Loïc Cudennec
email: loic.cudennec@def.gouv.fr

Software-Distributed Shared Memory for Heterogeneous Machines: Design and Use Considerations

Distributed shared memory (DSM) allows to implement and deploy applications onto distributed architectures using the convenient shared memory programming model in which a set of tasks are able to allocate and access data despite their remote localization. With the development of distributed heterogeneous architectures in both HPC and embedded contexts, there is a renewal of interest for systems such as DSM that ease the programmability of complex hardware. In this report, some design considerations are given to build a complete software-DSM (S-DSM). This S-DSM called SAT (Share Among Things) is developed at CEA (the French Alternative Energies and Atomic Energy Commission) within the framework of European project M2DC (Modular Microserver DataCentre) to tackle the problem of managing shared data over microserver architectures. The S-DSM features the automatic decomposition of large data into atomic pieces called chunks, the possibility to deploy multiple coherence protocols to manage different chunks, an hybrid programming model based on event programming and a micro-sleep mechanism to decrease the energy consumption on message reception.

S-DSM programming model

 represents a distributed architecture in which physical memories are connected via a network. Each memory

Introduction

Shared memory is a convenient programming model in which a set of tasks (processes, threads) are able to access (allocate, read, write) a common memory space. This is quite straightforward in the classic Von-Neumann architecture in which physical memories are shared among the processing units. However, when coping with distributed architectures, processing units can not directly access remote memories using a local address space. Some intermediate hardware or software systems are needed to transparently manage access requests. Such systems include Software-Distributed Shared Memory (S-DSM) as proposed in the Figure 1: S-DSM as a middleware to unify remote memories. late eighties with IVY [START_REF] Li | IVY: A shared virtual memory system for parallel computing[END_REF] and more recently studied for modern architectures with Grappa [START_REF] Nelson | Latency-tolerant software distributed shared memory[END_REF] and Argo [START_REF] Kaxiras | Turning centralized coherence and distributed critical-section execution on their head: A new approach for scalable distributed shared memory[END_REF].

S-DSM can be seen as a distributed middleware application standing between the user code and the diversity of OS primitives and libraries that manage local memory, remote services (eg. RDMA, one-sided communications) and message passing (eg. MPI). It provides a platform-agnostic global, logical address space to the user code, which constitutes a step towards single-system image and operating systems (SSI) originally introduced for computing clusters two decades ago [START_REF] Buyya | Single system image[END_REF]. The abstraction of the platform not only aggregates remote memories into a virtual space, it also tackles the problem of heterogeneity at different levels, from the communication medium to the data representation. This simplifies the management of data in distributed applications and the possibility to transparently reuse code and deploy on different heterogeneous platforms.

S-DSM runtimes usually introduce significant overheads mainly due to the increase of the number of coherence protocol messages compared to messagepassing (MP) applications. With the recent development of high-speed network and new efficient protocols to access remote memories, modern S-DSM are now able to match or exceed the performance of MP-designed applications. In this work [START_REF] Cudennec | Experiments using a softwaredistributed shared memory, mpi and 0mq over heterogeneous computing resources[END_REF], the S-DSM proposed in this report is evaluated together with a classical Open MPI implementation and ZeroMQ, a lightweight MP implementation originally designed for embedded systems. Results show that this S-DSM performs better than the Open MPI implementation and competes with the ZeroMQ implementation. In this report we give some information on how this S-DSM is designed and how applications are implemented over the API.

This report is organized as follows: section 2 presents the S-DSM programming model as well as some elements on the way it is implemented in the runtime. Section 3 gives some information on how to write an application on top of the S-DSM. Finally section 4 concludes this report and gives some insights. has a specific address space. A first abstraction layer concatenates the memory address spaces into a global one. The resulting address space is however hardware-dependent: the user has to cope with NUMA (Non-Uniform Memory Access) and manage data locality and replication. The S-DSM abstraction layer builds a logical address space, which is not dependent from the underlying hardware. This system hides the data localization, replication and transfer and provides a simple Posix-like interface.

The implementation of the proposed S-DSM stands at the user level, as a portable way to deploy onto different operating systems. A set of clients running the application code are connected to a peer-to-peer (P2P) network of data management servers. Shared data are decomposed into chunks of any size to allow the allocation of large memory segments and the limitation of false-sharing. Chunks are independently managed under the supervision of a consistency protocol. It is possible to deploy several consistency protocols for the same application to manage different chunks. The default protocol is a 4-state home-based protocol. These concepts have been used in several datasharing systems, including OceanStore [START_REF] Kubiatowicz | Oceanstore: An architecture for global-scale persistent storage[END_REF], DSM-PM2 [START_REF] Antoniu | DSM-PM2: A portable implementation platform for multithreaded DSM consistency protocols[END_REF] and JuxMem [START_REF] Gabriel Antoniu | Juxmem: An adaptive supportive platform for data sharing on the grid[END_REF].

The API is based on the scope consistency model [START_REF] Iftode | Scope consistency: A bridge between release consistency and entry consistency[END_REF] in which accesses to shared data are protected within an acquire-release scope. The S-DSM malloc primitive can be called from every client, taking into parameter an address in the global logical space. It is also possible to use a built-in symbolic table to identify shared data using plain text instead of the logical address space. Distributed synchronization primitives are provided such as rendez-vous, barriers and signals. The signal mechanism has also been used to implement the publish-subscribe model applied to chunks [START_REF] Cudennec | Merging the publish-subscribe pattern with the shared memory paradigm[END_REF]: each time a chunk is modified, a notification is sent to the subscribers. This allows the design of applications based on a mix of the shared memory and the event-based programming models. The S-DSM has been implemented over the MPI runtime to manage communications between nodes. It inherits from the task model, the automatic deployment and bootstrapping of the communication world, the management of multiple message queues and the optimizations for message delivery. It also provides MPI tools for debugging low-level communications and the MPI runtime conveniently redirect standard outputs of each remote process to the master node. On top of that, S-DSM events are logged, processed and can be used to debug and optimize applications. This S-DSM has been used to implement a dataflow-oriented video processing application. Communication channels are instantiated as shared data. Tasks that write to an output channel use the regular shared memory access primitive while tasks that read from an input channel rely on the publish-subscribe mechanism and get notified each time the channel has been modified to retrieve a new token. This application has been used to evaluate the performance of the S-DSM, experiment, and build a demonstrator for scientific and industrial forums.

This work takes place within the context of the European project M2DC [START_REF] Oleksiak | M2DC -modular microserver datacentre with heterogeneous hardware[END_REF] in which a microserver architecture such as the Christmann RECS|Box Antares Microserver and a software stack is proposed. A microserver is composed by a rackable backplane (1U/4U) providing power supply and networking capabilities to a set of slots that can host heterogeneous expansion cards such as high performance CPU, low-power CPU, manycore processors, GPGPU or FPGA. In these systems, there is no central physical memory and the application has to manually cope with the management of data. Therefore, middlewares such as S-DSM provide a convenient abstraction layer to unify the memories of the different expansion slots. Hybrid programming is still required to get access to the accelerators: the S-DSM is able to manage data between nodes with a CPU. However, moving data from a CPU host and an accelerator (GPGPU, FPGA) is still the responsibility of the user, as it is commonly done for MPI/OpenMP or MPI/CUDA in HPC systems. In this work [START_REF] Lenormand | A combined fast/cycle accurate simulation tool for reconfigurable accelerator evaluation: application to distributed data management[END_REF], a system is proposed to transparently manage these interactions between hosts and FPGAs based on this S-DSM, providing a full DSM implementation among the processing elements, however this is not in the scope of this report.

Security and access control to the S-DSM is studied in [START_REF] Stan | Attribute-based encryption and its application to a software-distributed shared memory[END_REF], providing a transparent layer implementing attribute-based encryption (ABE) between the S-DSM API and the user code. More information can be found in the paper.

In the following sections, we describe some parts of the S-DSM that has been developed to study data management strategies over distributed heterogeneous platforms.

General S-DSM layout

The S-DSM developed at CEA has been designed as an experimental platform for shared data management in emerging distributed heterogeneous architectures. It is possible to implement different consistency protocols and deploy several of them during the same run to manage different shared data. It is implemented at the user-level and does not require any modification of the OS kernels or system libraries to remain portable and easy to deploy on multiple systems found in heterogeneous platforms.

The S-DSM is organized as a semi-structured super-peer topology made of a peer-to-peer network of servers and a set of clients, as presented in Figure 2. Clients run the user code and provide the interface to the shared memory. Servers execute coherence automata and manage data and metadata.

Applications written for the S-DSM are based on a simple task model, each task instance running as a S-DSM client. Parallelism comes from the multiplicity of instances for each task. Prior to a deployment, a logical topology has to be Figure 3: From the S-DSM logical address space to the local memory. defined thanks to an instantiating step and a mapping step. The performance of the application largely depends on these two steps. Instantiating the application consists in choosing the number of instances to be created for each task, including the number of instances of S-DSM metadata servers. These instances have to be connected together, each instance of a client connected to a S-DSM server instance, in order to form a logical topology. This topology is thereafter mapped onto the physical resources and then effectively deployed. These deployment steps are complex even when coping with rather small applications and small heterogeneous clusters. In this paper [START_REF] Trabelsi | Application topology definition and tasks mapping for efficient use of heterogeneous resources[END_REF], a compilation toolchain is proposed to explore and optimize the deployment of the S-DSM onto distributed heterogeneous resources, using local search algorithm. This results in a Pareto front from which it is possible to pick a solution that fits to specific computing performance and energy consumption constraints.

This implementation of the S-DSM is not thread-safe, meaning that threads belonging to the same task cannot concurrently access the shared memory without explicit synchronization. If such limitation becomes critical for an application, concurrent threads can be placed into different S-DSM clients and colocated onto the same physical resource to benefit from locality.

The S-DSM is designed as an application helper or a temporary service: it starts when a call to the bootstrapping function is made and terminates when all clients have notified a termination.

Atomic slices of memory: chunks

Shared memory, as a global space containing data, is divided into atomic pieces called chunks. Each chunk is identified by an address in the S-DSM logical address space. In this implementation, the logical address space contains all possible values of an unsigned long, as defined by ANSI C on modern architectures. Chunks can be of any size and any type, as a multiple of a C char type. the S-DSM logical space while B is not. It is possible to do arithmetic onto the S-DSM logical space, for example @O = @G + 1. However, this logical mapping is totally independent from the local mapping on each node.

On N ode1, chunks G and O have been independently allocated and their data are mapped in arbitrary non-contiguous addresses of the local memory. On N ode2, chunks B, O and G have been allocated as a chunk chain. A chunk chain is a sequence of chunks that ensures a contiguous allocation of data in memory. In practice, it is a circular double-chain of chunks. In this configuration, it is possible to do arithmetic of pointers from the data pointed by chunk B directly followed by chunks O and G. Chunk chains can be allocated on user nodes to locally merge data or build complex patterns. However they do not exist outside the node as chunks are independently managed by the S-DSM. It is also possible to allocate a chunk several times into the local memory, even within different chunk chains. In that case, chunk data will be map in different places in the local memory and kept consistent (a write to an instance of the chunk will also be applied to the other instances of the chunk on the local node).

Several functions are provided by the client interface of the S-DSM to allocate chunks. The main functions given in Figure 4 return a pointer to a chunk that can be later used to access data.

MALLOC allocates chunks starting at address @baseid in the S-DSM logical memory space for a total size of data given by the size parameter. The number of contiguous chunks allocated is calculated based on the default chunk size set in the S-DSM and the last chunk size is appropriately calculated so that no memory space is wasted. Allocated chunks are linked within a chunk chain. If the exact same chunk chain has already been locally allocated, it does not allocate new chunks: it returns the corresponding chunk chain. If other local chunk chains contain one or more chunks from this chunk chain, chunks are replicated in local memory so that the data of the chunk chain is contiguous in local memory.

MALLOC_LST allocates chunks using the list of addresses idlst. The size of individual chunks is given by the sizelst parameter. In this example, chunk @81 is allocated with data size 91. The allocator does a round-robin onto list sizelst if it is smaller than idlst. Allocated chunks are linked within a chunk chain and properties are the same than for MALLOC.

LOOKUP returns previously allocated chunks in the S-DSM (chunks that have been allocated and written by any process). Compared to the MALLOC primitive, LOOKUP does not require to specify the size of the data. This is convenient if it is calculated at runtime and not known by a process. If more than one chunk is requested (nbchunks > 1) a chunk chain is returned made of contiguous addresses in the S-DSM memory space and starting at address @chunkid.

LOOKUP_LST is similar to LOOKUP except that it takes a list of chunk addresses instead of a base address.

A consistency protocol must be set to allocate chunks. It can be a different protocol for each chunk, hence implementing a multi-consistency system. This consistency protocol will be used for each access to the chunk and will drive the S-DSM behaviour regarding the data and metadata management.

Access modes

A chunk is a structure that hosts consistency state information about shared data and a local pointer to the data. The user code can access this pointer following different modes.

Scope consistency [START_REF] Bershad | The Midway distributed shared memory system[END_REF] implies that all accesses must be protected between a call to 1) READ, WRITE or READWRITE primitive to enter the scope and a call to 2) RELEASE primitive to exit the scope. Outside this scope, data consistency is not guaranteed and the pointer to the data can be discarded if the S-DSM is running short on local memory. In this latter case, the data is present in another node of the S-DSM. However, in order to use the data outside the scope, a local copy must be made by the user within the scope. Examples are given in Figure 5.

Memory mapping is used to keep the data pointer safe outside the consistency scope, without data copy (zero-copy). The MAP primitive maps the provided data pointer to the chunk chain starting by the given chunk. This can be used together with PUT and GET primitives that basically behave as WRITE-RELEASE and READ-RELEASE empty scopes. Examples are given in Figure 6.

; i < N ; i ++) { chunk -> data [i] = N -chunk -> data [i]; } RELEASE (chunk) READ (chunk) for (i = 0; i < N ; i ++) { chunk -> data [i] = N -chunk -> data [i]; } RELEASE (chunk) /* *

¦ ¥

Figure 8: Synchronization of 3 tasks using a rendezvous and a barrier.

The default protocol is a home-based MESI protocol [START_REF] Culler | Parallel computer architecture -a hardware / software approach[END_REF]. This protocol allows multiple parallel reads and an exclusive single write, hence implemented with the four Modified, Exclusive, Shared, Invalid states. Each shared data is managed by a specific node in the system also referred as the home-node. In our implementation this node is calculated as a modulo on the S-DSM server list.

Synchronization objects

Processes can synchronize in the S-DSM using distributed synchronization objects. The two main objects are rendezvous and barriers, implemented using Raynal's distributed algorithms [START_REF] Raynal | Distributed Algorithms for Message-Passing Systems[END_REF].

sleep is used to synchronize on a given rendezvous. Rendezvous are identified by an unsigned int. The process hangs until a wake up signal is received.

wakeup is used to wake up all processes that are sleeping on a given rendezvous.

barrier is used to synchronize a given number of processes. Processes that enter a barrier hang until the number of processes expected in the barrier is reached. Barriers are identified by an unsigned int, in a different identifier space than rendezvous. Figure 8 gives an example of explicit synchronization between three tasks. Task B waits for task A to write the shared data before modifying it. Task C waits for all other tasks to enter the barrier before reading the chunk. Note that some builtin functions are provided by the S-DSM client API to get information about the topology (for example clientGetClientNr returns the number of S-DSM clients instantiated in this run).

Some implicit synchronization also occurs when accessing shared data, depending on the consistency protocol: READ, WRITE, READWRITE, PUT, GET, readSymbol and writeSymbol are synchronous primitives that freeze the process until another process releases the data.

Event programming

Event programming such as publish-subscribe is a model in which actions are triggered based on specific events. This is a convenient model for distributed applications, specifically written as a distributed automata. While it is possible for the user to write dynamic, event-base applications from scratch, it requires additional error-prone code to manage events. This usually motivates the use of dedicated event frameworks and, in this work, the integration of publishsubscribe mechanisms directly within the S-DSM [START_REF] Cudennec | Merging the publish-subscribe pattern with the shared memory paradigm[END_REF].

The publish-subscribe paradigm is defined by a set of mutable objects (publishers) and a set of subscribers. There is a many-to-many relationship between publishers and subscribers. Each time the mutable object is changed, it publishes the information to all its subscribers. The information can be a simple notification, an update or the complete data. In this extension of the S-DSM API, chunks are considered as mutable publishing objects. The distributed metadata management for chunk coherence is extended on the S-DSM servers with publish-subscribe metadata management. We consider the three listings in Figure 9.

The first listing implements the publisher role. This code only makes use of regular S-DSM primitives. The publish-subscribe API is used by subscribers, as presented by the second listing. The subscribe primitive registers a user handler (a pointer to a local function) and some user parameters to a given chunk. Each time the chunk is modified -from anywhere in the S-DSM-this handler is called on the subscribing task. Finally, a handler function example is given in the third listing. Within the function it is possible to access shared data, subscribe to other chunks and unsubscribe to any chunk. The same handler function can be used to subscribe different chunks.

A user task is defined by a mandatory main user function and several optional handler functions. The S-DSM runtime bootstraps on the main function. At the end of this function, it falls back to the builtin S-DSM client loop function that waits for incoming events such as publish notifications. If there are messages postponed in the event pending list, then they are locally replayed. If the task has no active chunk subscriptions, nor postponed messages in the pending list, then it effectively terminates.

It

¦ ¥

Figure 10: Bootstrapping the S-DSM from the user code.

Writing or adapting an application to the S-DSM

The S-DSM is similar to a regular distributed or parallel application that has been written as a set of processes and threads. Here are the main steps to write or adapt an application.

Task model. The user code is organized as a set of functions that implement different client roles. A role can be instantiated into several concurrent processes and is identified by a positive integer. By convention identifier 0 is the S-DSM server role and identifiers greater than 0 are user-defined client roles. Figure 10 shows two functions prod and cons implementing producer and consumer roles. User functions must comply to the same signature, taking a pointer to the S-DSM bootstrap structure and returning void. The user functions are registered in the main program into the roles structure. This structure is an array of pointers to functions indexed by the role identifier. Therefore, the first entry corresponds to the S-DSM server (it is set to NULL) and the following entries to the prod (role 1) and cons (role 2) user-defined roles. This roles structure is given as a parameter of the bootstrapping primitive to run the corresponding code.

Bootstrap. The bootstrapping primitive is used to prepare the S-DSM environment and synchronize with other participating nodes. It must be called by all processes. One of the first step is to initialize the message passing runtime and retrieve the unique identifier of the task (the MPI rank in this implementation). By convention process 0 is a S-DSM server, also used as a seed to bootstrap the distributed system. All processes contact the seed to retrieve information about the neighborhood and the role § ¤ <? xml version = " 1.0 " ? > <! DOCTYPE SAT > < SAT xmlns : xsi = " http :// www . w3 . org /2001/ XMLSchemainstance " > < topologies > < topology id = " 0 " role = " 0 " > < memory capacity = " 0 " / > < clients > < intlist >1 2 </ intlist > </ clients > </ topology > < topology id = " 1 " role = " 1 " > < memory capacity = " 0 " / > < servers > < intlist >0 </ intlist > </ servers > </ topology > < topology id = " 2 " role = " 2 " > < memory capacity = " 0 " / > < servers > < intlist >0 </ intlist > </ servers > </ topology > </ topologies > </ SAT > ¦ ¥ they have been assigned. S-DSM clients get their corresponding server and servers get their S-DSM clients. All processes then enter a global distributed barrier before starting the server code or the user code corresponding to their role, hence starting the application from the user point of view. When the user code returns, the client sends a notification to its server and the bootstrapping primitive terminates on that client. Once a server receives termination notifications from all its clients it sends in turn a notification to the seed. When all servers have notified the seed for termination, including itself, a directive is sent to all servers to shutdown the S-DSM. This bootstrap and termination protocol ensures that the S-DSM is up and running during the application life-time and that all requests are fulfilled.

Topology. The topology defines the number of instances (processes) per role and the connections between instances of S-DSM clients and instances of S-DSM servers. Figure 11 gives an example of a simple topology made of one mandatory server (process 0 playing role 0) to which are connected two clients (process 1 playing role 1 and process 2 playing role 2). S-DSM topology is independent from the application and the same description can be applied to several applications. For example, using the topology described in Figure 11 with the application written in Figure 10 will instantiate one S-DSM server process, one S-DSM client process running the prod code and one client process running the cons code according to the roles structure {NULL, prod, cons}. Topology is written into an XML file that is parsed, serialized and partially transmitted to other processes by the seed at bootstrap.

Command line.

In this implementation MPI is used as the communication backend. The command line follows the MPI requirements with a mix of MPI parameters, S-DSM parameters and application-specific parameters. Figure 12 gives two examples of the S-DSM command line. The first command spawns 3 MPI processes using the same binary (prodcons). Parameter --topology indicates to the seed server where to find the topology description. The other parameters are left to the user code. If used with the topology given in Figure 11, MPI process with rank 0 will run the S-DSM server code and the ranks 1 and 2 will respectively run prod and cons user functions. The mapping of the MPI processes onto physical resources is described using regular MPI hostfile and rankfile files. The second command spawns 7 MPI processes using different binaries. These binaries contain the same user function/role (a function that processes a frame in this example) implemented using different technologies to be mapped onto heterogeneous resources. MPI assigns rank to processes following the declaration order in the command line. In this example rank 4 will run binary videostreamopencl and must be mapped onto a resource that can execute OpenCL programs.

Writing the topology (application sizing), deciding the mapping (resource allocation) and building the command line (technology selection) reveals to be a complex task with severe performance issues if the chosen configuration does not fit to the application and the execution platform. As a follow-up of our experiments onto different heterogeneous platforms, some work is conducted at § ¤

¦ ¥

Figure 13: S-DSM debug example for bootstrapping, selected and commented parts. Timestamps have been removed for the sake of clarity.

CEA to automatically explore some configurations in order to build a Pareto front. From this Pareto representation it is possible to select a particular configuration depending on some given constraints such as the number of resources, the expected performance, latency, bandwidth and the power consumption.

Logging and profiling

Logging S-DSM events is used to debug and optimize applications. This S-DSM can output two information streams. The debug stream similar to a verbose option for which all processes write events into the standard output (stdout). In this mode, the MPI runtime conveniently aggregates all standard outputs into a single stream located on the original master node. As for any distributed systems, log entries are only ordered following causal dependencies making the intricacy of events nondeterministic [START_REF] Lamport | Time, clocks, and the ordering of events in a distributed system[END_REF]. Figures 13 and14 give two examples of a debug stream for bootstrapping and opening a write section. This stream generates multiple system calls to stdout, additional network traffic to aggregates the log onto the master node, as well as a potentially large file if redirected with the &> operator. As a result the performance of the S-DSM runtime can be severely affected and the analysis of the access patterns to shared § ¤ /* client 2 allocates chunk @1000 and asks for the data might lead to conclusions that do not apply when running without debug.

A more verbose option can also be used to dump the content of messages to the log.

The statistics stream logs events that are related to performance and tuning of the application. On each process, internal events are continuously stored into the local physical memory and dumped to local files when the S-DSM terminates. Unlike the debug stream, this strategy does not significantly affect performances and can be used to analyze memory access patterns. However, it may allocate an important amount of local physical memory and this can lead to performance issues in case of a large number of S-DSM events or a long run. This implementation in the S-DSM runtime is based on micro-sleeping with a loop call to clock_nanosleep using adaptable sleep times. It has been introduced to limit the energy consumption that occurs when polling for new messages, as it is designed in most of the MPI runtimes. More information about the micro-sleeping mechanism can be found in this article [START_REF] Cudennec | Adaptive message passing polling for energy efficiency: Application to software-distributed shared memory over heterogeneous computing resources[END_REF]. From the time decomposition, Sleep and user code times can be interpreted as an efficient use of resources, while Sync MP and S-DSM code times can be considered as overhead.

Chunk allocation 15c gives, for a particular process, some events related to chunk allocation during the execution time. The left ordinate represents the S-DSM logical address space and the right ordinate represents the number of allocated chunks on the process. Events include the allocation, the lookup (retrieving a previously allocated chunk) and free (locally removing the data, not necessarily the chunk metadata). The Chunks curve shows the number of chunks locally known by the process and the Footprint corresponds to the number of chunks with a valid (allocated) pointer to the data. In this example, a limit has been set to 10 chunks after which other chunks are locally evicted using a LRU policy. Chunk access 15d is quite similar to the chunk allocation figure and shows the miss and hit events for both read and write access types for a particular process. Events represent the entire consistency scope, starting from the acquire primitive (read, write, readwrite), including the communications, to the release primitive. Therefore, a long segment means that the chunk has been locked for this entire time, with possible contention if other processes are waiting in the pending list of this chunk.

The video stream processing application

The video stream processing application has been designed to run on heterogeneous platforms using the S-DSM programming API. This application is made of 3 roles: an input role decodes a video into raw frames from a file or a webcam. It dispatches the frame to one of the process roles that calculates the resulting image and an output role encodes back the processed frames into a file or a live monitoring window.

A process role applies an edge detection followed by a line detection (Hough transform) on the input frame. This role can be instantiated several times. Edge detection is implemented using a 3x3 convolution stencil. While the convolution complexity is constant, the Hough transform complexity is data-dependent: the complexity differs from one frame to another. Above a detection threshold, a pixel is represented as a sinusoid in the intermediate transformed representation. In this intermediate representation, above a second detection threshold, a pixel is represented as a line in the final output image. Both transform operations require the use of double-precision sinus and cosinus functions, which is quite demanding in terms of computational power. The process role has been written in different technologies: sequential C, Pthread, OpenMP, OpenCL and OpenCV, using the builtin OpenCV functions. This allows to choose a suit-able implementation when mapping instances of this role onto heterogeneous resources.

The design of the video processing application is very close to a dataflow application as shown in Figure 16, in which a set of tasks communicate using explicit channels. In this application, channels are implemented thanks to shared buffers, which is a classical approach in NUMA machines. The novelty is that the S-DSM allows to keep this shared buffer implementation among distributed systems.

For each process task, one input buffer and one output buffer are allocated in the S-DSM to store the input and processed frames. There is no explicit synchronization in the user code to manage data between tasks: this synchronization comes by design with a mix of exclusive write accesses and publish-subscribe notifications. Whenever a raw frame has been decoded from the input stream, the input task writes into an available input buffer. This notifies the corresponding processing task that a new frame is ready and calculates the resulting image into its output buffer. The input and output tasks are notified of this write: the output task encodes the result while the input task flags the corresponding input buffer as available to receive a new raw frame.

This implements de-facto a dynamic scheduler based on eager policy. This is quite convenient if the processing tasks are deployed on heterogeneous resources with a strong variability in computing time.

The videostream application has been used to do experiments on heterogeneous testbeds [START_REF] Cudennec | Merging the publish-subscribe pattern with the shared memory paradigm[END_REF] and to build a M2DC demonstrator at Teratec and ISC High Performance Frankfurt 2018.

Conclusion

Designing and building a distributed shared memory requires to implement sophisticated mechanisms including local memory management and distributed algorithms. The combination of these mechanisms makes the global system complex to tune and debug. However this S-DSM is implemented using basic concepts and well documented algorithms: chunk management is a common approach in peer-to-peer systems since their massive deployment in the early 2000, and most of the distributed synchronization objects have been largely studied forty years ago with contributions from Lamport and Raynal. Despite its simplicity and sometimes the use of naive concepts, this S-DSM, as for other modern S-DSM, is able to compete with message-passing systems. This allows to write applications using shared memory over distributed architectures while not paying the price of a significant computing time overhead. In some configurations, we are even able to observe better performance due to a wise management of data and the inner introduction of pipeline parallelism when storing data on intermediate S-DSM servers. However, a significant part of computing performance comes from the fine tuning of the middleware, including making smart choices for the configuration of the run. This highlights the importance of proposing decision-making tools at compile time such as operational research algorithm (including AI) to configure the deployment.

Figure 2 :

 2 Figure 2: S-DSM super-peer topology.

Figure 3 Figure 4 :

 34 Figure 4: Malloc and lookup.

Figure 11 :Figure 12 :

 1112 Figure 11: Topology description.

Figure 14 :

 14 Figure 14: S-DSM debug example for write section, selected and commented parts. Timestamps have been removed for the sake of clarity.

Figure 15 :

 15 Figure 15: S-DSM statistics.

 It is thereafter possible to use a script to analyze and generate figures. Some examples in Figure 15 include: Communication heatmap 15a represents the cumulative amount of messages in MB sent between processes. This map is divided into 4 parts. Server-to-server communications are quite light: the home-based MESI consistency protocol mainly generates short control messages. Server-toclient communications mainly consists in data transfers to update clients on access request. Client-to-server communications are used to upload the new version of data after an exclusive access. It also shows the chosen topology between clients and servers, as a client can only contact its associated server. Finally, client-to-client communications are not allowed in this consistency protocol implementation. Time decomposition 15b shows the time spent for each process in different parts of the user and S-DSM code. The user code corresponds to the time spent in the application code, excluding S-DSM calls. The S-DSM code time corresponds to the local data management, excluding all consistency protocol communications. Sync MP is the time spent in the message passing send and receive primitives, excluding the sleep time. Finally, Sleep is the time spent in sleep mode while waiting for an incoming message.

Figure 16 :

 16 Figure 16: Application for line detection in a video stream.

 Table of symbols provides an abstraction layer over the S-DSM logical address space: shared data are identified by symbols (text, as a C string) and a shared built-in table is used to match symbols with the corresponding chunks. This symbolic table is stored into the S-DSM as a regular shared data. It is close to the memory mapping access model in which the data pointer is preserved. Examples are given in Figure7.All accesses to shared data in the S-DSM are achieved under the supervision of the consistency protocol that has been set when allocating the data. §

		¤
	chunk = MALLOC (consistency , chunkid , size) ;
	WRITE (chunk) ;
	/* * chunk -> data exists
	*	but values may not be initialized
	* */	
	for (i = 0; i < N ; i ++) {
	chunk -> data [i] = i ;
	}	
	RELEASE (chunk) ;
	/* * do not use chunk -> data here as
	*	-consistency is not guaranteed
	*	-pointer can be NULL (freed)
	* */	
	READWRITE (chunk)
	/* chunk -> data exists and data are updated */
	for (i = 0

Acknowledgments

This work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 688201.