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∗SAMOVAR, Télécom SudParis, CNRS, Université Paris-Saclay, 9 rue Charles Fourier 91011 Evry, France.
Email: {asma.lahbib, anis.laouiti}@telecom-sudparis.eu

∗∗Computer Science Department, Faculty of Sciences, Mohammed V University, Rabat, Morocco.
Email: abderrahim.aitwakrime@gmail.com

∗∗∗IRT SystemX, 8 Avenue de la Vauve, 91127 Palaiseau, France.
Email: {khalifa.toumi}@irt-systemx.fr
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Abstract— While smart contracts are becoming widely recognized
as the most successful application of the blockchain technology that
could be applied into various industries and for different purposes such
as e-commerce, energy tradings, assets management, and healthcare
services, their implementation has posed several challenges insofar
that they could handle large amount of money and digital assets in
addition to their ability to manipulate critical data and transactions
related information which makes them attractive targets of security
threats and attacks that could lead to significant problems like money
losses, privacy leakage and data breach. To better deal with such issues,
reasoning about the correctness, the safety and the functional accuracy
of smart contracts before their deployment on the blockchain network
is critical and no important than ever. In this context model checking
tools are well adopted for the formal verification of smart contracts in
order to assure their execution as parties’ willingness as well as their
reliable and secure interaction with users. In this direction, this paper
uses Event-B formal verification method to formally model solidity
written smart contracts in order to verify and validate their safety,
correctness and functional accuracy in addition to their compliance with
their specification for given behaviors. The verification is conducted
using a model checking tool along which expected safety properties
are formalized, validated and judged to be satisfied or unsatisfied. To
illustrate the proposed approach, its application to a realistic industrial
use case is described.

Index Terms— Formal verification, Event-B, Smart contracts,
Blockchain, Solidity

I. INTRODUCTION

Blockchain, as a decentralized and distributed public ledger
technology in a peer to peer network, has attracted recently a lot
of interest in both the research and the industrial communities.
Originally invented as the underlying infrastructure of Bitcoin, this
technology can be applied into diverse applications far beyond
cryptocurrencies and financial services. The range of potential use
cases of blockchain is seemingly endless, for instance this last could
be applied into various environments and for different purposes such
as supply chains management, legal and notary services, big data
applications, Internet of Things (IoT) scenarios, energy tradings,
healthcare services and so on.
How blockchain has attracted researchers and industrials’ attention
this way is mainly due to the significant number of business benefits
if offers including transparency, traceability, security, availability
and efficiency. Moreover, one of the most important features that has
given rise to a stronger interest in blockchain is the auto processing
property of established transactions satisfied through the use of
smart contracts.
Smart contracts could be defined as an executable code deployed

and residing at a specific address on the blockchain network.
They permit trusted transactions and agreements to be established
among parties without relying on a centralized authority or giving
participants the ability to go back on, thus ensuring transactions
transparent, and irreversible execution. However and with the rapid
development of blockchain, smart contracts have been exposed to an
increasing number of security threats and attacks [1] that have led
to significant malicious scenarios resulting in terrible losses such as
the DAO attack, that has caused more than 3 million ETH separated
from the DAO resources pool which is worth around $60 million.
In order to better deal with such issues, reasoning about the cor-
rectness, the safety and the functional accuracy of smart contracts
before their deployment on the blockchain network is critical and
no important than ever. In this context, many formal verification
methods are proposed and several tools such as Why3, F*, Oyente
are developed to verify the correctness of the program regarding
existing programming errors. However, these ones rarely test the
behavior of the smart contract while interacting with users or under
specific scenarios.
For this purpose model checking is well adopted in behavior based
verification [2] in order to verify whether the smart contract can
interact with the user in a reliable and secure way or not.
In this direction, this study will focus on behavior based formal
verification of smart contracts in order to verify their compliance
with the specification for given behaviors. Such contracts are
written in Solidity (which is a high level programming language
designed for implementing smart contracts running on the Ethereum
blockchain). In order to model their design in a formal way, we
adopt Event-B formal method (which is a state-based formal method
for modeling and analyzing systems, based on classical logic and set
theory), as in our previous work [20], [21]. Therefore a verification
of the formal model is conducted using a model checking tool
along which expected safety properties are formalized, validated
and judged to be satisfied or unsatisfied. The described approach
of this proposal is applied to a use case application that has been
the subject of a previous work, called Distributed Resource Man-
agement Framework for Industry 4.0 environments (DRMF) [3].
The rest of this paper is organized as follows. Section 2 presents the
considered case study in which this approach is applied. Section 3
recalls the basic concepts of blockchain and smart contracts along
with a discussion of their security issues and vulnerabilities fol-
lowed by a basic definition of Event-B formal method. Thereafter
a presentation of related proposals carried out in the area of



smart contracts formal verification is given in Section 4. Section 5
describes the proposed approach from a theoretical and formal point
of view and details the proposed Event-B formalization followed by
the verification process of smart contract’s behavior in Section 6.
Finally in Section 7, the paper ends up with some conclusions and
an outlook of our future work to study in this area.

II. USE CASE STUDY

Throughout this paper, we will project our approach into a real
world use case study conducted in the scope of some application
domains of Industry 4.0.
As a case study, we consider a set of automaker factories collab-
orating all together along the production processes and alongside
with automotive suppliers buying and shipping goods and products
through transportation partners as it is shown in Fig.1. These parties

Fig. 1. use case study

while looking to ensure sophisticated shipping operations, agreed
to invest in both shipping equipments and logistic technologies to
manage their day-to-day trucking operations instead of involving
specific services and third parties to ensure them.
We remind here that sharing such resources among several parties
collaborating and working all together and especially that could
not always have a strong confidence established in advance could
raise several problems mainly related to the management and the
access made over common resources that should be in most time
fully distributed, secure, traceable and notarized. In an attempt to
resolve such challenges, we have used in our previous proposal
[3], blockchain based smart contracts technology in order to keep
a living document trace about the flow of resources being shared
among collaborating parties while integrating the OrBAC access
control model to implement distributed, dynamic and secure re-
source access authorization.
To do so, a smart contract named Access Contract (AC) was
developed where the OrBAC access control model was integrated
within a distributed ledger to express access control policies and to
manage access authorization made over shared resources. This last
carries out transactions related to access requests, the evaluation of
access control policies for each tuple (resource, requester, action to
be done, the context in question) as well as the access decision to
be granted.
Returning to the presented use case, let us assume that a shipping
agent within the subfactory SF1 wants to have access over the
shared resource Truck 3 to perform a shipping operation. To do
so, an evaluation of the agent’s access request is needed first

to allow or not the demanded access. Here a verification of the
well conduct and functioning of both the requesting entity and
the requested resource is essential, hence an authorization over
the access control smart contract is required to decide whether
the access is permitted or prohibited. The access authorization
and according to the OrBAC access control model depends on
a set of contextual conditions whose activation will activate the
corresponding rule. In this example, to have the requested access
accepted, the human agent should have a trust score above the
defined threshold for the corresponding role, he should belong to
the shipping department and request to use the Truck during his
working hours,and he should not make too frequent access requests
during a certain minimum period of time.

III. BACKGROUND AND PROBLEM STATEMENT

In this section, we will introduce first the main preliminaries used
in our proposal specifically blockchain, smart contracts and formal
verification, we will point out then potential security issues that
smart contracts may have and we will review research proposals
related to their security verification in recent years.

A. Blockchain technology

Originally designed for keeping a financial ledger and meet-
ing the purpose of cryptocurrency applications, the blockchain
paradigm can be extended to provide a generalized framework
for managing any movements of data related to goods, devices,
information records, etc. This last could be defined as a distributed
ledger of transactions whereby records of all established interactions
are registered providing thereof a proof of existence, of ownership
and modification of this data during interaction [4], [5]. The
established transactions are hold within blocks chained together
and containing within their headers the hash of the previous block
in order to ensure immutability since blocks once chained, data
contained within will be available and couldn’t be easily changed or
altered. To ensure that all entities have the same copy of the ledger,
a consensus is required to maintain the blockchain architecture and
to ensure its functioning. This last makes sure that an agreement is
reached between a set of predefined entities to support a decision
making. After reaching consensus, valid blocks are added to the
blockchain. Moreover, each node in this distributed peer-to-peer
network holds the same copy of transaction records, which provides
robustness against single point of failure attacks.

B. Smart contracts

A smart contract is an executable code deployed and residing
at a specific address on the blockchain network. The main aim
of a smart contract is to automatically execute the terms of an
agreement once the specified conditions are met. It include a set
of data which are the state variables and code corresponding to
the executable functions. These last are executed when transactions
are made, broadcast to the network and addressed to its address.
Called smart contract then runs independently and automatically in
a prescribed manner on every node in the network, according to
the data that was included as input in the related transaction, as a
result an eventual return value is shown to the outside.
Smart contracts can be developed and deployed in different
blockchain platforms where each one of them offers distinctive
features for development supported by different high-level program-
ming languages. In Ethereum blockchain platform, advanced and
customized smart contracts are supported with the help of Turing
complete programming language. The code of an Ethereum contract
is in a low-level, stack-based bytecode language referred to as



Proposal Target Category Focus Tool
[12] Solidity SC and EVM

bytecode
Program based formal ver-
ification

Translated SC into F* to check the correct-
ness.

F*

[13] EVM bytecode Program based formal ver-
ification

Analyzed EVM bytecode of contracts stati-
cally.

Isabelle/HOL

[14] Solidity SC Behavior based formal
verification

Considered the interaction between users,
programs and the environment.

Statistical Model Check-
ing

[15] DSCP BITHALO Behavior based formal
verification

Used probabilistic formal models for verifi-
cation.

Game theory
Markov Decision Process
Prism tool

[16] Solidity SC Behavior based formal
verification

Proposed a generic modeling method then
applied the model checking.

NUSMV
Model checking

[17] LLVM bitcode
supports different
high level languages

Program based formal ver-
ification

Proposed a source code translator to convert
the smart contract embedded with policy
assertions to LLVM bitcode and a verifier
to determine assertion violations.

Zeus (the prototype imple-
mented)

TABLE I
SMART CONTRACTS BASED FORMAL VERIFICATION APPROACHES

Ethereum virtual machine (EVM) code. Users define contracts using
high-level programming languages compiled into EVM code. The
most widespread language is Solidity [6] which is a JavaScript
style contract-oriented, statically-typed, high-level programming
language designed for implementing smart contracts.

C. Potential security issues and assurance of smart contracts

Besides their correct execution, it is also crucial that the design
and the implementation of smart contracts are secure against
vulnerabilities aiming at tampering and stealing assets they handle.
Indeed, several security vulnerabilities in Ethereum smart contracts
have been discovered. A recent analysis reveals that among 19336
smart contracts deployed on the public Ethereum blockchain, 8333
contracts suffer from at least one security issue [7]. An example of
attack was in June 2016, the DAO (the worlds largest crowdfunding
project deployed on the Ethereum) was attacked by hackers, causing
more than 3 million ETH separated from the DAO resources pool
which is worth around $60 million.
A survey of possible attacks on Ethereum contracts was presented in
[1] where security vulnerabilities of smart contracts were grouped
into three classes according to the level in which they are introduced
namely Solidity, EVM bytecode, and blockchain.
Another issue that smart contracts may have is their dependency
on external calls especially when they execute external contracts’
codes within their functions, call other contracts’ function and wait
for its returned value, or even call another contract that may change
its global state. If there is an exception raised (e.g., not enough gas,
exceeding call stack limit) in the called contract, the calling contract
terminates, reverts its state and returns false. However, depending
on how the call is made, the exception in the calling contract may
or may not get propagated. In these cases, the contracts control flow
should not be influenced by an adversary contract.
To deal with such issues, reasoning about the correctness of smart
contracts before their deployment on the blockchain network is criti-
cal and no important than ever. How to write reliable smart contracts
was presented in [2], where two aspects were considered for the
correctness verification and security insurance of smart contracts
including programming correctness and formal verification.
Formal verification provides a powerful technology for the correct-
ness verification of the established specification of smart contracts.
In the following subsection, we will review research proposals
carried out in this field.

D. Event-B formal method

The Event-B method is an evolution of the B method [8], [9].
This method is based on the notions of pre-conditions and post-
conditions of Hoare, the weakest pre-condition of Dijkstra and the
substitution calculus. Event-B method is based on mathematical
foundations namely first order logic and set theory. A formal model
in Event-B uses two types of entities to describe a system: Machines
and Contexts. A Machine represents the dynamic part of a model i.e.
states and transitions. A Context contains the static part of the
model. A context may extend an existing context and a machine
may see a context. Generally, a model is defined by a name, sets,
constants and their properties, variables and their invariants and
events. An event takes the form:

evt , any x where G then Act end.

Where x is the list of event parameters, G represents predicates
which define the guard of the event and Act is an action that
modifies some state variables. When the guard is satisfied, the event
can be fired.

Event-B is supported by the Atelier-B platform [11] and can be
used in conjunction with the Pro-B animator/model-checker [10] in
order to animate and validate a formal development. Due to lack of
space, we outline in this paper the short overview of Event-B and
to have more detail about Event-B method, these references can be
useful [8], [9].

IV. RELATED WORKS

Multiple efforts have been carried out in the current literature for
the correctness verification of the established specification of smart
contracts through formal verification approaches.
In [12], authors proposed a verification method based on program-
ming language. They translated Solidity written smart contracts
into an F* language (functional programming language aimed at
program verification) in order to check the safety, and the functional
accuracy of implemented contracts. The translation is made both at
the source level (functional correction specifications) and bytecode
level (low-level properties).
In [13], the Isabelle proof assistant was used to verify the binary
Ethereum code whose corresponding sequences were organized
into linear code blocks. A logic program was then created where
each block is processed as a set of instructions. Each part of the
verification is validated in a single trusted logical framework from
the perspective of bytecode.



In [14], a new verification method is proposed to verify a smart
contract’s behavior in its execution environment. The proposed ap-
proach considered the interaction between both users and programs,
plus programs and the environment. The Behavior Interaction
Priorities (BIP) framework was used for components modeling,
therefore the Statistical Model Checking (SMC) tool was used for
verification.
In [15], game theory approach was combined with formal methods
to address the challenging aspect of smart contracts, the proposed
approach focused on DSCP (a Decentralized Smart Contract Proto-
col inspired by BITHALO), therefore a probabilistic formal model
was proposed to verify smart contracts based on PRISM tool.
In [16], authors proposed a generic modeling method of smart con-
tracts based Ethereum applications, the model checking approach
was then considered to verify the implementation’s compliance
with the specification. The proposed model was written in NuSMV
language with properties formalized into temporal logic CTL to be
subsequently applied to a case study based on smart contracts and
coming from the energy market place.
In [17], a framework called ZEUS was proposed to automatically
verify the correctness of implemented smart contracts using both
abstract interpretation and symbolic model checking and to validate
their fairness. The proposed framework consists of three compo-
nents including a policy builder against which the smart contract
must be verified, a source code translator for the conversion of this
last to LLVM bitcode, and third a verifier in charge of determining
and reporting policy violations.
Table I summarizes the already presented works regarding the target
they address, the category to which they belong, the focus they are
interested at and the tool they use.

V. PROPOSED APPROACH

A. Overview

Fig. 2. Overview

The main objective of this work is to formally model an Ethereum
blockchain application based on smart contracts formal verification
methods. We rely alongside this work on Event-B which is a
state based model-oriented formal method intended for system
development. Its strength lies in a well-defined modelling and
analysis process, which allows one to specify a system from an
abstract specification to a concrete one.
In order to verify and validate their safety, correctness and func-
tional accuracy, smart contracts, as illustrated in Fig. 2, are trans-
lated from solidity (which is a high level programming language
designed for implementing smart contracts running on the Ethereum
blockchain), into Event-B formal language. Therefore, and in order
to check whether implemented smart contracts behave as they are

supposed to do, a verification of the formal model is conducted
using a model checking tool along which expected safety properties
are formalized, validated and judged to be satisfied or unsatisfied.

B. DRMF framework, Access contract

The described approach of this proposal is applied to a use
case application that has been the subject of a previous work,
called Distributed Resource Management Framework for Industry
4.0 (DRMF) [?]. In what follows, we recall the basic concepts of
DRMF to focus on the specification and implementation details of
one of the considered smart contracts which is the Access contract
(AC).
In brief, the DRMF framework utilizes blockchain technology to
support shared resources management and usage between col-
laborating parties while dynamically manage access authorization
over considered resources. The corresponding implementation is
composed of three smart contracts coded in solidity programming
language.
In this work we will mainly focus on the Access Contract (AC)
which is designed to achieve distributed, interoperable, contextual,
trustworthy and secure access control for multi organization sys-
tems. It is based on the integration of the OrBAC access control
model within an Ethereum distributed ledger to express access
control policies. Its operation is based on a set of data variables
and methods that will be formally modeled into Event-B formal
method as it will be presented in the following paragraphs.

C. AC Event-B formal model

In Listing 1, the set of enumerated types, the state variables,
the constants and the properties of defined attributes constituting
the machine ACCESS CONTRACT are introduced. For instance,
AccessType AS, Agent AS, Activity AS are specified as sets con-
taining predefined constants an AccessType (respectively an Agent,
an Activity) variable could have. Table II illustrates a brief descrip-
tion of each variable specified within the ACCESS CONTRACT
machine.
Reminding here that a role structure is characterized by its descrip-
tion, the Organization by which it is issued (e.g. the subfactory
SF1, SF2, etc.), the department to which it does belongs (e.g.
logistics), and the trust threshold it has. On the other hand, the
context structure is identified by its description (that could be for
example shipping, renting, etc.), minInterval (which is the minimum
allowable time interval between two successive access requests),
nb req threshold (that corresponds to the maximum number of ac-
cess requests in the minimum interval), working hours (corresponds
to the working hours interval).

MACHINE ACCESS CONT RACT
SETS

AccessType AS = {permission, prohibition};
Agent AS = {agent1,agent2,agent3};
Activity AS = {use,check,add,update};
Resource AS = {truck1, truck2, truck3, truck4,record, trust f ile};
Context AS = {ctx1,ctx2,ctx3};
ContextDesc AS = {ctxdesc1,ctxdesc2,ctxdesc3};
SecurityRule AS = {SR1,SR2,SR3};
Role AS = {role1,role2,role3};
RoleDesc AS = {shippingworker, productionworker,supervisor};
Organisation AS = {SF1,SF2,SF3};
Departement AS = {logistics,manu f acturing,administration};
State = { f ree,occupied}

ABSTRACT_VARIABLES
AccessType,Agent,Activity,
Resource,Context,SecurityRule,
SecurityRuleList,Role,RoleDesc,
Organisation,Departement,TrustT hres,
RoleList,WorkingHours,ContextList,



ContextDesc,minInterval,nbRequests,
nbReqT hreshold,resultAccessControl,
Requests,TimeLastAccess,AccessTime,
LastRequestId,currentTime,TrustValue,ResourceState

INVARIANT
\\Typing invariants
AccessType⊆ AccessType AS ∧
Agent ⊆ Agent AS ∧
Activity⊆ Activity AS ∧
Resource⊆ Resource AS ∧
Context ⊆Context AS ∧
SecurityRule⊆ SecurityRule AS ∧
Role⊆ Role AS ∧
RoleDesc⊆ RoleDesc AS ∧
Organisation⊆ Organisation AS ∧
Departement ⊆ Departement AS ∧
ContextDesc⊆ContextDesc AS ∧
AccessTime ∈ N ∧
LastRequestId ∈ N ∧
currentTime ∈ N ∧
TrustValue ∈ 0..10
nbReqT hreshold = 2

END

Listing 1. The description of SETS, ABSTRACT VARIABLES and
INVARIANT clauses.

VARIABLE Description
AccessType the access type to be attributed after each

access demand
Agent the entity asking access authorization
Activity the action to be performed once the access

is authorized
Resource the resource over which the access is re-

quested
Role the role demanding the access
Context the situation that must be respected so that

the access is granted
SecurityRule the defined access control policy
SecurityRuleList the list of security rules
RoleList the list of roles
ContextList the list of contexts

TABLE II
SECURITY RULES LIST EXAMPLE

The definition of sets and abstract variables are succeeded by
the introduction of typing invariant properties in order to complete
the model construction. Listing 1. includes the typing invariants
of added variables For example, we define the variable Resource
to store shared resources over which the access is demanded.
Obviously Resource is a subset of Resource AS (Inv4, Listing 1.).
Listing 2. defines typing invariants related to role, context, resource,
request and security rules structures. As an example, the ResourceS-
tate invariant (invariant 8) is used to constrain changes in the state
of a resource between free and occupied states.

MACHINE ACCESS CONT RACT
INVARIANT
\\Invariant 1
RoleList ∈ Role↔ (RoleDesc∗Organisation∗Departement) ∧
\\Invariant 2
TrustT hres ∈ Role→ 0..10 ∧
\\Invariant 3
minInterval ∈Context→ (0..10) ∧
\\Invariant 4
nbRequests ∈Context→ (0..2) ∧
\\Invariant 5
ContextList ∈Context↔ (ContextDesc∗Resource) ∧
\\Invariant 6
WorkingHours ∈Context→ N∗N ∧
\\Invariant 7
TimeLastAccess ∈ContextDesc↔ N ∧
\\Invariant 8

ResourceState ∈ Resource→ State ∧

\\Invariant 9
Requests ∈ N↔ (Context ∗N∗Role) ∧
\\Invariant 10
resultAccessControl ∈ Requests↔ BOOL
\\Invariant 11
SecurityRuleList ∈ SecurityRule↔

(AccessType∗Activity∗Resource∗Role∗Context)
END

Listing 2. Role, Context, Resource, Request and Security Rule typing
invariants.

As a next step, this model is enriched by safety invariant properties
plus the definition of events. The guard and action of these last must
be specified in such a way that it establishes invariants preservation.
Safety invariants:
In order to ensure consistent, correct and safe functioning process
of the considered framework, we define a set of constraints as it is
illustrated in Listing 3. These last, and that must be preserved by
events specification, are formalized as follow:

1) Property 1: Once the smart contract is called upon a request
is made, an access result shall always be returned.

2) Property 2: Ensure that there is only one instance for each ac-
cess rule defined and shared within the Access smart contract.

3) Property 3: Once a shared resource is used by a certain entity,
the access over it must be blocked and could never be attributed
to another entity.

MACHINE ACCESS CONT RACT
INVARIANT
\\Invariant 12
card(SecurityRuleList)≤ card(SecurityRule AS) ∧
\\Invariant 13
∀(sr1,sr2,accessT 1,act1,rsr1,role1,context1,accessT 2,act2,rsr2,role2,context2).
(accessT 1 ∈ AccessType ∧ act1 ∈ Activity ∧ rsr1 ∈ Resource ∧
context1 ∈Context ∧ role1 ∈ Role ∧ accessT 2 ∈ AccessType ∧
act2 ∈ Activity ∧ rsr2 ∈ Resource ∧ context2 ∈Context ∧ role2 ∈ Role ∧

sr1 ∈ SecurityRule ∧ sr2 ∈ SecurityRule ∧
(sr1 7→ (accessT 1 7→ act1 7→ rsr1 7→ role1 7→ context1)) 6=
(sr2 7→ (accessT 1 7→ act1 7→ rsr1 7→ role1 7→ context1))⇒ sr1 6= sr2)

\\Invariant 14
∀(rsr,req).
(rsr ∈ Resource ∧ req ∈ Requests ∧ ResourceState(rsr) = occupied
⇒ resultAccessControl(req) = FALSE)

END

Listing 3. Safety invariant properties.

Events Specification In the following Listings, we use events
to describe the behavior of our ACCESS CONTRACT Event-B
machine. In Listing 4, we define the first event called addPolicy
permitting to define and to add a new access control policy, based
on the role demanding the access ”role”, the context defining the
situation ”context”, the resource to be used ”rsr”, the action to
be performed ”act” and the access type to be attributed ”accessT”.
This event requires the execution of addRole and addContext events
before to be completed. As pre-condition, input parameters must be
already defined and the security rule must not exist before within the
”SecurityRuleList”. The triggering of this event allows a new policy
item to be added to the policies list whose size will be incremented.

MACHINE ACCESS CONT RACT
EVENTS

addPolicy = ANY role,context,rsr,act,accessT,sr
WHERE role ∈ Role ∧

context ∈Context ∧
rsr ∈ Resource ∧
act ∈ Activity ∧
accessT ∈ AccessType ∧
sr ∈ SecurityRule ∧
sr /∈ dom(SecurityRuleList) ∧
(accessT 7→ act 7→ rsr 7→ role 7→ context) /∈ ran(SecurityRuleList)

THEN SecurityRuleList := SecurityRuleList∪
{(sr 7→ (accessT 7→ act 7→ rsr 7→ role 7→ context))}



END;
END

Listing 4. add Policy event.

Listing 5. and Listing 6. are responsible for defining and adding
a new role, respectively a new context to their corresponding list,
Rolelist and ContextList. For instance, addRole event uses in input
the role name ”rl”, the corresponding description ”rldesc”, the
organization to which the role belongs ”org”, the corresponding
department ”dept”, and finally the trust threshold above which
access demanders should have their associated trust scores ”trust”.
MACHINE ACCESS CONT RACT
EVENTS

addRole = ANY rl,rldesc,org,dept, trust
WHERE rl ∈ Role ∧

rldesc ∈ RoleDesc ∧
org ∈ Organisation ∧
dept ∈ Departement ∧
trust ∈ TrustT hres ∧
rl /∈ dom(RoleList) ∧
(rldesc 7→ org 7→ dept) /∈ ran(RoleList) ∧
∀(rr,oo,dd).(rr ∈ RoleDesc ∧ oo ∈ Organisation ∧
dd ∈ Departement ∧ (rr 7→ oo 7→ dd) ∈ ran(RoleList)
⇒ rr 6= rldesc ∧ (oo 6= org∨dd 6= dept))

THEN RoleList := RoleList ∪{(rl 7→ (rldesc 7→ org 7→ dept))}
END;

END

Listing 5. add Role event.

MACHINE ACCESS CONT RACT
EVENTS

addContext = ANY ctx,ctxdesc,minIn,nbReq,rsr
WHERE ctx ∈Context ∧

ctxdesc ∈ContextDesc ∧
minIn ∈ 0..3 ∧
nbReq ∈ 0..3 ∧
rsr ∈ Resource ∧
ctx /∈ dom(ContextList) ∧
(ctxdesc 7→ rsr) /∈ ran(ContextList) ∧
∀(cc,rr).(cc ∈ContextDesc ∧ rr : Resource ∧

(cc 7→ rr) ∈ ran(ContextList)⇒ cc 6= ctxdesc ∧ rr 6= rsr)
THEN ContextList :=ContextList ∪{(ctx 7→ (ctxdesc 7→ rsr))} ||

minInterval := minInterval C−{ctx 7→ minIn}
END;

END

Listing 6. add Context event.

Listing 7. introduces the AccessControlAccept event. Through this
last, an access request made by the role ”rl”, upon a certain resource
”rsr” to perform the activity ”act” within the specific context ”ctx”
is authorized. To do so, a set of guards are generated, these last
represent the set of conditions that should be respected, they include
the typing guards related to input parameters, the belonging guards
over which the existence of role ”rl” and context ”ctx” within the
Rolelist and respectively the Contextlist will be checked, finally the
comparison guards defined to check the condition to be respected
as well as the legitimate behavior of the access requesting agent.
This last is evaluated through (i) the corresponding trust score
”TrustValue” that should be above the trust threshold ”TrustThres”
of the associated role, (ii) the access requests number to detect a
potential doubtful access demand, this last should not exceed the
”nbReqThreshold”, (iii) the last access request ”TimeLastAccess”
that should be launched within the minimum allowable time interval
”minInterval”, and (iv) finally the current access request that shall
be launched during the working hours interval. As a result of
this event, a list of variables will be modified through the event
action clause specifically the ”Requests” set, the ”LastRequestId”
and the ”TimeLastAccess”. Therefore the state of the resource will
be changed to occupied and the access will be authorized.

MACHINE ACCESS CONT RACT
EVENTS

accessControlAccept = ANY rsr,rl,act,ctx
WHERE \\Typing guards

rsr ∈ Resource ∧
rl ∈ Role ∧
act ∈ Activity ∧
ctx ∈ContextDesc ∧
\\Belonging guards

rl ∈ dom(RoleList) ∧
(ctx 7→ rsr) ∈ ran(ContextList) ∧
\\Comparison guards
ResourceState(rsr) = f ree ∧
TrustValue≥ TrustT hres(rl) ∧
nbRequests(ContextList (ctx 7→ rsr))< nbReqT hreshold ∧
currentTime−TimeLastAccess(ctx)>

minInterval(ContextList (ctx 7→ rsr)) ∧
(∀(xx,yy).(xx ∈ N ∧ yy ∈ N ∧

(xx 7→ yy) =WorkingHours(ContextList−1(ctx 7→ rsr))⇒
currentTime > xx ∧ currentTime < yy))

THEN Requests := Requests∪{LastRequestId +1
7→ (ContextList−1(ctx 7→ rsr) 7→ currentTime 7→ rl)} ||

LastRequestId := LastRequestId +1 ||
TimeLastAccess(ctx) := currentTime ||
resultAccessControl(LastRequestId +1 7→

(ContextList∼(ctx 7→ rsr) 7→ currentTime 7→ rl)) := T RUE ||
ResourceState(rsr) := occupied

END;
END

Listing 7. Access Control Accept event.

MACHINE ACCESS CONT RACT
EVENTS

accessControlRelease = ANY rsr,rl,act,ctx
WHERE \\Typing guards

rsr ∈ Resource ∧
rl ∈ Role ∧
act ∈ Activity ∧
ctx ∈ContextDesc ∧
\\Belonging guards

rl ∈ dom(RoleList) ∧
(ctx 7→ rsr) ∈ ran(ContextList) ∧
\\Comparison guards
ResourceState(rsr) = occupied ∧
(currentTime−TimeLastAccess(ctx)≤

minInterval(ContextList (ctx 7→ rsr)) ∨
nbRequests(ContextList (ctx 7→ rsr))≥ nbReqT hreshold ∨
TrustValue < TrustT hres(rl) ∨
¬((∀(xx,yy).(xx ∈ N ∧ yy ∈ N ∧

(xx 7→ yy) =WorkingHours(ContextList−1(ctx 7→ rsr))⇒
currentTime > xx ∧ currentTime < yy)))

THEN Requests := Requests∪{LastRequestId +1
7→ (ContextList−1(ctx 7→ rsr) 7→ currentTime 7→ rl)} ||

LastRequestId := LastRequestId +1 ||
TimeLastAccess(ctx) := currentTime ||
resultAccessControl(LastRequestId +1 7→

(ContextList∼(ctx 7→ rsr) 7→ currentTime 7→ rl)) := FALSE
END

END

Listing 8. Access Control Reject event.

VI. VERIFICATION OF THE SMART CONTRACT BEHAVIOR

In this section, our main objective is to demonstrate our approach
by (i) validating the formal model introduced in Section. V-C and
then (ii) checking that both the presented implementation and design
of the smart contract verifies well some required typing and safety
properties. More details about the proposed framework are provided
in our previous work [3]. As a first attempt to validate the Event-
B models, we have applied these last to a simplified real example
derived from the use case study illustrated in Section. II.
Indeed in this scenario, we added two new roles called shipping
worker and ’production worker’ belonging respectively to the
’logistics’ and ’manufacturing’ departments within the subFactory
SF1 and having as trust threshold the value of ’0.5’, correspondingly



a new context is added to the contexts list, named ’shipping’, it
concerns the resource ’truck3’ during the working interval ’8to18’
and where 2 access requests are permitted during the minimum time
interval set up to ’5 minutes’.
Afterwards, a corresponding security rule is defined and added to
the security rules list after being specified as follow: SR1(access
type = ”permission”, activity= ”use”, resource= ”truck3”, role=
”shipping worker”, context= ”shipping”), in other words, this secu-
rity rule authorizes the shipping worker to use the truck3 resource
according to the context shipping, that is, his trust score is above the
trust threshold, the current time is within the working interval and
at most 2 access requests are launched during the last 5 minutes.
Subsequently, we defined 3 access demands corresponding re-
spectively to 2 legitimate behaviors and a malicious one. For
the legitimate behaviors, two shipping workers from the logistics
department with a trust score equal respectively to 0.7 and 0.65
demand for the first time to use the truck3 resource during their
working hours interval. For the malicious behavior, we assume that
a shipping agent launches an on-off attack resulting on a low trust
score while demanding access over the truck3 resource.
In order to demonstrate that the formal specification of access
contract models is correct, we aim to validate Event-B models using
ProB model-checker and animator [18]. This validation allows to
verify that the invariants are preserved by all events. Since these
models are deterministic and have finite state spaces, the model-
checking and animation are sufficient to validate our model for a
given initial state than theorem proving that requires considerable
efforts.

a) Verification using model-checking: Model-checking [19] is
an automated approach for verifying that a system model conforms
to its specifications. The system behavior is formally modeled and
the specifications, expressing the expected properties of the system,
are also formally expressed, in our case via formulas of the first-
order logic. All experiments were conducted on a 64-bit PC, Ubuntu
16.04 operating system, an Intel Core i5, 2.3 GHz Processor with
4 cores and 8 GB RAM. Using the ProB model-checker and based
on mixed breadth and depth search strategy, we have explored all
states: 100% of checked states with 641 distinct states and 1613
transitions during 1987 milliseconds. No invariant violation was
found, and all the operations were covered. This verification ensures
that invariants are preserved by each event. Otherwise, a counter-
example would be generated.

b) Verification using animation: ProB can be used as a
complementary of model-checker as an animator. Verification using
animation is very important and can detect a series of problems,
such as unexpected behavior of a model. ProB animator allows
to visualize the dynamic behavior of a Event-B machine and we
can systematically explore all the accessible states of a Event-B
machine to check the studied properties. We have successfully
applied the animation of ProB on the operational scenario that
described at the beginning of this section. The animation of this
scenario demonstrates the behavior of the our specification which
implies that we have a verified and validated specification. However,
if this is not the case, then we have to go back to the initial
specification to correct the unacceptable behavior and re-apply the
animation until the specification conforms to requirements.

VII. CONCLUSION

In this paper, we have applied the formal verification concept
to smart contracts developed and deployed within an Ethereum
based blockchain application. The aim is mainly to verify the
compliance of these last with their specification while validating

their safety and functional accuracy under specific properties and for
given behaviors. To do so, we adopted the Event-B formal method
for translating solidity written smart contracts. Model checking
technique has been exercised therefore on the resulted formal model
to judge and validate some properties of interest. The presented
method was applied to a simplified real example derived from a
use case study describing shared resources management among
collaborating organizations under Industry 4.0 environments.
As a future work, we will focus on enriching our model with other
properties when considering malicious parties introducing specific
scenarios of attacks. REFERENCES
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