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Abstract

In this work we show the advantages of using the Coulomb-hole plus screened-exchange

(COHSEX) approach in the calculation of potential energy surfaces. In particular, we demon-

strate that, unlike perturbative GW and partial self-consistent GW approaches, such as

eigenvalue-self-consistent GW and quasi-particle self-consistent GW, the COHSEX approach

yields smooth potential energy surfaces without irregularities and discontinuities. Moreover,

we show that the ground-state potential energy surfaces (PES) obtained from the Bethe-

Salpeter equation, within the adiabatic connection �uctuation dissipation theorem, built

with quasi-particle energies obtained from perturbative COHSEX on top of Hartree-Fock

(BSE@COHSEX@HF) yield very accurate results for diatomic molecules close to their equilib-

rium distance. When self-consistent COHSEX quasi-particle energies and orbitals are used

to build the BSE equation the results become independent of the starting point. We show

that self-consistency worsens the total energies but improves the equilibrium distances with

respect to BSE@COHSEX@HF. �is is mainly due to changes in the screening inside the BSE.
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1 Introduction

In the last decade the GW method1–4 has become a standard tool in the quantum-chemistry tool

box. It has proved to be a powerful approach for the calculation of ionization energies, electron

a�nities, fundamental gaps, etc. However, due to the complexity of the GW self-energy which is

non-Hermitian and frequency dependent, a fully self-consistent approach is nontrivial.5–13 As a

consequence, several approximate GW schemes have been devised. �e most popular approaches

are perturbative GW, also known as G0W0,14–19 eigenvalue self-consistent GW (evGW)20–23 and

quasi-particle self-consistent GW (qsGW).24–28 Within G0W0, the GW self-energy is treated as

a perturbation with respect to a zeroth-order Hamiltonian with a simpler self-energy, such as

Hartree-Fock (HF), or a di�erent Hamiltonian altogether, such as a Kohn-Sham Hamiltonian. �e

main drawback of G0W0 is its dependence on the choice of the starting point, i.e., the zeroth-order

Hamiltonian.7,22,27–30 Within evGW the dependence on the starting point is reduced by updating

the eigenvalues in a self-consistent �eld procedure. However, the orbitals remain those of the

zeroth-order Hamiltonian. Finally, within qsGW, the GW self-energy is approximated in such a

way that it is both Hermitian and frequency independent. �is allows for a simple self-consistent

procedure for both eigenvalues and orbitals eliminating the in�uence of the starting point.

Although it is known that GW has some shortcomings, they have, until recently, mainly

appeared in the strongly correlated regime.31–39 However, in two recent articles,40,41 we uncov-

ered an important shortcoming of the G0W0, evGW and qsGW approaches that appears in the

weakly correlated regime. All three approaches su�er from unphysical irregularities and even

discontinuities (evGW and qsGW) in important physical quantities such as quasi-particle (QP)

energies, neutral excitation energies, and correlation energies. We showed that the problem could

be traced back to the existence of multiple close-lying solutions when the QP energy is close to

a pole of the self-energy.18,40,41 When the solution switches from one branch to another one it

yields an irregularity or discontinuity in the physical observable. �e problem is more severe

in evGW and qsGW because, due to the self-consistency procedure, an irregularity in one QP

energy is transferred to all QP energies through the self-consistent procedure.
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�is problem was again observed in the potential energy surfaces (PES) of diatomic molecules.42

Accurate results were obtained for the ground-state total energies from the adiabatic-connection

�uctuation-dissipation theorem (ACFDT)43–53 applied to the Bethe-Salpeter equation (BSE) for-

malism.54–57 However, since the BSE calculations were performed on top of a G0W0 calculation,

irregularities appeared in the energy curves due to the problem discussed above. As can be

anticipated from our discussion above, switching to evGW or qsGW will not solve the problem.

Below we will also explicitly show that discontinuities indeed appear in the PES when evGW

or qsGW orbitals and energies are used to calculate the total energy. In view of the above, it is

desirable to �nd an alternative approach to G0W0, evGW and qsGW that does not su�er from

this drawback and yields accurate total energies at an a�ordable computational cost.

In this work we will consider the Coulomb-hole plus screened-exchange (COHSEX) self-energy,

which was proposed a long time ago by Hedin,1,20,58 both perturbatively, namely on top of HF,

and self-consistently (scCOHSEX).59 Although the physics inside the COHSEX self-energy is very

similar to that included in the GW self-energy, unlike the GW self-energy, it is Hermitian and

frequency independent. As a consequence, COHSEX calculations can be done self-consistently

using standard numerical techniques (i.e., by simple diagonalization of a Fock-like operator).

A self-consistent COHSEX calculation can also be used as starting point for a G0W0 or evGW

calculation.59–65 Such an approach generally yields accurate energy gaps but this would of course

su�er from the same irregularities and discontinuities mentioned above. �anks to its numerical

e�ciency COHSEX can be used to perform calculations on large systems.66,67 Finally, we note

that improvements of the COHSEX method have been proposed.68

�e main goal of this work is twofold. We want to show that: (i) physical observables, and in

particular PES, obtained within the COHSEX approach do not su�er from irregularities and dis-

continuities, and (ii) the PES and equilibrium geometries obtained from the BSE using perturbative

COHSEX quasi-particle energies (i.e., BSE@COHSEX@HF) are comparable in accuracy to those

obtained within BSE@G0W0. We illustrate both points by calculating the PES and equilibrium

distances (Req) of several diatomic molecules. Furthermore we want to demonstrate that: (iii)

3



although the COHSEX and G0W0 energy gaps are quite di�erent, the in�uence of this di�erence

on the PES and equilibrium distances is small, and (iv) for the diatomic molecules studied here,

perturbative COHSEX, i.e., BSE@COHSEX@HF, yields PES that are in be�er agreement with

the reference values than self-consistent COHSEX, i.e., BSE@scCOHSEX. Instead, the values of

Req obtained within BSE@scCOHSEX are slightly improved with respect to BSE@COHSEX@HF

when compared to the reference data.

�e paper is organized as follows. In section 2 we describe the theory behind the COHSEX

approach and we also brie�y discuss the theory of G0W0 and partially self-consistent GW methods.

We report and discuss our results in section 3. Finally, in section 4 we draw the conclusions from

our work.

2 �eory

�e key variable within many-body perturbation theory is the one-body Green’s function G. In

the absence of time-dependent �elds and at zero temperature, it is de�ned as

G(r, r′, τ) =− iΘ(τ) 〈ΨN
0 |ψ̂(r)e−i(ĤN−EN

0 )τψ̂†(r′)|ΨN
0 〉

+ iΘ(−τ) 〈ΨN
0 |ψ̂†(r′)ei(ĤN−EN

0 )τψ̂(r)|ΨN
0 〉 ,

(1)

where ĤN is the Hamiltonian of the N-electron system, ΨN
0 is its ground-state wave function,

EN
0 is the ground-state energy, Θ is the Heaviside step function, while ψ̂† and ψ̂ are creation and

annihilation operators, respectively. In practice the one-body Green’s function can be obtained

from the solution of the following Dyson equation,

G(r, r′, τ) = GHF(r, r′, τ) +
∫∫

dr1dr2GHF(r, r1, τ)Σc(r1, r2, τ)G(r2, r′, τ), (2)

where GHF is the one-body Green’s function within the HF approximation and Σc is the correlation

part of the self-energy which has to be approximated in practical calculations.
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2.1 �e COHSEX self-energy

In this section we discuss the COHSEX self-energy, and, in particular, its correlation part. We will

compare it to the GW self-energy since the two self-energies are similar. �e correlation part of

the GW and COHSEX self-energies are given by

ΣGW
c (r, r′, τ) = iG(r, r′, τ)Wp(r, r′, τ + η), (3a)

ΣCOHSEX
c (r, r′, τ) = iG(r, r′, τ)Wp(r, r′, ω = 0)[δ(τ + η) + δ(τ − η)]/2, (3b)

where Wp = W − v, is the di�erence between the screened Coulomb interaction W and the bare

Coulomb interaction v, δ is the Dirac delta function, and η is a positive in�nitesimal that ensures

the correct time ordering. �e main di�erence between the two approximations is that the GW

self-energy contains a dynamical (i.e., frequency dependent) Wp while the COHSEX self-energy

has a static (i.e., frequency independent) Wp. A Fourier transformation of Eqs. (3a) and (3b) yields

the following two expressions

ΣGW
c (r, r′, ω) =

i
2π

∫
dω′eiηω′G(r, r′, ω + ω′)Wp(r, r′, ω′), (4a)

ΣCOHSEX
c (r, r′) =

i
2
[
G(r, r′,−η) + G(r, r′, η)

]
Wp(r, r′, ω = 0)

=
1
2
〈ΨN

0 |ψ̂(r)ψ̂†(r′)− ψ̂†(r′)ψ̂(r)|ΨN
0 〉Wp(r, r′, ω = 0),

(4b)

and clearly shows that the COHSEX self-energy is static. We note that to be�er understand the

screened exchange (SEX) and the Coulomb hole (COH) parts of the COHSEX self-energy it is

useful to rewrite Eq. (4b) according to

ΣCOHSEX
c (r, r′, τ) =− 〈ΨN

0 |ψ̂†(r′)ψ̂(r)|ΨN
0 〉Wp(r, r′, ω = 0)

+
1
2

δ(r− r′)Wp(r, r, ω = 0),
(5)

where we used the anti-commutator relation for the �eld operators, i.e., ψ̂(r′)ψ̂†(r)+ ψ̂†(r′)ψ̂(r) =

δ(r− r′). �e �rst term on the right-hand side of Eq. (5) when combined with the HF exchange
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part of the self-energy, i.e.,

ΣHF
x (r, r′, τ) = −〈ΨN

0 |ψ̂†(r′)ψ̂(r)|ΨN
0 〉v(r, r′), (6)

yields the screened-exchange self-energy. �e second term on the right-hand side of Eq. (5) is the

(static) Coulomb-hole self-energy since Wp(r, r, ω = 0) is the Coulomb potential at r due to the

Coulomb hole created by an electron present at r.

We can express Wp as

Wp(r, r′, ω) =
∫∫

dr1dr2v(r, r1)χ(r1, r2, ω)v(r2, r′), (7)

where the (reducible) polarizability χ can be wri�en as

χ(r, r′, ω) = ∑
m

[
ρm(r)ρm(r′)
ω−Ωm + iη

− ρm(r)ρm(r′)
ω + Ωm − iη

]
, (8)

in which Ωm is a neutral excitation energy and ρm the corresponding transition density. �e la�er

is de�ned as

ρm(r) =
occ

∑
i

virt

∑
a
(X + Y)m

iaφi(r)φa(r) (9)

where φp are either the (real-valued) HF spatial orbitals φHF
p (for a COHSEX@HF calculation)

or the (real-valued) scCOHSEX spatial orbitals φCOHSEX
p , i.e., the eigenfunctions of the COHSEX

Hamiltonian ĤCOHSEX = ĤHF + Σ̂COHSEX
c . In the following, the index m labels the single excita-

tions; i and j are occupied orbitals; a and b are unoccupied orbitals, while p, q, r, and s indicate

arbitrary orbitals.

�e neutral excitation energies Ωm and the transition amplitudes (X + Y)ia
m are obtained from

a random-phase approximation (RPA) calculation:

 A B

−B −A


Xm

Ym

 = Ωm

Xm

Ym

 , (10)

6



where (Xm, Ym)T is the eigenvector that corresponds to Ωm, and

Aia,jb = δijδab(εa − εi) + 2(ia|jb), (11a)

Bia,jb = 2(ia|bj), (11b)

where εp are either the HF orbital energies εHF
p (for a COHSEX@HF calculation) or the scCOHSEX

orbital energies εCOHSEX
p (i.e., the eigenvalues of ĤCOHSEX), and (pq|rs) are the bare two-electron

integrals de�ned as

(pq|rs) =
∫∫

drdr′φp(r)φq(r)v(r, r′)φr(r′)φs(r′). (12)

While the GW self-energy is non-Hermitian and frequency dependent, the COHSEX self-

energy is both static and Hermitian as can be veri�ed from the expression one obtains by inserting

Eq. (8) into Eq. (4b) (with Wp given by (7)):

ΣCOHSEX
c (r, r′) =

[
〈ΨN

0 |ψ̂†(r′)ψ̂(r)|ΨN
0 〉 − 〈ΨN

0 |ψ̂(r)ψ̂†(r′)|ΨN
0 〉
]

×
∫∫

dr1dr2v(r, r1)∑
m

ρm(r1)ρm(r2)

Ωm
v(r2, r′). (13)

Moreover, it is important to note that the COHSEX self-energy has no poles. More precisely, its

denominator never vanishes since the Ωm are real and positive for �nite systems. Owing to the

Hermiticity of the COHSEX self-energy, ΨN
0 can be represented by a single Slater determinant.

Following the Slater-Condon rules the matrix elements in the above equation can then be rewri�en

as sums of products of orbitals. We obtain

ΣCOHSEX
c (r, r′) = 2

[
occ

∑
i

φi(r)φi(r′)−
virt

∑
a

φa(r)φa(r′)

]

×
∫∫

dr1dr2v(r, r1)∑
m

ρm(r1)ρm(r2)

Ωm
v(r2, r′). (14)
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�e matrix element ΣCOHSEX
c,pq = 〈φp|ΣCOHSEX

c |φq〉 can now be wri�en as

ΣCOHSEX
c,pq = 2 ∑

m

[
occ

∑
i

[pi|m][qi|m]

Ωm
−

virt

∑
a

[pa|m][qa|m]

Ωm

]
, (15)

where the screened two-electron integrals are de�ned as

[pq|m] = ∑
ia
(pq|ia)(X + Y)ia

m. (16)

When COHSEX is performed using �rst-order perturbation with respect to HF, the perturbation

is given by ĤCOHSEX − ĤHF = Σ̂COHSEX
c . �e perturbative COHSEX orbital energies can thus be

obtained from

εCOHSEX
p = εHF

p + ΣCOHSEX
c,pp (εHF

p ). (17)

Instead, within scCOHSEX both the eigenvalues and eigenfunctions of the COHSEX Hamilonian

have to be calculated repeatedly until a self-consistent result is obtained.

2.2 G0W0

Given the di�culty of evaluating the GW self-energy mentioned before one o�en uses a pertur-

bative approach called G0W0 in which the self-energy is calculated perturbatively with respect

to a simpler zeroth-order Hamiltonian, such as a self-energy for which a self-consistent solution

is more easily obtained. In this work we will use the HF Green’s function as our zeroth-order

Green’s function. Its spectral representation is given by

GHF(r, r′, ω) = ∑
p

φHF
p (r)φHF

p (r′)
ω− εHF

p − iη sign(µ− εHF
p )

, (18)

with µ the chemical potential. Within the G0W0 approximation, the frequency integral in Eq. (4a)

can be performed analytically and one obtains the following matrix elements of the G0W0 self-
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energy,

ΣG0W0
c,pq (ω) = 2 ∑

m

[
occ

∑
i

[pi|m]HF[qi|m]HF

ω− εHF
i + ΩHF

m − iη
+

virt

∑
a

[pa|m]HF[qa|m]HF

ω− εHF
a −ΩHF

m + iη

]
, (19)

where the superscript in ΩHF
m and [pq|m]HF indicates that these quantities are obtained from HF

eigenvalues and orbitals. Contrary to the COHSEX self-energy, the above self-energy is dynamical

and has poles. �e QP energies can then be obtained from the poles of G obtained by solving the

Dyson equation (2) (in frequency space) with the above self-energy. �is yields the so-called QP

equation,

ω = εHF
p + Re[ΣG0W0

c,pp (ω)]. (20)

Due to the frequency dependence of the self-energy, the G0W0 QP equation has, in general,

multiple solutions εG0W0
p,s . �e solution εG0W0

p ≡ εG0W0
p,s=0 with the largest spectral weight Zp(ε

G0W0
p,s=0)

with

Zp(ω) =

[
1−

Re[ΣG0W0
c,pp (ω)]

∂ω

]−1

, (21)

is called the QP solution (or simply quasi-particle), while the other solutions (s > 0) are called

satellites and share the rest of the spectral weight. In practice the QP equation is o�en simpli�ed

by Taylor expanding the self-energy to �rst order around εHF
p . �e result is the so-called linearized

QP equation given by

εG0W0
p = εHF

p + Zp(ε
HF
p )Re[ΣG0W0

c,pp (εHF
p )]. (22)

When the self-energy has poles close to a solution of the QP equation the above linearization is

not justi�ed. Moreover, it leads to irregularities in physical observables such as PES. �is can be

understood as follows.

Although the self-energy in the linearized QP equation is independent of the frequency its

denominator could still vanish. �is happens when εHF
p = εHF

i −ΩHF
m or when εHF

p = εHF
a + ΩHF

m .

When calculating a single QP for a single con�guration of an atom or a molecule it is not very

probable that such an event occurs. However, when a large number of QPs and/or con�gurations
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is considered, e.g., when calculating a PES, it becomes inevitable. As an example, let us consider

the simplest PES, namely the variation of the total energy of a diatomic molecule as a function of

the interatomic distance R. In such a case, εHF
p and ΩHF

m could be considered functions of R and

the conditions that the self-energy has a vanishing denominator can be wri�en as

εHF
p (R) = εHF

i (R)−ΩHF
m (R), (23a)

εHF
p (R) = εHF

a (R) + ΩHF
m (R). (23b)

�erefore, ΣG0W0
c,pp [εHF

p (R)] can be considered an implicit function of R that has poles. From the

above conditions it is clear that in a region equal to 2ΩHF
0 (R) + εHF

LUMO(R)− εHF
HOMO(R) around

the Fermi level no poles can occur, where ΩHF
0 is the smallest neutral excitation energy and εHF

LUMO

and εHF
HOMO are the HF energies of the lowest unoccupied molecular orbital (LUMO) and the highest

occupied molecular orbital (HOMO), respectively. However, since, in general, the variation with

respect to R of the le�- and right-hand sides of Eqs. (23a) and (23b) is di�erent, it is unavoidable

that outside of this range one of the two above conditions is met for some values R = Rp. We

note that they can never be met simultaneously. In the vicinity of these Rp values the self-energy

[see Eq. (19)] and its corresponding renormalization factor Zp [see Eq. (21)] vary rapidly leading

to irregularities in the QP energies and, hence, in the PES.

2.3 Partially self-consistent GW

�e main drawback of the G0W0 approach is its dependence on the starting point, i.e,. the orbitals

and energies of the zeroth-order Hamiltonian. Since, as mentioned before, from a numerical point

of view, fully self-consistent GW is nontrivial, so-called partial self-consistent GW methods have

been developed to reduce or eliminate the starting-point dependence. Within evGW one only

updates the eigenvalues in the self-energy while in qsGW one symmetrizes the G0W0 self-energy

according to

ΣqsGW
c,pq =

1
2

Re
[
ΣG0W0

c,pq (εqsGW
p ) + ΣG0W0

c,pq (εqsGW
q )

]
. (24)
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�e above self-energy is frequency-independent and Hermitian and is, hence, suitable for a

standard self-consistent procedure. �erefore, in this partially self-consistent scheme both the

eigenvalues and orbitals are updated.

However, the evGW and qsGW approaches su�er from the same problem as G0W0 since

the self-energies have poles when considered as (implicit) functions of the geometry. In fact the

problem is even more severe since, due to the self-consistent procedure, an irregularity in one

QP energy is transferred to all the other QP energies. As a consequence, in some regions of the

geometry space, there is more than one branch of solutions and discontinuities appear when a

solution switches from one branch to another.40,41

2.4 Correlation energy

We calculate the correlation energies at the BSE level using an approach based on the ACFDT.43–45

We note that the ACFDT formalism is formally derived for a local potential, while here the

potential, i.e., the self-energy, is non-local. We strictly follow the ACFDT procedure described in

Ref. 42 and the details can be found there. For the sake of completeness we brie�y discuss some

details of the calculation of the BSE total energy. �e main di�erence with Ref. 42 is that the

QP energies and orbitals appearing in the equations below are those pertaining to the COHSEX

self-energy instead of the G0W0 self-energy.

Within the ACFDT formalism, the BSE correlation energy can be wri�en as an integral over

the coupling constant λ which adiabatically connects the noninteracting system (λ = 0) with the

fully interacting system (λ = 1) according to42,49–53

EBSE
c =

1
2

∫ 1

0
Tr
(

KPλ
)

dλ (25)
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where the polarizability matrix Pλ is given by

Pλ =

Yλ(Yλ)T Yλ(Xλ)T

Xλ(Yλ)T Xλ(Xλ)T

−
0 0

0 1

 (26)

with Xλ and Yλ solutions of Aλ,BSE Bλ,BSE

−Bλ,BSE −Aλ,BSE


Xλ

m

Yλ
m

 = Ωλ
m

Xλ
m

Yλ
m

 , (27)

where

Aλ,BSE
ia,jb = δijδab(εa − εi) + λ

[
2(ia|jb)−Wλ

ij,ab

]
, (28)

Bλ,BSE
ia,jb = λ

[
2(ia|bj)−Wλ

ib,aj

]
, (29)

with

Wλ
pq,rs =

∫∫
drdr′φp(r)φq(r)Wλ(r, r′, ω = 0)φr(r′)φs(r′), (30)

Finally, the interaction kernel K is given by

K =

 ÃBSE Bλ=1,BSE

Bλ=1,BSE ÃBSE

 (31)

with ÃBSE
ia,jb = 2(ia|bj). We note that Eq. (25) is referred to as “extended Bethe-Salpeter (XBS)” in Ref.

51 . An important point to make here is that, in contrast to Kohn-Sham density-functional theory

where the electron density is �xed along the adiabatic path,43,44 the density is not maintained in

the present BSE formalism as the coupling constant varies. �erefore, an additional contribution

to Eq. (25) originating from the variation of the Green’s function along the adiabatic connection

path should be, in principle, added.69 However, as it is commonly done,46,47,51,70 we shall neglect

it in the present study.
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�e BSE total energy EBSE of the system can then be wri�en as

EBSE = Enuc + EHF + EBSE
c (32)

where Enuc and EHF are the nuclear energy and the HF energy, respectively. We note that for a

BSE@scCOHSEX calculation EHF is calculated with the scCOHSEX orbitals.

3 Results

All systems under investigation have a closed-shell singlet ground state. Hence, the restricted HF

formalism has been systematically employed in the present study. Finally, the in�nitesimal η is set

to zero for all calculations. �e numerical integration required to compute the correlation energy

along the adiabatic path [see Eq. (25)] is performed with a 21-point Gauss-Legendre quadrature. All

the calculations have been performed with the so�ware QuAcK,71 freely available on github.

As one-electron basis sets, we employ the Dunning family (cc-pVXZ) de�ned with cartesian

Gaussian functions.

3.1 Irregularities and discontinuities in G0W0, evGW, and qsGW

We have previously described in detail the problem of irregularities and discontinuities in physical

observables obtained from G0W0 and partially self-consistent GW approaches.40,41 Here we want

to remind the reader that these problems are also present in total energy calculations and we

want to show that, instead, there are no such problems in the COHSEX method. In Fig. 1 we

report the BSE total energy of the LiF molecule as a function of the interatomic distance in the

vicinity of its equilibrium distance. �e BSE correlation energy is calculated on top of G0W0@HF,

COHSEX@HF, evGW@HF, qsGW, and scCOHSEX. We used a relatively small basis set, namely

Dunning’s cc-pVDZ basis, since for larger basis sets the qsGW approach does not yield converged

results for many values of R. �is, however, does not change the conclusions of this section. We

note that within qsGW the entire set of energies and orbitals is updated at each iteration. We
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see that all four results are within a range of about 10 mHartree. However, the PES obtained

from BSE@G0W0@HF shows irregularities while the PES obtained from BSE@evGW@HF and

BSE@qsGW show discontinuities. In fact, the di�erent branches of solutions can clearly be

seen, especially around 3.4 bohr. Instead, the BSE total energies obtained on top of a COHSEX

calculation, i.e., BSE@COHSEX@HF and BSE@scCOHSEX, yield a PES that is a smooth function

of the interatomic distance.

Figure 1: �e BSE total energy of the LiF molecule in the cc-pVDZ basis as a function of the
internuclear distance. �e calculations were done at intervals of 0.002 bohr.

Finally, we note that including self-consistency in COHSEX and GW tends to lower the total

energies and that including self-consistency for both QP energies and orbitals lowers the total

energy more than just including self-consistency for the QP energies. Moreover, the e�ect of

self-consistency on the total energies in COHSEX, going from COHSEX@HF to scCOHSEX, is
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roughly identical to the e�ect on GW, going from G0W0@HF to evGW@HF.

3.2 Ground-state PES

In Figs. 2-9 we report the BSE total energies as a function of the interatomic distance around the

equilibrium distance for the following diatomic molecules: H2, LiH, LiF, HCl, N2, CO, BF, and

F2, respectively. �ey are the same molecules that were studied in Ref. 42. We also use the same

basis set, namely Dunning’s cc-pVQZ. For comparison we also report the PES obtained with the

coupled cluster (CC) methods of increasing accuracy: CC2,72 CCSD,73 CC3.74 At the equilibrium

distance the CC3 approach has been shown to yield total energies that are very close to those

obtained with higher-order CC approaches, such as CCSDT and CCSDT(Q).42 �erefore, we can

consider it to be the reference method.

In the only case for which we have an exact result (for the given basis set), namely the H2

PES obtained from full con�guration interaction (FCI), all BSE total energies are roughly the

same. We also note that no irregularities are visible in the BSE@G0W0@HF curve. In the case

of LiH, the second smallest molecule in the set, an irregularity appears in the BSE@G0W0@HF

curve around 3.08 bohr. We also observe that the smooth BSE@COHSEX@HF total-energy

curves are closest to the reference CC3 values, while BSE@scCOHSEX and BSE@G0W0@HF yield

almost identical energies. For the LiF molecule there are large irregularities in the PES obtained

within BSE@G0W0@HF around 2.9 bohr which impedes a straightforward determination of the

equilibrium distance (see below). Another large irregularity appears around 3.4 bohr. Again the

smooth BSE@COHSEX@HF curve is closest to that obtained within CC3, although the di�erences

with the BSE@G0W0@HF results are small. Finally, similar to the LiF results obtained above

for the small cc-pVDZ basis, we observe again that including self-consistency in the COHSEX

calculation lowers the total energy, thereby worsening the agreement with the coupled-cluster

reference data.

�e PES of all diatomic molecules, except the smallest two (H2 and LiH), show a similar trend,

i.e., small di�erences between the BSE@COHSEX@HF and BSE@G0W0@HF total energies and
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Table 1: Equilibrium distances (in bohr) obtained in the cc-pVQZ basis set. �e experimental values
are extracted from Ref. 75. �e results in brackets for LiF and F2 were obtained by ��ing the total
energies to a Morse potential since the irregularities in the PES precluded a direct evaluation.

.

H2 LiH LiF HCl N2 CO BF F2

CC3 1.402 3.019 2.963 2.403 2.075 2.136 2.390 2.663
BSE@G0W0@HF 1.399 3.017 (2.973) 2.400 2.065 2.134 2.385 (2.638)
BSE@COHSEX@HF 1.399 3.014 2.961 2.400 2.066 2.125 2.379 2.635
BSE@scCOHSEX 1.401 3.016 2.963 2.404 2.070 2.130 2.387 2.650
Experiment 1.401 3.015 2.948 2.409 2.074 2.132 2.386 2.668

a relatively large di�erence with respect to the BSE@scCOHSEX total energies. �erefore, we

conclude that the self-consistency has a much larger in�uence on the PES than the di�erence in

the COHSEX and GW self-energies.

�e PES of the HCl, N2, CO and BF molecules obtained within BSE@G0W0@HF all exhibit

small irregularities, while those in F2 are very large, preventing a simple determination of the

F2 equilibrium distance (see below). Again, BSE@COHSEX@HF is in excellent agreement with

the CC3 results and even slightly be�er than those obtained within BSE@G0W0@HF, and, most

importantly, the PES obtained within BSE@COHSEX@HF (and BSE@scCOHSEX) are devoid of

irregularities and discontinuities.

In Table 1 we report the equilibrium distances obtained within the various BSE approaches

and we compare them to the CC3 reference values and to experiment. As mentioned before,

the irregularities in the PES can prevent a straightforward determination of the equilibrium

distance. �erefore, following Ref. 42, for LiF and F2 a Morse potential was used to �t the total

energies in order to estimate the equilibrium distance. Although the total energies obtained within

BSE@scCOHSEX were not as accurate as those obtained using perturbative QP energies, adding

self-consistency to the COHSEX approach improves the equilibrium distances. In summary, while

BSE@COHSEX@HF yields the smallest errors for the total energies, BSE@scCOHSEX yields the

smallest errors for the equilibrium distances.

Finally, in order to estimate the in�uence of the QP energies on the BSE total energies, we report
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the ionization potentials (IP) and the HOMO-LUMO gaps at the equilibrium distance corresponding

to each level of theory for the various BSE approaches in Tables 2 and 3, respectively, and we

compare to experimental data (when available). For the IP we also report the CCSD(T)/def2TZVPP

data of Ref. 76 which are in good agreement with the experimental values with the exception of

H2. Comparing the di�erences in the IP with the di�erences in the PES, there does not emerge

a clear link between the two. Although the IP obtained within COHSEX@HF and G0W0@HF

show the largest di�erences (except for N2), the di�erences between the corresponding BSE total

energies are the smallest. Instead, the di�erences in the IP between scCOHSEX and COHSEX@HF

are the smallest (except for N2) but the di�erences in the corresponding total energies are the

largest. A similar analysis holds for the HOMO-LUMO gaps. Moreover, despite the fact that

COHSEX@HF yields IP and HOMO-LUMO gaps signi�cantly worse than those obtained within

G0W0@HF when compared to the experimental values, the corresponding BSE total energies are

very similar (except for the irregularities in G0W0@HF@BSE). �erefore, at least for the small

molecules discussed here, the BSE total energies obtained within ACFDT seem to be robust with

respect to the underlying QP energies. Instead, the total energies are sensitive to the screening

that enters the BSE. Within BSE@COHSEX@HF and BSE@G0W0@HF this quantity is identical

since in both cases it is calculated from the HF orbitals and energies However, when one includes

self-consistency, the screening changes and it has a signi�cant in�uence on the total energy. We

can therefore conclude that the screened Coulomb potential is the key quantity in the calculation

of correlation energies within the ACFDT@BSE formalism, and ultimately dictates the accuracy

of the total energy.

4 Conclusions

We have demonstrated that COHSEX is a promising approach to obtain quasi-particle energies

for the calculation of potential energy surfaces. Contrary to G0W0 and partially self-consistent

GW approaches, COHSEX yields results without irregularities and discontinuities. We have
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Table 2: Ionization potentials (in eV) at the equilibrium distance obtained in the cc-pVQZ basis set
except for the CCSD(T) values from Ref. 76 which have been obtained in the def2-TZVPP basis.
�e experimental values are extracted from Ref. 18

H2 LiH LiF HCl N2 CO BF F2

G0W0@HF 16.57 8.26 11.59 12.98 17.33 14.91 11.41 16.50
COHSEX@HF 18.05 9.52 13.82 14.49 19.48 16.69 12.86 18.88
scCOHSEX 17.83 9.21 13.12 14.02 17.52 15.79 12.45 18.00
CCSD(T) 16.40 7.96 11.32 12.59 15.57 14.21 11.09 15.71
Experiment 15.43 7.90 11.30 12.79 15.58 14.01 11.00 15.70

Table 3: HOMO-LUMO gaps (in eV) at the equilibrium distance obtained in the cc-pVQZ basis set.
�e experimental values are extracted from Ref. 50

H2 LiH LiF HCl N2 CO BF F2

G0W0@HF 20.24 8.04 11.31 15.20 20.24 17.33 12.90 17.32
COHSEX@HF 21.59 9.27 13.54 16.45 21.38 18.44 13.97 18.14
scCOHSEX 21.57 8.99 12.84 16.07 20.09 17.93 13.73 17.81
Experiment 8.24 16.94

illustrated this feature by calculating the ground-state potential energy surfaces of diatomic

molecules. Moreover, we have shown that BSE total energies of diatomic molecules using COHSEX

quasi-particle energies obtained perturbatively on top of a Hartree-Fock calculation are in good

agreement with accurate coupled-cluster results. Finally, we showed that including self-consistency

in the COHSEX approach for both quasi-particle energies and orbitals, in order to make the results

independent of the starting point, worsens the total energies but improves the equilibrium distances.

�is is mainly due to variations in the screening W that enters the BSE.

Acknowledgement

JAB and PR thank the French Agence Nationale de la Recherche (ANR) for �nancial support (Grant

agreements ANR-18-CE30-0025 and ANR-19-CE30-0011). PFL thanks the European Research

18



Figure 2: �e total energy of the H2 molecule in the cc-pVQZ basis as a function of the internuclear
distance.

Council (ERC) under the European Union’s Horizon 2020 research and innovation programme

(Grant agreement No. 863481) for �nancial support. �is study has also been partially supported

through the EUR grant NanoX no ANR-17-EURE-0009 in the framework of the ”Programme des

Investissements d’Avenir”.

References

(1) Hedin, L. New Method for Calculating the One-Particle Green’s Function with Application

to the Electron-Gas Problem. Phys. Rev. 1965, 139, A796.

19



Figure 3: �e total energy of the LiH molecule in the cc-pVQZ basis as a function of the internuclear
distance.

(2) Aryasetiawan, F.; Gunnarsson, O. �e GW method. Rep. Prog. Phys. 1998, 61, 237–312.

(3) Reining, L. �e GW Approximation: Content, Successes and Limitations: �e GW Approxi-

mation. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2017, e1344.

(4) Golze, D.; Dvorak, M.; Rinke, P. �e GW Compendium: A Practical Guide to �eoretical

Photoemission Spectroscopy. Frontiers in Chemistry 2019, 7, 377.

(5) Stan, A.; Dahlen, N. E.; van Leeuwen, R. Fully Self-Consistent GW Calculations for Atoms

and Molecules. Europhys. Le�. EPL 2006, 76, 298–304.

20



Figure 4: �e total energy of the LiF molecule in the cc-pVQZ basis as a function of the internuclear
distance.

(6) Stan, A.; Dahlen, N. E.; van Leeuwen, R. Levels of Self-Consistency in the GW Approximation.

J. Chem. Phys. 2009, 130, 114105.

(7) Rostgaard, C.; Jacobsen, K. W.; �ygesen, K. S. Fully Self-Consistent GW Calculations for

Molecules. Phys. Rev. B 2010, 81, 085103.

(8) Caruso, F.; Rinke, P.; Ren, X.; Sche�er, M.; Rubio, A. Uni�ed Description of Ground and

Excited States of Finite Systems: �e Self-Consistent G W Approach. Phys. Rev. B 2012, 86,

081102(R).

(9) Caruso, F.; Rohr, D. R.; Hellgren, M.; Ren, X.; Rinke, P.; Rubio, A.; Sche�er, M. Bond Breaking

21



Figure 5: �e total energy of the HCl molecule in the cc-pVQZ basis as a function of the internuclear
distance.

and Bond Formation: How Electron Correlation Is Captured in Many-Body Perturbation

�eory and Density-Functional �eory. Phys. Rev. Le�. 2013, 110, 146403.

(10) Caruso, F.; Rinke, P.; Ren, X.; Rubio, A.; Sche�er, M. Self-Consistent G W : All-Electron

Implementation with Localized Basis Functions. Phys. Rev. B 2013, 88, 075105.

(11) Caruso, F. Self-Consistent GW Approach for the Uni�ed Description of Ground and Excited

States of Finite Systems. PhD �esis, Freie Universität Berlin, 2013.

(12) Koval, P.; Foerster, D.; Sánchez-Portal, D. Fully Self-Consistent G W and �asiparticle Self-

Consistent G W for Molecules. Phys. Rev. B 2014, 89, 155417.

22



Figure 6: �e total energy of the N2 molecule in the cc-pVQZ basis as a function of the internuclear
distance.

(13) Wilhelm, J.; Golze, D.; Talirz, L.; Hu�er, J.; Pignedoli, C. A. Toward GW Calculations on

�ousands of Atoms. J. Phys. Chem. Le�. 2018, 9, 306–312.

(14) Hybertsen, M. S.; Louie, S. G. First-Principles �eory of �asiparticles: Calculation of Band

Gaps in Semiconductors and Insulators. Phys. Rev. Le�. 1985, 55, 1418–1421.

(15) van Se�en, M. J.; Weigend, F.; Evers, F. �e GW -Method for �antum Chemistry Applications:

�eory and Implementation. J. Chem. �eory Comput. 2013, 9, 232–246.

(16) Bruneval, F. Ionization Energy of Atoms Obtained from GW Self-Energy or from Random

Phase Approximation Total Energies. J. Chem. Phys. 2012, 136, 194107.

23



Figure 7: �e total energy of the CO molecule in the cc-pVQZ basis as a function of the internuclear
distance.

(17) Bruneval, F.; Marques, M. A. L. Benchmarking the Starting Points of the GW Approximation

for Molecules. J. Chem. �eory Comput. 2013, 9, 324–329.

(18) van Se�en, M. J.; Caruso, F.; Sharifzadeh, S.; Ren, X.; Sche�er, M.; Liu, F.; Lischner, J.; Lin, L.;

Deslippe, J. R.; Louie, S. G.; Yang, C.; Weigend, F.; Neaton, J. B.; Evers, F.; Rinke, P. GW 100:

Benchmarking G 0 W 0 for Molecular Systems. J. Chem. �eory Comput. 2015, 11, 5665–5687.
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