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Cone-beam reconstruction from n-sin trajectories
with transversely-truncated projections

Nicolas Gindrier, Rolf Clackdoyle, Simon Rit and Laurent Desbat

Abstract—In cone-beam tomography, we define the n-sin source
trajectory as having n periods of a sinusoid traced on an imaginary
cylinder enclosing the object. A 2-sin is commonly known as a
saddle, and it is known that the convex hull of a saddle is the
same as the union of all of its chords. The convex hull of a
closed trajectory is the Tuy region, where cone-beam reconstruction
is possible if there are no truncated projections. However, with
truncated projections, the method of differentiated backprojection
and Hilbert inversion can be applied along a chord if the chord
is visible (not truncated) in the projections. Here, we consider a
particular transaxial truncation which prevents chords from always
being visible, but we establish that the more powerful method of
M-lines can be applied to ensure reconstruction in the reduced
field-of-view. The 3-sin, on the other hand, has a Tuy region which
is not filled by its chords, and we do not have any cone-beam
theory to determine if reconstruction is possible with transverse
reconstruction. In our preliminary numerical experiment, the 3-sin
seemed to perform equally well as the 2-sin trajectory even though
there were no chords passing through the slice we examined. We
tentatively suggest that there might be other, yet unknown theory
that explains why 3-sin reconstruction is possible with the specified
transaxial truncation. We believe that these results on transverse
truncation and reconstruction from 2-sin and 3-sin trajectories are
new.

I. INTRODUCTION

A cornerstone of cone-beam (CB) reconstruction theory is
Tuy’s condition. For an object which is contained in some

known convex region Ω, a point x ∈ Ω is said to satisfy Tuy’s
condition if every plane passing through the point x intersects
the source trajectory non-tangentially [1]. Given a source tra-
jectory (always assumed to not intersect Ω), it was proved that
stable image reconstruction could be achieved for the whole
Tuy region provided that none of the cone-beam projections was
truncated [1] (not just the Tuy region, but none of Ω is allowed
to be truncated). Conversely, Finch showed that all points of
Ω outside the Tuy region cannot be stably (and accurately)
reconstructed (unless strong a priori information is available)
[2]. Now, aside from the cases amenable to differentiated back-
projection (DBP) techniques, see below, there is no current
theory to systematically indicate which part of the Tuy region
can be reliably reconstructed if some projections are truncated.
In a restricted context, we explore this problem here. In view
of Finch’s result, we are only interested in Ω0 which is the
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intersection of Ω with the Tuy region. For simplicity, we assume
this (convex) Ω0 is a cylinder with elliptical base and finite
height.

Our context is a specific set of source trajectories, and a
specific pattern of (transverse) truncation. The source trajectories
under consideration in this work are “n periods of a sinusoid
on the surface of a cylinder” (n-sin) where n ∈ N, n > 1.
A 2-sin trajectory is often called a “saddle” although the term
saddle can refer to more general curves, see [3]. Nearly all
the theoretical results here will apply to more general closed
trajectories. For example, the convex hull of any n-sin trajectory
(and more generally, of any closed trajectory) is the same as
the Tuy region [2]. For the specific pattern of truncation, we
consider a cylindrical reduced-field-of-view (RFOV) whose axis
is parallel to the axis of the n-sin trajectory and whose radius
is small enough that the RFOV does not contain all of Ω0.
The RFOV is positioned to intersect the boundary of Ω0. The
measured rays for each projection are exactly those that intersect
the RFOV. Fig. 1 provides an example illustration of a 2-sin
trajectory with a cylindrical Ω0 and a possible RFOV.

x2

Ω0

x1

x3

RFOV

S

Fig. 1. A 2-sin trajectory with a cylindrical Ω0 and a RFOV (taller than Ω0).

We appeal to two methods of reconstruction when CB projec-
tions are truncated, and we refer to them here as the “DBP-chord
method” and the “M-line method”. Given a source trajectory
S, parametrized by λ, a chord Ci,j is a line joining Sλi to
Sλj (Fig. 2 shows an example chord and an M-line). “DBP”
refers to the operation or the 3D image obtained after CB
backprojection of the differentiated projections. In the DBP-
chord method, the DBP is performed along a sub-trajectory
S[λ1,λ2] and reconstruction takes place along the chord C1,2

in the DBP image, followed by an inversion of the Hilbert
transform. An M-line is a half-line starting at some source point
SλM and passing through Ω0; see Fig. 2. In the M-line method,
the Hilbert inversion takes place along a segment of the M-
line. The M-line method is more powerful than the DBP-chord
method, but is more complicated.

In this work, we will show that the DBP-chord method is
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Fig. 2. A chord Ci,j and an M-line from SλM .

not strong enough to handle the cylindrical RFOV truncation
problem, but that M-line method is suitable in the case of
the 2-sin trajectory. We believe this result to be new. We also
demonstrate that neither the DBP-chord method nor the M-line
method is suitable for certain regions inside the 3-sin trajectory.
We then report on numerical experiments performed to test
whether accurate reconstruction is likely to be achieved anyway,
possibly due to some currently unknown theory. We point out
that the simulations use an iterative reconstruction method, the
goal being to test conditions for reconstruction, and not the M-
line method, whose role here is purely theoretical.

Similar results on using the M-line method to verify recon-
struction theory for the cylindrical RFOV have been published
for the case of a helical trajectory [4]. Note the helix is not a
closed trajectory, which results in different considerations than
for the proof that the 2-sin trajectory admits full (accurate and
stable) reconstruction throughout Ω0 ∩ RFOV.

II. THEORY

A. Definitions and standard results

The unknown density function is denoted f(x), where x =
(x1, x2, x3). For fixed height H and radius R (H,R > 0) and
for n ∈ N, n > 1 (usually n =2 or 3) we define the n-sin
trajectory as

SnΛ = {(R cosλ,R sinλ,H cos(nλ))T |λ ∈ Λ = [0, 2π)}. (1)

For each point Sλ on the source trajectory, we define the CB
projection with the usual formula:

g(λ,η) =

∫ +∞

0

f(Sλ + lη)dl, λ ∈ Λ. (2)

For non-truncated projections, we would have all values of η in
the unit sphere, but here we only allow those η such that the
half-line LSλ,η = {Sλ + lη|l ∈ [0,∞]} intersects the RFOV.

The operation of DBP takes a segment of the source trajectory
and forms a 3D image by differentiation and weighted backpro-
jection:

b1,2(x) =
1

π

∫ λ2

λ1

1

‖x− Sλ‖
∂

∂λ
g(λ,η)

∣∣∣∣
η=

x−Sλ
‖x−Sλ‖

dλ. (3)

Note that b1,2(x) can always be calculated if x ∈ RFOV but if
x 6∈ RFOV, then b1,2(x) is only available in rare fortuitous ge-
ometric circumstances, such as the entire subtrajectory S[λ1,λ2]

located on the “other side” of the RFOV with respect to the
location of x.

Both the DBP-chord and M-line methods achieve image re-
construction using an intermediate Hilbert transform. For Hilbert

SΛ

C1

C3

C2

RFOV

Ωo ROI

x

Fig. 3. Top-view for the configuration of Fig. 1. The dashed line delimits the 3
cases of reconstruction for chords containing a point in the ROI: both endpoints
of C1 are below the dashed line (C1 intersects the support before the RFOV)
therefore the inverse of the finite Hilbert transform can be used, C2 crosses
the dashed line then the one-endpoint Hilbert transform must be used, and both
endpoints of C3 are above the dashed line (C3 intersects the RFOV before the
support) line so there is no reconstruction from the chord method (from eq. (5)).
To reconstruct x, belonging to C3, the M-line method must be used.

transforms of 3D functions, we specify a direction θ and use
the following formula

Hθf(x) =

∫ +∞

−∞

f(x− sθ)

πs
ds (4)

where the integral in equation (4) is in the sense of the Cauchy
principal value.

B. The DBP-chord method

The DBP-chord method is based on a link between the DBP
image and the Hilbert transform. If x ∈ Ci,j (and x ∈ RFOV),
then it is well-known (e.g. [5]) that

bi,j(x) = 2Hηi,jf(x) (5)

where ηi,j = (Si − Sj)/‖Si − Sj‖ in the direction from Sj
to Si. “One dimensional” image reconstruction is performed
along the chord segment Q = Ci,j ∩ (Ω0 ∪RFOV), provided at
least one endpoint of Q lies outside Ω0 [6]. If both endpoints
lie outside Ω0, then an analytic formula can be used to invert
Hηi,jf to obtain f along Q (see [7]). If neither endpoint lies
outside Ω0, then the DBP-chord method fails for this chord.
Fig. 3 illustrates these three possibilities.

The DBP-chord method has been known for at least 15 years,
and provides a powerful method for CB reconstruction with
truncated projections. The only requirement to reconstruct along
a chord Ci,j is that the chord remains visible (not truncated)
in all the projections in the subtrajectory S[λi,λj ], and that the
field-of-view is large enough that the chord extends beyond the
object boundary.

C. The M-line method

For some λM and some direction ηM , consider the M-line
LSM ,ηM (where we have written SM for SλM ). If x ∈ LSM ,ηM
and x also lies on a chord C1,2, then

b1,M (x) + b2,M (x) = 2HηM f(x). (6)

Note that the Hilbert direction is along the M-line, and not along
the chord C1,2.
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Fig. 4. The M-line method. The point x cannot be reconstructed by the DBP-
chord method using its chord C3. A suitable (one-endpoint) M-line is chosen
passing through x. If each y ∈ Q ∩ RFOV lies on some chord Cy , then the
Hilbert transform can be computed, and Hilbert inversion along Q is possible,
to reconstruct f at x (and at all y).

The M-line method is designed to handle reconstruction at a
point x which lies on a chord not suitable for Hilbert inversion.
In that case, an M-line through x is selected which also has
the property that (at least) one endpoint of Q lies outside Ω0,
where Q = LSM ,ηM ∩ (Ω0 ∪RFOV). In order to invoke Hilbert
inversion along Q, each point y ∈ Q ∩ RFOV must lie on its
own chord C1,2, for in this case, (6) can be applied to obtain
HηM f(y). Once HηM f(y) has been obtained for all y ∈ Q ∩
RFOV , then Hilbert inversion can be applied along Q to obtain
f(x). See Fig. 4 for an illustration of the concept.

The M-line method was introduced by Pack et al. [8], and
although it is more complicated to apply, it is more powerful
than the DBP-chord method due to the requirement that the
Hilbert segment Q needs one endpoint outside Ω0.

D. The 2-sin trajectory

The 2-sin trajectory, equation (1), also known as a saddle,
has the property that its convex hull is equal to the union of
all its chords [3], see Fig. 5. Thus every point in the Tuy
region lies on a chord, so if there is only moderate truncation of
the projections in the axial direction, all chords will be visible
in the projections, and the DBP-chord method ensures reliable
reconstruction throughout the Tuy region.

For transverse truncation dictated by the cylindrical RFOV,
the situation is more complex, and the three cases shown in
Fig. 3 arise. Any point x inside Ω0 ∩ RFOV will lie on a
chord, which will be suitable for two-endpoint inversion (C1

in Fig. 3), for one-endpoint inversion (C2 in Fig. 3), or not
suitable for Hilbert inversion (C3). In this latter case, it is
always possible to choose an M-line joining x to the trajecory,
which exits Ω0 while still inside RFOV. All points y inside the
RFOV and on this M-line will lie on some chord, from which
the required Hilbert transform can be calculated according to
(6). Thus Hilbert inversion is possible in all three cases, and
the entire region Ω0 ∩ RFOV can be reliably reconstructed in
principle.

To the best of our knowledge, this is the first demonstration
that region-of-interest reconstruction is possible with transverse
truncation for the case of saddle trajectories. For a cylindrical
RFOV intersecting the boundary of Ω0, our argument clearly

generalizes to any trajectory whose Tuy region is equal to
the union of its chords. The restriction of a cylindrical RFOV
can be relaxed also, but with care because combined axial
and transverse truncation introduces new complications (the
existence of a suitable M-line is not always ensured).

E. The 3-sin trajectory

Unlike the 2-sin trajectory, the Tuy region of the 3-sin
trajectory contains points which do not lie on any chord. In
the bottom row of Fig. 5, the convex hull (Tuy region) of the
3-sin curve consists of a triangular “roof” and triangular “floor”
but there is a substantial triangular “hole” of locations which
are not traversed by any chord, as shown bottom right of Fig.
5.

Fig. 5. The convex hull and the “chord hull” of two source trajectories. Top:
the 2-sin trajectory. Bottom: the 3-sin trajectory. Left: the convex hull of the
trajectory (the Tuy region). Right: the union of all chords in the trajectory.

For points in the Tuy region not lying on any chord, both the
DBP-chord method and the M-line method fail, even if there
were no projection truncation. However, other theory (still un-
known) might indicate whether or not reconstruction is possible
in regions where there are no chords. Our preliminary simulation
experiments below suggest that, for cylindrical RFOV, reliable
reconstruction might still be possible where chords are missing.

III. SIMULATIONS

We performed reconstructions on a 380 x 152 x 382 image
array from analytically simulated projection data of the Forbild
Thorax phantom. Our goal could be an investigation of the verte-
brae. The reconstruction method used was the conjugate gradient
method from RTK (minimizes ‖(Rf − p)‖22 + γ‖∇f‖22 with R
the forward projection operator and p the measured projections).
In our case, γ = 100, 120 iterations were performed with 200
source positions. For both trajectories, the radius was 250 mm
and the total height was 200 mm (H = 100 mm). The RFOV
was centered on the spinal column, with a radius of 50 mm and
a height of 380 mm (the height of the phantom). It is illustrated
in Fig. 6. Since the phantom diameter is 300 mm, the RFOV
causes substantial transverse truncations.

Two cross-sections of different heights are presented through
the reconstructed phantom (x3 = 0 mm and x3 = 90 mm), as
illustrated in Fig. 7 and Fig. 8. The aim is to see the influence
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Fig. 6. Configuration in top view at x3 = 0 for simulations. Left: the Forbild
thorax phantom and RFOV. Right: the trajectory with the phantom in top view.

90 mm

0 mm

RFOV

Fig. 7. Both cross-sections for the reconstruction in side view.

of the absence of chords. Specifically, for the 3-sin trajectory,
the further vertically one moves away from the origin, the
larger the area without chords. Results of the reconstructions
are shown in Fig. 9. In the DBP theory, both cross-sections
for the 2-sin trajectory can be exactly reconstructed, but for
the 3-sin trajectory the cross-section x3 = 90 mm cannot be
reconstructed (no chord in the RFOV, the worst case). The
cross-section x3 = 0 mm is trickier: all points in the RFOV
are traversed by a chord but there is no guarantee for the M-
line method if it is needed (some points on the M-line must be
intersected by a chord, see Section II-C above).

RFOV

0 mm

90 mm

S3
Λ

Fig. 8. Left: A 3-sin trajectory (not our dimensions, it is schematic) with a
cylindrical RFOV and two horizontal cross-sections. Right, above: the set of
chords (black, white means there is no chord) and the RFOV for the section
x3 = 90 mm, no point in the RFOV (red circle) for this section is traversed by
a chord. Right, below: The set of chords (black) and the RFOV for the section
x3 = 0, all points in the RFOV for this section are traversed by a chord.

We note from Fig. 9 that all four images are of good quality
and comparable quality to each other in the RFOV. Since the
x3 = 90 mm image for the 3-sin trajectory seemed similar to the
same slice of the 2-sin trajectory, we tentatively consider that,
due to some unknown reconstruction theory, this part of the Tuy
region can be accurately reconstructed even though there are no
chords passing through it. On the other hand, it is possible that
our reconstructions are not fine enough to detect small artifacts
or errors that might arise from an approximate reconstruction.

Fig. 9. Reconstruction for the 2-sin and 3-sin trajectories. Left: x3 = 0. Right:
x3 = 90 mm. Above: n = 2. Below: n = 3. White circles represent the RFOV.

IV. CONCLUSION

We have shown that the M-line method can be used to
reconstruct an ROI with some transverse truncation, in particular
for 2-sin trajectories (sinusoid on a virtual cylinder), where
only axial truncations are studied in the literature. This M-lines
method has some conditions, for example each point of a ROI
must be intersected by a chord.

Our numerical experiments using iterative reconstructions
seemed to indicate that the 3-sin trajectory with transverse
truncation also produces valid reconstructions, even where there
are no chords and therefore the DBP-chord and M-lines methods
both do not apply.

We note also, that for any n > 2, the n-sin trajectory will have
part of its Tuy region not intersected by chords. It seems likely
that if reconstruction with transverse truncation is valid for 3-sin
trajectories, that it will probably be valid for n-sin trajectories,
for any n > 3.

There is still CB reconstruction theory to be established to
resolve these questions solidly, because it appears that recon-
struction can be achieved for transaxial trunction with 3-sin, at
least to the extent of the sensitivity of our simulations, and the
authors know of no theory to explain it.
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