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RÉSUMÉ. Cet article étudie le problème d’identification de points sources via l’équation fractionnaire
de diffusion, à partir d’une seule mesure des données de Cauchy sur la frontière accessible. Un
résultat d’unicité des points sources est donné et un résultat local de stabilité Lipschitzienne est
établi. Pour résoudre le problème d’identification des positions et des intensités des points sources à
partir de telles observations, un procédé algébrique non itérative basé sur la fonctionnelle écart à la
réciprocité est proposé.

ABSTRACT. This article investigates the source identification in the fractional diffusion equations, by
performing a single measurement of the Cauchy data on the accessible boundary. The main results
of this work consist in giving an identifiability result and establishing a local Lipschitz stability result.
To solve the inverse problem of identifying fractional sources from such observations, a non-iterative
algebraic method based on the Reciprocity Gap functional is proposed.

MOTS-CLÉS : Problème inverse, équation fractionnaire de diffusion, Point sources, Identifiabilité,
Stabilité, écart à la réciprocité.

KEYWORDS : Inverse problem, Fractional diffusion equation, Point Sources, Identifiability, Stability,
Reciprocity Gap.

1. Introduction

The main purpose of this paper is the identification of source term F that represents the number,
the positions and the intensities of monopolar sources located in an open bounded domain Ω ⊂
Rd, d = 2, 3, and with smooth regular boundary Σ. The corresponding forward problem is given
by: 

c
0D

α
t u−∆u = F in ΩT ,

u(x, 0) = 0 x ∈ Ω,
u = f on ΣT ,

(1)
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where c0Dα
t represents the Caputo fractional derivatives of order α defined by [19, 26]

aD
α
t g(t) :=

dn

dtn
aI
n−α
t g(t) =

1

Γ(n− α)

dn

dtn

∫ t

a

(t− s)n−α−1g(s) ds, (2)

and

tD
α
b g(t) := (−1)n

dn

dtn
tI
n−α
b g(t) =

(−1)n

Γ(n− α)

dn

dtn

∫ b

t

(s− t)n−α−1g(s) ds (3)

where

aI
α
t g(t) :=

1

Γ(α)

∫ t

a

(t− s)α−1g(s) ds, (4)

and

tI
α
b g(t) :=

1

Γ(α)

∫ b

t

(s− t)α−1g(s) ds, (5)

f ∈ L2(ΣT ) and F (x, t) is the source term that have the following form:

F (x, t) =

m∑
j=1

λj(t) δSj (x), (6)

λj(t) :=


βj > 0, t ∈ [0, T )

0, t ≥ T
(7)

where m ∈ N, Sj ∈ Ω, and λj(t), j = 1, . . . ,m, represent respectively the number, the locations,
and the intensities of the monopolar sources inactive after the finite time T > 0 which represents the
time of observation. We denote by ΩT := Ω×(0, T ) the space time domain, and ΣT := Σ×(0, T )
its lateral boundary.
For 0 < α < 1, equation (1) is called a fractional diffusion equation, and it is called a fractional
diffusion-wave equation in the case when 1 < α < 2. Note that if α = 0, α = 1 and α = 2,
the equation (1) represents the sources identification via the Helmholtz equation, the heat equation,
and the wave equation which are studied by many authors [4, 12, 14, 20, 21]. In this paper, we are
interested mainly in the fractional diffusion case (we restrict the order α to the case 0 < α < 1).
The fractional equation is one of tools for modeling several atypical phenomena in nature and in
the theory of complex systems. The fractional diffusion equation has been introduced in physics to
describe diffusions in media with fractal geometry see [25], to show anomalous diffusion in a highly
heterogeneous aquifer see [1]. Metzler and Klafter [22] proved that a fractional diffusion equation
governs a non-Markovian diffusion process with a memory. Ginoaet et al in [17] presented a frac-
tional diffusion equation describing relaxation phenomena in complex viscoelastic materials.
The main motivation of this work concerns the inverse problem of identifying of contaminants
sources in groundwater. There is a little work on inverse problems for fractional differential equa-
tions. Murio et al in [23] introduced a regularization technique for the approximate reconstruction
of spatial and time varying source terms using the observed solutions of the forward time fractional
diffusion problems on a discrete set of points. Nakagawa et al in [24] proposed that the solution
can be uniquely determined by data in any small subdomain over time interval. Tuan [27] presented
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that by taking suitable initial distributions only finitely many measurements on the boundary are re-
quired to recover uniquely the diffusion coefficient of a one-dimensional fractional diffusion equa-
tion. Zhang and Xu [30] outlined that the unknown source term can also be uniquely determined
by u(0, t), 0 < t < T . Wei and Zhang in [28] solve a nonlinear ill-posed problem for identifying a
Robin coefficient in a time-fractional diffusion problem, they combine the integral equation method
and the boundary element method to obtain a simple minimization problem with H1 penalty terms.
We remark that α involved in all the above articles was assumed to be in the interval (0, 1), and most
of the above fractional inverse problems are involved in one-dimensional spaces. Other recent re-
sults are obtained for the time-dependent source problem for multi-dimensional fractional diffusion
equation. Wei et al in [29] studied the direct problem, showed that the inverse problem has a unique
solution, and used the Tikhonov regularization method to solve the inverse source via an iterative
method. Liu et al established multiple logarithmic stability and proposed a fixed point iteration for
the numerical reconstruction. Wang et al gave a conditional stability for this inverse problem and
proposed two regularization methods (an integral equation method and a standard Tikhonov regu-
larization method) for the reconstruction of the time-dependent source term.
In this work, equation (1) is supplemented by the boundary condition

∂u

∂ν
(x, t) = ϕ(x, t), (x, t) ∈ ΣT (8)

where ν represents the outward unit normal vector to Σ pointed outside Ω, ϕ ∈ L2(ΣT ), The
inverse problem consists in identifying the source distribution F in the fractional problem (1) from
the compatible boundary data (f, ϕ).

2. Identifiability

The first question we might ask for the study of this type of problem concerns the uniqueness of the

solution F of the inverse problem from the measurements of u and
∂u

∂ν
on the boundary ΣT . To

prove Theorem 2, we need the following lemma and we recall its proof:

Lemma 1 [18] Let B be a bounded domain in Rd and v ∈ C2(B) ∩ C(B̄) satisfies

∆v + k2v = 0 in B, (9)

and
v = 0 on ∂B. (10)

Suppose that Im(k) > 0, where Im(k) represents the imaginary part of the complex wave number
k. Then v = 0 in B̄.

Proof
Multiplying both sides of (9) by v̄ and integrating over B give∫

B

∆vv̄ + k2

∫
B

vv̄ = 0
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Green’s identity and the boundary conditions of v yield

−
∫
B

|∇v|2 + k2

∫
B

|v|2 = 0 (11)

Now ifRe(k) 6= 0 (Re(k) represents the real part of k), the imaginary part of (11) gives
∫
B
|v|2 =

0 hence v = 0.
In the case whereRe(k) = 0, since Im(k) > 0, we have∫

B

|∇v|2 + Im(k)2

∫
B

|v|2 = 0,

therefore v = 0 in B̄.

In the following theorem, we give the uniqueness result of the inverse problem.

Theorem 2 (uniqueness)

Let ur, r = 1, 2 be the solution of problem (1) with Fr =

m(r)∑
j=1

λ
(r)
j δ

S
(r)
j

as source terms, where

λ
(r)
j (t) :=

 β
(r)
j > 0, t ∈ [0, T ),

0, t ≥ T.
(12)

Assume that u1|ΣT
= u2|ΣT

and
∂u1

∂ν |ΣT

=
∂u2

∂ν |ΣT

, then F1 = F2 up to a permutation.

Remark 3 The proof of theorem 2 is also valid for the problem (1) with a more general source term

of the following form F (x, t) =

m∑
j=1

λj(t) δSj (x) with

λj(t) :=


βj > 0, t ∈ [0, Tj)

0, t ≥ Tj
(13)

where Tj is the time of activity of the source Sj , from the measurements of u and
∂u

∂ν
on the

boundary ΣT . Indeed, following the line of the prove of Theorem 2, if ur, r = 1, 2 are the

solutions of problem (1) with Fr =

m(r)∑
j=1

λ
(r)
j δ

S
(r)
j

as source terms, where

λ
(r)
j (t) :=


β

(r)
j > 0, t ∈ (0, T

(r)
j ),

0, t ≥ T (r)
j .

(14)
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we show that S(1)
j = S

(2)
j and β(1)

j (1−e−sT
(1)
j ) = β

(2)
j (1−e−sT

(2)
j ). If we take s > 0 sufficiently

large, we conclude that β(1)
j = β

(2)
j and T (1)

j = T
(2)
j . We will see in section 4 that the proposed

method for the identification of the source term F does not separately give the intensities βj and
the times Tj , which justifies the choice (7) of F .

3. Stability Result

In this section, we study the continuous dependence of the unknown source term on the measured
data on the boundary ΣT , which is the crucial issue for numerical application. The question of
stability has been the concern of several authors in different contexts. Alessandrini et al [2, 3], and
Bellout et al [8] have dealt with stability for an inverse conductivity problem. The notion of local
Lipschitz stability which has been used by several authors [5, 9, 10]. In many works, local Lipschitz
stability results was obtained, derived from algebraic relations, for elliptic sources identification
problems [6, 13, 21, 15].
In this section, we give a local Lipschitz stability result inspired from the stability result given in
[21] for the problem of identification of sources via the Helmholtz equation, which is derived from
the Gâteaux differentiability, by establishing that the Gâteaux derivative is not zero.
We suppose that Ω containsmmonopolar sources located at Sj with respectively intensities τj , j =
1, . . . ,m. We define the perturbed source term Fh by:

Fh = −
m∑
j=1

τhj δSh
j
,

where

(τhj , S
h
j ) := (τj + h µj , Sj + h Rj), 1 ≤ j ≤ m,

{(µj , Rj), 1 ≤ j ≤ m} ⊂ R × R2,

h being sufficiently small to insure that Sj + h Rj remain in Ω. We denote by u0 and uh the
solutions of (15) with respectively source terms F = F 0 and F = Fh.{

∆u+ k2u = F in Ω
∂u

∂ν
= ϕ on Σ,

(15)

ϕ ∈ H−
1
2 (∂Ω) being the flux on ∂Ω (ϕ 6= 0 on ∂Ω), k is the wave number on Ω. We set

u0|∂Ω = f , uh|∂Ω = fh.

Theorem 4 [21] (Local Lipschitz stability). Assume that k2 is not an eigenvalue of −∆ with

Neumann condition in the boundary. Then, lim
h→0

|fh − f |L2(∂Ω)

|h| exists and is strictly positive.
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Now, we are ready to give the main result of this section. Assuming that the domain Ω contains m
monopolar sources S1, . . . , Sm with respectively intensities λ1(t), . . . , λm(t) where

λj(t) :=

{
βj > 0 if t ∈ (0, T )
0 if t ≥ T

We denote by µ̃j the piecewise function defined by

µ̃j :=

{
µj if t ∈ (0, T )
0 if t ≥ T

where µj ∈ R, and let τj ∈ R2 such that ‖τj‖ ≤ 1 for j = 1, . . . ,m.
We set

Φ := (λj , Sj), Φh := (λhj , S
h
j ) = (λj + hµj , Sj + hτj),

and

Fh :=

m∑
j=1

λhj δSh
j
,

h 6= 0 being sufficiently small to insure that Shj remains in Ω. Let u0 and uh be the solutions of
problems (1)-(8) with respectively sources F 0 and Fh, we set u0 = f and uh = fh on ΣT . Then,
our main result of stability is given in the following theorem

Theorem 5 (Local Lipschitz stability)
If µj 6= 0, then

lim
h→0

|fh − f |L2(ΣT )

h
6= 0.

Remark 6 If lim
h→0

|fh − f |L2(ΣT )

|h| = ` ∈ R∗+ or if lim
h→0

|fh − f |L2(ΣT )

h
= ∞, then there exists

δ > 0 and c > 0 such that if |h| < δ, then |h| < c |fh − f |L2(ΣT ), which implies that there exists
c̃ > 0 such that for |h| < δ

m∑
j=1

‖Shj − Sj‖+ ‖λhj − λj‖L2(0, T ) ≤ c̃ |f
h − f |L2(ΣT )

which gives the local Lipschitz stability result for the identification of monopolar sources problem.
The result of the Theorem 5 means that one can distinguish between Φh and Φ by measurements of
the trace of u on ΣT , provided that the error in measurements is o(h).
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4. Identification Process

We present in this section a quasi-explicit method to recover the point sources (6) from the lateral

observations
∂u

∂ν
and u on ΣT . This method is inspired from the algorithm given in [11, 13] for the

monopolar source identification via the Laplace equation in 2D case. This algorithm is based on the
reciprocity gap functional defined by (17) which has been introduced by Bellout et al in [8] and has
been formalized by Andrieux et al in [5], who used it in numerical reconstruction procedure for the
inverse planar crack problem. To develop this algorithm we need the following result concerning
integration by parts formulas. For α > 0 and n ∈ N such that n− 1 ≤ α < n, we have [7]:

∫ b

a

g(t)caD
α
t f(t) dt =

∫ b

a

f(t)tD
α
b g(t) dt+

n−1∑
j=0

[
tD

α+j−n
b g(t) · tDn−1−j

b f(t)
]b
a

(16)

We begin by considering the subsetH0 defined by:

H0 = {v : (tD
α
T −∆)v = 0, in ΩT }

Let v ∈ H0, multiplying equation (1) by v and integrating on ΩT , by applying (16) in time and the
second Green’s identity in the spatial variable, and using boundary condition, the problem (1)-(8)
admits the following variational formulation:

m∑
j=1

βj

∫ T

0

v(Sj , t) dt = R(u, v), (17)

where
R(u, v) =

∫
ΣT

(u
∂v

∂ν
− ∂u

∂ν
v)dΣT +

∫
Ω

[
tI

1−α
T v(x, t)u(x, t)

]T
0
dx (18)

Now, with the observation u(·, T ) made on Ω the reciprocity gap functional (18) is known (if v
is). The reciprocity gap (RG) in the equation (17) links the causes hidden in Ω to their measurable
consequences. The inverse problem consists to find the number, the locations and the intensities of
the sources from equation (17). In the following along the lines followed in papers [11], we will
show how an appropriate choice of test functions unveils these information. The problem is reduced
to the problem of determining the parameters (m,Sj , βj) by the knowledge of the right hand side
of (17). From now on, a spatially two-dimensional setting is assumed, with complex polynomials
used for adjoint fields. Associating R2 with C through x1 + ix2 = z, the following family of test
functions defined by:

vk(z, t) = (T − t)α−1zk ∈ H0, k ∈ N

In fact, the functions vk are holomorphic, have harmonic real and imaginary parts in spatial variable:

∆vk(·, t) = 0

and, since tDα
T (T − t)α−1 = 0 ([19],p73), then

tD
α
T vk(z, ·) = 0

cari’2020
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Since tI1−α
T (T − t)α−1 = Γ(α) see ([19],p88), then the components of the equality (17) are then

given by:

R(u, vk) =
Tα

α

m∑
j=1

βj σ
k
j , k ∈ N (19)

where

R(u, vk) =

∫
ΣT

(u
∂vk
∂ν
− ∂u

∂ν
vk)dΣT + Γ(α)

∫
Ω

u(x, T ) zkdx,

and σj denotes the affix of the j-th source location Sj . The source reconstruction thus consists in
finding the number of sources m, the locations σj , the intensities βj , and the extinction times Tj of
the sources Sj verifying the equality (19).
Let M be an upper bound of the exact number m of the unknown monopolar sources (M ≥ m),
let:

αk :=
α R(u, vk)

Tα
, k = 0, . . . .2M − 1,

µn =


αn
αn+1

...
αM+n−1

 ∈ CM , Λm =


β1

β2

...
βm

 ∈ Rm,

and the matrix

An,M =


σn1 σn2 . . . σnm
σn+1

1 σn+1
2 . . . σn+1

m

...
...

...
...

σM+n−1
1 σM+n−1

2 . . . σM+n−1
m

 ∈MM×m(C).

Following the line of the algorithm given in [11], the unknown m, σj , and βj can then be deduced
from the following lemma:

Lemma 7 [11]

1) The rank of the family (µ0, µ1, . . . , µM−1) is r = m, and the vectors
(µ0, µ1, . . . , µm−1) are independent.

2) The affixes σj of the monopolar sources Sj are the eigenvalues of the matrix T which is
defined by T µj = µj+1, for j = 0, . . . ,m− 1.

3) β1, . . . , βm are solutions of the linear systemA0,mΛm = µ0 whereA0,m is the Vander-
monde matrix of σj .

Remark 8 1) In the case where Ω contains a unique monopolar source S1, then:

β1 = α0 and σ1 =
α1

α0
.
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2) In the case where Ω contains two monopolar sources S1, S2, and if (a,b) are the com-
ponents of the vector µ2 in the basis (µ0, µ1), then:

σ1 =
b+
√
b2 + 4a

2
, σ2 =

b−
√
b2 + 4a

2
,

β1 =
α1 − α0σ2

σ1 − σ2
and β2 =

α1 − α0σ1

σ2 − σ1
.

3) For α = 1, we find the family of test functions used in [4, 12] for monopolar source
identification problem via the heat equation. For the numerical experiments of this algorithm, we
refer the reader to [4, 6, 20].

5. Conclusion

The main results of this work concern the uniqueness and the stability issue in the problem of
determining the locations and intensities of monopolar sources for fractional diffusion equation.
The main motivation of this work concerns the inverse problem of identifying of contaminants in
media with fractal geometry or in a highly heterogeneous aquifer. To solve the inverse problem of
identifying fractional sources from such observations, a non iterative algebraic method based on
the Reciprocity Gap functional was proposed. The main issue to be explored concerns the study
of the realistic situation of incomplete boundary data (i.e. the over specified data is available on a
strict subset of the boundary). One possible direction consists, as a first step, on reconstructing the
missing data before running the recovering algorithm.
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