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Introduction

In the last decade the GW method [START_REF] Hedin | New Method for Calculating the One-Particle Green's Function with Application to the Electron-Gas Problem[END_REF][2][3][4] has become a standard tool in the quantum-chemistry tool box. It has proved to be a powerful approach for the calculation of ionization energies, electron a nities, fundamental gaps, etc. However, due to the complexity of the GW self-energy which is non-Hermitian and frequency dependent, a fully self-consistent approach is nontrivial. [5][6][7][8][9][10][11][12][13] As a consequence, several approximate GW schemes have been devised. e most popular approaches are perturbative GW, also known as G 0 W 0 , [14][15][16][17][18][19] eigenvalue self-consistent GW (evGW) [20][21][22][23] and quasi-particle self-consistent GW (qsGW). [24][25][26][27][28] Within G 0 W 0 , the GW self-energy is treated as a perturbation with respect to a zeroth-order Hamiltonian with a simpler self-energy, such as Hartree-Fock (HF), or a di erent Hamiltonian altogether, such as a Kohn-Sham Hamiltonian. e main drawback of G 0 W 0 is its dependence on the choice of the starting point, i.e., the zeroth-order Hamiltonian. 7,22,[27][28][START_REF] Rangel | Evaluating the GW Approximation with CCSD(T) for Charged Excitations Across the Oligoacenes[END_REF][START_REF] Caruso | Benchmark of GW Approaches for the GW100 Test Set[END_REF] Within evGW the dependence on the starting point is reduced by updating the eigenvalues in a self-consistent eld procedure. However, the orbitals remain those of the zeroth-order Hamiltonian. Finally, within qsGW, the GW self-energy is approximated in such a way that it is both Hermitian and frequency independent. is allows for a simple self-consistent procedure for both eigenvalues and orbitals eliminating the in uence of the starting point.

Although it is known that GW has some shortcomings, they have, until recently, mainly appeared in the strongly correlated regime. [START_REF] Romaniello | Self-Energy beyond GW: Local and Nonlocal Vertex Corrections[END_REF][START_REF] Romaniello | Beyond the G W Approximation: Combining Correlation Channels[END_REF][START_REF] Berger | Solution to the Many-Body Problem in One Point[END_REF][START_REF] Stan | Unphysical and physical solutions in many-body theories: from weak to strong correlation[END_REF][START_REF] Di Sabatino | Reduced density-matrix functional theory: Correlation and spectroscopy[END_REF][START_REF] Di Sabatino | Photoemission Spectra from Reduced Density Matrices: e Band Gap in Strongly Correlated Systems[END_REF][START_REF] Tarantino | Self-Consistent Dyson Equation and Self-Energy Functionals: An Analysis and Illustration on the Example of the Hubbard Atom[END_REF][START_REF] Tarantino | Many-body perturbation theory and non-perturbative approaches: screened interaction as the key ingredient[END_REF][39] However, in two recent articles, [START_REF] Loos | Green functions and self-consistency: insights from the spherium model[END_REF][START_REF] Véril | Unphysical Discontinuities in GW Methods[END_REF] we uncovered an important shortcoming of the G 0 W 0 , evGW and qsGW approaches that appears in the weakly correlated regime. All three approaches su er from unphysical irregularities and even discontinuities (evGW and qsGW) in important physical quantities such as quasi-particle (QP) energies, neutral excitation energies, and correlation energies. We showed that the problem could be traced back to the existence of multiple close-lying solutions when the QP energy is close to a pole of the self-energy. 18,[START_REF] Loos | Green functions and self-consistency: insights from the spherium model[END_REF][START_REF] Véril | Unphysical Discontinuities in GW Methods[END_REF] When the solution switches from one branch to another one it yields an irregularity or discontinuity in the physical observable. e problem is more severe in evGW and qsGW because, due to the self-consistency procedure, an irregularity in one QP energy is transferred to all QP energies through the self-consistent procedure. is problem was again observed in the potential energy surfaces (PES) of diatomic molecules. [START_REF] Loos | Pros and Cons of the Bethe-Salpeter Formalism for Ground-State Energies[END_REF] Accurate results were obtained for the ground-state total energies from the adiabatic-connection uctuation-dissipation theorem (ACFDT) [START_REF] Langreth | e gradient approximation to the exchange-correlation energy functional: A generalization that works[END_REF][START_REF] Gunnarsson | Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism[END_REF][START_REF] Furche | Fluctuation-dissipation theorem density-functional theory[END_REF][START_REF] Toulouse | Adiabatic-Connection Fluctuation-Dissipation Density-Functional eory Based on Range Separation[END_REF][START_REF] Toulouse | Range-Separated Density-Functional eory With the Random-Phase Approximation: Detailed Formalism and Illustrative Applications[END_REF][START_REF] Angyan | Correlation Energy Expressions from the Adiabatic-Connection Fluctuation Dissipation eorem Approach[END_REF][START_REF] Olsen | Static Correlation Beyond the Random Phase Approximation: Dissociating H2 With the Bethe-Salpeter Equation and Time-Dependent GW[END_REF][START_REF] Maggio | Correlation Energy for the Homogeneous Electron Gas: Exact Bethe-Salpeter Solution and an Approximate Evaluation[END_REF][START_REF] Holzer | Bethe-Salpeter Correlation Energies of Atoms and Molecules[END_REF][START_REF] Li | Comparing Many-Body Approaches Against the Helium Atom Exact Solution[END_REF][START_REF] Li | Ground-state correlation energy of beryllium dimer by the Bethe-Salpeter equation[END_REF] applied to the Bethe-Salpeter equation (BSE) formalism. [START_REF] Salpeter | A Relativistic Equation for Bound-State Problems[END_REF][START_REF] Strinati | Application of the Green's Functions Method to the Study of the Optical Properties of Semiconductors[END_REF][START_REF] Blase | Bethe-Salpeter Equation in Chemistry: Relations with TD-DFT, Applications and Challenges[END_REF][START_REF] Blase | Bethe-Salpeter Formalism: From Physics to Chemistry[END_REF] However, since the BSE calculations were performed on top of a G 0 W 0 calculation, irregularities appeared in the energy curves due to the problem discussed above. As can be anticipated from our discussion above, switching to evGW or qsGW will not solve the problem.

Below we will also explicitly show that discontinuities indeed appear in the PES when evGW or qsGW orbitals and energies are used to calculate the total energy. In view of the above, it is desirable to nd an alternative approach to G 0 W 0 , evGW and qsGW that does not su er from this drawback and yields accurate total energies at an a ordable computational cost.

In this work we will consider the Coulomb-hole plus screened-exchange (COHSEX) self-energy, which was proposed a long time ago by Hedin, [START_REF] Hedin | New Method for Calculating the One-Particle Green's Function with Application to the Electron-Gas Problem[END_REF]20,[START_REF] Hedin | On correlation e ects in electron spectroscopies and the GW approximation[END_REF] both perturbatively, namely on top of HF, and self-consistently (scCOHSEX). [START_REF] Bruneval | E ect of self-consistency on quasiparticles in solids[END_REF] Although the physics inside the COHSEX self-energy is very similar to that included in the GW self-energy, unlike the GW self-energy, it is Hermitian and frequency independent. As a consequence, COHSEX calculations can be done self-consistently using standard numerical techniques (i.e., by simple diagonalization of a Fock-like operator).

A self-consistent COHSEX calculation can also be used as starting point for a G 0 W 0 or evGW calculation. [START_REF] Bruneval | E ect of self-consistency on quasiparticles in solids[END_REF][START_REF] Ga I | Understanding Correlations in Vanadium Dioxide from First Principles[END_REF][START_REF] Vidal | E ects of Electronic and La ice Polarization on the Band Structure of Delafossite Transparent Conductive Oxides[END_REF][START_REF] Rangel | Band structure of gold from many-body perturbation theory[END_REF][START_REF] Tanwar | Accurate ionization potential of gold anionic clusters from density functional theory and many-body perturbation theory[END_REF][START_REF] Boulanger | Fast and Accurate Electronic Excitations in Cyanines with the Many-Body Bethe-Salpeter Approach[END_REF][START_REF] Knight | Accurate Ionization Potentials and Electron A nities of Acceptor Molecules III: A Benchmark of GW Methods[END_REF] Such an approach generally yields accurate energy gaps but this would of course su er from the same irregularities and discontinuities mentioned above. anks to its numerical e ciency COHSEX can be used to perform calculations on large systems. [START_REF] Li | Combining the Many-Body GW Formalism with Classical Polarizable Models: Insights on the Electronic Structure of Molecular Solids[END_REF][START_REF] Fujita | Development of the fragment-based COHSEX method for large and complex molecular systems[END_REF] Finally, we note that improvements of the COHSEX method have been proposed. [START_REF] Kang | Enhanced static approximation to the electron self-energy operator for e cient calculation of quasiparticle energies[END_REF] e main goal of this work is twofold. We want to show that: (i) physical observables, and in particular PES, obtained within the COHSEX approach do not su er from irregularities and discontinuities, and (ii) the PES and equilibrium geometries obtained from the BSE using perturbative COHSEX quasi-particle energies (i.e., BSE@COHSEX@HF) are comparable in accuracy to those obtained within BSE@G 0 W 0 . We illustrate both points by calculating the PES and equilibrium distances (R eq ) of several diatomic molecules. Furthermore we want to demonstrate that: (iii) although the COHSEX and G 0 W 0 energy gaps are quite di erent, the in uence of this di erence on the PES and equilibrium distances is small, and (iv) for the diatomic molecules studied here, perturbative COHSEX, i.e., BSE@COHSEX@HF, yields PES that are in be er agreement with the reference values than self-consistent COHSEX, i.e., BSE@scCOHSEX. Instead, the values of R eq obtained within BSE@scCOHSEX are slightly improved with respect to BSE@COHSEX@HF when compared to the reference data. e paper is organized as follows. In section 2 we describe the theory behind the COHSEX approach and we also brie y discuss the theory of G 0 W 0 and partially self-consistent GW methods.

We report and discuss our results in section 3. Finally, in section 4 we draw the conclusions from our work.

eory

e key variable within many-body perturbation theory is the one-body Green's function G. In the absence of time-dependent elds and at zero temperature, it is de ned as

G(r, r , τ) = -iΘ(τ) Ψ N 0 | ψ(r)e -i( ĤN -E N 0 )τ ψ † (r )|Ψ N 0 + iΘ(-τ) Ψ N 0 | ψ † (r )e i( ĤN -E N 0 )τ ψ(r)|Ψ N 0 , (1) 
where ĤN is the Hamiltonian of the N-electron system, Ψ N 0 is its ground-state wave function, E N 0 is the ground-state energy, Θ is the Heaviside step function, while ψ † and ψ are creation and annihilation operators, respectively. In practice the one-body Green's function can be obtained from the solution of the following Dyson equation,

G(r, r , τ) = G HF (r, r , τ) + dr 1 dr 2 G HF (r, r 1 , τ)Σ c (r 1 , r 2 , τ)G(r 2 , r , τ), ( 2 
)
where G HF is the one-body Green's function within the HF approximation and Σ c is the correlation part of the self-energy which has to be approximated in practical calculations.

e COHSEX self-energy

In this section we discuss the COHSEX self-energy, and, in particular, its correlation part. We will compare it to the GW self-energy since the two self-energies are similar. e correlation part of the GW and COHSEX self-energies are given by

Σ GW c (r, r , τ) = iG(r, r , τ)W p (r, r , τ + η), ( 3a 
)
Σ COHSEX c (r, r , τ) = iG(r, r , τ)W p (r, r , ω = 0)[δ(τ + η) + δ(τ -η)]/2, ( 3b 
)
where W p = Wv, is the di erence between the screened Coulomb interaction W and the bare Coulomb interaction v, δ is the Dirac delta function, and η is a positive in nitesimal that ensures the correct time ordering. e main di erence between the two approximations is that the GW self-energy contains a dynamical (i.e., frequency dependent) W p while the COHSEX self-energy has a static (i.e., frequency independent) W p . A Fourier transformation of Eqs. (3a) and (3b) yields the following two expressions

Σ GW c (r, r , ω) = i 2π dω e iηω G(r, r , ω + ω )W p (r, r , ω ), (4a) 
Σ COHSEX c (r, r ) = i 2 G(r, r , -η) + G(r, r , η) W p (r, r , ω = 0) = 1 2 Ψ N 0 | ψ(r) ψ † (r ) -ψ † (r ) ψ(r)|Ψ N 0 W p (r, r , ω = 0), (4b) 
and clearly shows that the COHSEX self-energy is static. We note that to be er understand the screened exchange (SEX) and the Coulomb hole (COH) parts of the COHSEX self-energy it is useful to rewrite Eq. (4b) according to

Σ COHSEX c (r, r , τ) = -Ψ N 0 | ψ † (r ) ψ(r)|Ψ N 0 W p (r, r , ω = 0) + 1 2 δ(r -r )W p (r, r, ω = 0), (5) 
where we used the anti-commutator relation for the eld operators, i.e., ψ(r ) ψ † (r) + ψ † (r ) ψ(r) = δ(rr ). e rst term on the right-hand side of Eq. (5) when combined with the HF exchange part of the self-energy, i.e.,

Σ HF x (r, r , τ) = -Ψ N 0 | ψ † (r ) ψ(r)|Ψ N 0 v(r, r ), (6) 
yields the screened-exchange self-energy. e second term on the right-hand side of Eq. ( 5) is the (static) Coulomb-hole self-energy since W p (r, r, ω = 0) is the Coulomb potential at r due to the Coulomb hole created by an electron present at r.

We can express W p as

W p (r, r , ω) = dr 1 dr 2 v(r, r 1 )χ(r 1 , r 2 , ω)v(r 2 , r ), (7) 
where the (reducible) polarizability χ can be wri en as

χ(r, r , ω) = ∑ m ρ m (r)ρ m (r ) ω -Ω m + iη - ρ m (r)ρ m (r ) ω + Ω m -iη , (8) 
in which Ω m is a neutral excitation energy and ρ m the corresponding transition density. e la er is de ned as

ρ m (r) = occ ∑ i virt ∑ a (X + Y) m ia φ i (r)φ a (r) (9) 
where φ p are either the (real-valued) HF spatial orbitals φ HF p (for a COHSEX@HF calculation)

or the (real-valued) scCOHSEX spatial orbitals φ COHSEX p , i.e., the eigenfunctions of the COHSEX

Hamiltonian ĤCOHSEX = ĤHF + ΣCOHSEX c .
In the following, the index m labels the single excitations; i and j are occupied orbitals; a and b are unoccupied orbitals, while p, q, r, and s indicate arbitrary orbitals.

e neutral excitation energies Ω m and the transition amplitudes (X + Y) ia m are obtained from a random-phase approximation (RPA) calculation:

   A B -B -A       X m Y m    = Ω m    X m Y m    , (10) 
where (X m , Y m ) T is the eigenvector that corresponds to Ω m , and

A ia,jb = δ ij δ ab ( a -i ) + 2(ia|jb), (11a) 
B ia,jb = 2(ia|bj), (11b) 
where p are either the HF orbital energies HF p (for a COHSEX@HF calculation) or the scCOHSEX orbital energies COHSEX p (i.e., the eigenvalues of ĤCOHSEX ), and (pq|rs) are the bare two-electron integrals de ned as

(pq|rs) = drdr φ p (r)φ q (r)v(r, r )φ r (r )φ s (r ). ( 12 
)
While the GW self-energy is non-Hermitian and frequency dependent, the COHSEX selfenergy is both static and Hermitian as can be veri ed from the expression one obtains by inserting Eq. ( 8) into Eq. (4b) (with W p given by ( 7)):

Σ COHSEX c (r, r ) = Ψ N 0 | ψ † (r ) ψ(r)|Ψ N 0 -Ψ N 0 | ψ(r) ψ † (r )|Ψ N 0 × dr 1 dr 2 v(r, r 1 ) ∑ m ρ m (r 1 )ρ m (r 2 ) Ω m v(r 2 , r ). (13)
Moreover, it is important to note that the COHSEX self-energy has no poles. More precisely, its denominator never vanishes since the Ω m are real and positive for nite systems. Owing to the Hermiticity of the COHSEX self-energy, Ψ N 0 can be represented by a single Slater determinant.

Following the Slater-Condon rules the matrix elements in the above equation can then be rewri en as sums of products of orbitals. We obtain

Σ COHSEX c (r, r ) = 2 occ ∑ i φ i (r)φ i (r ) - virt ∑ a φ a (r)φ a (r ) × dr 1 dr 2 v(r, r 1 ) ∑ m ρ m (r 1 )ρ m (r 2 ) Ω m v(r 2 , r ). (14) e matrix element Σ COHSEX c,pq = φ p |Σ COHSEX c
|φ q can now be wri en as

Σ COHSEX c,pq = 2 ∑ m occ ∑ i [pi|m][qi|m] Ω m - virt ∑ a [pa|m][qa|m] Ω m , (15) 
where the screened two-electron integrals are de ned as

[pq|m] = ∑ ia (pq|ia)(X + Y) ia m . ( 16 
)
When COHSEX is performed using rst-order perturbation with respect to HF, the perturbation is given by ĤCOHSEX -ĤHF = ΣCOHSEX c . e perturbative COHSEX orbital energies can thus be obtained from

COHSEX p = HF p + Σ COHSEX c,pp ( HF p ). (17) 
Instead, within scCOHSEX both the eigenvalues and eigenfunctions of the COHSEX Hamilonian have to be calculated repeatedly until a self-consistent result is obtained.

G 0 W 0

Given the di culty of evaluating the GW self-energy mentioned before one o en uses a perturbative approach called G 0 W 0 in which the self-energy is calculated perturbatively with respect to a simpler zeroth-order Hamiltonian, such as a self-energy for which a self-consistent solution is more easily obtained. In this work we will use the HF Green's function as our zeroth-order Green's function. Its spectral representation is given by

G HF (r, r , ω) = ∑ p φ HF p (r)φ HF p (r ) ω -HF p -iη sign(µ -HF p ) , (18) 
with µ the chemical potential. Within the G 0 W 0 approximation, the frequency integral in Eq. (4a) can be performed analytically and one obtains the following matrix elements of the G 0 W 0 self-energy,

Σ G 0 W 0 c,pq (ω) = 2 ∑ m occ ∑ i [pi|m] HF [qi|m] HF ω -HF i + Ω HF m -iη + virt ∑ a [pa|m] HF [qa|m] HF ω -HF a -Ω HF m + iη , (19) 
where the superscript in Ω HF m and [pq|m] HF indicates that these quantities are obtained from HF eigenvalues and orbitals. Contrary to the COHSEX self-energy, the above self-energy is dynamical and has poles. e QP energies can then be obtained from the poles of G obtained by solving the Dyson equation (2) (in frequency space) with the above self-energy. is yields the so-called QP equation,

ω = HF p + Re[Σ G 0 W 0 c,pp (ω)]. (20) 
Due to the frequency dependence of the self-energy, the G 0 W 0 QP equation has, in general,

multiple solutions G 0 W 0 p,s . e solution G 0 W 0 p ≡ G 0 W 0 p,s=0 with the largest spectral weight Z p ( G 0 W 0 p,s=0 ) with Z p (ω) = 1 - Re[Σ G 0 W 0 c,pp (ω)] ∂ω -1 , (21) 
is called the QP solution (or simply quasi-particle), while the other solutions (s > 0) are called satellites and share the rest of the spectral weight. In practice the QP equation is o en simpli ed by Taylor expanding the self-energy to rst order around HF p . e result is the so-called linearized QP equation given by

G 0 W 0 p = HF p + Z p ( HF p ) Re[Σ G 0 W 0 c,pp ( HF p )]. (22) 
When the self-energy has poles close to a solution of the QP equation the above linearization is not justi ed. Moreover, it leads to irregularities in physical observables such as PES. is can be understood as follows.

Although the self-energy in the linearized QP equation is independent of the frequency its denominator could still vanish. is happens when HF p = HF i -Ω HF m or when HF p = HF a + Ω HF m .

When calculating a single QP for a single con guration of an atom or a molecule it is not very probable that such an event occurs. However, when a large number of QPs and/or con gurations is considered, e.g., when calculating a PES, it becomes inevitable. As an example, let us consider the simplest PES, namely the variation of the total energy of a diatomic molecule as a function of the interatomic distance R. In such a case, HF p and Ω HF m could be considered functions of R and the conditions that the self-energy has a vanishing denominator can be wri en as

HF p (R) = HF i (R) -Ω HF m (R), (23a) 
HF

p (R) = HF a (R) + Ω HF m (R). (23b) erefore, Σ G 0 W 0 c,pp [ HF p (R)
] can be considered an implicit function of R that has poles. From the above conditions it is clear that in a region equal to 2Ω HF 0 (R) + HF LUMO (R) -HF HOMO (R) around the Fermi level no poles can occur, where Ω HF 0 is the smallest neutral excitation energy and HF LUMO and HF HOMO are the HF energies of the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO), respectively. However, since, in general, the variation with respect to R of the le -and right-hand sides of Eqs. (23a) and (23b) is di erent, it is unavoidable that outside of this range one of the two above conditions is met for some values R = R p . We note that they can never be met simultaneously. In the vicinity of these R p values the self-energy [see Eq. ( 19)] and its corresponding renormalization factor Z p [see Eq. ( 21)] vary rapidly leading to irregularities in the QP energies and, hence, in the PES.

Partially self-consistent GW

e main drawback of the G 0 W 0 approach is its dependence on the starting point, i.e,. the orbitals and energies of the zeroth-order Hamiltonian. Since, as mentioned before, from a numerical point of view, fully self-consistent GW is nontrivial, so-called partial self-consistent GW methods have been developed to reduce or eliminate the starting-point dependence. Within evGW one only updates the eigenvalues in the self-energy while in qsGW one symmetrizes the G 0 W 0 self-energy according to

Σ qsGW c,pq = 1 2 Re Σ G 0 W 0 c,pq ( qsGW p ) + Σ G 0 W 0 c,pq ( qsGW q ) . (24) 
e above self-energy is frequency-independent and Hermitian and is, hence, suitable for a standard self-consistent procedure. erefore, in this partially self-consistent scheme both the eigenvalues and orbitals are updated.

However, the evGW and qsGW approaches su er from the same problem as G 0 W 0 since the self-energies have poles when considered as (implicit) functions of the geometry. In fact the problem is even more severe since, due to the self-consistent procedure, an irregularity in one QP energy is transferred to all the other QP energies. As a consequence, in some regions of the geometry space, there is more than one branch of solutions and discontinuities appear when a solution switches from one branch to another. [START_REF] Loos | Green functions and self-consistency: insights from the spherium model[END_REF][START_REF] Véril | Unphysical Discontinuities in GW Methods[END_REF] 

Correlation energy

We calculate the correlation energies at the BSE level using an approach based on the ACFDT. [START_REF] Langreth | e gradient approximation to the exchange-correlation energy functional: A generalization that works[END_REF][START_REF] Gunnarsson | Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism[END_REF][START_REF] Furche | Fluctuation-dissipation theorem density-functional theory[END_REF] We note that the ACFDT formalism is formally derived for a local potential, while here the potential, i.e., the self-energy, is non-local. We strictly follow the ACFDT procedure described in Ref. 42 and the details can be found there. For the sake of completeness we brie y discuss some details of the calculation of the BSE total energy. e main di erence with Ref. 42 is that the QP energies and orbitals appearing in the equations below are those pertaining to the COHSEX self-energy instead of the G 0 W 0 self-energy.

Within the ACFDT formalism, the BSE correlation energy can be wri en as an integral over the coupling constant λ which adiabatically connects the noninteracting system (λ = 0) with the fully interacting system (λ = 1) according to 42,49-53

E BSE c = 1 2 1 0 Tr KP λ dλ (25) 
where the polarizability matrix P λ is given by

P λ =    Y λ (Y λ ) T Y λ (X λ ) T X λ (Y λ ) T X λ (X λ ) T    -    0 0 0 1    (26) 
with X λ and Y λ solutions of

   A λ,BSE B λ,BSE -B λ,BSE -A λ,BSE       X λ m Y λ m    = Ω λ m    X λ m Y λ m    , (27) 
where

A λ,BSE ia,jb = δ ij δ ab ( a -i ) + λ 2(ia|jb) -W λ ij,ab , (28) 
B λ,BSE ia,jb = λ 2(ia|bj) -W λ ib,aj , (29) with 
W λ pq,rs = drdr φ p (r)φ q (r)W λ (r, r , ω = 0)φ r (r )φ s (r ),

Finally, the interaction kernel K is given by

K =    ÃBSE B λ=1,BSE B λ=1,BSE ÃBSE    (31) 
with ÃBSE ia,jb = 2(ia|bj). We note that Eq. ( 25) is referred to as "extended Bethe-Salpeter (XBS)" in Ref.

51 . An important point to make here is that, in contrast to Kohn-Sham density-functional theory where the electron density is xed along the adiabatic path, [START_REF] Langreth | e gradient approximation to the exchange-correlation energy functional: A generalization that works[END_REF][START_REF] Gunnarsson | Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism[END_REF] the density is not maintained in the present BSE formalism as the coupling constant varies. erefore, an additional contribution to Eq. (25) originating from the variation of the Green's function along the adiabatic connection path should be, in principle, added. [START_REF] Hesselmann | Random-Phase Approximation Correlation Methods for Molecules and Solids[END_REF] However, as it is commonly done, [START_REF] Toulouse | Adiabatic-Connection Fluctuation-Dissipation Density-Functional eory Based on Range Separation[END_REF][START_REF] Toulouse | Range-Separated Density-Functional eory With the Random-Phase Approximation: Detailed Formalism and Illustrative Applications[END_REF][START_REF] Holzer | Bethe-Salpeter Correlation Energies of Atoms and Molecules[END_REF][START_REF] Colonna | Correlation Energy Within Exact-Exchange Adiabatic Connection Fluctuation-Dissipation eory: Systematic Development and Simple Approximations[END_REF] we shall neglect it in the present study.

e BSE total energy E BSE of the system can then be wri en as

E BSE = E nuc + E HF + E BSE c ( 32 
)
where E nuc and E HF are the nuclear energy and the HF energy, respectively. We note that for a BSE@scCOHSEX calculation E HF is calculated with the scCOHSEX orbitals.

Results

All systems under investigation have a closed-shell singlet ground state. Hence, the restricted HF formalism has been systematically employed in the present study. Finally, the in nitesimal η is set to zero for all calculations. e numerical integration required to compute the correlation energy along the adiabatic path [see Eq. ( 25)] is performed with a 21-point Gauss-Legendre quadrature. All the calculations have been performed with the so ware QuAcK, [START_REF] Loos | a so ware for emerging quantum electronic structure methods[END_REF] freely available on github.

As one-electron basis sets, we employ the Dunning family (cc-pVXZ) de ned with cartesian Gaussian functions.

3.1 Irregularities and discontinuities in G 0 W 0 , evGW, and qsGW

We have previously described in detail the problem of irregularities and discontinuities in physical observables obtained from G 0 W 0 and partially self-consistent GW approaches. [START_REF] Loos | Green functions and self-consistency: insights from the spherium model[END_REF][START_REF] Véril | Unphysical Discontinuities in GW Methods[END_REF] Here we want to remind the reader that these problems are also present in total energy calculations and we want to show that, instead, there are no such problems in the COHSEX method. In Fig. 1 we report the BSE total energy of the LiF molecule as a function of the interatomic distance in the vicinity of its equilibrium distance. e BSE correlation energy is calculated on top of G 0 W 0 @HF, COHSEX@HF, evGW@HF, qsGW, and scCOHSEX. We used a relatively small basis set, namely

Dunning's cc-pVDZ basis, since for larger basis sets the qsGW approach does not yield converged results for many values of R. is, however, does not change the conclusions of this section. We note that within qsGW the entire set of energies and orbitals is updated at each iteration. We see that all four results are within a range of about 10 mHartree. However, the PES obtained from BSE@G 0 W 0 @HF shows irregularities while the PES obtained from BSE@evGW@HF and BSE@qsGW show discontinuities. In fact, the di erent branches of solutions can clearly be seen, especially around 3.4 bohr. Instead, the BSE total energies obtained on top of a COHSEX calculation, i.e., BSE@COHSEX@HF and BSE@scCOHSEX, yield a PES that is a smooth function of the interatomic distance. Finally, we note that including self-consistency in COHSEX and GW tends to lower the total energies and that including self-consistency for both QP energies and orbitals lowers the total energy more than just including self-consistency for the QP energies. Moreover, the e ect of self-consistency on the total energies in COHSEX, going from COHSEX@HF to scCOHSEX, is roughly identical to the e ect on GW, going from G 0 W 0 @HF to evGW@HF.

Ground-state PES

In Figs. 23456789we report the BSE total energies as a function of the interatomic distance around the equilibrium distance for the following diatomic molecules: H 2 , LiH, LiF, HCl, N 2 , CO, BF, and F 2 , respectively. ey are the same molecules that were studied in Ref. 42. We also use the same basis set, namely Dunning's cc-pVQZ. For comparison we also report the PES obtained with the coupled cluster (CC) methods of increasing accuracy: CC2, [START_REF] Christiansen | e second-order approximate coupled cluster singles and doubles model CC2[END_REF] CCSD, 73 CC3. [START_REF] Christiansen | Response functions in the CC3 iterative triple excitation model[END_REF] At the equilibrium distance the CC3 approach has been shown to yield total energies that are very close to those obtained with higher-order CC approaches, such as CCSDT and CCSDT(Q). [START_REF] Loos | Pros and Cons of the Bethe-Salpeter Formalism for Ground-State Energies[END_REF] erefore, we can consider it to be the reference method.

In the only case for which we have an exact result (for the given basis set), namely the H 2 PES obtained from full con guration interaction (FCI), all BSE total energies are roughly the same. We also note that no irregularities are visible in the BSE@G 0 W 0 @HF curve. In the case of LiH, the second smallest molecule in the set, an irregularity appears in the BSE@G 0 W 0 @HF curve around 3.08 bohr. We also observe that the smooth BSE@COHSEX@HF total-energy curves are closest to the reference CC3 values, while BSE@scCOHSEX and BSE@G 0 W 0 @HF yield almost identical energies. For the LiF molecule there are large irregularities in the PES obtained within BSE@G 0 W 0 @HF around 2.9 bohr which impedes a straightforward determination of the equilibrium distance (see below). Another large irregularity appears around 3.4 bohr. Again the smooth BSE@COHSEX@HF curve is closest to that obtained within CC3, although the di erences with the BSE@G 0 W 0 @HF results are small. Finally, similar to the LiF results obtained above for the small cc-pVDZ basis, we observe again that including self-consistency in the COHSEX calculation lowers the total energy, thereby worsening the agreement with the coupled-cluster reference data.

e PES of all diatomic molecules, except the smallest two (H 2 and LiH), show a similar trend, i.e., small di erences between the BSE@COHSEX@HF and BSE@G 0 W 0 @HF total energies and a relatively large di erence with respect to the BSE@scCOHSEX total energies. erefore, we conclude that the self-consistency has a much larger in uence on the PES than the di erence in the COHSEX and GW self-energies.

e PES of the HCl, N 2 , CO and BF molecules obtained within BSE@G 0 W 0 @HF all exhibit small irregularities, while those in F 2 are very large, preventing a simple determination of the F 2 equilibrium distance (see below). Again, BSE@COHSEX@HF is in excellent agreement with the CC3 results and even slightly be er than those obtained within BSE@G 0 W 0 @HF, and, most importantly, the PES obtained within BSE@COHSEX@HF (and BSE@scCOHSEX) are devoid of irregularities and discontinuities.

In Table 1 we report the equilibrium distances obtained within the various BSE approaches and we compare them to the CC3 reference values and to experiment. As mentioned before, the irregularities in the PES can prevent a straightforward determination of the equilibrium distance. erefore, following Ref. 42, for LiF and F 2 a Morse potential was used to t the total energies in order to estimate the equilibrium distance. Although the total energies obtained within BSE@scCOHSEX were not as accurate as those obtained using perturbative QP energies, adding self-consistency to the COHSEX approach improves the equilibrium distances. In summary, while BSE@COHSEX@HF yields the smallest errors for the total energies, BSE@scCOHSEX yields the smallest errors for the equilibrium distances.

Finally, in order to estimate the in uence of the QP energies on the BSE total energies, we report the ionization potentials (IP) and the HOMO-LUMO gaps at the equilibrium distance corresponding to each level of theory for the various BSE approaches in Tables 2 and3, respectively, and we compare to experimental data (when available). For the IP we also report the CCSD(T)/def2TZVPP data of Ref. 76 which are in good agreement with the experimental values with the exception of H 2 . Comparing the di erences in the IP with the di erences in the PES, there does not emerge a clear link between the two. Although the IP obtained within COHSEX@HF and G 0 W 0 @HF show the largest di erences (except for N 2 ), the di erences between the corresponding BSE total energies are the smallest. Instead, the di erences in the IP between scCOHSEX and COHSEX@HF are the smallest (except for N 2 ) but the di erences in the corresponding total energies are the largest. A similar analysis holds for the HOMO-LUMO gaps. Moreover, despite the fact that COHSEX@HF yields IP and HOMO-LUMO gaps signi cantly worse than those obtained within G 0 W 0 @HF when compared to the experimental values, the corresponding BSE total energies are very similar (except for the irregularities in G 0 W 0 @HF@BSE). erefore, at least for the small molecules discussed here, the BSE total energies obtained within ACFDT seem to be robust with respect to the underlying QP energies. Instead, the total energies are sensitive to the screening that enters the BSE. Within BSE@COHSEX@HF and BSE@G 0 W 0 @HF this quantity is identical since in both cases it is calculated from the HF orbitals and energies However, when one includes self-consistency, the screening changes and it has a signi cant in uence on the total energy. We can therefore conclude that the screened Coulomb potential is the key quantity in the calculation of correlation energies within the ACFDT@BSE formalism, and ultimately dictates the accuracy of the total energy.

Conclusions

We have demonstrated that COHSEX is a promising approach to obtain quasi-particle energies for the calculation of potential energy surfaces. Contrary to G 0 W 0 and partially self-consistent GW approaches, COHSEX yields results without irregularities and discontinuities. We have agreement with accurate coupled-cluster results. Finally, we showed that including self-consistency in the COHSEX approach for both quasi-particle energies and orbitals, in order to make the results independent of the starting point, worsens the total energies but improves the equilibrium distances.

is is mainly due to variations in the screening W that enters the BSE. (2) Aryasetiawan, F.; 
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 1 Figure 1:e BSE total energy of the LiF molecule in the cc-pVDZ basis as a function of the internuclear distance. e calculations were done at intervals of 0.002 bohr.
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 2 Figure 2: e total energy of the H 2 molecule in the cc-pVQZ basis as a function of the internuclear distance.
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 3 Figure 3: e total energy of the LiH molecule in the cc-pVQZ basis as a function of the internuclear distance.
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 6 Figure 6: e total energy of the N 2 molecule in the cc-pVQZ basis as a function of the internuclear distance.
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 7 Figure 7: e total energy of the CO molecule in the cc-pVQZ basis as a function of the internuclear distance.
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 8 Figure 8: e total energy of the BF molecule in the cc-pVQZ basis as a function of the internuclear distance.
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 9 Figure 9: e total energy of the F 2 molecule in the cc-pVQZ basis as a function of the internuclear distance.

Table 1 :

 1 Equilibrium distances (in bohr) obtained in the cc-pVQZ basis set. e experimental values are extracted from Ref.75. e results in brackets for LiF and F 2 were obtained by ing the total energies to a Morse potential since the irregularities in the PES precluded a direct evaluation..

		H 2	LiH	LiF	HCl	N 2	CO	BF	F 2
	CC3	1.402 3.019 2.963 2.403 2.075 2.136 2.390 2.663
	BSE@G 0 W 0 @HF	1.399 3.017 (2.973) 2.400 2.065 2.134 2.385 (2.638)
	BSE@COHSEX@HF 1.399 3.014 2.961 2.400 2.066 2.125 2.379 2.635
	BSE@scCOHSEX	1.401 3.016 2.963 2.404 2.070 2.130 2.387 2.650
	Experiment	1.401 3.015 2.948 2.409 2.074 2.132 2.386 2.668

Table 2 :

 2 Ionization potentials (in eV) at the equilibrium distance obtained in the cc-pVQZ basis set except for the CCSD(T) values from Ref. 76 which have been obtained in the def2-TZVPP basis. e experimental values are extracted from Ref. 18

		H 2	LiH LiF	HCl	N 2	CO	BF	F 2
	G 0 W 0 @HF	16.57 8.26 11.59 12.98 17.33 14.91 11.41 16.50
	COHSEX@HF 18.05 9.52 13.82 14.49 19.48 16.69 12.86 18.88
	scCOHSEX	17.83 9.21 13.12 14.02 17.52 15.79 12.45 18.00
	CCSD(T)	16.40 7.96 11.32 12.59 15.57 14.21 11.09 15.71
	Experiment	15.43 7.90 11.30 12.79 15.58 14.01 11.00 15.70

Table 3 :

 3 HOMO-LUMO gaps (in eV) at the equilibrium distance obtained in the cc-pVQZ basis set. e experimental values are extracted from Ref.50 

		H 2	LiH LiF	HCl	N 2	CO	BF	F 2
	G 0 W 0 @HF	20.24 8.04 11.31 15.20 20.24 17.33 12.90 17.32
	COHSEX@HF 21.59 9.27 13.54 16.45 21.38 18.44 13.97 18.14
	scCOHSEX	21.57 8.99 12.84 16.07 20.09 17.93 13.73 17.81
	Experiment		8.24					16.94
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