality gap since we already know 

Q |∇φ s | 2 2 ≥ inf sup ≥ sup inf .

The Navier-Stokes equations

∂ t v + ∇ • (v ⊗ v) + ∇p = ∆v, ∇ • v = 0,
(where, as usual, ∇p can be eliminated thanks to the divergence-free condition ∇ • v = 0), which can be also written as

∂ t v + ∇ • (v ⊗ v) + ∇p = ∇ • ( ∇v + ∇v t 2 ), ∇ • v = 0.
This problem can be immediately written as a saddle-point problem:

inf v sup A,h Q 1 2 |v| 2 -(∇A + ∇A t ) : v ⊗ v -∂ t A•(v-v 0 )-v•(∇•( ∇A + ∇A t 2 )-v•∇h,
where A = A(t, x) ∈ R d is a divergence-free vector field such that A(T, •) = 0 and h = h(t, x) ∈ R is a Lagrange multiplier for the divergence-free condition on v. We get a dual problem by exchanging sup and inf.

Proposition 5.3.1. The dual problem generated by the Navier-Stokes equations can be written as a kind of generalized Schrödinger problem:

sup M,q Q q • v 0 - (q -∇ • M ) • M -1 • (q -∇ • M ) 2 
where the symmetric matrix-valued field M = M (t, x) ≥ 0 and the vector field q = q(t, x) ∈ R d are subject to

∂ t M + Lq = 0, M (T, •) = I d ,
where L is the constant coefficient first-oder pseudo-differential operator

Lq = ∇q + ∇q T -2D 2 ∆ -1 ∇ • q.
P roof. After exchanging the sup and the inf, the minimization in v is very easy and leads to

inf v sup A,h Q 1 2 (I d -∇A -∇A t ) -1 • ∂ t A + ∇h + ∇ • ( ∇A + ∇A t 2 ) + ∂ t A • v 0 ,
where A is subject to I d -∇A -∇A t ≥ 0 in the sense of symmetric matrices. We now introduce

M = I d -∇A -∇A t , q = ∂ t A + ∇h.
Since A is divergence free, we have

∆h = ∇ • q,
and therefore

∂ t A = q -∇∆ -1 ∇ • q.
So, we get the compatibility condition between M and q that allows us to recover A and h from them:

∂ t M + ∇q + ∇q T -2D 2 ∆ -1 ∇ • q = 0, M (T, •) = I d ,
which completes the proof.

Remarks.

1) The generalized Schrödinger problem generated by the NS equations features a matrix-valued version of the Fisher information

(∇ • M ) • M -1 • (∇ • M ), M = M T ≥ 0,
very roughly similar to the Einstein-Hilbert Lagrangian, which reads, in 4 space-time dimension, up to a null Lagrangian [START_REF] Dobrouvine | Géométrie contemporaire, 1re partie[END_REF],

(Γ m ij g ij Γ k km -Γ m ik g ij Γ k jm ) -det g
for which g is a Lorentzian metric and Γ is its Levi-Cività connection:

Γ i jk = g im (g km,j + g jm,k -g kj,m )/2.
2) The generalized Schrödinger problem derived from the Navier-Stokes equations looks very similar to the "Brödinger problem" (or rather "Bredinger") introduced by Arnaudon, Cruzeiro, Léonard, Zambrini [START_REF] Arnaudon | An entropic interpolation problem for incompressible viscid fluids preprint[END_REF][START_REF] Baradat | On the existence of a scalar pressure field in the Brödinger problem[END_REF], in particular in its recent interpretation by Baradat and Monsaingeon [35]. This problem can be seen as the "entropic regularization" of the incompressible optimal problem already extensively discussed in this book in connection with the Euler equations of incompressible fluids.

The quantum diffusion equation

Just to indicate, without any further analysis, a highly non trivial example of a parabolic system for which the initial value problem could be fruitfully addressed in terms of convex optimization, let us mention the so-called quantum diffusion equation ( [START_REF] Gianazza | The Wasserstein gradient flow of the Fisher information and the quantum drift-diffusion equation[END_REF][START_REF] Jüngel | The Derrida-Lebowitz-Speer-Spohn equation: existence, nonuniqueness, and decay rates of the solutions[END_REF] written as a system in weak form according to [START_REF] Gianazza | The Wasserstein gradient flow of the Fisher information and the quantum drift-diffusion equation[END_REF] sect. 1.8):

QDE : ∂ t u + ∆ 2 u -D 2 : g ⊗ g u = 0, g = ∇u,
where u : (t, x) ∈ Q = [0, T ] × T d → u(t, x) ≥ 0, for which

T d |g(t, x)| 2 2u(t, x) dx
is a Ljapunov function, or an "entropy" in Otto's framework of gradient flows for transportation metrics [START_REF] Gianazza | The Wasserstein gradient flow of the Fisher information and the quantum drift-diffusion equation[END_REF]. We start by minimimizing the time integral over [0, T ] of the entropy among all weak solutions of QDE with given initial condition u 0 , which leads to the saddle point problem:

I(u 0 ) = inf (u≥0, g) sup (φ,P ) - T d u 0 (x)φ(0, x)dx + Q |g| 2 2u -∂ t φu + ∆ 2 φu -D 2 φ : g ⊗ g u -P • g -u∇ • P (t, x)dxdt,
(where P = P (t, x) ∈ R d is a Lagrange multiplier for constraint g = ∇u). Reversing the inf and the sup leads to the desired relaxed concave maximization problem. By minimizing in g (pointwise in (t, x) since there is no constraint on g), we first get

J(u 0 ) = sup (φ,P ) inf u≥0 - T d u 0 (x)φ(0, x)dx + Q u(t, x) - 1 2 (I d -2D 2 φ) -1 : P ⊗ P -∂ t φ + ∆ 2 φ -∇ • P (t, x)dxdt,
where I d is the identity matrix and φ : (t, x)

∈ Q = [0, T ] × T d → φ(t, x) ∈ R is subject to D 2 φ ≤ I d and φ(T, •) = 0.
Then, after minimizing, again pointwise, in u ≥ 0, we finally obtain:

J(u 0 ) = sup (φ,P ) - T d u 0 (x)φ(0, x)dx,
where, φ is subject, again, to D 2 φ ≤ I d and φ(T, •) = 0 and also to the pointwise inequality:

∂ t φ -∆ 2 φ + 1/2(I d -2D 2 φ) -1 : (P ⊗ P ) + ∇ • P ≤ 0,
for some unknown vector field P : (t, x) ∈ [0, T ] × T d → P (t, x) ∈ R d .

Entropic conservation laws

A system of first-order conservation laws read

∂ t U + ∇ • (F (U )) = 0, U = U (t, x) ∈ W ⊂ R m , t ∈ R, x ∈ D,
where we assume D = T d for simplicity. Such a system is called entropic [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF] if the given function F (usually called the "flux function") enjoys the symmetry property

m β=1 ∂ β E(W )∂ α F iβ (W ) = ∂ α Q i (W ), ∀W ∈ W,
for some pair of functions (E, Q) : W → R 1+d , where W is an open convex subset of R m and E (usually called "entropy") is strictly convex over W . This stuctural condition implies that, whenever U = U (t, x) is a smooth solution of the system, we get the additional conservation law

∂ t (E(U )) + ∇ • (Q(U )) = 0.
Indeed, in coordinates (with implicit summation on repeated indices),

-∂ t (E(U )) = ∂ α E(U )∂ i (F iα (U )) = ∂ α E(U )∂ β F iα (U )∂ i U β = ∂ β Q i (U )∂ i U β = ∂ i (Q i (U )).
Of course the simplest example is the so-called "inviscid Burgers" equation, where U = u(t, x) is a real-valued function of a single space variable x with the simplest nonlinear flux function F = u 2 /2:

∂ t u + ∂ x (u 2 /2) = 0.
It is well established [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF] that, in most situations, such systems admit smooth solutions that blow up (in Lipschitz norm) after a finite time, phenomenon known as "shock formation", by reference to compressible gas dynamics. Inviscid Burgers equation :

∂ t u + ∂ x (u 2 /2) = 0, u = u(t, x), x ∈ R/Z, t ≥ 0.
Formation of two shock waves. (Vertical axis: t ∈ [0, 1/4]. horizontal axis: x ∈ T.)

A canonical example: the Euler equations of isothermal compressible fluids.

They simply read

∂ t ρ + ∇ • q = 0, ∂ t q + ∇ • ( q ⊗ q ρ ) + ∇ρ = 0,
and fit into the general framework just by defining

U = (ρ, q) ∈ W =]0, +∞[×R 3 , F = (q, q ⊗ q ρ + I 3 ρ), E = - |q| 2 2ρ -ρ log ρ
The least square approach?

Given U 0 on T d and T > 0, if F (U ) is linear in U , the least square method can be used for the IVP and clearly leads to a (degenerate) convex problem inf

U (t=0,•)=U 0 [0,T ]×T d |∂ t U + ∇ • (F (U ))| 2
(see [START_REF] Besson | Solutions for linear conservation laws with velocity fields in L ∞[END_REF] in the scalar case with non constant coefficients) but this is no longer true for nonlinear systems.

Alternately, we are going to use the convex optimization method based on weak solutions, that we have already presented for several parabolic equations, for instance the quadratic porous medium equation.

Minimization approach to the initial value problem

Given U 0 on D = T d and T > 0, we minimize the time integral over [0, T ] of the entropy among all weak solutions U of the IVP:

I(U 0 ) = inf U T 0 D E(U ), U = U (t, x) ∈ W ⊂ R m subject to T 0 D ∂ t A • U + ∇A • F (U ) + D A(0, •) • U 0 = 0 for all smooth A = A(t, x) ∈ R m with A(T, •) = 0.
The problem is not trivial since there may be many weak solutions starting from U 0 which are not entropypreserving (by "convex integration" à la De Lellis-Székelyhidi) [START_REF] De Lellis | The Euler equations as a differential inclusion[END_REF][START_REF] De Lellis | On admissibility criteria for weak solutions of the Euler equations[END_REF][START_REF] De Lellis | On turbulence and geometry: from Nash to Onsager[END_REF]. We get the resulting saddle-point problem

inf U sup A T 0 D E(U ) -∂ t A • U -∇A • F (U ) - D A(0, •) • U 0 where A = A(t, x) ∈ R m is smooth with A(T, •) = 0.
Here U 0 is the initial condition and T the final time.

Reversing infimum and supremum

This leads to a concave maximization problem in A, namely

J(U 0 ) = sup A(T,•)=0 inf U T 0 D E(U ) -∂ t A • U -∇A • F (U ) - D A(0, •) • U 0 = sup A(T,•)=0 T 0 D -G(∂ t A, ∇A) - D A(0, •) • U 0
where G is defined by

G(E, B) = sup V ∈W⊂R m E • V + B • F (V ) -E(V ), (E, B) ∈ R m × R m×d .
Notice that G is automatically convex (but presumably degenerate!). Thus we have obtained a (possibly degenerate) space-time elliptic system in A, which is reminiscent of those appearing in optimal transport theory (as will be discussed later on). Here is the paradox! How a convex optimization problem could be compatible with a well-posed evolution problem? For instance, if G were just a square, we would get

sup A T 0 D -|∂ t A| 2 -|∇A| 2 - D A(0, •) • U 0
which would correspond to an ill-posed equation for A:

∂ 2 tt A + ∆A = 0.
The answer to the paradox is that, in our construction, G is very likely to be convex degenerate which is presumably still compatible with the solution of a well-posed initial value problem.

Examples and interpretation in terms of matrix-valued variational mean-field games

Let us look more carefully at explicit examples of hyperbolic conservation laws, such as the Burgers equation (without viscosity) and the much more challenging Euler equations. In the elementary example of the Burgers equation, the maximization problem in A simply reads

sup A [0,T ]×T - (∂ t A) 2 2(1 -∂ x A) - T A(0, •)u 0 . with A = A(t, x) ∈ R subject to A(T, •) = 0, ∂ x A ≤ 1. Introducing ρ = 1 -∂ x A ≥ 0, q = ∂ t A,
we get:

sup (ρ,q) { [0,T ]×T - q 2 2ρ -qu 0 | ∂ t ρ + ∂ x q = 0, ρ(T, •) = 1}.
This problem can be interpreted, in our opinion, as the "ballistic" version (à la Ghoussoub [START_REF] Barton | Dynamic and stochastic propagation of the Brenier optimal mass transport[END_REF]) of the optimal transport problem with quadratic cost and, as well, as a rather trivial example of mean-field game (MFG) à la Lasry-Lions [START_REF] Lasry | Mean field games[END_REF]. (See also [1,[START_REF] Cardaliaguet | The Master Equation and the Convergence Problem in Mean Field Games[END_REF][START_REF] Ullmo | Quadratic mean field games[END_REF] (without noise nor interaction) of variational type. So we may expect more interesting connections with MFG, while addressing more complex equations than the inviscid Burgers equation. Also notice that the resulting problem

sup (ρ,q) { [0,T ]×T - q 2 2ρ -qu 0 | ∂ t ρ + ∂ x q = 0, ρ(T, •) = 1}
is so close to an optimal transport problem (in its so-called Benamou-Brenier formulation) that, at the computational level, it differs from it just by two lines of (fortran) code, when using the algorithm designed in [START_REF] Benamou | A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem[END_REF].

Let us now move to the more sophisticated case of the isothermal Euler equations:

∂ t ρ + ∇ • q = 0, ∂ t q + ∇ • ( q ⊗ q ρ ) + ∇ρ = 0.
We easily get the convex optimization problem

[0,T ]×D exp(u) exp( 1 2 Q • M -1 • Q) + D σ 0 ρ 0 + w 0 • q 0 , among all fields u = u(t, x) ∈ R, Q = Q(t, x) ∈ R d , M = M (t, x) = M t (t, x) ∈ R d×d , M ≥ 0, of form: u = ∂ t σ + ∂ i w i , Q i = ∂ t w i + ∂ i σ, M ij = δ ij -∂ i w j -∂ j w i ,
where σ and w must vanish at t = T . This optimization problem can be interpreted as a generalized (variational deterministic) mean-field game involving fields of nonnegative symmetric matrices instead of density fields. Also observe that the linear wave equation, written as a first order system in (σ, w) with right-hand side (u, Q),

∂ t σ + ∂ i w i = u, ∂ t w i + ∂ i σ = Q i
directly features, without any linearization, in this optimization problem which has been derived from the nonlinear (isothermal) Euler equations, Finally, let us discuss the Euler equations of incompressible fluids that can be seen as a singular limit of the compressible case (as well known [START_REF] Klainerman | Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids[END_REF][START_REF] Kruzhkov | First order quasilinear equations with several independent variables[END_REF][START_REF] Métivier | The incompressible limit of the non-isentropic Euler equations[END_REF]):

∂ t q + ∇ • (q ⊗ q) = -∇p, ∇ • q = 0,
where q is prescribed at t = 0 and p is now a Lagrange multiplier for constraint ∇ • q = 0. We get again a generalized MFG for measures valued in the cone of semi-definite symmetric matrices.

sup (M,Q) - [0,T ]×D q 0 • Q + 1 2 Q • M -1 • Q,
where now Q is a vector field (not necessarily divergence-free) and M = M t ≥ 0 is a field of semi-definite symmetric matrices subject to

M ij (T, •) = δ ij , ∂ t M ij = ∂ j Q i + ∂ i Q j + 2∂ i ∂ j (-∆) -1 ∂ k Q k .
So, we see that our convex optimization method to solve IVP is a natural way to obtain non trivial matrix-valued generalizations of the concept of (variational) MFG.

Main results for entropic conservation laws Theorem 5.5.1. If U is a smooth solution to the IVP and T is not too large, so that

∀ t, x, ∀ V ∈ W, E"(V ) -(T -t)F "(V ) • ∇(E (U (t, x))) > 0,
in the sense of symmetric matrices, then U can be recovered from the concave maximization problem which admits A(t, x) = (t -T )E (U (t, x)) as solution.

Notice that the smallness condition requires, in particular,

E"(V ) -T F "(V ) • ∇(E (U 0 (x))) > 0, ∀ x, ∀ V ∈ W,
and definitely restricts the choice of T with respect to U 0 . This is clearly a drawback of the theory. So we could worry about the generic apparition of shock waves and give up any hope to be able to solve the initial value problem for arbitrarily large values of T . Observe, however, that the smallness condition gets less restrictive as t approaches T and even allows a blow-up of

∂ i (∂ α E(U (t, x))) of order (T -t) -1 .
As a matter of fact, in the very special and elementary case of the "inviscid" Burgers equation with initial condition u 0 , the smallness condition simply reads

1 + (T -t)∂ x u(t, x) > 0, ∀t ∈ [0, T ], x ∈ T
and turns out to be equivalent to:

1 + T u 0 (x) > 0, ∀x, ∈ T
This exactly means that T is smaller than

T * = inf x∈T 1 max{-u 0 (x), 0} ∈]0, +∞],
which is exactly the first time when a shock forms. So, at least in this very elementary case, all smooth solutions can be recovered from the maximization problem without any restriction.

Proof of the Theorem

Since U is supposed to be a smooth solution of the system of conservation laws, we have

∂ t U α + ∂ β F iα (U )∂ i U β = 0.
Thus W defined by

W α (t, x) = (t -T )∂ α E(U (t, x)), α ∈ {1, • • •, m}, solves ∂ t W γ -∂ γ E(U ) = (t -T )∂ 2 αγ E(U )∂ t U α = -(t -T )∂ 2 αγ E(U )∂ β F iα (U )∂ i U β
which is equal, thanks to the structural symmetry property, to

-(t -T )∂ 2 αβ E(U )∂ γ F iα (U )∂ i U β = -(t -T )∂ i (∂ α E(U ))∂ γ F iα (U ) = -∂ i W α ∂ γ F iα (U ).
Thus, we have obtained

∂ t W γ + ∂ i W α ∂ γ F iα (U ) -∂ γ E(U ) = 0,
which precisely means that, at each point (t, x), V = U (t, x) satisfies the first order optimality condition in the definition of G(∂ t W (t, x), DW (t, x)) through

G(∂ t W (t, x), DW (t, x)) = sup V ∈W ∂ t W γ (t, x)V γ + ∂ i W α (t, x)F iα (V ) -E(V ).
Meanwhile, the smallness condition tells us, by definition of W , that

∂ 2 βγ E(V ) -∂ i W α (t, x)∂ 2 βγ F iα (V )
is a positive definite matrix for all (t, x, V ), which means that, for each fixed (t, x),

V ∈ W → ∂ i W α (t, x)F iα (V ) -E(V )
is a concave function. So the first order optimality condition we have already obtained for V = U (t, x) is enough to deduce that

G(∂ t W, DW ) = ∂ t W γ U γ + ∂ i W α F iα (U ) -E(U ).
Thus, integrating on Q = [0, T ] × D, where D = T d , and using that U is solution of the system of conservation laws, we get

Q G(∂ t W, DW ) + E(U ) = Q ∂ t W γ U γ + ∂ i W α F iα (U ) = = D W γ (T, •)U γ (T, •) -W γ (0, •)U γ (0, •) = D -W γ (0, •)U 0
since U 0 is the initial condition and, by definition, W (T, •) = 0. By definition, the optimal value J(U 0 ) of the maximization problem is larger than

Q -G(∂ t W, DW ) - D -W γ (0, •)U γ 0 .
Thus, we have obtained

J(U 0 ) ≥ Q E(U ).
But, by definition, I(U 0 ) is certainly smaller than Q E(U ) (since U solves the system of conservation laws) and is also larger than J(U 0 ). (Indeed inf sup ≥ sup inf is always true.) We conclude that I(U 0 ) = J(U 0 ) which shows that there is no duality gap and that W is optimal for the maximization problem. This completes the proof.

The special case of the inviscid Burgers equation

In the very elementary case of the Burgers equation, all entropy solutions (in the sense of Kruzhkov, see [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF] for this concept of solutions) can be recovered, for arbitrarily large T , but in some unusual way. More precisely Theorem 5.5.2. If u is a Kruzhkov solution of the inviscid Burgers equation on some fixed time interval T with initial condition u 0 , then the relaxed convex optimisation problem enables us to recover not necessarily the Kruzhkov solution itself but rather the unique solution u T (t, x) of the inviscid Burgers equation enjoying the following properties: 1) u T and u coincide at the final time T ; 2) u T is shock free up to time t = T (not included).

In general, the initial value of u T differs from u 0 , unless no shock have formed before T .

A proof can be found in [START_REF] Brenier | The initial value problem for the Euler equations of incompressible fluids viewed as a concave maximization problem[END_REF] and will not be reproduced here.

So, our method is able to recover the right Kruzhkov entropy but only at the final given time T , as soon as shock have formed before T . This result is also a new answer to the paradox discussed earlier. Something is left from the degenerate space-time ellipticity of the convex minimization problem in the sense that the smoothest possible solution of the inviscid Burgers equation compatible with the right final solution is selected, just by substituting for the given initial condition u 0 another one, namely u T (0, •). Inviscid Burgers equation : Inviscid Burgers equation : Inviscid Burgers equation :

∂ t u + ∂ x (u 2 /2) = 0, u = u(t, x), x ∈ R/Z, t
∂ t u + ∂ x (u 2 /2) = 0, u = u(t, x), x ∈ R/Z, t
∂ t u + ∂ x (u 2 /2) = 0, u = u(t, x), x ∈ R/Z, t ≥ 0.
Recovery of the solution at time T=0.225 by convex optimization.

Observe the extension of both vacuum zones.

Chapter 6

Convex formulations of first order systems of conservation laws

A short review of first order systems of conservation laws

First order systems of conservation laws read:

∂ t u + d i=1 ∂ x i (Q i (u)) = 0,
or, in short, using the nabla notation,

∂ t u + ∇ • (Q(u)) = 0,
where u = u(t, x) ∈ R m depends on t ≥ 0, x ∈ R d , and

• denotes the inner product in R d . The Q i (for i = 1, • • •, d) are given smooth functions from R m into itself.
The system is called hyperbolic when, for each τ ∈ R d and each U ∈ R m , the m × m matrix i=1,d τ i Q i (U ) can be put in diagonal form with real eigenvalues.

There is no general theory to solve globally in time the initial value problem for such systems of PDEs. (See [START_REF] Boillat | Recent mathematical methods in nonlinear wave propagation[END_REF][START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF][START_REF] Godlewski | Numerical approximation of hyperbolic systems of conservation laws[END_REF][START_REF] Leveque | Numerical methods for conservation laws[END_REF][START_REF] Majda | Compressible fluid flow and systems of conservation laws in several space variables[END_REF][START_REF] Serre | Systems of conservation laws[END_REF] for a general introduction to the field.) In general, smooth solutions are known to exist for short times but are expected to become discontinuous in finite time. Therefore, it is usual to consider discontinuous weak solutions, satisfying additional "entropy conditions", to adress the initial value problem. Some special situations are far better understood. First, for some very special (but nevertheless very important in Physics and Geometry) systems (enjoying "linear degeneracy" or "null conditions"), smooth solutions may be global (shock free), at least for "small" initial data (see [START_REF] Klainerman | The null condition and global existence to nonlinear wave equations, Nonlinear systems of partial differential equations in applied mathematics[END_REF][START_REF] Lindblad | A remark on global existence for small initial data of the minimal surface equation in Minkowskian space time[END_REF][START_REF] Speck | The nonlinear stability of the trivial solution to the Maxwell-Born-Infeld system[END_REF], for instance). This includes the famous result on the stability of the Minkowski space in General Realivity by Klainerman and Christodoulou [START_REF] Christodoulou | The global nonlinear stability of the Minkowski space[END_REF]. Next, in one space dimension d = 1, for a large class of systems, existence and uniqueness of global weak entropy solutions have been proven by Bianchini et Bressan for initial data of sufficiently small total variation [START_REF] Bianchini | Vanishing viscosity solutions of nonlinear hyperbolic systems[END_REF][START_REF] Bressan | Hyperbolic systems of conservation laws. The one-dimensional Cauchy problem[END_REF]. Still, in one space dimension, for a limited class of systems (typically for m = 2), existence of global weak entropy solutions have been obtained for large initial data by "compensated compactness" arguments [START_REF] Tartar | Compacité par compensation: résultats et perspectives, Nonlinear partial differential equations and their applications[END_REF][START_REF] Diperna | Convergence of the viscosity method for isentropic gas dynamics[END_REF][START_REF] Lions | Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates[END_REF]. Finally, there is a very comprehensive theory in the much simpler case of a single "scalar" conservation laws, i.e. when m = 1. Kruzhkov [START_REF] Kruzhkov | First order quasilinear equations with several independent variables[END_REF] showed that such a scalar conservation law has a unique "entropy solution" u ∈ L ∞ for each given initial condition u 0 ∈ L ∞ . (If the derivative Q is further assumed to be bounded, then we can substitute L 1 loc for L ∞ in this statement.) An entropy (or Kruzhkov) solution is an L ∞ function that satisfies the following distributional inequality

∂ t C(u) + ∇ x • (Q C (u)) ≤ 0,
for all Lipschitz convex function C : R → R, where the derivative of Q C is defined by (Q C ) = C Q (the initial condition u 0 being prescribed by continuity at t = 0, in L 1 loc , namely:

lim t→0 B |u(t, x) -u 0 (x)|dx = 0, for all compact subset B of R d ).
Beyond their existence and uniqueness, the Kruzhkov solutions enjoy many interesting properties. Each entropy solution u(t, •), with initial condition u 0 , continuously depends on t ≥ 0 in L 1 loc and can be written T (t)u 0 , where (T (t), t ≥ 0) is a family of order preserving operators:

T (t)u 0 ≥ T (t)ũ 0 , ∀t ≥ 0,
whenever u 0 ≥ ũ0 . Since constants are trivial entropy solutions to a scalar conservation law, it follows that if u 0 takes its values in some fixed compact interval, so does u(t, •) for all t ≥ 0. Next, two solutions u and ũ, with u 0 -ũ0 ∈ L 1 , are L 1 stable with respect to their initial conditions:

|u(t, x) -ũ(t, x)|dx ≤ |u 0 (x) -ũ0 (x)|dx,
for all t ≥ 0. As a consequence, the total variation T V (u(t, •)) of a Kruzhkov solution u at time t ≥ 0 cannot be larger than the total variation of its initial condition u 0 . This easily comes from the translation invariance of the scalar conservation law and from one of the most classical definitions of the total variation of a function v, namely:

T V (v) = sup η∈R d , η =0 |v(x + η) -v(x)| |η| dx,
where | • | denotes the Euclidean norm on both R and R d . As a matter of fact, the space L 1 plays a key role in Kruzhkov's theory. Indeed, there is no L p stability with respect to initial conditions in any p > 1. Typically, for p > 1, the Sobolev norm ||u(t, •)|| W 1,p of a Kruzhkov solution blows up in finite time. This fact has induced a great amount of pessimism about the possibility of a unified theory of global solutions for general multidimensional systems of hyperbolic conservation laws. Indeed, simple linear systems, such as the wave equation (written as a first order system) or the Maxwell equations, are not well posed in any L p but for p = 2 [START_REF] Brenner | The Cauchy problem for symmetric hyperbolic systems in L p[END_REF]. However, as we are going to see that L 2 turns out to be a perfectly suitable space for entropy solutions to multidimensional scalar conservation laws, provided a different formulation is used, based on a combination of level-set, kinetic and transport-collapse approximations, in the spirit of previous works by Giga, Miyakawa, Osher, Tsai and the author [START_REF] Brenier | Une application de la symétrisation de Steiner aux équations hyperboliques: la méthode de transport et écroulement[END_REF][START_REF] Brenier | Résolution d'équations d'évolution quasilinéaires en dimension N d'espace à l'aide d'équations linéaires en dimension N + 1[END_REF][START_REF] Brenier | Averaged multivalued solutions for scalar conservation laws[END_REF][START_REF] Brenier | Order preserving vibrating strings and applications to electrodynamics and magnetohydrodynamics[END_REF][START_REF] Giga | A kinetic construction of global solutions of first order quasilinear equations[END_REF][START_REF] Tsai | A level set approach for computing discontinuous solutions of Hamilton-Jacobi equations[END_REF]. As a matter of fact, this new formulation is really due to Panov [START_REF] Panov | On kinetic formulation of first-order hyperbolic quasilinear systems[END_REF] and was just rediscovered, in a different style, by the author in [START_REF] Brenier | L2 formulation of multidimensional scalar conservation laws[END_REF]. (See [START_REF] Perepelitsa | A note on strong solutions to the variational kinetic equation for scalar conservation laws[END_REF].) Let us also mention the more recent approach of Serre and Vasseur where the space L 2 can also be used for conservation laws, from a quite different angle [START_REF] Serre | L2-type contraction for systems of conservation laws[END_REF]. Finally let us emphasise that this new formulation à la Panov is entirely convex, and provides a remarkable example of "hidden convexity" in nonlinear PDEs.

Panov formulation of scalar conservation laws

The main result N.B. For notational simplicity, we limit ourself to initial conditions u 0 that can be written as

u 0 (x) = 1 0 1{Y 0 (a, x) < 1/2}da,
for some "level set function" Y 0 enjoying the following properties

Y 0 (0, x) = 0, Y 0 (1, x) = 1, ∂ a Y 0 (a, x) > 0.
(As a matter of fact, this way we may recover all u 0 with a range compactly supported in ]0, 1[, and, therefore all u 0 in L ∞ (T d ), up to a trivial rescaling of the "flux function" Q.)

Theorem 6.2.1. Let Y 0 (a, x) be any L ∞ function of x ∈ T d and a ∈ [0, 1] such that Y 0 (0, x) = 0, Y 0 (1, x) = 1, ∂ a Y 0 (a, x) > 0.
Let, for all y ∈ [0, 1],

u 0 (x, y) = 1 0 1{Y 0 (a, x) < y}da,
Then, the unique Kruzhkov solution to the scalar conservation law

∂ t u + ∇ • (Q(u)) = 0,
with initial condition u 0 (x, y) can be written

u(t, x) = 1 0 1{Y (t, a, x) < y}da,
where Y solves the subdifferential inclusion in L 2 (T d × [0, 1]):

0 ∈ ∂ t Y + q(a) • ∇ x Y + ∂K[Y ], with q = Q , K[Y ] = 0 if ∂ a Y ≥ 0, and K[Y ] = +∞ otherwise.
Let us be more explicit for the definition of this subdifferential inclusion. Definition 6.2.2. We say that Y is a solution to

0 ∈ ∂ t Y + q(a) • ∇ x Y + ∂K[Y ], if : 
1) t → Y (t, •, •) ∈ L 2 (T d × [0, 1]) is continuous and satisfies ∂ a Y ≥ 0, 2) Y satisfies, in the sense of distribution, 1 2 
d dt T d ×[0,1] |Y -Z| 2 (t, a, x)dadx + T d ×[0,1] (Y -Z)(t, a, x)(∂ t Z + q(a) • ∇ x Z)(t, a, x)dadx ≤ 0,
for each smooth function Z(t, a, x) such that ∂ a Z ≥ 0.

Remark

As shown by Perepelitsa in [START_REF] Perepelitsa | A note on strong solutions to the variational kinetic equation for scalar conservation laws[END_REF],

Y → F (a) • ∇ x Y + ∂Φ[Y ]
actually is a maximal monotone in the classical sense of [START_REF] Brezis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF] and generates a semi-group of contractions in L 2 . It is rather astonishing that scalar conservation laws can be reduced to the rather conventional theory of maximal monotone operators in L 2 . Indeed, in the 80s, scalar conservation laws were frequently presented as one of the most striking applications of the more advanced theory or maximal operators...in L 1 !

Idea of the proof

We follow the presentation of [START_REF] Brenier | L2 formulation of multidimensional scalar conservation laws[END_REF] rather than the earlier work of Panov [START_REF] Panov | On kinetic formulation of first-order hyperbolic quasilinear systems[END_REF]. (We refer to [START_REF] Perepelitsa | A note on strong solutions to the variational kinetic equation for scalar conservation laws[END_REF] for a more detailed comparison of [START_REF] Panov | On kinetic formulation of first-order hyperbolic quasilinear systems[END_REF] and [START_REF] Brenier | L2 formulation of multidimensional scalar conservation laws[END_REF].)

The main idea is to consider, instead of a single initial condition u 0 (x) for the scalar conservation law

∂ t u + ∇ • (Q(u)) = 0,
a one-parameter family of initial conditions u 0 (x, y). We make the crucial assumption that this family is monotonically increasing with respect to the parameter y. By the standard comparison principle for scalar conservation laws, the corresponding Kruzhkov solutions u(t, x, y) are also monotone with respect to y. Assume, for a while, that u(t, x, y) is a priori smooth and strictly increasing in y. Thus, we can write

u(t, x, Y (t, a, x)) = a, Y (t, x, u(t, x, y)) = y
where Y (t, a, x) is smooth and strictly increasing in a ∈ [0, 1]. Then, a straightforward calculation shows that Y must solve the simple linear equation

∂ t Y + q(a) • ∇ x Y = 0
(which admits Y (t, a, x) = Y (t = 0, a, x -tq(a)) as exact solution). This is just a rephrasing of the celebrated "method of characteristics". Unfortunately, this linear equation is not able to preserve the monotonicity condition ∂ a Y ≥ 0 in the large. However, by properly correcting it, namely by adding the subdifferential term ∂K, it is possible to enforce ∂ a Y ≥ 0, and, this way, to recover the correct Kruzhkov entropy solutions. More precisely, as Y solves the subdifferential inclusion stated above, then

u(t, x, y) = 1 0 1{Y (t, a, x) < y}da
will be shown to be, for each fixed value y, the right entropy solution with initial conditions x → u 0 (x, y).

Observe that this approach is strongly related to both the kinetic formulation and the level set method for scalar conservation laws. Let us recall that the kinetic approach amounts to lift a non-linear scalar conservation law by averaging out a linear advection equation involving a hidden extra variable. This idea (that has obvious roots in the kinetic theory of Maxwell and Boltzmann) was introduced for scalar conservation laws in parallel by Giga-Miyakawa and the author [START_REF] Brenier | Une application de la symétrisation de Steiner aux équations hyperboliques: la méthode de transport et écroulement[END_REF][START_REF] Brenier | Résolution d'équations d'évolution quasilinéaires en dimension N d'espace à l'aide d'équations linéaires en dimension N + 1[END_REF][START_REF] Brenier | Averaged multivalued solutions for scalar conservation laws[END_REF][START_REF] Giga | A kinetic construction of global solutions of first order quasilinear equations[END_REF]. Its time continuous counter-part is nothing but the celebrated "kinetic formulation" of Lions, Perthame and Tadmor [START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related equations[END_REF] which, with the crucial help of the so-called "averaging lemma" [START_REF] Golse | Regularity of the moments of the solution of a transport equation[END_REF], provided the first regularity results (in suitable fractional Sobolev spaces) for multidimensional scalar conservation laws, (under suitable nonlinearity conditions). (See also related results [START_REF] Brenier | A kinetic formulation for multi-branch entropy solutions of scalar conservation laws[END_REF][START_REF] Dalibard | Kinetic formulation for heterogeneous scalar conservation laws[END_REF][START_REF] Gess | Semi-discretization for stochastic scalar conservation laws with multiple rough fluxes[END_REF][START_REF] Lions | Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates[END_REF].) Concerning the "level set method", its application to scalar conservation laws by Tsai, Giga and Osher [START_REF] Tsai | A level set approach for computing discontinuous solutions of Hamilton-Jacobi equations[END_REF] can be interpreted as a parabolic approximation of our subdifferential inclusion, as will be discussed below.

Elements of a proof

We follow the constructive proof of [START_REF] Brenier | L2 formulation of multidimensional scalar conservation laws[END_REF] based on the analysis of the time-discrete scheme known as the "transport-collapse method" [START_REF] Brenier | Averaged multivalued solutions for scalar conservation laws[END_REF]. (This time-discrete scheme is somewhat related to the important family of "projection methods" in Computational Fluid Dynamics [START_REF] Chorin | Numerical solution of the Navier-Stokes equations[END_REF][START_REF] Chorin | Numerical methods for use in combustion modeling[END_REF][START_REF] Weinan | Gauge method for viscous incompressible flows[END_REF][START_REF] Pironneau | On the transport-diffusion algorithm and its applications to the Navier-Stokes equations[END_REF][START_REF] Temam | Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires[END_REF]. We will show that, as the time step goes to zero, the approximate solutions we are going to construct both converge to solutions in the Kruzhkov sense and solutions in the subdifferential sense. We assume that Y 0 (a, x) ∈ [0, 1] (which is consistent with the statement of Theorem 6.2.1). We fix a time step h > 0 and approximate Y (nh, a, x) by Y n (a, x), for each positive integer n. To get Y n from Y n-1 , we perform two steps, making the following induction assumptions:

∂ a Y n-1 ≥ 0, Y n-1 ∈ [0, 1],
which are consistent with our assumptions on Y 0 .

Predictor step

The first "predictor" step amounts to solve the linear equation

∂ t Y + q(a) • ∇ x Y = 0,
for nh -h < t < nh, with Y n-1 as initial condition at t = nh -h. We exactly get at time t = nh the predicted value:

Y * n (a, x) = Y n-1 (a,
x -h q(a)) Thanks to the induction assumption, we still have Y * n ∈ [0, 1], however, although ∂ a Y n-1 is nonnegative, the same may not be true for ∂ a Y * n . This is why, we need a "corrector step".

Corrector step

In the second step, we 'rearrange' Y * in increasing order with respect to a ∈ [0, 1], for each fixed x, and get the corrected function Y n . Let us recall some elementary facts about rearrangements (see [START_REF] Lieb | Analysis[END_REF] and some applications in [START_REF] Burton | Rearrangements of functions, maximization of convex functionals and vortex rings[END_REF][START_REF] Gosse | Identification of asymptotic decay to self-similarity for one-dimensional filtration equations[END_REF]):

Lemma 6.2.3. Let: a ∈ [0, 1] → X(a) ∈ R an L ∞ function. Then, there is unique L ∞ function Y : [0, 1] → R, such that Y ≥ 0 and: 1 0 H(y -Y (a))da = 1 0 H(y -X(a))da, ∀y ∈ R.
We say that Y is the rearrangement of X. In addition, for all Z ∈ L ∞ such that Z ≥ 0, the following rearrangement inequality:

1 0 |Y (a) -Z(a)| p da ≤ 1 0 |X(a) -Z(a)| p da.
holds true for all p ≥ 1.

So, we define Y n (a, x) to be, for each fixed x, the rearrangement of Y * n (a, x) in a ∈ [0, 1]:

∂ a Y n ≥ 0, 1 0 H(y -Y n (a, x))da = 1 0 H(y -Y * n (a, x))da, ∀y ∈ R.
Equivalently, we may define the auxiliary function:

u n (x, y) = 1 0 H(y -Y * n (a, x))da, ∀y ∈ R, i.e. u n (x, y) = 1 0 H(y -h Y n-1 (a, x -h q(a)))da,
and set:

Y n (a, x) = ∞ 0 H(a -u n (x, y))dy.
At this point, Y n is entirely determined by Y n-1 . Notice that, from the very definition of the rearrangement step, u n , by definition, can be equivalently written:

u n (x, y) = 1 0 H(y -Y n (a, x))da.
Also notice that, for all function Z(a, x) such that ∂ a Z ≥ 0, and all p ≥ 1:

|Y n (a, x) -Z(a, x)| p dadx ≤ |Y * n (a, x) -Z(a, x)| p dadx
follows from the rearrangement inequality. Finally, we see that ∂ a Y n ≥ 0 is automatically satisfied (this was the purpose of the rearrangement step) as well as Y n ∈ [0, 1] (since the convex hull of the range of Y * n has been preserved by the rearrangement step). So, the induction assumption is enforced at step n and the scheme is well defined.

Remark

Observe that, for any fixed x, u n (x, y), as a function of y, is the (generalized) inverse of Y n (a, x), viewed as a function of a, in the sense of Lemma 6.2.3. Also notice that the level sets {(a, y); y ≥ Y n (a, x)} and {(a, y); a ≤ u n (x, y)} coincide.

The transport-collapse scheme revisited

The time-discrete scheme can be entirely recast in terms of the auxiliary function u n defined as above. Indeed, introducing

ju n (x, y, a) = H(u n (x, y) -a),
we can rewrite the "predictor-corrector" steps in terms of u n and ju n as simply as:

u n (x, y) = 1 0
ju n-1 (x -h q(a), y, a)da, which exactly define the "transport-collapse" (TC) approximation to the scalar conservation law, or, equivalently, its "kinetic" approximation, according to [START_REF] Brenier | Une application de la symétrisation de Steiner aux équations hyperboliques: la méthode de transport et écroulement[END_REF][START_REF] Brenier | Résolution d'équations d'évolution quasilinéaires en dimension N d'espace à l'aide d'équations linéaires en dimension N + 1[END_REF][START_REF] Brenier | Averaged multivalued solutions for scalar conservation laws[END_REF][START_REF] Giga | A kinetic construction of global solutions of first order quasilinear equations[END_REF].

Convergence to the Kruzhkov solution

We are now going to prove that, on one hand, Y n (a, x) converges to Y (t, a, x) as nh → t, and, on the other hand, u n (x, y) converges to u(t, x, y), where Y and u are respectively the unique solution to the subdifferential inclusion

0 ∈ ∂ t Y + q(a) • ∇ x Y + ∂K[Y ],
with initial condition Y 0 (a, x) and the unique Kruzhkov solution to the scalar conservaton law with initial condition (where y is just a parameter)

u 0 (x, y) = 1 0 H(y -Y 0 (a, x))da. (6.2.1)
We take for granted the convergence analysis of the TC method [START_REF] Brenier | Une application de la symétrisation de Steiner aux équations hyperboliques: la méthode de transport et écroulement[END_REF][START_REF] Brenier | Une équation homologique avec contrainte[END_REF][START_REF] Brenier | Résolution d'équations d'évolution quasilinéaires en dimension N d'espace à l'aide d'équations linéaires en dimension N + 1[END_REF][START_REF] Brenier | Averaged multivalued solutions for scalar conservation laws[END_REF][START_REF] Giga | A kinetic construction of global solutions of first order quasilinear equations[END_REF] and obtain that, as nh → t,

|u n (x, y) -u(t, x, y)|dydx → 0,
where u is the unique Kruzhkov solution with initial value u 0 . More precisely, if we extend the time discrete approximations u n (x, y) to all t ∈ [0, T ] by linear interpolation in time: (Notice that, at this point, we do not know that Y is a solution to the subdifferential inclusion.) Let us interpolate the Y n by

u h (t, x, y) = u n+1 (x, y) t -nh h + u n (x, y) nh + h -t h , then u h -u converges to 0 in the space C 0 ([0, T ], L 1 (T d × R)) as h → 0.
Y h (t, a, x) = Y n+1 (a, x) t -nh h + Y n (a, x) nh + h -t h ,
for all t ∈ [nh, nh + h] and n ≥ 0. Next, we crucially use the "co-area formula" (or in other words Lebesgue's "horizontal" integration by level sets) to get

|Y (t, a, x) -Y n (a, x)|dadx = |u(t, x, y) -u n (x, y)|dydx.
Thus:

sup t∈[0,T ] ||Y (t, •) -Y h (t, •)|| L 1 ≤ sup t∈[0,T ] ||u(t, •) -u h (t, •)|| L 1 → 0,
and we conclude that the approximate solution

Y h must converge to Y in C 0 ([0, T ], L 1 ([0, 1] × T d )) as h → 0.
Notice that, since the Y h are uniformly bounded in L ∞ , the convergence also holds true in

C 0 ([0, T ], L 2 ([0, 1] × T d )).
We are finally left with proving that Y is the solution to the subdifferential inclusion with initial condition Y 0 in the sense of Definition 6.2.2.

Consistency of the transport-collapse scheme

Let us check that the TC scheme is consistent with the subdifferential formulation in the precise sense of Definition 6.2.2. For each smooth function Z(t, a, x) with ∂ a Z ≥ 0 and p ≥ 1, we have

|Y n+1 (a, x) -Z(nh + h, a, x)| p dadx ≤ |Y * n+1 (a, x) -Z(nh + h, a, x)| p dadx
(because of the rearrangement step, which is non expansive in any L p )

= |Y n (a, x -h q(a)) -Z(nh + h, a, x)| p dadx
(by definition of the predictor step)

= |Y n (a, x) -Z(nh + h, a, x + h q(a))| p dadx = |Y n -Z(nh, •)| p dadx + h Γ + o(h)
where:

Γ = p (Y n -Z(nh, •))|Y n -Z(nh, •)| p-2 {-∂ t Z(nh, •) -q • ∇ x Z(nh, •)}dadx
(by Taylor expanding Z about (nh, a, x)). Since the approximate solution provided by the TC scheme has a unique limit Y , as shown in the previous section, this limit must satisfy:

d dt |Y -Z| p dadx ≤ p (Y -Z)|Y -Z| p-2 (-∂ t Z -q(a) • ∇ x Z)dadx,
in the distributional sense in t. In particular, for p = 2, we exactly recover the differential inequality of Definition 6.2.2. We conclude that the approximate solutions generated by the TCM scheme do converge to the solutions of the subdifferential inclusion in the sense of Definition 6.2.2, which completes the proof of Theorem 6.2.1.

Viscous approximations

A natural regularization for our subdifferential inclusion amounts to substituting a barrier function for the convex cone 

K in L 2 ([0, 1] × T d ) of all functions Y such that ∂ a Y ≥ 0.
φ(τ ) = -log(τ ), φ(τ ) = τ log(τ ), φ(τ ) = 1 τ , ∀τ > 0.
Then, we considered the perturbed subdifferential inclusion

0 ∈ ∂ t Y + q(a) • ∇ x Y -q 0 (a) + ε∂Φ[Y ],
for ε > 0. The general theory of maximal monotone operators guarantees the convergence of the corresponding solutions as ε → 0. It is not difficult (at least formally) to identify the corresponding perturbation to our scalar conservation

∂ t u + ∇ • (Q(u) = 0.
Indeed, assuming φ(τ ) to be smooth for τ > 0, we get, for each smooth function Y such that ∂ a Y > 0:

∂Φ(Y ) = -∂ a (φ (∂ a Y )).
Thus, any smooth solution Y of the perturbed subdifferential inclusion satisfying ∂ a Y > 0, solves the following parabolic equation:

∂ t Y + q(a) • ∇ x Y = ε∂ a (φ (∂ a Y )).
Introducing, the function u(t, x, y) implicitely defined by

u(t, x, Y (t, a, x)) = a,
we get (by differentiating with respect to a, t and x):

(∂ y u)(t, x, Y (t, a, x))∂ a Y (t, a, x) = 1, (∂ t u)(t, x, y) + (∂ y u)(t, x, y)∂ t Y = 0, (∇ x u)(t, x, y) + (∂ y u)(t, x, y)∇ x Y = 0.
Then, we get

-∂ t u -q(u) • ∇ x u -q 0 (u)∂ y u = ε∂ y (φ ( 1 ∂ y u )).
In particular, in the case φ(τ ) = -log τ , we obtain

∂ t u + q(u) • ∇ x u = ε∂ 2 yy u,
with viscosity only in the y variable. This includes viscous effects not on the space variable x but rather on the "level-set parameter" y ∈ R. This unusual type of regularization has already been used and analyzed in the level-set framework developped by Giga, Giga, Osher and Tsai for scalar conservation laws [START_REF] Giga | Minimal vertical singular diffusion preventing overturning for the Burgers equation, Recent advances in scientific computing and PDEs[END_REF][START_REF] Tsai | A level set approach for computing discontinuous solutions of Hamilton-Jacobi equations[END_REF].

Related equations

A similar method can be applied to some special systems of conservation laws.

A typical example (which was crucial for our understanding) is the 'Born-Infeld-Chaplygin' system considered in [START_REF] Brenier | Order preserving vibrating strings and applications to electrodynamics and magnetohydrodynamics[END_REF], and the related concept of 'order-preserving strings'. This system reads:

∂ t (hv) + ∂ y (hv 2 -hb 2 ) -∂ x (hb) = 0, ∂ t h + ∂ y (hv) = 0, ∂ t (hb) -∂ x (hv) = 0,
where h, b, v are real valued functions of time t and two space variables x, y. In [START_REF] Brenier | Order preserving vibrating strings and applications to electrodynamics and magnetohydrodynamics[END_REF] this system is related to the following subdifferential system:

0 ∈ ∂ t Y -∂ x W + ∂K[Y ], ∂ t W = ∂ x Y,
where (Y, W ) are real valued functions of (t, a, x) and K[Y ] is still 0 or +∞ according to whether ∂ a Y ≥ 0 is true or not. The (formal) correspondence between is obtained by setting:

h(t, x, Y (t, a, x))∂ a Y (t, a, x) = 1, v(t, x, Y (t, a, x)) = ∂ t Y (t, a, x), b(t, x, Y (t, a, x)) = ∂ x Y (t, a, x).
Unfortunately, this system is very special (its smooth solutions are easily integrable).

In our opinion, it is very unlikely that L 2 formulations can be found for general hyperbolic conservation laws as easily as in the multidimensional scalar case.

More details on the subdifferential inclusion

Let us examine few additional properties of the subdifferential inclusion

0 ∈ ∂ t Y + q(a) • ∇ x Y + ∂K[Y ],
obtained from the "transport-collapse" approximation scheme. First, we observe that, in the TC scheme, 1) the predictor step (a simple translation in the x variable by h q(a)) is isometric in all L p spaces, 2) the corrector step (an increasing rearrangement in the a variable) is non-expansive in all L p . Thus the scheme is non-expansive in all L p ([0, 1] × T d ) Since the scheme is also invariant under translations in the x variable, we get the following a priori estimate:

||∇ x Y n || L p ≤ ||∇ x Y 0 || L p .
Moreover, if we compare two solutions of the scheme Y n and Ỹn = Y n+1 obtained with initial condition Ỹ0 = Y 1 , we deduce:

|Y n+1 (a, x) -Y n (a, x)| p dadx ≤ |Y 1 (a, x) -Y 0 (a, x)| p dadx ≤ |Y * 1 (a, x) -Y 0 (a, x)| p dadx = |Y 0 (a, x -h q(a)) -Y 0 (a, x)| p dadx.
So we get a second a priori estimate:

||Y n+1 -Y n || L p ≤ ||q|| L ∞ ||∇ x Y 0 || L p h.
We conclude that the solutions Y to the subdifferential inclusion obtained from the TC scheme satisfy the a priori bounds:

||∇ x Y (t, •)|| L p ≤ ||∇ x Y 0 || L p , ||∂ t Y (t, •)|| L p ≤ ||q 0 || L p + ||q|| L ∞ ||∇ x Y 0 || L p .
L p and Monge-Kantorovich stability properties

As just mentioned, the solutions of the subdifferential inclusion enjoy the L p stability property with respect to their initial conditions, not only for p = 2 but also for all p ≥ 1. The case p = 1 is of particular interest. Indeed, let us consider two solutions Y and Ỹ of of the subdifferential inclusion and the corresponding Kruzhkov solutions u and ũ, as in the proof of Theorem 6.2.1. Using the co-area formula we find, for all t ≥ 0,

R T d |u(t, x, y) -ũ(t, x, y)|dxdy = = 1 0 R T d |H(u(t, x, y) -a) -H(ũ(t, x, y) -a)|dadxdy = 1 0 R T d |H(y -Y (t, a, x)) -H(y -Ỹ (t, a, x))|dadxdy = 1 0 T d |Y (t, a, x) -Ỹ (t, a, x)|dxda ≤ 1 0 T d |Y 0 (a, x) -Ỹ0 (a, x)|dxda = R T d |u 0 (x, y) -ũ0 (x, y)|dxdy.
Thus, Kruzhkov's L 1 stability property is nothing but a very incomplete output of the much stronger L p stability property enjoyed by the subdifferential inclusion! As a matter of fact, it is possible to translate the L p stability of the level set function Y in terms of the Kruzhkov solution u by using Monge-Kantorovich (MK) distances. Let us first recall that for two probability measures µ and ν compactly supported on R D , their p MK distance can be defined (see [451] for instance), for p ≥ 1, by:

δ p p (µ, ν) = sup φ(x)dµ(x) + ψ(y)dν(y),
where the supremum is taken over all pair of continuous functions φ and ψ such that:

φ(x) + ψ(y) ≤ |x -y| p , ∀x, y ∈ R D .
In dimension D = 1, this definition reduces to:

δ p (µ, ν) = ||Y -Z|| L p ,
where Y and Z are respectively the "generalized inverse" of u and v defined on R by:

u(y) = µ([-∞, y]), v(y) = ν([-∞, y]), ∀y ∈ R.
Next, observe that, for each x ∈ T d , the y derivative of the Kruzhkov solution u(t, x, y), can be seen as a probability measure compactly supported on R. (Indeed, ∂ y u ≥ 0, u = 0 near y = -∞ and u = 1 near y = +∞.) Then, the L p stability property simply reads:

T d δ p p (∂ y u(t, •, x), ∂ y ũ(t, •, x))dx ≤ T d δ p p (∂ y u 0 (•, x), ∂ y ũ0 (•, x))dx.
Let us refer to [START_REF] Bolley | Contractive metrics for scalar conservation laws[END_REF] and [START_REF] Carrillo | Contractivity of Wasserstein Metrics and Asymptotic Profiles for Scalar Conservation Laws[END_REF] for recent occurences of MK distances in the field of scalar conservation laws.

Uniqueness theory

Let us consider a solution Y to the subdifferential inclusion in the sense of Definition 6.2.2. By definition Y (t, •) depends continuously of t ∈ [0, T ] in L 2 . From definition (6.2.2), using Z = 0 as a test function, we see that:

d dt ||Y (t, •)|| 2 L 2 ≤ 2 Y (t, a, x)q 0 (a) dadx ≤ ||Y (t, •)|| 2 L 2 + ||q|| 2 L 2 ,
which implies that the L 2 norm Y (t, •) stays uniformly bounded on any finite interval [0, T ]. Thus, T > 0 being fixed, we can mollify Y and get, for each ∈]0, 1] a smooth function Y (t, a, x), still increasing in a, so that:

sup t∈[0,T ] ||Y (t, •) -Y (t, •)|| L 2 ≤ .
Let us now consider an initial condition Z 0 such that ∇ x Z 0 belongs to L 2 . We know that there exist a solution Z to the subdifferential inclusion, still in the sense of Definition 6. 

{θ (t)|Y -Z| 2 + 2θ(t)(Y -Z)(q 0 (a) -∂ t Z -q(a) • ∇ x Z)}dadxdt ≥ 0.
Substituting Y for Y , we get

{θ (t)|Y -Z| 2 + 2θ(t)(Y -Z)(q 0 (a) -∂ t Z -q(a) • ∇ x Z)}dadxdt ≥ -C ,
where C is a constant depending on θ, Z, q 0 and q only. Since Z is also a solution, using Y as a test function, we get from Definition 6.2.2:

{θ (t)|Z -Y | 2 + 2θ(t)(Z -Y )(q 0 (a) -∂ t Y -q(a) • ∇ x Y )}dadxdt ≥ 0.
Adding up these two inequalities, we deduce:

{2θ (t)|Y -Z| 2 + 2θ(t)(Y -Z)(∂ t (Y -Z) + q(a) • ∇ x (Y -Z))}dadxdt ≥ -C .
Integrating by part in t ∈ [0, T ] and x ∈ T d , we simply get:

θ (t)|Y -Z| 2 dadxdt ≥ -C .
Letting → 0, we deduce:

d dt |Y -Z| 2 dadx ≤ 0.
We conclude, at this point, that:

||Y (t, •) -Z(t, •)|| L 2 ≤ ||Y 0 -Z 0 || L 2 , ∀t ∈ [0, T ]
This immediately implies the uniqueness of Y . Indeed, any other solution Ỹ with initial condition Y 0 must also satisfy:

|| Ỹ (t, •) -Z(t, •)|| L 2 ≤ ||Y 0 -Z 0 || L 2 .
Thus, by the triangle inequality:

|| Ỹ (t, •) -Y (t, •)|| L 2 ≤ 2||Y 0 -Z 0 || L 2 .
Since Z 0 is any function such that ∇ x Z 0 belongs to L 2 , we can make ||Y 0 -Z 0 || L 2 arbitrarily small and conclude that Ỹ = Y , which completes the proof of uniqueness.

Entropic systems of conservation law

We consider general systems of conservative laws of form:

∂ t U α + ∂ i (F iα (U )) = 0, α = 1, • • •, m,
(with implicit summation on repeated indices) where

U = U (t, x) ∈ W ⊂ R m , t ≥ 0, x ∈ R d , ∂ t = ∂ ∂t , ∂ i = ∂ ∂x i ,
W is a smooth convex subset of R m and the "flux function" F : W → R d×m is smooth with some suitable control near ∂W . Once again, we can go back to Euler to start the theory, with his equations of compressible fluids which read, in the isothermal case,

∂ t ρ + ∇ • q = 0, ∂ t q + ∇ • ( q ⊗ q ρ ) + ∇ρ = 0
(ρ > 0 and q ∈ R d respectively denoting the density and the momentum of the fluid), which fits to the general framework by setting

U = (ρ, q) ∈ W =]0, +∞[×R d , F(U ) = (q, q ⊗ q ρ + ρ I d ).
From now on, we limit ourself to the subclass of "entropic system of conservation laws" (ESCL): Definition 6.3.1. We call ESCL a system of conservation laws for which the flux function F satisfies the additional symmetry condition

∀i ∈ {1, • • •, n}, ∀β, γ ∈ {1, • • •, m}, ∂ 2 αβ E∂ γ F iα = ∂ 2 αγ E∂ β F iα ,
for some smooth function, called "entropy" E : W → R, strictly convex in the sense that the symmetric matrix (∂ 2 αβ E) is everywhere definite positive on W.

This property looks strange, at first glance, but is essentially equivalent to the "conservation of entropy" in the sense that every C 1 solution of the ESCL satisfies the additional conservation law

∂ t (E(U )) + ∂ i (Q i (U )) = 0,
where the "entropy flux function" Q : W → R d can be explicitly computed from F and E.

[Indeed, the symmetry condition with respect to E is equivalent to

∂ γ (∂ α E∂ β F iα ) = ∂ β (∂ α E∂ γ F iα ), which means that ∂ α E∂ β F iα is the gradient of some function Q i : W → R, i.e. ∂ α E∂ β F iα = ∂ β Q i . Therefore, for any solution U of class C 1 , -∂ t (E(U )) = ∂ α E(U )∂ i (F iα (U )) = ∂ α E(U )∂ β F iα (U )∂ i U β = ∂ β Q i (U )∂ i U β = ∂ i (Q i (U )),
which implies the conservation of entropy.] The class of ESCL contains many examples from Continuum Mechanics, Physics and Geometry (Euler equations of compressible fluids, Elastodynamics, Electromagnetism, Magneto-Hydrodynamics, Extremal surfaces in Lorentzian spaces, etc...) Of course the simplest nonlinear example of ESCL is the Burgers equation (without viscosity)

∂ t u + ∂ x ( u 2 2 ) = 0, u ∈ R,
where F(u) = u 2 /2 and for which a possible choice of entropy is

E(u) = u 2 /2, with Q(u) = u 3 /3.
More general is the class of scalar conservation laws when m = 1, W = R, for which the symmetry condition is trivially satisfied and any convex function E can play the role of an entropy. We have already seen that this subclass enjoys a "hidden convexity" property, through the Panov formulation, as discussed in section 6.2.1.

The example of Euler's equations is richer. For instance, in the isothermal case, we find as a strictly convex entropy

E(U ) = |q| 2 2ρ + ρ(log ρ -1), U = (ρ, q).

Few results on the ESCL

In order to get general results without too much technicalities in our proofs, we make some simplifying assumptions, which are not necessarily satisfied by our basic examples (inviscid Burgers and Euler equations). So, we assume:

i) W = R m ;
ii) all derivatives of F are bounded; iii) there is a constant r ∈]0, 1] such that, for all points in W = R m , the spectrum of matrix ∂ 2 αβ E is contained in [r, 1/r], and we consider only solutions

U = U (t, x) that are Z d -periodic in x (in other words, x ∈ T d = (R/Z) d ).
A first structural property is the possibility of writing any ESCL in symmetric form. Theorem 6.3.2. For any solution U = U (t, x) of class C 1 on [0, T ] × T d , the ESCL can be written in non-conservative form

A 0 αβ (t, x)∂ t U β (t, x) + A j αγ (t, x)∂ j U γ (t, x) = 0,
where A 0 , A j , j = 1, • • •m, are fields of symmetric m × m matrices, A 0 being definite positive.

This "symmetric" writing is important because it leads to a local existence and uniqueness result: Theorem 6.3.3. For any initial condition U 0 in H s (T d ), with s -d/2 > 1, there is a time T > 0 (depending on U 0 ) and a unique solution U = U (t, x), of class H s , to the ESCL with initial condition U 0 : U (0, •) = U 0 .

Observe that the exponent s -d/2 > 1 corresponds to the continuous injection of the Sobolev space H s (T d ) in C 1 (T d ). Next, we address the link between classical and weak solutions. Definition 6.3.4. We call weak solution of the ESCL with initial condition U 0 , on a given time interval [0, T ], any function

U ∈ L 2 ([0, T ] × T d ; R m ) such that [0,T ]×T d ∂ t W α U α + ∂ i W α F iα (U ) + T d W α (0, •)U α 0 = 0, for all smooth function (t, x) ∈ [0, T ] × T d → W = W (t, x) ∈ R m , such that W (T, •) = 0.
(The choice of L p with p = 2 is not essential and just related to the simplifying assumptions we have made. For concrete applications, p is subject to change.) Theorem 6.3.5. Let U be a solution of the ESCL, de classe C 1 on [0, T ] × T d with initial condition U 0 . Then, U is the unique weak solution with initial condition U 0 , such that In this statement, called "strong-weak uniqueness", the condition that the entropy of the weak solution is always bounded from above by the entropy of the initial condition plays a crucial role.

T d E(U (t, x))dx ≤ T d E(U 0 (x))dx,
(As a matter of fact, the method of "convex integration" applied by De Lellis, Székelyhidi and their co-authors to several ESCL of importance, show they are an infinite number of weak solutions for generic initial data!)

Proof of Theorem 6.3.2 Let U be solution of the ESCL, of class C 1 on [0, T ] × T d . Since we have ∂ t (E ,α (U )) = E ,αβ (U )∂ t U β = E ,αβ (U )F jβ ,γ (U )∂ j U γ
(where partial derivatives are temporarily denoted by comma), it is enough to set

A 0 αβ (t, x) = E ,αβ (U (t, x)) A j αγ (t, x) = E ,αβ (U (t, x))F jβ ,γ (U (t, x)) = E ,γβ (U (t, x))F jβ ,α (U (t, x
)) (because of the symmetry condition that characterizes the ESCL, on top of the convexity of E). This completes the proof.

Elements of proof for Theorem 6. 3.3 This result is standard in the field of conservation laws [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF][START_REF] Majda | Compressible fluid flow and systems of conservation laws in several space variables[END_REF]. The starting point is a stability result in the space L 2 (T d ), and more generally in Sobolev spaces H s (T d ), of the linear system with variable coefficients:

A 0 αβ (t, x)∂ t U β (t, x) + A j αγ (t, x)∂ j U γ (t, x) = M αγ (t, x)U γ (t,
x) where the M , A 0 , A j , j = 1, • • •m, are given fields of m × m symmetric matrices, definite positive in the case of the A 0 . Once this result is established, the nonlinear system where the A k depend on U , via:

A 0 αβ (t, x) = E ,αβ (U (t, x)) A j αγ (t, x) = E ,γβ (U (t, x))F jβ ,α (U (t, x))
, can be analyzed by some fixed-point argument, through a careful control of the various nonlinearities by the C 1 (T d ) norm of U , which, itself, can be controled by the Sobolev H s (T d ) norm of U , as soon as s -d/2 > 1. The complete proof is too technical to be reproduced here and we limit ourself to a sketch of proof of the L 2 stability of the linear system with variable coefficients mentioned above. Proposition 6.3.6. Assume that there exist constants r ∈]0, 1] and κ ∈ R such that, at each point (t, x), the symmetric matrices A 0 and

C = ∂ t A 0 -∂ j A j + M + M T
have their spectrum uniformly contained respectively in [r, 1/r] and ] -∞, κ]. Then the linear system

A 0 αβ (t, x)∂ t U β (t, x) + A j αγ (t, x)∂ j U γ (t, x) = M αγ (t, x)U γ (t, x) is L 2 (T d ) stable: ||U (t, •)|| L 2 (T d ) ≤ ||U (s, •)|| L 2 (T d ) exp(κ|t -s|)/r 2 , ∀t, s ∈ R.
By multiplying the linear system by U α , we get

∂ t U α A 0 αβ U β -∂ j U α A j αβ U β = U α C αβ U β . Thus, by integrating in x ∈ T d , we obtain d dt T d U α A 0 αβ U β = T d U α C αβ U β .
By assumption, we deduce

| d dt T d U α A 0 αβ U β | ≤ κ/r T d U α A 0 αβ U β
and, therefore,

T d U α (t, •)A 0 αβ (t, •)U β (t, •) ≤ exp(κ|t -s|/r) T d U α (s, •)A 0 αβ (s, •)U β (s, •).
Finally:

||U (t, •)|| L 2 (T d ) ≤ ||U (s, •)|| L 2 (T d ) exp(κ|t -s|/r)/r 2 , ∀t, s ∈ R. N.B.
With additional work, one get similar estimates for all H s norm for s ∈ N and, once s -d/2 > 1, we may control the C 1 norm of U (which is crucial for the fixed-point argument, when addressing nonlinear systems).

Proof of Theorem 6.3.5

Let (t, x) ∈ [0, T ] × T d → U (t, x) ∈ R m
be a weak solution of the ESCL in the sense of Definition 6.3.4 and let

(t, x) ∈ [0, T ] × T d → V (t, x) ∈ R m be a smooth function. Let us introduce η(u, v) = E(u) -E(v) -E, α (v)(u α -v α ) ∀u, v ∈ R m , ζ iα (u, v) = F iα (u)-F iα (v)-F iα , γ (v)(u γ -v γ ) ∀u, v ∈ R m , i ∈ {1, •••, d}, α ∈ {1, •••, m}.
From the assumptions made on E and F, we easily get

r|u -v| 2 ≤ η(u, v) ≤ |u -v| 2 /r, |ζ(u, v)| ≤ Cη(u, v)
(where C is a constant depending on the sup norm of the second derivatives of F), so that

T d η(U (t, x), V (t, x))dx controls ||U (t, •) -V (t, •)|| 2 L 2 .
Let us perform the following calculations in the sense of distributions on ]0, T [×T d :

∂ t (E(V ) + E, α (V )(U α -V α )) = E ,α (V )∂ t V α + E ,αβ (V )∂ t V β (U α -V α ) + E ,α (V )(-∂ i (F iα (U )) -∂ t V α ) (using that U is a weak solution which gives a rigorous meaning to E ,α (V )∂ i (F iα (U )) in the sense of distributions) = E ,αβ (V )(R β [V ] -F iβ , γ (V )∂ i V γ )(U α -V α ) -∂ i (E ,α (V )F iα (U )) + E ,αγ (V )∂ i V γ F iα (U )
[where we have introduced the "redisual"

R β [V ] = ∂ t V β + ∂ i (F iβ (V )) = ∂ t V β + F iβ , γ (V )∂ i V γ which makes V → R[V ]
a nonlinear operator which vanishes as soon as V is a C 1 solution of the ESCL, which will be used a little later]

= E ,αβ (V )(U α -V α )R β [V ] -E ,γβ (V )F iβ , α (V )∂ i V γ (U α -V α ) -∂ i (E ,α (V )F iα (U )) + E ,βγ (V )∂ i V γ F iβ (U )
(where we have crucially used the symmetry property of F with respect to E and also replaced mute index α by β in the very last term)

= E ,αβ (V )(U α -V α )R β [V ] + E ,γβ (V )∂ i V γ (ζ iβ (U, V ) + F iβ (V )) -∂ i (E ,α (V )F iα (U ))
(where we have used the definition of ζ). Note that, by definition of Q,

E ,γβ (V )∂ i V γ F iβ (V ) = ∂ i E ,β (V )F iβ (V ) -F iβ ,γ (V )E ,β (V )∂ i V γ = ∂ i E ,β (V )F iβ (V ) -Q i (V ) .
So, we have obtained, still in the sense of distributions on ]0,

T [×T d , ∂ t (E(V ) + E, α (V )(U α -V α )) = E ,αβ (V )(U α -V α )R β [V ] + E ,γβ (V )∂ i V γ ζ iβ (U, V ) -∂ i Q i (V ) .
Since U is a weak solution in the sense of definition 6.3.4, one can write this equation in integral form while incorporating the initial condition U 0 . By doing so, we get for every test function

ψ(t, x) = χ(t) ⊗ 1 with χ ∈ C ∞ (R) supported in ] -∞, T [, - T 0 χ (t) T d (E(V ) + E, α (V )(U α -V α )) (t, x)dxdt -χ(0) T d (E(V (0, x)) + E, α (V (0, x))(U α 0 (x) -V α (0, x))) dx = T 0 χ(t) T d E ,αβ (V )(U α -V α )R β [V ] + E ,γβ (V )∂ i V γ ζ iβ (U, V ) (t, x)dxdt.
At this stage, we incorporate the term E(U ) in the left-hand side in order to exhibit

η(U, V ) = E(U ) -E(V ) -E, α (V )(U α -V α ).
We find (after changing all signs)

- T 0 χ (t) T d η(U, V )(t, x)dxdt = - T 0 χ (t) T d E(U )(t, x)dxdt -χ(0) T d η(U 0 (x), V (0, x))dx + χ(0) T d E(U 0 (x))dx - T 0 χ(t) T d E ,αβ (V )(U α -V α )R β [V ](t, x)dxdt - T 0 χ(t) T d E ,γβ (V )∂ i V γ ζ iβ (U, V )(t, x)dxdt.
Using the assumptions made on E and F, and assuming now on that χ ≥ 0, we easily dominate the very last term by

c T 0 χ(t)λ(t) T d η(U, V )(t, x)dxdt,
where we denote by λ(t) the Lipschitz constant in x ∈ T d of V (t, •) and by c a generic constant depending only on functions E et F. Denoting temporarily

θ(t) = T d η(U, V )(t, x)dx, h(t) = T d E(U (t, x))dx, θ 0 = T d η(U 0 (x), V (0, x))dx, h 0 = T d E(U 0 (x))dx, ρ(t) = T d E ,αβ (V )(U α -V α )R β [V ] (t, x)dx
we have so obtained

- T 0 χ (t)θ(t)dt ≤ - T 0 χ (t)h(t)dt+χ(0)(θ 0 -h 0 )- T 0 χ(t)ρ(t)dt+c T 0 χ(t)λ(t)θ(t)dt.
Almost every τ ∈ [0, T [ is a Lebesgue point of functions θ and h. In such a point, that we fix for a while, we take > 0 small enough so that τ + < T and we take

χ ∈ C ∞ c (R ) so that: i) for t ∈ [-1, τ -], χ(t) = 1 ; ii) for t > τ + , χ(t) = 0 ; iii) for t ∈ [τ -, τ + ], χ(t) is non increasing. Through the limit ↓ 0, we get θ(τ ) ≤ h(τ ) + θ 0 -h 0 - τ 0 ρ(t)dt + c τ 0 λ(t)θ(t)dt.
At this point, we crucially use the assumption

T d E(U )(τ, x)dx ≤ T d E(U 0 (x))dx
which holds true for a.e. τ ∈ [0, T ], i.e. h(τ ) ≤ h 0 . We deduce that for a.e.

τ ∈ [0, T [, θ(τ ) ≤ θ 0 - τ 0 ρ(t)dt + c τ 0 λ(t)θ(t)dt
and, using the Gronwall lemma, we have obtained:

Proposition 6.3.7. For a.e. t ∈ [0, T ], θ(t) ≤ θ 0 exp(c t 0 λ(s)ds) - t 0 ρ(s) exp(c t s λ(σ)dσ)ds.
where λ(t) is the Lipschitz constant in x ∈ T d of V (t, •), c is a constant depending only on functions E, F, and

θ(t) = T d η(U, V )(t, x)dx, θ 0 = T d η(U 0 (x), V (0, x))dx, ρ(t) = T d E ,αβ (V )(U α -V α )R β [V ] (t, x)dx.
Assuming that V is a smooth solution of the ESCL with initial condition U 0 , we automatically get

R[V ] = 0, since R β [V ] = ∂ t V β + ∂ i (F iβ (V )),
and θ 0 = 0. Thus

T d η(U, V )(t, x)dx = 0,
for a.e. t ∈ [0, T ]. Since this quantity dominates, up to a multiplicative positive constant, the squared L 2 norm of U (t, •) -V (t, •), we conclude that U = V which shows the uniqueness of V among all weak solutions with initial condition U 0 that keep their entropy at time t below the entropy of U 0 , for a.e. t. This completes the proof of Theorem 6.3.5.

A convex concept of "dissipative solutions"

During the proof of Theorem 6.3.5, we have established Proposition 6.3.7 which suggest a new concept of generalized solutions for the ESCL. This idea goes back to the works of Dafermos and DiPerna in the 80s. (See [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF][START_REF] Diperna | Convergence of the viscosity method for isentropic gas dynamics[END_REF][START_REF] Diperna | Measure-valued solutions to conservation laws[END_REF].) Lions made this concept more explicit in the special case of the Euler equations of incompressible fluids [START_REF] Lions | Incompressible models[END_REF], and introduced the wording of "dissipative solutions", that we will conserve in this book, although the word "dissipative solution" is used in different contexts by several authors. Strictly speaking, the Euler equations of incompressible fluids do not belong to the ESCL class. However they are just a limit case and the concept easily goes through. The main observation is that the inequality obtained in Proposition 6.3.7 is convex with respect to solution U . Indeed, η(U, V ) is convex in U by definition, and, in the right-hand side, only feature linear terms in U . This is a very fruitful property which easily provides some weak compactness. More precisely, let us introduce the space

C 0 w ([0, T ], L 2 (T d ; R m ) of all functions U : t ∈ [0, T ] → U (t, •) ∈ L 2 (T d ; R m )
which are continuous in t with respect to the weak topology of L 2 (T d ; R m ), i.e. such that, for each function

ψ ∈ L 2 (T d ; R m ), t ∈ [0, T ] → T d U α (t, x)ψ α (x)dx is continuous. Definition 6.4.1. We say that U ∈ C 0 w ([0, T ], L 2 (T d ; R m )
) is a "dissipative solution" of the ESCL with initial condition U 0 if U (0, •) = U 0 and the inequality established in Proposition 6.3.7 holds true for all smooth function V .

Then, it is immediate to check: Proposition 6.4.2. Given U 0 ∈ L 2 (T d ; R m ), the set of all dissipative solutions of the ESCL with initial condition U 0 : i) is convex (if not empty!) ii) has a single element as soon as the ESCL admits a smooth solution U with initial value U 0 and this element is precisely U . This result is far from being satisfactory. However, it turns out that: i) it is usually possible (although sometimes quite technical) to get an existence proof through suitable approximations enjoying the same type of weak compactness, and for arbitrarily long time interval, which is usually impossible for smooth solutions; ii) the concept is very useful to show that the ESCL can be rigorously derived from a more fundamental model by passing to the limit with suitable small parameters. Let us quote the example of the Euler equations of incompressible fluids that can be derived from the Navier-Stokes equations [START_REF] Lions | Incompressible models[END_REF] or from the Boltzmann equation [START_REF] Saint-Raymond | Convergence of solutions to the Boltzmann equation in the incompressible Euler limit[END_REF]. More generally, relative entropy methods have been used in many problems of asymptotic analysis. Let us just quote few examples [START_REF] Berthelin | From kinetic equations to multidimensional isentropic gas dynamics before shocks[END_REF][START_REF] Brenier | Convergence of the Vlasov-Poisson system to the incompressible Euler equations[END_REF][START_REF] Brenier | Incompressible Euler and e-MHD as scaling limits of the Vlasov-Maxwell system[END_REF][START_REF] Duerinckx | Mean-field dynamics for Ginzburg-Landau vortices with pinning and forcing[END_REF][START_REF] Feireisl | Dissipative measure-valued solutions to the compressible Navier-Stokes system[END_REF][START_REF] Giesselmann | Relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics[END_REF][START_REF] Glass | Point vortex dynamics as zero-radius limit of the motion of a rigid body in an irrotational fluid[END_REF][START_REF] Lattanzio | From gas dynamics with large friction to gradient flows describing diffusion theories[END_REF][START_REF] Puel | Quasineutral limit for the relativistic Vlasov-Maxwell system[END_REF][START_REF] Serfaty | Mean field limits of the Gross-Pitaevskii and parabolic Ginzburg-Landau equations[END_REF][START_REF] Vorotnikov | Global generalized solutions for Maxwell-alpha and Euleralpha equations[END_REF]. In such cases, the relative entropy approach has been a useful alternative to compactness methods such as Young's measures, currents or varifolds, compensated compactness, averaging lemma, semi-classical or microlocal defect measures (see [START_REF] Bahouri | High frequency approximation of solutions to critical nonlinear wave equations[END_REF][START_REF] Brakke | The Motion of a Surface by its Mean Curvature[END_REF][START_REF] Brezis | Harmonic maps with defects[END_REF][START_REF] Diperna | Majda Oscillations and concentrations in weak solutions of the incompressible fluid equations[END_REF][START_REF] Gérard | Homogenization limits and Wigner transforms[END_REF][START_REF] Golse | Regularity of the moments of the solution of a transport equation[END_REF][START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case[END_REF][START_REF] Lions | Sur les mesures de Wigner[END_REF][START_REF] Murat | Compacité par compensation[END_REF][START_REF] Rivière | Conservation laws for conformally invariant variational problems[END_REF][START_REF] Shnirelman | Ergodic properties of eigenfunctions[END_REF][START_REF] Struwe | Variational methods. Applications to nonlinear partial differential equations and Hamiltonian systems[END_REF][START_REF] Tartar | Compacité par compensation: résultats et perspectives, Nonlinear partial differential equations and their applications[END_REF][START_REF] Tartar | H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations[END_REF][START_REF] Taylor | Partial differential equations. III. Nonlinear equations[END_REF]...)

Chapter 7

Hidden convexity in some models of Convection Convection is one of the most important phenomena in natural sciences (oceanography, volcanism, continental drift, terrestrial magnetism, etc...) [START_REF] Chemin | Mathematical geophysics. An introduction to rotating fluids and the Navier-Stokes equations[END_REF][START_REF] Cullen | A mathematical theory of large-scale atmosphere/ocean flow[END_REF]394] and also in daily life (weather, heating and boiling!). It describes in particular the way that incompressible fluids move under the differential action of gravity caused by their inhomogeneity which, itself, results of difference of mass, temperature, salinity, etc...Typically fluid parcels try to rearrange themselves in order to reach more stable states (typically, heavy parcels at bottom and light ones at top), which creates motion and, therefore, generates new instabilities and so on. In this chapter, we discuss some crude convection models derived from the Euler or Navier-Stokes equations of incompressible fluids including additional terms describing buoyancy and Coriolis forces in some suitable asymptotic regimes of physical interest. Some of these models will be shown to be exhibit some hidden convexity, in close relationship with the concept, well known in optimal transport theory, of rearrangement of maps as maps with convex potential, as we have already seen in this book on Section 3.2.

A caricatural model of climate change

Let D be a smooth bounded domain D ⊂ R 3 (or, alternately, the torus T 3 ) in which moves an incompressible fluid of velocity v(t, x) at x ∈ D, t ≥ 0, subject to the Navier-Stokes-Boussinesq (NSB) equations

(∂ t v + v • ∇)v -ν∆v + ∇p = y, (∂ t + v • ∇)y = G( t, x) with ∇ • v = 0 and v = 0 along ∂D.
The field y = y(t, x) ∈ R 3 is a "generalized buoyancy", vector-valued, force, with a small, slowly evolving, source term, where G is a given smooth function with bounded derivatives. We can see these equations as a caricatural model of climate change: we look for the long time impact of a small, slowly evolving, source term of amplitude on long time scales of order -1 .

By substituting (t, v, p, y) for ( t, v, p, y) in the NSB equations, we get the following rescaled RNSB equations

(RNSB) y = ∇p + 2 (∂ t v + (v • ∇)v) -ν∆v, ∇ • v = 0, ∂ t y + (v • ∇)y = G(t, x).
We call "hydrostatic Boussinesq" HB equations, the formal limit obtained for = 0:

y = ∇p, ∇ • v = 0, ∂ t y + (v • ∇)y = G(t, x).

Remark 1

In the concrete convection model considered in [START_REF] Brenier | Rigorous derivation of the x-z semigeostrophic equations[END_REF], there is no x 2 dependence and G 1 = 0. Then the force field y is vector-valued and combines both Coriolis (in the x 1 direction) and buoyancy (in the x 3 direction) effects. The → 0 limit is, then, related to the Hoskins "x-z" semi-geostrophic equations [START_REF] Cullen | An extended Lagrangian theory of semigeostrophic frontogenesis[END_REF][START_REF] Hoskins | The Geostrophic Momentum Approximation and the Semi-Geostrophic Equations[END_REF]. (See also [START_REF] Ambrosio | A global existence result for the semigeostrophic equations in three dimensional convex domains[END_REF][START_REF] Benamou | Weak existence for the semigeostrophic equation formulated as a coupled Monge-Ampere/transport problem[END_REF][START_REF] Cullen | The semigeostrophic equations discretized in reference and dual variables[END_REF][START_REF] Cullen | Generalised Lagrangian solutions for atmospheric and oceanic flows[END_REF][START_REF] Loeper | A fully nonlinear version of the incompressible Euler equations: the semigeostrophic system[END_REF]...)

Remark 2

From the PDE viewpoint, global existence of weak solutions in 3D follows from Leray [321] and Diperna-Lions [START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF] (see also [START_REF] Nouri | An existence theorem for the multifluid Navier-Stokes problem[END_REF]).

Remark 3

For any suitable test function f we have INDEPENDENTLY of , v the following key property

d dt D f (y(t, x))dx = D (∇f )(y(t, x)) • G(t, x)dx
This is valid even for the Leray weak solutions, thanks to DiPerna-Lions' theory on ODEs [START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF].

Remark 4

When both the source term and the initial force are gradients and the fluid initially is at rest G = G(x) = ∇g(x), y(0, x) = ∇p 0 (x), v(0, x) = 0, then the rescaled NSB system has a trivial but interesting "convection-free" solution, independently of , namely v(t, x) = 0, y(t, x) = ∇p(t, x), p(t, x) = p 0 (x) + tg(x).

Of course, these solutions are also trivial solutions to the HB system.

Hidden convexity in the Hydrostatic-Boussinesq system

The Hydrostatic Boussinesq system

(HB) y = ∇p, ∇ • v = 0, ∂ t y + (v • ∇)y = G(t, x),
we have formally obtained by setting to zero in the rescaled Navier-Stokes-Boussinesq equations looks strange since there is no evolution equation for v. However, we have a constraint for y, namely to be a gradient. Thus, we can recover v as a kind of Lagrange multiplier of this constraint. Indeed, notice first that,

(v • ∇)y = (D 2 x p • v)
and v = ∇ × A, for some divergence-free vector potential A = A(t, x) ∈ R 3 , at least when d = 3. Then, taking the curl of the evolution equation in the HB system, we get ∇ × (D 2 x p(t, x) • ∇ × A) = ∇ × G. At each fixed time t, knowing p, this is a just a linear "magnetostatic" system in A, which is elliptic whenever p is convex in the strong sense (SCC) c Id < D 2

x p(t, x) < c -1 Id, ∀x, for some constant c > 0 that may depend on t. This strongly suggests that the HB system is well-posed, under this strong convexity assumption, which, presumably, is sustainable, at least on short time intervals. It is a typical example of hidden convexity! This intuition is indeed correct and was proven by Loeper (for a specific choice of G, but his method goes through the general case of a smooth function G with bounded derivatives), using a Monge-Ampère reformulation of the system [START_REF] Loeper | A fully nonlinear version of the incompressible Euler equations: the semigeostrophic system[END_REF]. The proof has been obtained by Loeper only in the case of a periodic domain, such as D = T 3 . This periodic setting requires a little bit of care: the pressure p(t, x) should be understood as the sum of |x| 2 /2 and a Z 3 -periodic function p (t, x), the strong convexity condition meaning

c Id < Id + D 2 x p (t, x) < c -1 Id, ∀x,
for some constant c > 0. Accordingly, y(t, x) -x = ∇p (t, x) is also a Z 3 -periodic, vector-valued function, just as v(t, x). Notice that this condition implies that the Legendre-Fenchel transform of p, defined as usual by p * (t, y) = sup

x∈R d
x • y -p(t, x), also satisfies c Id < D 2 x p * (t, y) < c -1 Id, ∀y. As a consequence, both x → ∇p(t, x) and y → ∇p * (t, y) define global orientationpreserving diffeomorphisms of R 3 .

Derivation of the HB model under strong convexity condition

The strong convexity condition (SCC) is sufficient to get a rigorous derivation of the HB equations from the RNSB equations as goes to zero, at least in the case of a periodic domain.

Theorem 7.2.1. Let D = T 3 . Assume G to be smooth with bounded derivatives up to second order. Let (y , v , p ) be a Leray-type solution to the RNSB equations Let (y = ∇p, v) be a smooth solution to the HB equations on a given finite time interval [0, T ]. Assume that the strong convexity condition (SCC) is satisfied up to time T . Then, the L 2 distance between y and y stays uniformly of order √ as goes to zero, uniformly in t ∈ [0, T ], provided it does at t = 0 and the initial velocity v (t = 0, x) stays uniformly bounded in L 2 .

Let us just tell a brief idea of the proof. (See [START_REF] Brenier | Rearrangement, convection, convexity and entropy[END_REF] for a detailed proof.) A natural but very faulty idea would be to compare y and y directly in L 2 (or more generally Sobolev) norm and try to get Gronwall-type differential inequalities for it. This method completely fails, due to the presence of an irreducible term of size -1 . The right idea is to consider the "relative entropy" D {K(t, y (t, x), y(t, x)) + where p * is the Legendre-Fenchel transform of p. Then we can get a Gronwall estimate to deduce that the relative entropy, which is small at time t, cannot grow more than exponentially in time with a rate that depends on the smoothness of p * . This is enough to get convergence as goes to zero.

Remark.

Notice the remarkable feature of this "relative entropy" with respect to the previous relative entropies discussed earlier in this book. Instead of a universal convex function which is expanded about all possible limit solutions as we have seen so far in the previous sections, here the convex function reads

(v, y) → p * (t, y) + 2 2 |v| 2 ,
is not at all universal and involves the limit solution p * itself!

Breakdown of convexity and concept of "entropy" solutions

Unfortunately, we cannot expect the strong condition (SCC) to be sustainable for large times. This can be seen immediately with the trivial solutions already mentioned, namely: v(t, x) = 0, y(t, x) = ∇p(t, x), p(t, x) = p 0 (x) + tg(x)

Indeed, it is sufficient to have a source term G = ∇g, with D 2 g(x) ≤ -cId for some positive constant c, to fail the strong convexity condition in finite time. However, these trivial solutions, of both the HB and the RNSB system, can be expected to be dynamically very unstable solutions of the RNSB equations, especially as gets smaller and smaller. This is why, it seems reasonable to look for solutions of the HB system which keep the convexity condition, at least in the large sense

D 2 p(t, x) ≥ 0.
In the framework of semi-geostrophic equations [START_REF] Cullen | An extended Lagrangian theory of semigeostrophic frontogenesis[END_REF][START_REF] Hoskins | The Geostrophic Momentum Approximation and the Semi-Geostrophic Equations[END_REF], this condition is called the Cullen-Purser condition [START_REF] Cullen | An extended Lagrangian theory of semigeostrophic frontogenesis[END_REF]. By analogy with the theory of hyperbolic conservation laws we rather call this convexity condition "entropy condition".

The main point now is that any "entropy solution" y(t, x) = ∇p(t, x), square integrable at each time t, can be entirely recovered by the knowledge of all "observables"

f → D f (y(t, x))dx,
for all continuous function f with at most quadratic growth at infinity. This is a direct consequence of the optimal transport theorem 3.2.1. Now, we have already obtained an evolution equation for all these observables, namely

d dt D f (y(t, x))dx = D (∇f )(y(t, x)) • G(t, x)dx
which is valid for the RNSB equations independently of both v and . This suggest the following concept of "entropy" solution for the HB system: Definition 7.2.2. We say that (t → y(t, •)) ∈ C 0 (R + , L 2 (D, R 3 )) is an entropy to the HB system

(HB) y = ∇p, ∇ • v = 0, ∂ t y + (v • ∇)y = G(t, x),
if, for each time t, y = ∇p is a map with convex potential p and if

d dt D f (y(t, x))dx = D (∇f )(y(t, x)) • G(t, x)dx, for all C 1 function f with sup y (1 + |y|) -1 |∇f (y)| < ∞.
Global existence of "entropy" solutions for the HB system

The global existence of entropy conditions is an easy consequence of the convergence of the following time-discrete scheme with time step τ > 0, where we approximate y(t = nτ, x) by y n,τ (x), for n = 0, 1, 2, • • •, as follows:

i) we first perform a predictor step: ỹn+1,τ (x) = y n (x) + τ G(x).

ii) then, the corrector step amounts to perform a rearrangement as a map with convex potential: y n+1,τ = (ỹ n+1,τ ) = ∇p n+1,τ where p n+1,τ is convex (in the large sense of D 2 p n+1,τ ≥ 0.

Observe that the last step is possible thanks to the optimal transport theory we have discussed earlier in this book. It is indeed enough to apply Theorem 3.2.1 to get ∇p n+1 as the unique gradient of a convex function that transports the Lebesgue measure on D to its image by map x → ỹn+1,τ (x).

Theorem 7.2.3. As τ → 0, the time-discrete scheme has converging subsequences. Each limit y belongs to the space C 0 (R + , L 2 (D, R d )), admits a convex potential: y(t, •) = ∇p(t, •) for each t ≥ 0 and satisfies

d dt D f (y(t, x))dx = D (∇f )(y(t, x)) • G(t, x)dx
for all smooth function f such that sup y (1+|y|) -1 |∇f (y)| < ∞. This exactly means that y is a global entropy solutions to the HB equations in the sense of Definition 7.2.2.

The proof is rather easy and can be found in [START_REF] Brenier | Rearrangement, convection, convexity and entropy[END_REF]. Let us just check the consistency of the scheme, in the special case G = G(x). Given a smooth function f , we get

D f (y n+1,τ (x))dx = D f (ỹ n+1 (x))dx (because y n+1,τ is a rearrangement of ỹn+1 ) = D f (y n,τ (x) + τ G(x))dx
(by definition of predictor ỹn+1,τ )

= D f (y n,τ (x))dx + τ D (∇f )(y n,τ (x)) • G(x)dx + O(τ 2 ),
which, indeed, means that the time-discrete scheme is consistent.

The 1D time-discrete rearrangement scheme

Remarkably enough, the rearrangement scheme we have just introduced still makes perfect sense in one space dimension, although it has been derived from a model of incompressible fluids requiring at least 2 space dimensions. We should not be surprised by this paradoxical phenomenon after all the time we have devoted to the generalized formulations of the Euler equations in the first part of this book (cf. section 2.4)! As a matter of fact, it is quite interesting to look at the 1D case. First, because the analysis of convergence can be very much improved thanks to the theory of scalar conservation laws already discussed in this book. Second, because the discrete scheme makes sense as a crude model of 1D, "column", convection. Finally and unexpectedly, it also admits interesting interpretations in the field of social sciences.

Rearrangement in increasing order

Before revisiting the time-discrete scheme in 1D, let us recall the well-known fact of Analysis (see [START_REF] Lieb | Analysis[END_REF] for example). Any L 2 real-valued function

x ∈ [0, 1] → z(x), admits a unique rearrangement in increasing order, i.e. a unique non decreasing L 2 function z such that,

[0,1] f (z (x))dx = [0,1] f (z(x))dx
for all continuous function f with at most quadratic growth. Notice that in the discrete case when z(x) = Z j , j/N < x < (j + 1)/N, j = 0, ..., N -1, then z (x) = Z j where (Z 1 , ..., Z N ) is just (Z 1 , ..., Z N ) sorted in increasing order. (Of course, this result is just a special occurence of the optimal transport theorem 3.2.1.)

A function and its rearrangement in increasing order The 1D rearrangement-scheme as a very crude model of column convection

N =
We consider a vertical column x ∈ [0, 1] and denote by y(t, x) the temperature field along the column. We assume the existence of a steady source of heat along the column: G = G(x). The convection model is described through the following timediscrete scheme with time step τ > 0, and two sub-steps:

-predictor (heating): ỹn+1,τ (x) = y n,τ (x) + τ G(x) -corrector ("instantaneous" convection): y n+1,τ = (ỹ n+1,τ ) so that the temperature profile stays monotonically increasing at each time step. (This actually corresponds to a succession of stable equilibria with a boost of heating at each time step.) We see that we exactly recover, in its 1D version, the time-discrete scheme introduced in the previous section in several space dimensions. Column convection. Drawing of the temperature mixing zone.

which means that the production between two different times depends only on the ranking. For example G(u) = 1 -u describes an equalitarian behaviour where the top people slow down their production while the bottom people catch up as fast as possible. A choice like G(u) = 1 -cos(3πu) seems more realistic: bottom people are discouraged while top people get even more competitive:

G(0) = 0, G(1/3) = 2, G(2/3) = 0, G(1) = 2.
We observe that the corresponding sorted sequence Y n,τ = X n,τ satisfies:

Y n+1,τ = (Y n,τ + τ G) ,
which is just a space-discrete version of the rearrangement-scheme discussed in the previous sub-section.

Tax on capital according to rank

We denote by Z n (α) ≥ 0 the capital for year n of each tax-payer α ∈ {1, • • •, N }.

We introduce σ n (α) ∈ {1, • • •, N } the (reverse) rank of the capital of taxpayer α at year n. We assume

Z n+1 (α) = Z n (α) exp(rτ ) exp(-F (N -1 σ n )τ )
where τ is the time step, r is the capital growth, which we assume, very crudely, to be the same for each tax-payer, while the taxation rate depends only on the rank through a given real bounded function F defined on [0, 1]. Thus we recover for X n,τ = log Z n exactly the same scheme we had in the previous model, namely, X n+1,τ (α) = X n,τ (α) + τ G(N -1 σ n,τ (α))

just by setting

G(u) = r -F (u), ∀u ∈ [0, 1].
The social science interpretation is that, depending on the choice of G, different policies may be enforced. For instance, an equalitarian policy can be obtained by homogenizing the capital of the different taxpayers (with a final discrepancy of order O(τ )) which will hold true provided that G satisfies the condition Chapter 8

g(u) = u 0 G(v)dv > g(0) = g(1), ∀u ∈]0,

Augmentation of conservation laws with polyconvex entropy

This chapter closely follows the papers [START_REF] Brenier | Hydrodynamic structure of the augmented Born-Infeld equations[END_REF][START_REF] Brenier | Derivation of particle, string, and membrane motions from the Born-Infeld electromagnetism[END_REF][START_REF] Duan | Hyperbolicity of the time-like extremal surfaces in Minkowski spaces[END_REF] by Xianglong Duan, Wenan Yong and the author. We discuss two examples: the nonlinear theory of Electromagnetism designed in 1934 by Max Born et Leopold Infeld [START_REF] Born | Foundations of a new field theory[END_REF]; the theory of time-like extremal surfaces in the Minkowski space, at least of those which can be written as graphs. In terms of applications, both examples are well known in High Energy Physics (String Theory and "Dirichlet-branes") [START_REF] Polchinski | String theory[END_REF]. In both cases, we get system of first order conservation laws with non-convex entropy. So, we cannot directly apply the concepts of relative entropy and dissipative solutions already discussed in this book (section 6). However, it turns out that, in each case, the entropy is a "polyconvex" function, in the sense that it is a convex function of some nonlinear combination of the unknowns (cf. [START_REF] Ball | Convexity conditions and existence theorems in nonlinear elasticity[END_REF]). For instance, in the second case, the unknowns are matrix-valued and the entropy is a convex function of the minors of the corresponding matrices. Then, the basic idea amounts to findind extra-conservation laws for these extra-variables and trying to get an enlarged system of conservation laws, with the hope there is a convex entropy for the augmented system. To the best of our knowledge, this idea has been first successfully applied by Qin to a large class of models in non-linear Elasticity [START_REF] Qin | Symmetrizing nonlinear elastodynamic system[END_REF]. In the two examples covered in this chapter, there is an additional remarkable property. Indeed, we can rewrite the augmented systems in the amazingly simple non-conservative form: 

∂ t U α + A iβγ α U γ ∂ i U β = 0,
∂ t u + u∂ x u = 0.

In addition, for each fixed

i = 1, •••, d, γ = 1, •••, m, the A iβγ
α form a symmetric m×m matrix in α, β. This is enough, with any further effort, to guarantee [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF][START_REF] Majda | Compressible fluid flow and systems of conservation laws in several space variables[END_REF] that the initial value problem (IVP) is locally well-posed in all Sobolev spaces H s (R d ) with continuous injection in C 1 , i.e. for all s > 1 + d/2.

The Born-Infeld equations

In 1934, Max Born and Leopold Infeld introduced a non-linear correction of the classical Maxwell model. This amounts to finding critical points (with respect to compactly supported perturbations)

(t, x) ∈ R 1+3 → (E, B)(t, x) ∈ R 3 × R 3 , of the following action A λ [E, B] = (1 -1 + λ -2 (B 2 -E 2 ) -λ -4 (B • E) 2 ) dxdt
where λ > 0 is a physical constant (the "absolute field"), under constraints

∇ • B = 0, ∂ t B + ∇ × E = 0.
In the "low-field" limit λ → ∞, the classical Maxwell model is recovered

λ 2 A λ [E, B] ∼ 1 2 (E 2 -B 2 ) dxdt
leading to the famous (homogeneous) Maxwell equations

∂ t B + ∇ × E = 0, ∂ t E = ∇ × B, ∇ • B = ∇ • E = 0.
Originally designed for Quantum-Electrodynamics (without real success [START_REF] Feynman | Le cours de physique de Feynman -Electromagnétisme 2 -2e édition[END_REF]), the Born-Infeld model has attracted since a lot of very different fields (from String Theory [START_REF] Polchinski | String theory[END_REF] to Quantum Electrodynamics, Fluid Dynamics and Numerical Analysis [START_REF] Boillat | Energy momentum, wave velocities and characteristic shocks in Euler's variational equations with application to the Born-Infeld theory[END_REF][START_REF] Després | Constant Lagrangian gas dynamics in two dimensions and Lagrangian systems[END_REF][START_REF] Holm | Stochastic evolution of augmented Born-Infeld equations[END_REF]302,[START_REF] Sart | A viscous augmented Born-Infeld model for magnetohydrodynamic flows[END_REF][START_REF] Tran | A relaxation method via the Born-Infeld system[END_REF]!

The electrostatic case

The electrostatic case is consistently obtained by canceling the magnetic field B:

A λ [E, 0] = (1 - √ 1 -λ -2 E 2 ) dxdt under constraint ∇ × E = 0.
So, the constant λ > 0 just appears as the maximal possible electrostatic field in the theory (just like 1 is the maximal possible velocity in Special Relativity). This was Max Born's original idea (inspired by earlier ideas of Gustav Mie).

Remark: a more general and geometric definition Notice that this Action is "fully covariant", i.e. invariant as g and B are deformed by any space-time diffeomorphism. (Indeed, there is an exact compensation between the determinant and the modifications brought to g ij dx i dx j and B ij dx i ∧ dx j by any diffeomorphism

x = (x 0 , • • •, x d ) ∈ R 1+d → Φ(x) ∈ R 1+d .
Of course, in the special case d = 3, g = diag(-1, 1, 1, 1), one may recover (through an elementary but instructive calculation, involving elementary linear algebra and properties of 4 × 4 skew symmetric matrices) the previous formulae introduced in 1934 in the special case of the standard 1+3 Minkowski space.

Remark: high-field limit of the Born-Infeld model and Magnetohydrodynamics

The original Born-Infeld model

A λ [E, B] = (1 -1 + λ -2 (B 2 -E 2 ) -λ -4 (B • E) 2 ) dxdt ∇ • B = 0, ∂ t B + ∇ × E = 0
admits an interesting "high-field" limit obtained as λ → 0, namely, at least formally,

λA λ [E, B] ∼ - √ B 2 -E 2 dxdt under the additional pointwise constraint E • B = 0. This pointwise constraint E • B = 0 is equivalent to E = B × v for some new field v = v(t, x). This leads to λA λ [E, B] ∼ - B 2 (1 -v 2 ) + (B • v) 2 dxdt
with differential constraints

∇ • B = 0, ∂ t B + ∇ × (B × v) = 0
which can be interpreted as the "induction equation" in ideal Magnetohydrodynamics [START_REF] Arnold | Topological methods in hydrodynamics[END_REF][START_REF] Ch | A model hierarchy for ionospheric plasma modeling[END_REF][START_REF] Gerbeau | Mathematical methods for the magnetohydrodynamics of liquid metals[END_REF][START_REF] Jüngel | A hierarchy of hydrodynamic models for plasmas: zerorelaxation-time limits[END_REF][START_REF] Moffatt | Self-exciting fluid dynamos[END_REF], where B and v may be seen respectively as the magnetic field and the velocity field of a charged fluid.

The Born-Infeld equations in Hamiltonian form

After normalization λ = 1, written in Hamiltonian form, the Born-Infeld equations read

∂ t B + ∇ × ( B × (D × B) + D 1 + D 2 + B 2 + (D × B) 2 ) = 0, ∇ • B = 0, ∂ t D + ∇ × ( D × (D × B) -B 1 + D 2 + B 2 + (D × B) 2 ) = 0, ∇ • D = 0.
As shown by Speck [START_REF] Speck | The nonlinear stability of the trivial solution to the Maxwell-Born-Infeld system[END_REF], using Klainerman's null forms, global smooth solutions to the initial value problem have been proven to uniquely exist for small localized initial conditions. We are going to follow a very different way to analyse the Born-Infeld equations, by augmenting the system and finding a suitable convex "entropy function".

The energy-momentum conservation laws By Noether's theorem, since the Born-Infeld Action is manifestly invariant under time and space translations in the Minkowski space R 1+3 , we expect four extra conservation laws. There calculation is elementary but not completely obvious:

∂ t Q + ∇ • ( Q ⊗ Q -B ⊗ B -D ⊗ D h ) = ∇( 1 h ), ∂ t h + ∇ • Q = 0
for the energy and momentum fields

h = 1 + D 2 + B 2 + (D × B) 2 , Q = D × B.
The augmented Born-Infeld system

Following [START_REF] Brenier | Hydrodynamic structure of the augmented Born-Infeld equations[END_REF] we define the 10 by 10 augmented Born-Infeld system (ABI) as the original BI system augmented by the 4 energy-momentum conservation laws

∂ t B + ∇ × ( B × Q + D h ) = ∂ t D + ∇ × ( D × Q -B h ) = 0 ∂ t Q + ∇ • ( Q ⊗ Q -B ⊗ B -D ⊗ D h ) = ∇( 1 h ), ∂ t h + ∇ • Q = 0
while disregarding the original algebraic constraints

h = 1 + D 2 + B 2 + (D × B) 2 , Q = D × B,
which define a 6 dimensional algebraic submanifold in the space (h, Q, D, B) ∈ R 10 that we call the "BI manifold".

The ABI system in non-conservative variables

Here, our analysis follows [START_REF] Brenier | Derivation of particle, string, and membrane motions from the Born-Infeld electromagnetism[END_REF] rather than [START_REF] Brenier | Hydrodynamic structure of the augmented Born-Infeld equations[END_REF]. Indeed, the augmented BI system looks even simpler in so-called "non-conservative variables"

b = B/h, d = D/h, v = Q/h, τ = 1/h Namely ∂ t b + (v • ∇)b -(b • ∇)v + τ ∇ × d = 0 ∂ t d + (v • ∇)d -(d • ∇)v -τ ∇ × b = 0 ∂ t v + (v • ∇)v -(b • ∇)b -(d • ∇)d -τ ∇τ = 0 ∂ t τ + (v • ∇)τ -τ ∇ • v = 0
This turns out to be just a symmetric system with purely quadratic non-linearities! In some sense, a generalization of the inviscid Burgers equation, of form

∂ t U α + A iβγ α U γ ∂ i U β = 0,
written "in coordinates" (with implicit summation on repeated indices), where U = U (t, x) ∈ R 10 and, for each fixed indices i = 1, • • •, 3 and γ = 1, • • •, 10, the 10 × 10 matrices (A iβγ α ) are symmetric in α, β. Also observe that there is no limitation of range for the variables U = (n, d, v, τ ) in the space R 10 . (In particular it makes sense to consider negative or null values of τ , which is not possible in the conservative formulation of the ABI system since ρ = 1/τ . This is a remarkable advantage of the non-conservative version! Of course, we don't make any comment on the possible physical meaning of considering negative values of τ !) Concerning the BI manifold, its expression in terms of non-conservative variables is even simpler. We get the following algebraic (quadratic) 6-dimensional submanifold of R 10 :

NCBIM τ 2 + b 2 + d 2 + v 2 = 1, τ v = d × b.
(Notice that we may consider both positive and negative values of τ in this definition!) So, we obtain, essentially for free, the following result Theorem 8.1.1. The non-conservative augmented Born-Infeld (NCABI) system is locally well-posed in any Sobolev space H s (R 3 ) continuously imbedded in C 1 (namely, for any s > 5/2). In addition the non-conservative Born-Infold manifold is preserved under evolution.

Because of the preservation of the manifold, we have immediately, without any further analysis, obtained the local well-posedness of the orginal Born-Infeld equations. Of course, the analysis provided by Speck [START_REF] Speck | The nonlinear stability of the trivial solution to the Maxwell-Born-Infeld system[END_REF] is much more sophisticated and leads to a global existence and uniqueness result of smooth solutions to the expanse of assuming initial conditions to be small and localized, which is in no way needed in our cruder analysis. An interesting open question is the possible global existence of smooth solutions not only for the original BI system but also for its augmented version.

Remark: reduced versions of the NCABI system: motion of strings and photons It is perfectly consistent to assume τ = 0, d = 0 in the non-conservative augmented BI (NCABI) system. We then get a reduced system which describes a continuum of vibrating strings

∂ t b + (v • ∇)b -(b • ∇)v = 0, ∂ t v + (v • ∇)v -(b • ∇)b = 0
The corresponding BI manifold b 2 + v 2 = 1, v • b = 0 corresponds to relativistic strings, like in "classical" String Theory (i.e. without quantization). We may further consistently assume b = 0 in the NCABI and get ∂ t v + (v • ∇)v = 0 with reduced BImanifold v 2 = 1 which describes the motion of (classical) massless particles moving at the speed of light (e.g. photons).

First appearance of convexity in the augmented Born-Infeld system

Let us now go back to the 10 × 10 augmented ABI system in conservative form. Surprisingly enough, the augmented system, as shown in [START_REF] Brenier | Hydrodynamic structure of the augmented Born-Infeld equations[END_REF], admits an extra conservation law, namely

∂ t η + ∇ • ω = 0, η = 1 + D 2 + B 2 + Q 2 h , ω = ω(h, Q, D, B)
where η is a strictly convex function and the "entropy flux" ω can be explicitly computed. This makes the ABI system an example of entropic system of conservation laws (ESCL), for which we can use all the concepts of "relative entropy method" and "dissipative solutions" we discussed in section 6.4.

Remark: Galilean invariance of the augmented Born-Infeld system

The ABI system looks pretty much like classical MHD equations and enjoys an astonishing classical Galilean invariance, under the transform

(t, x) → (t, x + W t), (h, Q, D, B) → (h, Q -hU, D, B)
for any constant speed W ∈ R 3 ! This looks contradictory with the definite Lorentzian origin of the Born-Infeld system. However, there is no contradiction since those Galilean transforms are incompatible with the Born-Infeld manifold, where Q is algebraically slaved by B and D through Q = D × B! Moreover, we conjecture that this amazing property characterizes the Born-Infeld model among all alternative Electromagnetic theories, including ...Maxwell's one! Second appearance of convexity in the augmented Born-Infeld system

The 10 × 10 ABI (augmented Born-Infeld) system is linearly degenerate (in the sense of Lax [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF]) and enjoy an interesting stability under weak-* convergence. More precisely:

Theorem 8.1.2. Each weak-* limit of uniformly bounded sequences in L ∞ of smooth solutions depending on one space variable of the ABI system are still solutions of the ABI system.

This follows from a straightforward application of the Murat-Tartar 'div-curl' lemma [START_REF] Murat | Compacité par compensation[END_REF][START_REF] Tartar | Compacité par compensation: résultats et perspectives, Nonlinear partial differential equations and their applications[END_REF]. This suggests that the convex hull of the BI manifold might be a natural completed configuration space for the Born-Infeld theory. However, this is not so clear, as pointed out to the author by Felix Otto, since one has to take into account the differential constraints ∇ • D = ∇ • B = 0. Anyway, as shown in [START_REF] Brenier | Hydrodynamic structure of the augmented Born-Infeld equations[END_REF], the convex hull has full dimension in R 10 and has been explicitly computed by Serre [START_REF] Serre | About the Young measures associated with Y. Brenier's ABI model[END_REF] and is defined by the single inequality

h ≥ 1 + D 2 + B 2 + Q 2 + 2 |P -D × B| 2 + (B • P ) 2 + (D • P ) 2
Moreover Müller and Palombaro [START_REF] Müller | On a differential inclusion related to the Born-Infeld equations[END_REF], using convex integration theory, have proven that the differential constraints ∇ • D = ∇ • B = 0 are not an obstruction to the conjecture. On the convexified BI manifold, defined by Serre's inequality, we have the following properties:

1) The electromagnetic field (D, B) and the 'density and momentum' fields (h, Q) can be chosen independently of each other at initial time, provided they satisfy Serre's inequality 2) The augmented BI system can be interpreted (in MHD style) as the coupling of an electromagnetic field with a fluid

∂ t B + ∇ × ( B × Q + D h ) = ∂ t D + ∇ × ( D × Q -B h ) = 0 ∂ t Q + ∇ • ( Q ⊗ Q -B ⊗ B -D ⊗ D h ) = ∇( 1 h ), ∂ t h + ∇ • Q = 0.
(while the original Born-Infeld model is purely electromagnetic, without any interaction with matter).

3) 'Matter' may exist without electromagnetic field, in the case when B = D = 0, which leads to the so-called "Chaplygin gas" [START_REF] Serre | Multidimensional shock interaction for a Chaplygin gas[END_REF] (which has been advocated as a possible model for "dark energy" or "vacuum energy") with an unusual speed of sound c, namely c = 1/h,

∂ t Q + ∇ • ( Q ⊗ Q h ) = ∇( 1 h ), ∂ t h + ∇ • Q = 0 4) 'Moderate' Galilean transforms are allowed (t, x) → (t, x + U t), (h, Q, D, B) → (h, Q -hU, D, B)
(which is impossible on the original BI manifold). As a matter of fact, this seems to be a general feature of Special Relativity under weak completion (cf. "subrelativistic" conditions, as discussed in [START_REF] Bellettini | Closure and convexity results for closed relativistic strings[END_REF][START_REF] Brenier | Non relativistic strings may be approximated by relativistic strings[END_REF].

Extremal time-like surfaces in the Minkowski space

Let us now consider a second example of an augmented system with convex entropy derived from a system of conservation laws with a polyconvex entropy. This section narrowly follows the paper [START_REF] Duan | Hyperbolicity of the time-like extremal surfaces in Minkowski spaces[END_REF] by Xianglong Duan.

In the (1+n+m)-dimensional Minkowski space R 1+(n+m) , let X(t, x) be a time-like (1 + n)-dimensional surface (called n-brane in String Theory [START_REF] Polchinski | String theory[END_REF]), namely,

(t, x) ∈ Ω ⊂ R × R n → X(t, x) = (X 0 (t, x), . . . , X n+m (t, x)) ∈ R 1+(n+m) ,
where Ω is a bounded open set. This surface is called an extremal surface if X is a critical point, with respect to compactly supported perturbations in the open set Ω, of the following area functional (which corresponds to the Nambu-Goto action in the case n = 1)

- Ω -det(G µν ) , G µν = η M N ∂ µ X M ∂ ν X N ,
where M, N = 0, 1, . . . , n + m, µ, ν = 0, 1, . . . , n, and η = (-1, 1, . . . , 1) denotes the Minkowski metric, while G is the induced metric on the (1 + n)-surface by η.

Here ∂ 0 = ∂ t and we use the convention of implicit summations on repeated indices.

Through the least-action principle, the Euler-Lagrange equations gives the well-known equations of extremal surfaces,

∂ µ √ -GG µν ∂ ν X M = 0, M = 0, 1, . . . , n + m,
where G µν is the inverse of G µν and G = det(G µν ).

Now, let us concentrate on the special case where the extremal surfaces are graphs of the form X 0 = t, X i = x i , i = 1, . . . , n, X n+α = X n+α (t, x), α = 1, . . . , m.

By using notation

V α = ∂ t X n+α , F αi = ∂ i X n+α , α = 1, . . . , m, i = 1, . . . , n. D α = det(I n + F T F )(I m + F F T ) -1 αβ V β 1 -V T (I m + F F T ) -1 V
we find that the extremal surface equation is now equivalent to the following system for the matrix-valued function F = (F αi ) q×p and a vector valued function D = (D α ) α=1,2,...,q ,

∂ t F αi + ∂ i D α + F αj P j h = 0, ∂ t D α + ∂ i D α P i + ξ (F ) αi h = 0, ∂ j F αi = ∂ i F αj , P i = F αi D α , h = D 2 + P 2 + ξ(F ), 1 ≤ i, j ≤ p, 1 ≤ α ≤ q, where ξ(F ) = det I + F T F , ξ (F ) αi = 1 2 ∂ξ(F ) ∂F αi = ξ(F )(I + F T F ) -1 ij F αj .
As we have seen for the Born-Infeld equations, there are extra conservation laws for the "energy" density h and the "momentum" vector P as defined above, namely,

∂ t h + ∇ • P = 0, ∂ t P i + ∂ j P i P j h - ξ(F )(I + F T F ) -1 ij h = 0.
Viewing h and P as independent variables, the new system admits a polyconvex entropy (which means that the entropy can be written as a convex function of the minors of F ). Here, for 1 ≤ k ≤ r, and any ordered sequences 1 ≤ α 1 < α 2 < . . . < α k ≤ m and 1 ≤ i 1 < i 2 < . . . < i k ≤ n, let A = {α 1 , α 2 , . . . , α k }, I = {i 1 , i 2 , . . . , i k }, the minor of F with respect to the rows α 1 , α 2 , . . . , α k and columns i 1 , i 2 , . . . , i k is defined as [F ] A,I = det (F αpiq ) p,q=1,...,k .

Now, by viewing these minors [F ]

A,I as new independent variables, we can further enlarge this system. As for the Born-Infeld equations, the augmented system is hyperbolic with a convex entropy, linearly degenerate and preserves the algebraic constraints that have been given up in the process of augmenting the system.

The augmented system

Now let us consider the energy density h, the vector field P and the minors [F ] A,I as independent variables. As shown by Xianglong Duan [START_REF] Duan | Hyperbolicity of the time-like extremal surfaces in Minkowski spaces[END_REF], the original system can be augmented to the following system of conservation laws. More precisely, for h > 0, D = (D α ) α=1,2,...,m , P = (P i ) i=1,2,...,n , M A,I with A ⊆ {1, 2, . . . , m}, I ⊆ {1, 2, . . . , n}, 1 ≤ |A| = |I| ≤ r = min{m, n}, the augmented system reads

∂ t h + ∇ • P = 0 ∂ t D α + ∂ i D α P i h + A,I,i α∈A,i∈I (-1) O A (α)+O I (i) ∂ i M A,I M A\{α},I\{i} h = 0 ∂ t P i + A,I,j j∈I,i / ∈I\{j} (-1) O I (j)+O I\{j} (i) ∂ j M A,(I\{j}) {i} M A,I h + ∂ j P i P j h -∂ i 1 + A,I M 2 A,I h = 0 (8.2.1) ∂ t M A,I + i,j i∈I,j / ∈I\{i} (-1) O I\{i} (j)+O I (i) ∂ i M A,(I\{i}) {j} P j h + α,i α∈A,i∈I (-1) O A (α)+O I (i) ∂ i M A\{α},I\{i} D α h = 0 (8.2.2) i∈I (-1) O I (i) ∂ i M A ,I\{i} = 0, 2 ≤ |I| = |A | + 1 ≤ r + 1.
Here O A (α) denotes the integer such that α is the O A (α)th smallest element in A {α}. All the sum are taken in the convention that A ⊆ {1, . . . , m}, I ⊆ {1, . . . , n}, 1 ≤ α ≤ m, 1 ≤ i, j ≤ n. Following [START_REF] Duan | Hyperbolicity of the time-like extremal surfaces in Minkowski spaces[END_REF], it can be first checked that the augmented system reduces to the original system under the algebraic constraints which were given up in order to enlarge the system, namely

P i = F αi D α , h = D 2 + P 2 + ξ(F ), M A,I = [F ] A,I .
The following result is obtained in [START_REF] Duan | Hyperbolicity of the time-like extremal surfaces in Minkowski spaces[END_REF]: Proposition 8.2.1. The augmented system written above admits an additional conservation law for the convex entropy

S(h, D, P, M ) = 1 + D 2 + P 2 + A,I M 2 A,I 2h , namely: 
∂ t S + ∇ • SP h + A,I,i α∈A,i∈I (-1) O A (α)+O I (i) ∂ i D α M A\{α},I\{i} M A,I h 2 + A,I,j j∈I,i / ∈I\{j} (-1) O I (j)+O I\{j} (i) ∂ j P i M A,(I\{j}) {i} M A,I h 2 -∂ j P j (1 + M 2 A,I ) h 2 = 0.

Non-conservative form

The non-conservative form of the augmented system has a very simple structure, as shown by Xianglong Duan [START_REF] Duan | Hyperbolicity of the time-like extremal surfaces in Minkowski spaces[END_REF]:

Theorem 8.2.2. In the case of graphs, the equations of extremal time-like surfaces of dimension 1 + n in the Minkowski space of dimension 1 + n + m can be translated into a first order symmetric hyperbolic system of PDEs, which admits the very simple form

∂ t W + n j=1 A j (W )∂ x j W = 0, W : (t, x) ∈ R 1+n → W (t, x) ∈ R n+m+( m+n n ) ,
where each A j (W ) are suitable

(n + m + m+n n ) × (n + m + m+n n
) symmetric matrix depending linearly on W . Accordingly, this system is automatically well-posed, locally in time, in the Sobolev space W s,2 as soon as s > n/2 + 1.

The structure of the resulting equations is reminiscent of the celebrated prototype of all nonlinear hyperbolic PDEs, the so-called inviscid Burgers equation ∂ t u + u∂ x u = 0, where u and x are both just valued in R, with the simplest possible nonlinearity. Of course, to get such a simple structure, the relation to be found between X (valued in R 1+n+m ) and W (valued in R n+m+( m+n n ) ) is very involved [START_REF] Duan | Hyperbolicity of the time-like extremal surfaces in Minkowski spaces[END_REF]. More precisely, it can be shown that the case of extremal surfaces corresponds to a special subset of solutions of the augmented system for which W lives in a suitable algebraic sub-manifold of R n+m+( m+n n ) , which is preserved by the dynamics of the augmented system.

As for the augmented Born-Infeld equations, the strategy of proof follows the concept of system of conservation laws with "polyconvex" entropy in the sense of Dafermos [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF]. The first step is to lift the original system of conservation laws to a (much) larger one which enjoys a convex entropy rather than a polyconvex one. This strategy has been successfully applied in many situations, such as nonlinear Elastodynamics [START_REF] Qin | Symmetrizing nonlinear elastodynamic system[END_REF], nonlinear Electromagnetism [START_REF] Brenier | Hydrodynamic structure of the augmented Born-Infeld equations[END_REF][START_REF] Brenier | Derivation of particle, string, and membrane motions from the Born-Infeld electromagnetism[END_REF][START_REF] Serre | Hyperbolicity of the nonlinear models of Maxwell's equations[END_REF], just to quote few examples. Let us add that the calculations provided in [START_REF] Duan | Hyperbolicity of the time-like extremal surfaces in Minkowski spaces[END_REF] crucially rely on the classical Cauchy-Binet formula.

Chapter 9

Convex entropic formulation of some degenerate parabolic systems

As we have already seen in Chapter 6, entropy methods are very useful to address system of first order conservation laws. In the present chapter, we extend this approach to some parabolic equations, the prototype being the linear heat equation. We will adress more sophisticated examples, coming from Continuum Mechanics, such as the Muskat system (also know as the incompressible porous media equation), or Geometry, such as mean curvature flows of various co-dimensions. (Mean curvature flows is an enormous subject in Geometric Analysis and Computation. Let us just mention very few related works [START_REF] Almgren | Curvature-driven flows: a variational approach[END_REF][START_REF] Bethuel | Convergence of the parabolic Ginzburg-Landau equation to motion by mean curvature[END_REF][START_REF] Brakke | The Motion of a Surface by its Mean Curvature[END_REF][START_REF] Buet | Discretization and approximation of surfaces using varifolds[END_REF][START_REF] Chambolle | Convergence of an algorithm for the anisotropic and crystalline mean curvature flow[END_REF][START_REF] Jerrard | On the motion of a curve by its binormal curvature[END_REF][START_REF] Laux | Felix Brakke's inequality for the thresholding scheme[END_REF][START_REF] Luckhaus | Implicit time discretization for the mean curvature flow equation[END_REF][START_REF] Merriman | Motion of multiple junctions: a level set approach[END_REF]).

All the examples we are going to cover can be derived, through a simple asymptotic method, from suitable systems of first order conservation laws with a convex entropy so that we will be able to transfer convex entropic formulations straightforwardly from the hyperbolic level to the parabolic level. Our tool to derive parabolic systems from systems of first order conservation laws is extremely simple, although not usual in the literature for evolution PDEs, to the best of our knowledge. It amounts to performing a quadratic change of time near t = 0 and, then, neglecting the higher order terms. Let us explain this idea through the very simple prototype of dynamical systems with a convex potential.

From dynamical systems to gradient flows by quadratic change of time

Let us first apply the quadratic change of time (QCT) method to the simple dynamical system d 2 X dt 2 = -(∇ϕ)(X), by setting

X(t) = Y (θ), θ = t 2 /2 θ = dθ dt = t.
This leads to

dX dt = θ dY dθ , -(∇ϕ)(Y (θ)) = d dt (θ dY dθ ) = θ" dY dθ + (θ ) 2 d 2 Y dθ 2 and thus dY dθ + 2θ d 2 Y dθ 2 = -(∇ϕ)(Y ).
For large θ, we get the purely inertial motion governed by:

d 2 Y dθ 2 = 0,
while, for small θ, we rather get the so-called "gradient flow" regime with:

dY dθ = -(∇ϕ)(Y ).
Remark :

The quadratic rescaling θ = t 2 /2 perfectly fits with Galileo's experiment: a rigid ball descends a rigid ramp of constant slope, with zero initial velocity and constant acceleration G, reaching position

X(t) = x 0 + Gt 2 /2 = x 0 + Gθ = Y (θ) at time t. So, Y is just a linear function of the rescaled time θ! dY dθ + 2θ d 2 Y dθ 2 = G but also simultaneously dY dθ = G, d 2 
Y dθ 2 = 0, i.e. both the gradient flow and the inertial regimes.

End of remark.

For the original dynamical system, d 2 X dt 2 = -∇ϕ(X), we get the usual conservation of energy

d dt [ 1 2 | dX dt | 2 + ϕ(X)] = 0
For the time-rescaled version Y (θ) = X(t), θ = t 2 /2, we find

d dθ [ϕ(Y )] + θ d dθ | dY dθ | 2 = -| dY dθ | 2
In the asymptotic regime when θ is very small, we recover the gradient flow

dY dθ = -∇ϕ(Y )
and the classical "energy -dissipation" relation

d dθ [ϕ(Y )] = -| dY dθ | 2 .
We may compare, for short times, X solution of the original equation, with zero initial velocity, to Y solution of the gradient flow

d 2 X dt 2 = -∇ϕ(X), X (0) = 0, dY dθ = -∇ϕ(Y ), Y (0) = X(0).
Under strong convexity and smoothness assumptions on ϕ, Assuming the spectrum of the symmetric matrix D 2 ϕ(x) to be contained in a fixed interval [r, 1/r], uniformly in x, for some constant r > 0, we may easily prove, through a standard Gronwall estimate,

|X(t) -Y (t 2 /2)| 2 + | dX dt (t) -t dY dθ (t 2 /2)| 2 ≤ t 4 exp(t 2 c)c.
by monitoring the "relative energy"

1 2 | dX dt -t dY dθ | 2 + ϕ(X) -ϕ(Y ) -∇ϕ(Y ) • (X -Y ),
which is just obtained (as a "relative entropy") by substracting from the energy of X what we obtain by expanding linearly the energy in X about Y . Notice that constant c depends only on r and on Y .

From the Euler equations to the heat equation by quadratic change of time

Let us now get back, as a leitmotiv, to the Euler equations, this time for compressible fluids. They read, as written by Euler (i.e. without thermodynamics nor energy equation; they are frequently called "isentropic Euler equations"):

∂ t ρ + ∇ • (ρv) = 0, ∂ t (ρv) + ∇ • (ρv ⊗ v) = -∇p
where (ρ, p, v) ∈ R 1+1+3 are the density, pressure and velocity fields of a fluid and p is assumed to be a given function of ρ. Let us now perform the quadratic change of time (QCT)

ρ(t, x) = ρ(θ, x), ṽ(t, x) = θ v(θ, x), θ = θ(t) = t 2 /2 θ = dθ dt = t
(so that ṽ(t, x)dt = v(θ, x)dθ). We get:

∂ t ρ + ∇ • (ρṽ) = 0 → θ ∂ θ ρ + θ ∇ • (ρv) = 0 ∂ t (ρṽ) + ∇ • (ρṽ ⊗ ṽ) = -∇p(ρ) → θ"ρv + (θ ) 2 ∂ θ (ρv) + (θ ) 2 ∇ • (ρv ⊗ v) = -∇p(ρ) → ρv + 2θ∂ θ (ρv) + 2θ∇ • (ρv ⊗ v) = -∇p(ρ)
So, after the quadratic change of time, the Euler equations become

∂ θ ρ + ∇ • (ρv) = 0, ρv + 2θ[∂ θ (ρv) + ∇ • (ρv ⊗ v)] = -∇p(ρ)
Notice that the continuity equation has stayed unchanged. (Actually, this was the main purpose of the different rescaling of variables ρ and v.) The new system of evolution PDEs is no longer "autonomous": it depends explicitly on the new time variable θ, actually in a very simple, linear, way. So we may consider two asymptotic regimes, according to the size of θ. For very large θ, we just obtain the so-called "pressureless Euler" equations:

∂ θ ρ + ∇ • (ρv) = 0, ∂ θ (ρv) + ∇ • (ρv ⊗ v) = 0,
which is just a degenerate (but tricky!) version of the Euler equations. We are much more interested in the second regime when θ is very small. Then, we obtain the so-called "porous media equation"

∂ θ ρ + ∇ • (ρv) = 0, ρv = -∇p, or, in short, ∂ θ ρ = ∆(p(ρ)),
including the heat equation in the special ("isothermal") case p(ρ) = ρ. So, the quadratic change of time has clearly introduced a change of type in the equations, since we have moved from the hyperbolic, first order, setting of the Euler equations to the parabolic, second order in space, setting of the heat and the porous medium equations.

Inhomogeneous incompressible Euler and Muskat equations

Another example where we can fruitfully derive degenerate parabolic equations out of entropic systems of conservation laws come from Fluid Mechanics. This the Muskat system, also known as incompressible porous media equation. We start with the Euler equations, set on T d for simplicity, of an incompressible inhomogeneous fluid subject to the action of an external potential Φ and we use the Boussinesq approximation:

∂ t ρ + ∇ • (ρv) = 0, ∇ • v = 0, ρ(∂ t v + ∇ • (v ⊗ v)) + ∇p = -ρ∇Φ, ρ = cst.
Notice that the density field ρ is advected by the velocity field v in the sense that

(∂ t ρ + v • ∇)ρ = 0,
which is a consequence of both the continuity equation and the divergence-free condition on v.

Remark.

In geophysical Fluid Mechanics [394], the Boussinesq approximation, which is still widely used because its substantially simplifies numerical computations, amounts to neglecting the variation of the density in the acceleration term and substituting for it the constant ρ which should be considered as an average density (and, accordingly, ρ should be thought as the density minus its average rather than the density itself, which does not affect the equations since adding a constant to ρ does not modify them, thanks to the pressure term and the divergence-free condition). (See [START_REF] Cullen | A mathematical theory of large-scale atmosphere/ocean flow[END_REF]394].) Anyway, this model is fully consistent with the least action principle without requiring any approximation, provided the action is defined by

A = 1 2 ρ|v(t, x)| 2 -ρ(t, x)Φ(x) dxdt
subject to constraints:

∂ t ρ + ∇ • (ρv) = 0, ∇ • v = 0.
Indeed, introducing two Lagrange multipliers θ = θ(t, x) ∈ R and q = q(t, x) ∈ R for the constraints, we form the Lagrangian

L = 1 2 |v(t, x)| 2 -ρ(t, x)Φ(x) -∂ t θρ -∇θ • ρv -∇q • v dxdt
(where we have set ρ = 1 for notational simplicity) and get, by successively varying v and ρ,

v = ρ∇θ + ∇q, ∂ t θ + v • ∇θ + Φ = 0, which leads back to ∂ t v + ∇ • (v ⊗ v) + ∇p = -ρ∇Φ,
after elementary calculations, where p is related to q through:

p = 1 2 |v| 2 -v • ∇q.
[Strickly speaking this derivation is incomplete as d > 3 (which does not matter from a mechanical viewpoint) since the "Clebsch" decomposition v = ρ∇θ + ∇q is too restrictive to describe a divergence-free vector field as d > 3. Then, additional Lagrange multipliers must be added in the action principle.] End of remark.

From now on, we simplify notations by setting ρ = 1 and define the "Euler-Boussinesq" equations as

(EB) : ∂ t v + ∇ • (v ⊗ v) + ∇p = -ρ∇Φ, ∂ t ρ + ∇ • (ρv) = 0, ∇ • v = 0.
Observe the (formal) conservation of energy:

d dt T d 1 2 |v(t, x)| 2 + ρ(t, x)Φ(x) dx = 0.
Also notice that for any suitable function Ψ we get the extra conservation

d dt T d Ψ(ρ(t, x)))dx = 0.
So, we may as well rewrite the conservation of energy as

d dt T d {|v(t, x)| 2 + (ρ(t, x) + Φ(x)) 2 }dx = 0.
(just by taking Ψ(r) = r 2 ).

From Euler to Muskat by quadratic change of time

Let us again use the quadratic change of time method, applied to the Euler-Boussinesq (EB) system:

t → θ = t 2 /2, new ρ(θ, x) = old ρ( √ 2θ, x), new v(θ, x) = 1 √ 2θ old v( √ 2θ, x),
After this change, the Euler-Boussinesq system becomes

∂ θ ρ + ∇ • (ρv) = 0, ∇ • v = 0, v + 2θ(∂ θ v + ∇ • (v ⊗ v)) + ∇p = -ρ∇Φ,
For small θ we just find, as asymptotic equations, the Muskat equations

∂ θ ρ + ∇ • (ρv) = 0, ∇ • v = 0, v + ∇p = -ρ∇Φ.
Relative energy estimate for the Euler-Boussinesq equations Proposition 9.3.1. If (v, ρ) is a weak solution of Euler-Boussinesq with decreasing energy. Then, for all smooth fields (ṽ, ρ) such that ∇ • ṽ = 0, we get the "relative energy" differential inequality

d dt {||v -ṽ|| 2 L 2 (T d ) + ||ρ -ρ|| 2 L 2 (T d ) } ≤ 2 T d L + Q, L = (ṽ -v) • Ẽ1 + (ρ -ρ) Ẽ2 Q = (ρ -ρ)(ṽ -v) • ∇(Φ + ρ) -(ṽ -v) ⊗ (ṽ -v) • (∇ṽ + ∇ṽ T ), Ẽ1 = ∂ t ṽ + ∇ • (ṽ ⊗ ṽ) + ρ∇Φ, Ẽ2 = ∂ t ρ + ∂ j (ρv j ),
At this point, we have just mimicked what Lions did for the homogeneous Euler equations in [START_REF] Lions | Incompressible models[END_REF]. Then, still following Lions, we may deduce from the relative energy estimate a good concept of "dissipative" solutions to the Euler-Boussinesq system and easily get global existence and "weak-strong" stability (and uniqueness) results for such solutions.

Dissipative solutions" for the Muskat system From the "relative energy" estimate obtained for the Euler-Boussinesq system, we almost immediately get a corresponding new concept of "dissipative solution" for the Muskat system just by using, again, the quadratic change of time method. The result is therefore just a definition:

Definition 9.3.2. We say that (ρ, v) ∈ (C 0 (L 2 w ) × L 2 )([0, T ] × T d ) is a dissipative solution to the Muskat system if: i) ∇ • v = 0, ii) ∀(ρ, ṽ) ∈ (W 1,∞ × L 2 )([0, T ] × T d ) s.t. ∇ • ṽ = 0, ∀t ∈ [0, T ], T d (ρ -ρ)(t, •) 2 ≤ e t r T d (ρ -ρ)(0, •) 2 - t 0 e (t-s)r T d {2(v -ṽ) • Ẽ1 + 2(ρ -ρ) Ẽ2 +|ṽ -v| 2 + |ṽ -v -(ρ -ρ)∇(Φ + ρ)| 2 }(s, x)dxds, Ẽ1 = ṽ + ρ∇Φ, Ẽ2 = ∂ t ρ + ṽ • ∇ρ, r = ||∇(Φ + ρ)|| L ∞ .

Quadratic change of time for mean-curvature flows

We are now going to get some mean curvature flows from hyperbolic equations (typically geometric wave equations) through the quadratic change of time method. This has been developed for the curve-shortening flow (which is the mean-curvature flow in dimension 1, i.e. in co-dimension d -1), with Xianglong Duan [START_REF] Brenier | From Conservative to Dissipative Systems Through Quadratic Change of Time, with Application to the Curve-Shortening Flow[END_REF]. Here, we focus on the substantially simpler case of mean curvature flow for graphs, with co-dimension one. In this section, we narrowly follow [START_REF] Brenier | Geometric origin and some properties of the arctangential heat equation[END_REF].

Theorem 9.4.1. Through the quadratic change of time method, the nonlinear wave equation, which describes graphs of extremal area in the Minkowski space R 1+d ,

∂ t ( ∂ t φ R ) = ∇ • ( ∇φ R ), R = 1 -∂ t φ 2 + |∇φ| 2
generates two twin evolution PDEs. The first one is the "arctangential" heat equation ∂ t D = ∆(arctan D), while the second one is just the well known mean curvature flow for graphs

∂ t φ = 1 + |∇φ| 2 ∇ • ∇φ 1 + |∇φ| 2 .
Remark: interpretation of the arctangential heat equation in optimal transport terms:

The arctangential flow ∂ t D = λ∆(arctan(Dλ -1 ) (where we have input the scaling parameter λ > 0) can be easily written in optimal transport style (à la Otto) [START_REF] Otto | The geometry of dissipative evolution equations: the porous medium equation[END_REF][START_REF] Otto | Eulerian calculus for the contraction in the Wasserstein distance[END_REF] ∂

t D = ∇ • (D ∇(F (D))) .
Indeed, it is enough to set

F(D) = D log D √ 1 + D 2 λ -2 -λ arctan(Dλ -1 ).
Notice that function F is nothing but the Legendre transform of u → λ arcsin(λ -1 e u ) (extended by +∞ for u > log λ), which can be seen, interestingly enough, as a "catastrophic" version of the usual exponential. (N.B. In addition, the inverse of this "catastrophic" exponential u → λ arcsin(λ -1 exp(u)), which can be symmetrized and periodized as v → 1 2 log(λ 2 sin 2 (vλ -1 )), also plays a crucial role in the recent theory of "unbalanced optimal transport" [START_REF] Chizat | Unbalanced Optimal Transport: Geometry and Kantorovich Formulation[END_REF][START_REF] Kondratyev | A new optimal transport distance on the space of finite Radon measures[END_REF][START_REF] Liero | Optimal Entropy-Transport problems and a new Hellinger-Kantorovich distance[END_REF].)

B(θ, x) = B( √ 2θ, x) √ 2θ , P(θ, x) = P ( √ 2θ, x) √ 2θ ,
requiring initial condition B = P = 0 at t = 0, which corresponds to ∇φ = 0 at t = 0 in terms of φ. After performing the change of time t → θ = t 2 /2, we get, in the 1st case, the non automous system:

∂ θ B = ∇ D - P • B H , H = 1 + B 2 + 2θ(D 2 + P 2 ), D -∇ • B H = -2θ ∂ θ D + ∇ • PD H , P + ∇ • B ⊗ B H -∇ 1 + B 2 H = -2θ ∂ θ P + ∇ • P ⊗ P H ,
Neglecting the red terms leads to the mean curvature flow (for graphs), written as an augmented system, in form:

∂ θ B = ∇ D - P • B H , H = √ 1 + B 2 D = ∇ • B H , P + ∇ • B ⊗ B H = ∇ 1 + B 2 H .
Symmetrically, the second rescaling leads to the arctangential heat equation and, then, the twin gradient flow structures easily follow. End of proof.

Proof of Theorem 9.4.2 F irst step : Hamiltonian form of the minimal surface equations. The non linear wave equation

∂ t ( ∂ t φ R ) = ∇ • ( ∇φ R ), R = 1 -∂ t φ 2 + |∇φ| 2 ,
is easily obtained by finding critical points φ of the Minkowski area of the graph

(t, x) → (t, x, φ(t, x)), namely - 1 -∂ t φ 2 + ∂ k φ ∂ k φ dtdx,
under space-time compactly supported perturbations. For the sequel, it is crucial to use the Hamiltonian form of the nonlinear wave equation. For that purpose, we introduce the fields Then, we get, by standard differential calculus, the Hamiltonian formulation 

E(t, x) = ∂ t φ(t, x), B i (t, x) = ∂ i φ(t,
∂ t B i = ∂ i ∂H ∂D (D, B) , ∂ t D = ∂ i ∂H ∂B i (D, B) ,
∂ t ( ∂ t φ R ) = ∇ • ( ∇φ R ), R = 1 -∂ t φ 2 + |∇φ| 2 ,
can be written in Hamiltonian form

∂ t B i = ∂ i 1 + B k B k 1 + D 2 D , ∂ t D = ∂ i 1 + D 2 1 + B k B k B i , (9.4.1)
with the extra-conservation law

∂ t H + ∂ i P i = 0, H = (1 + B k B k )(1 + D 2 ), P i = -DB i .
In addition, (D, B) are related to φ by

B i = ∂ i φ, D = ∂ t φ 1 -∂ t φ 2 + ∂ k φ ∂ k φ .
Second|; step Construction of an augmented system with convex entropy. Since the Hamiltonian

H(D, B) = (1 + B k B k )(1 + D 2 )
is, unfortunately, not a convex function of (D, B), and, therefore the hamiltonian form of the nonlinear wave equation (9.4.1) does not belong to our favorite class of systems of entropic system of conservation laws with a convex entropy. However, there is also an extra conservation law for P = -DB, namely

∂ t P + ∇ • P ⊗ P + B ⊗ B h = ∇ 1 + B 2 h ,
where h = h(D, B, P ) = √ 1 + D 2 + B k B k + P k P k is nothing but H(D, B), written as a function of (D, B, P ). We can add this new conservation laws to the one we have previously obtained for (D, B), namely

∂ t B + ∇ P • B -D h = 0, ∂ t D + ∇ • P D -B h = 0
(where we input the new variable h). This allows us, ignoring the algebraic constraint P = -DB, to consider (D, B, P ), as a solution of an augmented system of conservation laws which turns out to enjoy an extra conservation law for the strictly convex "entropy" h(D, B, P ) = 1 + D 2 + B k B k + P k P k .

The detailed calculations are provided in the appendix of reference [START_REF] Brenier | Geometric origin and some properties of the arctangential heat equation[END_REF].

Chapter 10

A dissipative least action principle and its stochastic interpretation

The purpose of this chapter is first to introduce a modif ied least action principle that can include energy dissipation and, afterwards, to provide a stochastic interpretation of this modification in terms of large deviations (which will be done in the final sectio), at least in a special case strongly related to both the Euler equations of incompressible fluids and the gravitational Vlasov-Poisson system that describes Newtonian gravitation. The Vlasov-Poisson system is also of paramount importance in Plasma Physics. Let just quote few various contributions on Vlasov-Poisson equations [START_REF] Bardos | Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data[END_REF][START_REF] Barré | Two-dimensional pseudo-gravity model: particles motion in a non-potential singular force field[END_REF][START_REF] Donatelli | Analysis of oscillations and defect measures for the quasineutral limit in plasma physics[END_REF][START_REF] Grenier | Defect measures of the Vlasov-Poisson system in the quasineutral regime[END_REF][START_REF] Grenier | Landau damping for analytic and Gevrey data[END_REF][START_REF] Hauray | N-particles approximation of the Vlasov equations with singular potential[END_REF][START_REF] Lemou | A new variational approach to the stability of gravitational systems[END_REF][START_REF] Loeper | Uniqueness of the solution to the Vlasov-Poisson system with bounded density[END_REF][START_REF] Mischler | On the initial boundary value problem for the Vlasov-Poisson-Boltzmann system[END_REF][START_REF] Nieto | High-field limit for the Vlasov-Poisson-Fokker-Planck system[END_REF][START_REF] Perthame | Mathematical tools for kinetic equations[END_REF] somewhat related to our book. As usual in this book, convexity plays a crucial role in this chapter.

There are examples, typically in infinite dimension (but not necessarily), of f ormally hamiltonian systems which do not necessarily preserve the energy because of some hidden dissipative mechanism: i) the (inviscid) Burgers equation

∂u ∂t + ∂ ∂x ( u 2 
2 ) = 0, (t, x) ∈ R + × R → u(t, x) ∈ R;

ii) the Euler equations of incompressible fluids: at least at the physical level, it is often believed that the energy could dissipate according to Kolmogorov's "K41" theory of turbulence [START_REF] Frisch | Turbulence. The legacy of A. N. Kolmogorov[END_REF].

Let us start the discussion with a special example of finite dimensional dynamical systems for which a dissipative version of the least action principle can be designed.

A special class of Hamiltonian systems

Given an Euclidean space H (or more generally a Hilbert space) with norm || • || and a potential Q :

H → R, 1 2 ||V t || 2 + Q[X t ]
is the conserved energy (or Hamiltonian) for the dynamical system

dV t dt = -∇Q[X t ], dX t dt = V t , (X t , V t ) ∈ H × H.
As well known, its solutions can be obtained from the "least action principle" by looking for critical points of the "action"

t 1 t 0 1 2 || dX t dt || 2 -Q[X t ] dt,
among all curves t ∈ [t 0 , t 1 ] → X t with fixed values at t 0 and t 1 .

We are going to define a special class of hamiltonian systems (in finite dimension), for which a modif ied least action principle can be designed that can include energy dissipation. This issue has been already discussed by various authors, Shnirelman and Wolansky, for instance [START_REF] Shnirelman | On the principle of the shortest way in the dynamics of systems with constraints[END_REF][START_REF] Wolansky | On time reversible description of the process of coagulation and fragmentation[END_REF]. The systems we are going to discuss are very special but, among them, we will get discrete or approximate versions of the Euler model of incompressible fluids.

Let H be a Euclidean space and S a bounded closed subset. Set

Q[X] = - 1 2 dist 2 (X, S) = -inf s∈S ||X -s|| 2 2
and consider the corresponding dynamical system

d 2 X t dt 2 = -∇Q[X t ]
N.B.: Q is semi-convex, but not smooth (unless S is convex). Indeed:

Q[X] = -1 2 ||X|| 2 + R[X],
where R[X] = sup s∈S ((X, s)) -1 2 ||s|| 2 is convex. with β = 1, involving, at each time t, a discrete optimal transport problem. This system was introduced, in the case β = -1, in [START_REF] Brenier | Derivation of the Euler equations from a caricature of Coulomb interaction[END_REF], where its hydrodynamic limit to the Euler equations has been established. (Let us mention [START_REF] Benamou | Nenna Generalized incompressible flows, multimarginal transport and Sinkhorn algorithm[END_REF][START_REF] Brenier | A combinatorial algorithm for the Euler equations of incompressible flows[END_REF][START_REF] Th | A Lagrangian scheme a la Brenier for the incompressible Euler equations[END_REF][START_REF] Mérigot | Minimal geodesics along volume preserving maps, through semi-discrete optimal transport[END_REF][START_REF] Pavlov | Structurepreserving discretization of incompressible fluids[END_REF] for related computational methods for fluids.) Notice that, as d = 1, this system reduces to β d 2 X t (α) dt 2 = X t (α) -

2N

α =α sgn(X t (α) -X t (α )).

This describes the Newtonian gravitational interaction of N parallel planes as β = 1 (with a global neutralization of the total mass, expressed by the linear term X t ). The continuous version, involving the Monge-Ampère equation, closely related to optimal transport theory, was introduced by B. and Loeper [START_REF] Brenier | A geometric approximation to the Euler equations: The Vlasov-Monge-Ampère equation[END_REF][START_REF] Loeper | Quasi-neutral limit of the Euler-Poisson and Euler-Monge-Ampere systems[END_REF], and studied by Cullen, Gangbo, Pisante [START_REF] Cullen | The semigeostrophic equations discretized in reference and dual variables[END_REF], Ambrosio-Gangbo [START_REF] Ambrosio | Hamiltonian ODE in the Wasserstein spaces of probability measures[END_REF]. We find This fully nonlinear version of the Vlasov-Poisson system is related to Electrodynamics (β = -1) and Gravitation (β = 1). The formal limit β = 0 reads

∂ t f (t
∂ t f + ∇ x • (ξ f ) -∇ ξ • (∇ x p f ) = 0, R d f (t, x, ξ)dξ = 1,
where p = p(t, x) substitutes for ϕ as a Lagrange multiplier of constraint f dξ = 1.

It can be understood as a "kinetic formulation" of the Euler equations of homogeneous incompressible fluids (see [START_REF] Brenier | Une formulation de type Vlassov-Poisson pour les équations d'Euler des fluides parfaits incompressibles[END_REF][START_REF] Brenier | Minimal geodesics on groups of volume-preserving maps[END_REF], for this concept and section 2.4 in the present book). Classical solutions (v, p) to the Euler equations correspond to very special and singular solutions of the kinetic version of form f (t, x, ξ) = δ(ξ -v(t, x)).

A proposal for a modified least action principle

Let us go back to the general case, where H and S can be chosen freely, respectively as an Euclidean space and a bounded closed subset. The dynamical system

d 2 X t dt 2 = -∇Q[X t ] with Q[X] = -1 2 ||X|| 2 + R[X],
where R[X] = sup s∈S ((X, s)) -1 2 ||s|| 2 is convex, Lipschitz continuous, but not smooth (unless S is convex), cannot be treated by the usual Cauchy-Lipschitz theory. However the second derivatives of R are nonnegative bounded measures and we may apply the DiPerna-Lions theory [START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF] on ODEs with non smooth coefficients, as generalized by Bouchut and Ambrosio to second-order ODEs with "coefficients of bounded variation" [START_REF] Ambrosio | Transport equation and Cauchy problem for BV vector fields[END_REF][START_REF] Bouchut | Renormalized solutions to the Vlasov equation with coefficients of bounded variation[END_REF]. (See also [START_REF] Alberti | Loss of regularity for the continuity equation with non-Lipschitz velocity field[END_REF][START_REF] Besson | Solutions for linear conservation laws with velocity fields in L ∞[END_REF][START_REF] Bouchut | One-dimensional transport equations with discontinuous coefficients[END_REF][START_REF] Champagnat | Well posedness in any dimension for Hamiltonian flows with non BV force terms[END_REF][START_REF] Colombini | Uniqueness of continuous solutions for BV vector fields[END_REF][START_REF] Crippa | Estimates and regularity results for the DiPerna-Lions flow[END_REF][START_REF] Depauw | Non unicité des solutions bornées pour un champ de vecteurs BV en dehors d'un hyperplan[END_REF][START_REF] Modena | Non-renormalized solutions to the continuity equation[END_REF][START_REF] Poupaud | Measure solutions to the linear multi-dimensional transport equation with non-smooth coefficients[END_REF] for related topics on ODEs with non smooth coefficients.) In a suitable sense [START_REF] Ambrosio | Transport equation and Cauchy problem for BV vector fields[END_REF], for "almost every initial condition"

(X 0 , dX 0 dt ) ∈ H × H, d 2 X t dt 2 = -∇Q[X t ] = X t -∇R[X t
] admits a unique global C 1,1 solution. Such a solution is "conservative" and time-reversible. For the system of particles discussed in the previous section, in particular in the framework of 1D-Newtonian gravitation, this corresponds to elastic, non-dissipative collisions.

The relaxed gradient is well defined for every X and extends the usual gradient to the "bad set" N . These solutions in the sense of maximal monotone operator theory are in general not conservative solutions (in the sense of Bouchut-Ambrosio) to the original dynamical system. Indeed, they allow velocity jumps and are generally only Lipshitz continuous and not C 1 . However, they have interesting dissipative features. Indeed, the velocity may jump with an instantaneous loss of kinetic energy.

In the case of one-dimensional gravitating particles, these jumps precisely correspond to sticky collisions [START_REF] Brenier | Sticky particle dynamics with interactions[END_REF][START_REF] Brenier | Sticky particles and scalar conservation laws[END_REF]. The bad set N is just the collision set and the relaxed gradient precisely encodes sticky collisions instead of elastic collisions. (Concerning inelastic and sticky collisions, we may refer to [START_REF] Bobylev | On some properties of kinetic and hydrodynamic equations for inelastic interactions[END_REF][START_REF] Bouchut | One-dimensional transport equations with discontinuous coefficients[END_REF][START_REF] Brenier | Sticky particle dynamics with interactions[END_REF][START_REF] Brenier | Sticky particles and scalar conservation laws[END_REF][START_REF] Weinan | Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics[END_REF][START_REF] Paoli | A numerical scheme for impact problems[END_REF][START_REF] Shnirelman | On the principle of the shortest way in the dynamics of systems with constraints[END_REF].)

The modified action

The conservative solutions, that are only defined for almost every initial condition, manage to hit the bad set only for a negligible amount of time, while the gradient flow solutions enjoy very much staying in it as soon as they enter it. Our proposal is to pick up the nice dissipative property of the gradient flow solutions and to lift them to the full dynamical system. For that purpose, we introduce the "modified action"

t 1 t 0 || dX t dt + ∇Q[X t ]|| 2 dt (10.3.2)
which favors "bad" curves that stay on the "bad set" for a while. Let us recall that ∇Q denotes the "relaxed" gradient of the semi-convex function 

Q[X] = -

Stochastic origin of the dissipative least action principle

Using large deviation principles (or alternatively the concept of guiding wave coming from quantum mechanics), we will derive, following [START_REF] Ambrosio | Monge-Ampère gravitation as a Γ-limit of good rate functions[END_REF] and from essentially nothing but noise (namely N independent Brownian particles without any interaction nor external potential), the dissipative least action principle (10.3.2,10.3.3), for the special system (10.2.1,10.2.2), in the "gravitational" case β = 1. Let us recall that this system is a discretization of the Vlasov-Monge-Ampère system (10.2.3,10.2.4) as well as an approximation of the Euler equations. The first step of our analysis is very much related to the Schrödinger problem, as analyzed by Christian Léonard [START_REF] Ch | A survey of the Schrödinger problem and some of its connections with optimal transport[END_REF], and somewhat connected by to recent results by Robert Berman and collaborators, motivated by Kählerian Geometry [50,[START_REF] Berman | Propagation of chaos, Wasserstein gradient flows and toric Kähler-Einstein metrics[END_REF][START_REF] Berman | Propagation of chaos for a class of first order models with singular mean field interactions[END_REF]. ). Since

Localization of a Brownian point cloud

-log 1 Z σ∈S N exp(- ||X -A σ || 2 2 T ) ∼ 1 2T inf σ∈S N ||X -A σ || 2
as → 0, an observer at time T feels that the particles arrived at X T ∈ R dN , have travelled along straight lines by "optimal transport"

X t = (1 - t T )A σopt(T ) + t T X T , σ opt (T ) = Arginf σ∈S N ||X T -A σ || 2 .
This formula implies

dX t dt = X t -A σopt(t) t , σ opt (t) = Arginf σ∈S N ||X t -A σ || 2 .
(Indeed, we observe that, for all t ∈]0, T [ σ opt (t) is unchanged and equal to σ opt (T ).)

The resulting "deterministic" process is, as a matter fact, just the output of the pure observation of a random process as the level of noise vanishes. This is a good example of order emerging from pure desorder! Of course, this is strongly related to the Schrödinger problem already discussed in this book [START_REF] Ch | A survey of the Schrödinger problem and some of its connections with optimal transport[END_REF]. It is quite remarkable, as explained in [START_REF] Brenier | A double large deviation principle for Monge-Ampère gravitation[END_REF], that, from a physical viewpoint, this model is equivalent to the Zeldovich model in Cosmology [START_REF] Zeldovich | Gravitational instability: An approximate theory for large density perturbations[END_REF][START_REF] Shandarin | The large-scale structure of the universe: turbulence, intermittency, structures in a self-gravitating medium[END_REF][START_REF] Frisch | reconstruction of the initial conditions of the Universe by optimal mass transportation[END_REF][START_REF] Brenier | Reconstruction of the early universe as a convex optimization problem[END_REF] An alternative viewpoint: the pilot wave

We Introduce the heat equation in the space of "clouds"

X ∈ R N d ∂ρ ∂t (t, X) = 2 ∆ρ(t, X), ρ(t = 0, X) = 1 N ! σ∈S N δ(X -A σ ),
where ∆ is the Laplacian in the very large space (R d ) N and the initial condition has been symmetrized by the symmetric group S N . Then, mimicking the idea of "pilot wave" introduced by de Broglie for Quantum Mechanics, we introduce the ODE

dX t dt = v(t, X t )
where v is the "pilot" velocity field v(t, X) = -2 ∇ X log ρ(t, X), t > 0, X ∈ (R 

)

Notice that, as in de Broglie's theory, the corresponding trajectories are smooth and not at all Brownian curves! [As a matter of fact, a similar calculation also works for the free bosonic Schrödinger equation:

(i∂ t + κ∆)ψ = 0, ψ(0, X) = σ∈S N exp(-||X -A σ || 2 /a 2 ), v = Im∇ log ψ,
where κ, a > 0 are suitable constants to be related to the Planck constant. However the analysis becomes much more difficult than for the heat equation and we will not discuss further this very interesting issue.] Using exponential time t = exp(2θ), we get

dX θ dθ = X θ - σ∈S N A σ exp( -||X θ -Aσ|| 2 2 exp(2θ) )
σ∈S N exp( -||X θ -Aσ|| 2 2 exp(2θ) )

.

Notice that we may also write (after expanding each square and noticing that ||A σ || = ||A||, for every σ ∈ S N ):

dX θ dθ = X θ - σ∈S N A σ exp ((X θ ,Aσ)) exp(2θ)
σ∈S N exp ((X θ ,Aσ))

exp(2θ) = -∇ X Q [θ, X θ ], Q [θ, X] = - ||X|| 2 2 + exp(2θ) log σ∈S N exp ((X, A σ )) exp(2θ) , X ∈ (R d ) N .
This "potential" Q is a (time-dependent) semi-convex function. Indeed

X ∈ (R d ) N → exp(2θ) log σ∈S N exp ((X θ , A σ )) exp(2θ)
is a convex function in X, with a Lipschitz constant uniformly bounded in and θ by ||A|| and its limit, in sup norm, is just

X → sup σ∈S N
((X θ , A σ )).

Thus, the limit in → 0 of this smooth ODE can be analyzed in the framework of maximal monotone operators [START_REF] Brezis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF] and we obtain (10.3.1) the generalized ODE, which should be understood in the sense of maximal monotone operators,

d + X θ dθ = -∇Q[X θ ], Q[X] = - ||X|| 2 2 + sup σ∈S N ((X θ , A σ )) = ||A|| 2 2 -inf σ∈S N ||X -A σ || 2 2 ,
in which features the generalized gradient of the limit potential Q. So, at this stage, up to the change of time variable t = exp(2θ), we have fully recovered the dissipative system already discussed in the previous sections. However, in order to get the discrete Vlasov-Monge-Ampère system we are mostly interested in, it is better to keep > 0 fixed for a while, and apply the large deviation theory to the "pilot wave" ODE.

Large deviations of the pilot system

Let us fix for a while and add some noise η to the "guided" trajectories

dX θ dθ = -∇Q [θ, X θ ] + √ η dB θ dθ . Since Q [θ, X] + ||X|| 2 2 = exp(2θ) log σ∈S N exp ((X, A σ )) exp(2θ)
is a smooth function, Lipschitz continuous in X, we may apply the standard large deviation theory of Vencel-Freidlin [START_REF] Freidlin | Random perturbations of dynamical systems[END_REF] that asserts that the probability to go from a point Y 0 ∈ (R d ) N at time θ = θ 0 to some other point Y 1 ∈ (R d ) N at time θ = θ 1 essentially behaves (in a suitable technical sense), as η → 0, as exp(-

A[θ 0 , θ 1 , Y 0 , Y 1 ] η ), A[θ 0 , θ 1 , Y 0 , Y 1 ] = inf{I [X; θ 0 , θ 1 ]; X ∈ C 1 ([θ 0 , θ 1 ]; (R d ) N ), X θ 0 = Y 0 , X θ 1 = Y 1 },
where I is the so-called good rate function

I [X; θ 0 , θ 1 ] = 1 2 θ 1 θ 0 || dX θ dθ + ∇Q [θ, X θ ]|| 2 dθ.
It also shows that the most likely trajectories converge to minimizers of the good rate function. Finally, we may let go to zero. One can prove, as done in [START_REF] Ambrosio | Monge-Ampère gravitation as a Γ-limit of good rate functions[END_REF], that the good rate function Γ-converges, as → 0 to I[X; θ 0 , θ 1 ] = 1 2

θ 1 θ 0 || dX θ dθ + ∇Q[X θ ]|| 2 dθ.
where

Q[X] = - ||X|| 2 2 + sup σ∈S N ((X θ , A σ )) = ||A|| 2 2 -inf σ∈S N ||X -A σ || 2 2 ,
which exactly returns the dissipative least action principle introduced and discussed in the previous sections.

Chapter 11

Appendix: Hamilton-Jacobi equations and viscosity solutions

In this book, we have so much emphasized the interest of convex methods that we have entirely omitted the paramount role of Fourier methods in PDEs [START_REF] Bahouri | Fourier analysis and nonlinear partial differential equations[END_REF][START_REF] Hörmander | The analysis of linear partial differential operators[END_REF][START_REF] Taylor | Partial differential equations. III. Nonlinear equations[END_REF] ! This appendix can be seen as a tribute to Fourier, paradoxically devoted to the Hamilton-Jacobi equation (HJ) ∂ t φ + 1 2 |∇φ| 2 = 0, which is a rare example of PDE for which, not only the Fourier analysis, but also the theory of Lebesgue spaces can be entirely ignored, in particular thanks to the remarkable theory of so-called "viscosity solutions", by Crandall, Evans and Lions [START_REF] Crandall | Some properties of viscosity solutions of Hamilton-Jacobi equations[END_REF], which relies only on the concept of continuous and semi-continuous functions, without any reference to Lebesgue spaces and, of course, to the Fourier analysis. A typical result is the full understanding of the "Hopf formula" which provides the unique solution φ(t, x) of the HJ equation in terms of its initial data φ(0, x), for all t ≥ 0 and x ∈ R d , through:

φ(t, x) = inf ξ∈R d |ξ -x| 2 2t + φ(0, ξ).
This formula is very much related to convex analysis (and more specifically to the Legendre-Fenchel transform). The purpose of this appendix is to explain, following E. Hopf [START_REF] Hopf | The partial differential equation u t +uu x = µu xx[END_REF], how this beautiful formula can be deduced from the heat equation (and the way Fourier solved it) through the Laplace lemma, which can be seen as an elementary version of the Large Deviation Theory [START_REF] Freidlin | Random perturbations of dynamical systems[END_REF].

The basic idea comes from Feynman's interpretation of Quantum Mechanics with his concept of "path integrals". However, let us start at a more conventional level by reminding the well known solution of the heat equation thanks to Gaussian integrals that follow almost instantaneously from its Fourier analysis. More precisely, let us introduce the so-called heat semi-group on R d It is actually more convenient to let the initial condition depend also on by writting it as v(x) = v (x) = exp(-ψ(x) ) so that ψ(x), which does not depend on , may be seen as the value of φ (t, x) at t = 0. Let us also assume ψ to be uniformly continuous with Let us now use the Laplace lemma (which can be seen as the starting point of the large deviation theory). which provides the so-called "Hopf formula" for the Hamilton-Jacobi equation

∂ t φ + 1 2 |∇φ| 2 = 0.
[An easy way to memorize the Hopf formula is to use the somewhat incorrect but interesting following reasoning: i) We first write the HJ equation as The Hopf formula corresponds to a "vanishing viscosity solution". Notice that this solution is no longer a smooth function for all t > 0, unless ψ is convex and smooth. Indded, for a fixed x, as t grows, the infimum can be achieved by several distinct points ξ which destroys the smoothness of φ as a function of (t, x), no matter how smooth ψ can be. This appearance of singularity makes difficult the analysis of the HJ equation. This is the purpose of the Crandall-Evans-Lions theory of viscosity solutions [START_REF] Crandall | Some properties of viscosity solutions of Hamilton-Jacobi equations[END_REF][START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF] which started in the 80s with the Hamilton-Jacobi equation ∂ t φ + H(t, x, ∇φ) = 0.

(See also [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF]. Notice that there are alternative concepts of solutions for the HJ equation [START_REF] Bernard | Semi-concave singularities and the Hamilton-Jacobi equation[END_REF][START_REF] Dacorogna | General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial cases[END_REF][START_REF] Viterbo | Solutions of Hamilton-Jacobi equations and symplectic geometry[END_REF].) A "viscosity solution" is a priori not supposed to be smooth, but merely continuous (or, at most, Lipschitz continuous, but certainly not C 1 ) and is defined in a particularly original and clever way. Let us consider a smooth test function ζ(t, x) and any point (t 0 , x 0 ) where φ -ζ possibly achieves a minimum (which may be local, as a matter of fact). If φ were smooth, we would deduce ∂ t φ(t 0 , x 0 ) = ∂ t ζ(t 0 , x 0 ), ∇φ(t 0 , x 0 ) = ∇ζ(t 0 , x 0 ), which suggests, at point (t 0 , x 0 ), to substitute the derivatives of ζ for the derivatives of φ (which are not well defined). So, we require ∂ t ζ(t 0 , x 0 ) + H(t 0 , x 0 , ∇ζ(t 0 , x 0 )) ≥ 0.

For a (local) maxima, we would require, instead, ∂ t ζ(t 0 , x 0 ) + H(t 0 , x 0 , ∇ζ(t 0 , x 0 )) ≤ 0.

[With a little imagination, we can see this formulation as the (max, +) version of the usual formulation of PDEs in the sense of distributions!] It is quite remarkable that such a formulation does not involve any knowledge on the Lebesgue measure theory and could have been discovered before the Lebesgue integral and without the Fourier transform!

Definition 1 . 4 . 1 .

 141 Let D = [0, 1] d . We define V P M (D) as the set of all Borel maps T : D → D such that L(T -1 (A)) = L(A), for all Borel subset A of D, where L denotes the Lebesgue measure restricted to D, i.e. in short L • T -1 = L. Equivalently, this means D f (T (x))dx = D f (x)dx, for every function f ∈ C(R d ).

Definition 1 . 4 . 2 .

 142 We define the space of doubly stochastic measures DS(D) as the set of all Borel probability measures µ ∈ P rob(D × D) such thatµ(D × A) = µ(A × D) = L(A), for each Borel subset A ⊂ D, or, equivalently, D×D f (x)dµ(x, y) = D×D f (y)dµ(x, y) = D f (x)dx, ∀f ∈ C 0 (D).P rob(D × D) is a weak-* compact subset of the space of all bounded Borel measures on D × D, namely the dual Banach space of C 0 (D × D; R). Thus, DS(D), as a weak-* closed subset of P rob(D × D), is also weak-* compact. There is a natural injection i of V P M (D) in DS(D) i : T ∈ V P M (D) → µ T ∈ DS(D), defined by setting D×D f (x, y)dµ T (x, y) = D f (x, T (x))dx, ∀f ∈ C 0 (D × D).

Theorem 1 . 4 . 3 .

 143 The space of doubly stochastic measures DS(D) is the weak-* closure of i(P (D)) -and therefore of i(V P M (D))-. In other words, any µ ∈ DS(D) can be approximated by a sequence of "permutation maps" T n ∈ P (D) in the senseD×D f (x, y)dµ(x, y) = lim n D f (x, T n (x))dx, ∀f ∈ C 0 (D × D).Corollary 1.4.4. V P M (D) is the closure, in L 2 norm, of P (D).

D×Df

  (x, y)dµ(x, y) = D f (x, T (x))dx, ∀f ∈ C 0 (D × D), D×D f (x, y)dμ(x, y) = D f (T (x), x)dx, ∀f ∈ C 0 (D × D),but only µ belongs to i(V P M (D))!

  have already discussed at the beginning of this book, in Chapter 1, at least in the case D = [0, 1] d , the completion of SDif f (D) and V P M (D) by the convex compact set DS(D) of all doubly stochastic measures on D × D. So, it is tempting to get a generalized version of the LAP by substituting DS(D) for SDif f (D), taking into account that SDif f (D), viewed as a subset of the ambient Hilbert space

Proposition 2 . 4 . 3 .

 243 The relaxed Muskat system admits an extra conservation law for the Boltzmann entropy a c(t, x, a), namely ∂ t a (c log c)(t, x, a) + ∇ x • ( a c(t, x, a)ρ 0 (a)G) = 0.

Theorem 3 . 3 . 1 .

 331 Let D be a compact domain in R d contained in a ball B and let Y : D → B be a Borel map. Assume the image measure of the Lebesgue measure on D by Y , that we denote by ν, to be absolutely continuous with respect to the Lebesgue measure on B (in which case, map Y is called a "non-degenerate" map). Then, there is a unique "polar factorization" (or "nonlinear Helmholtz decomposition") of Y of form Y = T • X where 1) X : D → D is a Lebesgue measure-preserving Borel map; 2) T : D → R d has a "convex potential", in the sense that there exists a Lipschitz convex function Φ : R d → R ∪ {+∞} such that for a.e. x ∈ D T (x) = ∇Φ(x).

5 POLAR

 5 FACTORIZATION OF A PERIODIC MAPPolar factorization of a given map Y : T 2 → T 2 , drawn on the upper right corner. The volume (area)-preserving factor lies on the lower right corner. The map with convex potential features on the lower left corner.

2 . 1 A

 21 priori, the inf is not achieved in the duality equality. So, we consider a minimizing sequence (a n , b n ). Remarkably enough, we may get a new minimizing sequence (ã n , bn ) with better performances, just by setting bn (y) = sup x∈B c(x, y) -a n (x), ãn (x) = sup y∈B c(x, y) -bn (y).(Note that bn ≤ b n , ãn ≤ a n and ãn ⊕ bn ≥ c.) This new sequence is uniformly equicontinuous on the compact set B × B. For notational simplicity, let us denote it again by (a n , b n ). Since we may add an arbitrarily chosen constant to a n and subtract the same constant from b n , we may assume that the ãn and bn are uniformly bounded on B. (Indeed, we may adjust a n so that the supremum of x → c(x, 0) -a n (x) on B is equal to 0, which guarantees that a n ≥ inf c and bn (0) = 0. It follows that the | bn | are uniformly by some constant R, since they are uniformly equicontinuous. By definition, the ãn are bounded away from above by R+sup c and bounded away from below by inf c.) At this stage, we apply the Ascoli Theorem to get a subsequence, still denoted by (a n , b n ), that converges in sup norm to some limit (a, b) on B. We may further ensure that a(x) = sup y∈B c(x, y) -b(y)

Theorem 3 . 2 . 1

 321 Assume the existence of a convex Lipschitz function ã such that x → y = ∇ã(x) transports ρ 0 (dx) toward µ 1 (dy) and set b(y) = sup x∈B x • y -ã(x), y ∈ B. We first observe that ã(x) + b(∇ã(x)) = x • ∇ã(x) holds true for Lebesgue-almost every x ∈ B. [Indeed, by the Rademacher theorem, almost every x * ∈ B lies in the interior of B and is a differentiability point for ã. Let us set y * = ∇ã(x * ). Note that y * lies in B, since ∇ã transports ρ(x)dx toward µ 1 (dy) and both measures are supported in the compact set B. The Lipschitz concave function on B x ∈ B → x • y * -ã(x) is differentiable in x = x * , which lies in the interior of B, with zero derivative. Thus its maximum is achieved in x * , which, by definition, is nothing but b(y * ). Therefore, we have b(y * ) = x * • y * -ã(x * ). Since y * = ∇ã(x * ), we have obtained the required equality.] Let us now set µ(dx, dy) = δ(y -∇ã(x))ρ 0 (x)dx.

Proposition 4 . 5 . 1 .

 451 Let Q = [0, 1] × D × A where D = T d and the label space is A = T. Let (c, m = cv) be a given pair in the dual Banach space E , where

  can be shown, thanks to the 1D Poincaré inéquality, to be an optimal solution for the IOT problem set on [0, T ] × D with boundary data c 0 (x, ã) = δ(x -a), c T (x, ã) = δ(x + a), ã = (a, ω).

Now, we want to minimize Q |v| 2

 2 on the time-space domain Q = [0, T ] × D, D = T d , among all weak solutions v = v(t, x) ∈ R d , of the Navier-Stokes equations of incompressible fluids with initial condition v 0 :

0 H

 0 It is now natural to introduce the level-set function Y defined from the Kruzhkov solution by Y (t, a, x) = ∞ (a -u(t, x, y))dy.

  Typically, we introduce a convex function φ : R →] -∞, +∞] such that φ(τ ) = +∞ if τ < 0, we define, for all Y ∈ K, Φ[Y ] = φ(∂ a Y )dadx, and set Φ[Y ] = +∞ if Y does not belong to K. Typical examples are:

  for a.e. t ∈ [0, T ].

2 2 |v -v| 2

 22 }dx where K(t, y , y) = p * (t, y ) -p * (t, y) -∇p * (t, y) • (y -y) ∼ |y -y | 2 ,

  1[, which corresponds to the formation of a single shock wave. For different choices of function G, several shock waves may form, leading to a segmentation of the taxpayers in different homogenized classes.

(

  with implicit summation on repeated indices), where U = U (t, x) ∈ R m , x ∈ R d , and the coefficients A iβγ α are constant. So these systems look like non-trivial generalizations of the famous inviscid version of the Burgers equation, namely:

For a general 1 +

 1 d dimensional Lorentzian manifold with metric g ij dx i dx j the BI model involves a closed 2-form B = B ij dx i ∧ dx j and the Born-Infeld Action now reads A λ [g, B] = ( -detg --det(g + λB)).

  and, as a consequence, an extra conservation law involving H ∂ t (H(D, B))+ ∂ i (P i (D, B)) = 0, P i (D, B) = ∂H ∂D ∂H ∂B i (D, B).In the case of the nonlinear wave equation we get, explicity,H(D, B) = (1 + B k B k )(1 + D 2 )and, after elementary calculations, deduce Proposition 9.4.3. The nonlinear wave equation

10. 2

 2 The main example and the Vlasov-Monge-Ampère systemLet us now describe our main example. Let {A(1), • • •, A(N )} be a cubic lattice of N points approximating D = [-1/2, 1/2] d ⊂ R d as N tends to infinity. Define H = (R d ) N , S = {(A(σ 1 ), • • •, A(σ N )) ∈ H, σ ∈ S N }(where S N denotes the group of all permutations of the first N integers, while | • | and || • || = are the euclidean norms respectively on R d and R N d .) Then, the dynamical system introduced in the previous section reads, after elementary calculations,β d 2 X t (α) dt 2 = X t (α) -A(σ opt (α)) , X t (α) ∈ R d , α = 1, • • •, N(10.2.1) σ opt = Arginf σ∈S N N α=1 |X t (α) -A(σ(α))| 2 (10.2.2)

  Given a point cloud{A(α) ∈ R d , α = 1, • • •, N },we consider N independent Brownian curves issued from this cloudY t (α) = A(α) + √ B t (α), α = 1, • • •, N.At a fixed time T > 0, the probability for the moving cloud to reach positionX = (X(α), α = 1, • • •, N ) ∈ RdN has density S N denotes the group of all permutations of the first N integers, while | • | and || • || = are the euclidean norms respectively on R d and R N d and Z is the normalization factor which is proportional to N d/2

(

  S (t)v)(x) = R d exp(-π|y| 2 )v(x + √ 2π t y)dy, t ≥ 0, x ∈ R dand recall the well known formulaR dexp(-π|y| 2 )dy = 1.

d exp 1 F

 1 the change of variable y → ξ = x + √ 2π t y) Since u (t, x) = exp(-φ (t, x) ),we getφ (t, x) = -log u (t, x) = log(2π t) d/2 -log R (ξ; t, x) dξ,whereF (ξ; t, x) = -|ξ -x| 2 2t-ψ(ξ).

Lemma 11 .0. 1 .d exp 1 F 1 +

 11111 Let A be a non negligible Lebesgue measurable set in R d and let F be a Lebesgue measurable function such that0 < A exp(F (ξ))dξ < +∞. Then, as ↓ 0, log A exp( F (ξ) )dξ → sup ess A F. P roof.We first write = (1 + R) -1 so thatI = A exp( F (ξ) )dξ = A exp(F (ξ)) exp(RF (ξ))dξ.Let L be the essential supremum of F on A and defineJ = A exp(F (ξ))dξ.We have 0 < J < +∞ by assumption which makes its logarithm finite. We first get the obvious upper boundI ≤ exp(RL) log J) → L, ↓ 0.To get a lower bound for I, let us fix any λ < L. By definition of L, there is non negligible Lebesgue measurable subset B of A such that F (ξ) ≥ λ for each ξ ∈ B.We haveK = B exp(F (ξ))dξ ∈]0, +∞[.[Indeed, K is not larger than I and thus finite. Moreover K ≥ exp(λ) B dξ > 0.] SoI ≥ B exp(F (ξ)) exp(RF (ξ))dξ ≥ exp(Rλ) B exp(F (ξ))dξ = exp(Rλ)K log K) → λ, ↓ 0,which completes the proof since λ can be chosen arbitrarily close to L.End of P roof.let us now apply the Laplace lemma, for every fixed t > 0 and x, to the solution φ (t, x) of the "viscous" Hamilton-Jacobi equation∂ t φ + 1 2 |∇φ | 2 = ∆φ /2with initial condition φ (0, •) = ψ, which does not depend on . let us recall thatφ (t, x) = log(2π t) d/2 -log R (ξ; t, x) dξ,whereF (ξ; t, x) = -|ξ -|ξ| 2 = 0,we may apply the Laplace lemma with A = R d and F (ξ) = F (ξ; t, x) (with an abuse of notation, (t, x) being fixed). Passing to the limit, we get φ(t, x) = infξ∈R d |ξ -x| 2 2t + ψ(ξ)

  

  

  

  Let us compute the 2nd derivative ofs ∈ R → f (s) = J t 0 ,t 1 ,p [X + sy] =

		t 1 t 0	(	1 2	|X (t) + sy (t)| 2 -p(t, X(t) + sy(t)))dt,
	where y is a non vanishing perturbation such that y(t 0 ) = 0, y(t 1 ) = 0. We first get
	t 1			
	f (s) =	((X (t) + sy (t)) • y (t) -∇p(t, X(t) + sy(t)) • y(t)) dt,
	t 0			
	next	t 1		
	f "(s) =	(|y (t)| 2 -D 2 p(t, X(t) + sy(t))) : y(t) ⊗ y(t)dt,
		t 0		
	and, therefore,			
		t 1		
		f "(s) ≥		
		t 0		
		t 1 t 0 |u (t)| π 2 ( 1 2 t 1 |y(t)| 2 dt ≤ (t 1 -t 0 ) 2	t 1	|y (t)| 2 dt.
		t 0			t 0
	P roof.			
	It is enough to expand y as a series of sine functions:
		y(t) =		

t 1 ,p [u] = 2 -p(t, u(t)))dt.

The proof is an easy consequence of the 1D Poincaré inequality

Lemma 1.3.2. Assume t 0 < t 1 . Then, for every curve C 1 [t 0 , t 1 ] → y(t) ∈ R d , such that y(t 0 ) = y(t 1 ) = 0, +∞ k=1 y k sin(kπ t -t 0 t 1 -t 0 )

and use Parceval's identity. (Saturation is obtained as all y k vanish but y 1 .) Proof of Theorem 1.3.1 (|y (t)| 2 -K(p)|y(t)| 2 )dt.

  on any sufficiently short time intervals [t 0 , t 1 ], as X t 0 , X t 1 are fixed. Here SDif f (D) is the group of all orientation and volume preserving diffeomorphisms of D. (Alternately, we could consider the larger semi-group V P M (D) of all volume preserving Borel maps of D, which is the L 2 completion of SDif f (D), as long as d ≥ 2, as al-

	t 1 t 0	||	dX t dt	2 H ||	dt,

ready discussed in Chapter 1.) In other words, the Euler equations obey to the Least Action Principle (LAP) ("le beau principe de (la) moindre action", as expressed by Euler himself

  To keep notations simple, we still denote by (c ε , m ε ) the result of this second step. Finally we perform the convolution (c ε , m ε )(t, x, a) in all variables (t, x, a) by a mollifier ζ ε (t)γ ε (x, a) where γ

ε is a periodic positive mollifier on T d × T = T d+1 and ζ ε is a compactly supported nonnegative mollifier with support in [-ε, ε]. Again, this convex operation affects neither the continuity equation nor the incompressibility condition and diminishes

  ≥ 0. Recovery of the solution at time T=0.16 by convex optimization. Observe the formation of a second vacuum zone as the second shock has formed.
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  2.2. obtained by TC approximation, for which both ∂ t Z(t, •) and ∇ x Z(t, •) stay uniformly bounded in L 2 for all t ∈ [0, T ]. This function Z has enough regularity to be used as a test function when expressing that Y is a solution in the sense of Definition 6.2.2. So, for each smooth nonnegative function θ(t), compactly supported in ]0, T [, we get from Definition 6.2.2
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  + ∂ t ψ i B i (t, x) -∂ i ψ i E(t, x) dtdxwhere ψ = ψ(t, x) ∈ R d is a Lagrange multiplier for the differential constraint. Independently of the specific definition of L, we may introduce the Hamiltonian H as the partial Legendre-Fenchel transform of the Lagrangian L(E, B) with respect to E, H(D, B) = sup

	we look at critical points (E, B) of		
	L(E(t, x), B(t, x))dtdx
	under space-time compactly supported perturbations, subject to the differential con-
	straints. In other words, we look for saddle-points (E, B, ψ) of
	L(E(t, x), B(t, x)) E∈R	DE -L(E, B)
	and the corresponding "dual" field		
	D(t, x) = (	∂L ∂E	)(E(t, x), B(t, x)).

x), which are linked by the differential constraint

∂ t B i = ∂ i E. Introducing the Lagrangian function L(E, B) = -1 -E 2 + B k B k ,

  , x, ξ) + ∇ x • (ξ f (t, x, ξ)) -∇ ξ • (∇ x ϕ(t, x)f (t, x, ξ)) = 0 (10.2.3) det(I -βD 2 x ϕ(t, x)) = R d f (t, x, ξ)dξ, (t, x, ξ) ∈ R × D × R d . (10.2.4) 

  -σ∈S N A σ exp( -||Xt-Aσ|| 2

	dX t dt	=	1 2t	X t 2 t σ∈S N exp( -||Xt-Aσ|| 2 2 t	)

d ) N , i.e.

  where Φ is solution to the underlying constant coefficient linear PDE in (t, x), where w ∈ R d is just a parameter

	sup w∈R d	∂ t φ + w • ∇φ -	|w| 2 2	= 0
	and we make the (a priori unjustified) ansatz	
			φ(t, x) = inf w∈R d	Φ(t, x; w)
		∂ t Φ + w • ∇Φ -	|w| 2 2	= 0,
					|w| 2 2	= ψ(x -tw) + t	|w| 2 2	,
	which leads to					
	φ(t, x) = inf w∈R d	ψ(x -tw) + t	|w| 2 2	= inf ξ∈R d	|ξ -x| 2 2t	+ ψ(ξ),
	which is the correct Hopf formula!]			

with initial condition Φ(0, x; w) = ψ(x). We immediately obtain Φ(t, x; w) = Φ(0, x -tw, w) + t

  The Crandall-Evans-Lions theory of viscosity solutionsIt is tempting to go beyond the Hopf formula to treat more general fully nonlinear PDEs such as∂ t φ + H(t, x, ∇φ) = 0 or, even, ∂ t φ + H(t, x, ∇φ, D 2 φ) = 0, assuming (t, x, w, M ) → H(t, x, w, M ) ∈ R i) to be smooth with respect to t ∈ R + , x ∈ R d , w ∈ R dand M , valued in the set of all symmetric d × d matrices;(in the sense that H(t, x, w, M ) ≥ H(t, x, w, M ) whenever M -M is a nonnegative symmetric matrix).

ii) to satisfy |H(t, x, w, M )| ≤ C(1 + |w| α + |M | β )

for suitable constants C, α, β; iii) to be non increasing in M
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Inviscid Burgers equation :

Recovery of the solution at time T=0.1 by convex optimization.

Observe the formation of a vacuum zone as the first shock has formed.

Convergence analysis

Using the classical theory of maximal monotone operators [START_REF] Brezis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF], it is fairly easy to prove Theorem 7.3.1. As τ → 0, the time-discrete scheme has a unique limit y = y(t, x), monotonically increasing in x, characterized as the unique solution in C 0 (R + , L 2 (D, R d )) of the subdifferential inclusion: G(x) ∈ ∂ t y + ∂C[y], y(t = 0, •) = y 0 ,

where C[y] = 0 or +∞, according to whether or not y is a non decreasing function of x.

In addition, the cumulative function u(t, s) = 1 0 1{y(t, x) < s}dx, which is the "pseudo-inverse" function of y, is an entropy solution to the scalar conservation law

The second statement of this theorem is not a surprise. Indeed, the scheme we have described is nothing but the "transport-collapse" method [START_REF] Brenier | Averaged multivalued solutions for scalar conservation laws[END_REF][START_REF] Brenier | Une équation homologique avec contrainte[END_REF], that we have already used in in the framework of Panov's formulation of multidimensional scalar conservation laws. (See section 6.2.)

Qualitative features

Scalar conservation laws such as ∂ t u + ∂ s (g(u)) = 0, are known to produce in finite time solutions s → u(t, s) with discontinuities, known as "shock waves". For the temperature field x → y(t, x), this means the formation of a plateau, which corresponds to a zone where the temperature field is homogenized. In the canonical example G = G(x) = 1 -x, corresponding to the famous "inviscid" Burgers equation ∂ t u + ∂ s (u -u 2 /2) = 0, it can be shown that, for all initial conditions, a single plateau forms for large t, which corresponds to a perfectly homogenized temperature. For functions like G(x) = 1 -cos(3πx), the long-time behavior is more complex, featuring a central plateau surrounded by two tails, one cold at bottom and one hot at top.

Related models in social sciences

A model of competition by rank

For N agents (factories, researchers, universities...) in competition, we denote by X n,τ (α) the cumulated production of agent α = 1, • • •, N at time nτ , n ∈ N, where τ > 0 is the time step, and by σ n,τ (α) the rank of agent α at time nτ , in reverse order so that σ n,τ (α) = N (resp. = 1) for the agent α with highest (resp. lowest) production at time n and σ n,τ can be seen as an element of the symmetric group S N .

Then, the model assumes the existence of a bounded function

The Galileo experiment. Small bells are set up along the ramp according to a parabolic spacing (1, 4, 9, 16, 25...) so that, when falling down, the ball rings the bells periodically in time. The "catastrophic" exponential function, drawn for different values of parameter λ, and its inverse (after symmetrization and periodization): v → 1 2 log(λ 2 sin 2 (vλ -1 ))

Proof of Theorem 9.4.1

We want to derive from the nonlinear wave equation (studied by Lindblad in [START_REF] Lindblad | A remark on global existence for small initial data of the minimal surface equation in Minkowskian space time[END_REF])

at once, both the arctangential heat flow

the mean curvature flow for graphs

P roof /F irst step.

Here we proceed as we did for the Born-Infeld equations, by introducing a suitable augmented system revealing the hidden convexity structure of the wave equation. More precisely:

Theorem 9.4.2. As φ(t, x) solves the equation of extremal surfaces in Minkowski's space, then

solves the "entropic" system of conservation laws:

as convex "entropy", which is a strictly convex function of (D, B, P ) and obeys an extra conservation law.

Let us postpone the proof of this result for a moment and continue the proof of Theorem 9.4.1.

P roof of T heorem 9.4.1. /Second step.

We apply the quadratic change of time method t → θ = t 2 /2 in two different ways. A first possible rescaling is

requiring initial condition D = P = 0 at t = 0, which corresponds to ∂ t φ(0, x) = 0 in terms of the solution φ to the nonlinear wave equation. In a somewhat dual way, a second natural change is

Rewriting of the action for "good" curves

There is a subset N ⊂ H, which is small in both the Baire category sense and the Lebesgue measure sense (but not empty unless S is convex), outside of which every point X ∈ H \ N admits a unique closest point π[X] on S (cf. related results in [START_REF] Aubin | Mathematical methods of game and economic theory[END_REF][START_REF] Edelstein | On nearest points of sets in uniformly convex Banach spaces[END_REF][START_REF] Ekeland | The Hopf-Rinow theorem in infinite dimension[END_REF]) and

is differentiable at X with:

So, the potential can be rewritten as a negative squared gradient. Thus, for any "good" curve which almost never hits the bad set N , the action can be written 1 2

which can be rearranged as a perfect square up to a boundary term that does not play any role in the least action principle

Gradient-flow solutions as special least-action solutions

Due to the very special structure of the action, we find as particular least action solutions any solution to the first-order "gradient-flow equation"

(somewhat like "instantons" in Yang-Mills theory). However, this is correct only when t → X t ∈ H is a "good" curve (i.e. almost never hits the "bad set" where Q is not differentiable).

Global dissipative solutions of the gradient-flow

Since Q is semi-convex, we may use the classical theory of maximal monotone operators (going back to the 70', as in the book by H. Brezis [START_REF] Brezis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF]) to solve the initial value problem for the gradient-flow equation.

For each initial condition, there is a unique global solution s.t

Here, d + dt denotes the right-derivative at t, and, for each X,

where ∇R[X] is the "relaxed" gradient of the convex function R at point X, i.e. the unique w ∈ H with lowest norm, ||w||, such that

, is indeed a classical solution to the heat equation

Remark. Note that the analogous formula

provides the general solution to the (free) Schrödinger equation

Exponential transform and Laplace lemma

As soon as v ≥ 0 is not identically null, the solution to the heat equation u (t, x) = (S (t)v)(x) is strictly positive everywhere for each t > 0 and it makes sense to write it in exponential form u (t, x) = exp(-φ (t, x) ).