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Changes in the foraging environment and at-sea distribution of southern
elephant seals from Kerguelen Islands were investigated over a decade
(2004–2018) using tracking, weaning mass, and blood δ13C values. Females
showed either a sub-Antarctic or an Antarctic foraging strategy, and no
significant shift in their at-sea distribution was detected between 2004 and
2017. The proportion of females foraging in sub-Antarctic versus Antarctic
habitats did not change over the 2006–2018 period. Pup weaning mass
varied according to the foraging habitat of their mothers. The weaning
mass of sub-Antarctic foraging mothers’ pups decreased by 11.7 kg over
the study period, but they were on average 5.8 kg heavier than pups from
Antarctic foraging mothers. Pup blood δ13C values decreased by 1.1‰
over the study period regardless of their sex and the presumed foraging
habitat of their mothers. Together, these results suggest an ecological
change is occurring within the Indian sector of the Southern Ocean with
possible consequences on the foraging performance of southern elephant
seals. We hypothesize that this shift in δ13C is related to a change in primary
production and/or in the composition of phytoplankton communities, but
this requires further multidisciplinary investigations.

1. Introduction
Global climate change triggers deep modifications in a broad range of terrestrial
and marine ecosystems, and across a great variety of species [1,2]. Of particular
concern are polar environments as climate change models predict that ocean
warming should be especially intense at high latitudes with some likely
large-scale consequences on the related marine ecosystems [3–5]. In the
Southern Ocean (water masses south of the Subtropical Front), these predic-
tions are supported by an increasing number of empirical observations,
related to the melting of coastal glaciers [6,7], a reinforced wind regime modify-
ing nutrient vertical advection and therefore influencing primary production
[3,8], and an increase in surface chlorophyll-a biomass [9]. Quantifying and
integrating the behaviour of top and wide-ranging predators is an especially
informative way to monitor ecosystem changes. Due to their upper trophic
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position, their vital rates integrate spatial and temporal vari-
ation of the underlying trophic levels—from phytoplankton
to their prey that are generally difficult to monitor—across
broad ocean basins [10]. Consequently, these animals can
act as environmental sentinels by providing critical infor-
mation about ongoing changes in components of the
ecosystem that cannot otherwise be measured [10–12] and
this is particularly true for the remote and poorly sampled
Southern Ocean [13–16].

Among such upper predators, southern elephant seals (Mir-
ounga leonina, hereafter SES) have been extensively studied.
Adult females haul-out twice a year for approximately one
month each time [17], to breed during the austral spring (Sep-
tember–October), and again to moult during summer
(December–January). They can be monitored and sampled
during these two terrestrial phases to quantify their at-sea
performance by measuring mass and equipped with instru-
ments to study their at-sea behaviour including distribution,
foraging behaviour, and success. Because of their large body
mass and abundant populations, SES are important consumers
of resources in the Southern Ocean [18]. Therefore, variations in
their vital rates and demography are likely to reflect large-scale
changes in food availability. In that context, the Kerguelen,
Crozet, and Marion Islands populations from the Indian sector
of the Southern Ocean are now recovering following a marked
decrease in numbers between the 1960s and early 1990s [19–
22], suggesting that foraging conditions have been improving
over the last decades.On theother hand, thepopulationonMac-
quarie Island fromthePacific sectorof the SouthernOcean is still
decreasing, presumably because of a lack of available resources
[10,19]. The status of the largest population of South Georgia is
currently unknown [10]. Poor foraging efficiency by a female
results inadecrease inpupweaningmass and first-year survival
[23,24], ultimately leading to lower recruitment into the repro-
ductive population [25,26]. Therefore, monitoring simple
parameters such as pup weaning mass provides information
on the foraging performance of their mother [25,27].

Biotelemetry tags provide critical information for moni-
toring animals’ at-sea movements and identifying foraging
habitats [11,12,28], but are generally deployed on a small
number of individuals due to their cost. They enable the
detectionof possible changes over time in the at-sea distribution
ofmarinepredators.Complementary tobiotelemetry, stable iso-
tope analysis from individual tissues provide an indication of
diet/trophic levels (δ15N [29,30]) and foraging habitat (δ13C),
and can be easily conducted on a large number of individuals.
A Southern Ocean latitudinal gradient in δ13C values [29,31]
enables the delineation of broad-scale latitudinal foraging habi-
tats of female SES according to their blood δ13C values [32,33].
Long-term monitoring of the δ13C values can be a powerful
way to quantify longitudinal foraging distribution and/or
environmental conditions. If changes in δ13C values take place
over timewithout a change inwhere individuals are distributed
at-sea, this suggests that physical, biogeochemical, and/or eco-
logical changes are taking place at the ecosystem scale.

Earlier studies revealed temporal variation in the δ13C
values of metabolically inert tissues in a range of Arctic
marine mammals including Steller sea lions [34], bowhead
whales [35], northern fur seals [36], beluga whales, and killer
whales [37]. The lack of δ13C baseline information and animal
movement data prevented these authors from disentangling
the driving mechanisms of trends in δ13C values. However,
they suggested that δ13C variations were linked to changes in
primary productivity, combined with the release of anthropo-
genic CO2 [38,39]. Isotopically light CO2 released during
anthropogenic fossil fuel burning causes a dilution of atmos-
pheric 13C/12C and ultimately decreases marine δ13C values.
This process is referred to as the ‘Suess effect’.

As adult SES display fidelity to their foraging sites [40–43],
SES are likely to be affected by ongoing environmental
changes at their foraging grounds propagated through the
food web. This will be reflected in population-level demo-
graphic responses to environmental variations [23,44,45].
As part of a long-term study, the Kerguelen SES population
has been censused annually since the late 1950s, and recent
analyses reveal a 20% increase in the size of the Kerguelen SES
population (J Laborie 2019, et al., unpublished data). At-sea
movement data are available from satellite tracking studies
since 2004 as well as the blood δ13C and δ15N values of tracked
individuals. In addition, weaning mass of pups and their δ13C
and δ15N values have been monitored every year since 2006.
Because pups exclusively feed on their mother’s milk until
weaning, pup blood isotopic values indicate the isotopic
values of their mothers [46]. The concomitant study of foraging
performance indices (such as pup weaning mass) and isotopic
values may highlight regional differences in foraging
performances with potential demographic consequences.

The first and main objective of this study was to investigate
if a change in seal δ13C values took place over the study period
and whether this variation reflects a change in the at-sea fora-
ging distribution of female SES or changing δ13C isoscapes in
the Indian sector of the Southern Ocean. We assessed whether
this shift in δ13C values reflects environmental changes such
as the Suess effect and/orother broad-scale ecologicalmechan-
isms [38]. The second objective of this study was to determine
if pupweaningmass varied according to the estimated foraging
habitat of their mothers and over the study period.
Such changes could be used as an index of female breeding
success and have implications for population size and growth
at Kerguelen Islands. Finally, we discuss the observed changes
in the Kerguelen SES population over the last 15 years and the
underlying potential environmental drivers of such changes.
2. Material and methods
Fieldwork took place on Kerguelen Islands from 2004 to 2018, as
part of long-term scientific programs led by CEBC. All animals
used were cared for in accordance with the French Polar Institute
Paul Emile Victor (IPEV) ethics committee guidelines. Data pro-
cessing and statistical analyses were performed under the R
v. 3.6.1 software [47], and the ggplot2 package was used for
graphical representations [48].

(a) Satellite telemetry
From2004 to 2017, 154 post-moult adult female elephant seals were
captured and anaesthetized with an intravenous injection of Zole-
til100 (1 : 1 combination of tiletamine and zolazepam; [49,50]).
They were equipped with a glued head-mounted satellite-
relayed-data-logger (CTD-SRDL, 10.5 × 7 × 4 cm, Sea Mammal
Research Unit, St Andrews, UK). Individual seals were measured
from snout to tail and tagged on land during the breeding (austral
spring) or moulting period (austral summer). Seals carrying such
devices were not affected in either the short-term (growth rates)
or long-term (survival) [51]. Seals at-sea movements were
determined using the ARGOS satellite tracking system (http://
www.argos-system.org).
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The raw tracking data were filtered by first removing class Z
locations (the lowest location quality index provided by the
ARGOS service). Then the McConnell et al. [18] speed filter was
applied to remove successive locations implying an unrealistic
speed (20 km h−1; [52]). The resulting tracksweremapped to ident-
ify the main foraging habitats and used to investigate changes in
mean latitudinal distribution. A mixture model set up on the
density of satellite locations with respect to latitude using the
Rmixmod R package [53] was used to determine the main latitudi-
nal foraging habitats. Only locations for the months of May, June,
and July were retained to calculate the trip’s mean latitude of each
individual and allow for inter-annual comparisons. Those three
months were chosen as they are included in the core foraging
area of SES during their post-moult trip, and are the best correlated
to the blood δ13C isotopic values of SES sampled during the breed-
ing period [32]. Linear models of the mean latitude of each
individual trip (for May, June, and July) according to the year
were performed for each foraging habitat.

(b) Pup weaning mass
Each year from 2006 to 2018, between 57 and 275 pups were
tagged at birth with a flipper-tag set in the interdigital space of
the hind-flipper. This tag allowed pup identification for recap-
ture at weaning approximately three weeks later, when it
moved out of the harem. These known-age pups were weighed
to the nearest 0.1 kg before removing the flipper-tags. Pup data
collected in 2017 were excluded from the analyses to remove
spatial variability because they were sampled at another sub-
colony. Females from that sub-colony foraged in a different
location compared to females from the east Courbet sub-colony
(C Guinet 2019, unpublished data).

(c) Stable isotope analyses
Blood samples were taken from the extradural intervertebral
venous sinus for all elephant seals regardless of their age and
sex. All pups were sampled at weaning, whereas adult females
were sampled when satellite tags were deployed and recovered.
Whole blood samples (hereafter blood) were stored in 70% etha-
nol until laboratory analyses. Females were considered sexually
mature if they were longer than 1.89 m (i.e. the length of the
smallest female observed with a pup within our dataset).
Female seals of unknown length or those smaller than 1.89 m
were excluded from stable isotope analyses.

Prior to isotopic analyses, blood samples were stood in a fume
hood to evaporate ethanol, and then freeze-dried for 48 h. The
resulting blood powder was weighed (0.3–0.5 mg) into tin cups
before combustion in an elemental analyser (Flash 2000, Thermo
Scientific, Milan, Italy) coupled to a continuous flow mass
spectrometer (Conflo IV, Thermo Scientific, Bremen, Germany).
Isotopic analyseswere conducted in LIENSs Stable Isotope Facility
(La Rochelle, France). Carbon to nitrogen (C : N) mass ratios were
carefully checked because lipids are depleted in 13C relative to pro-
teins and carbohydrates [54]. When C : N ratios were above 3.7,
lipids were extracted from blood using cyclohexane and new
stable isotope analyses were conducted. Stable isotope values
are presented in the usual δ notation with units expressed as
parts per thousand (‰) relative to Vienna Pee Dee Belemnite
and atmospheric N2 for δ13C and δ15N, respectively. Precisions
for isotopic measurement were 0.15‰ for δ13C, and 0.20‰ for
δ15N, respectively. In addition to C : N mass ratios, replicate
measurements of laboratory standards (USGS-61 and USGS-62)
were checked to ensure that inter-annual comparisons of stable
isotopes measurements would not be skewed.

Stable isotope values were compared inter-annually for mon-
itored pups and tagged adults in order to detect any trends in
foraging habits over the study period. Proportions of individuals
using either the Antarctic or sub-Antarctic habitats were studied
using mixture models, which are typically used to determine
hidden groups of individuals inside a population of some
known parameters. SES blood δ13C values follow a bimodal dis-
tribution [33]. We thus assumed that a δ13C bimodal distribution
reflects the two foraging strategies of female SES (i.e. lower blood
δ13C values in the Antarctic zone versus higher δ13C values in the
sub-Antarctic zone). Mixture models were run for δ13C values of
blood-sampled pups, taking into account the effect of year and a
potential trend in δ13C to avoid any bias in the formation of
groups through time. We modelled δ13C as a mixture of two
Gaussian distributions:

d13C ¼ p d13Csub-Antarctic þ 1sub-Antarctic
� �

þ (1� p) d13CAntarctic þ 1Antarctic
� �

,

where p is the probability of seals having foraged in the sub-
Antarctic zone, ε the residuals, and δ13Csub-Antarctic > δ13CAntarctic.
Models were fitted in a Bayesian framework (see electronic sup-
plementary material S3 for model specification) with the R
package rstan [55], which runs Stan software [56] through
R. Unless specified, blood isotopic values were raw values of
pups. Because pup stable isotope values reflect those of their
mothers ([46], updated in electronic supplementary material S2),
the two groups of pups assigned according to their δ13C value
enabled a comparison of weaning mass according to the estimated
foraging habitat targeted by their mother (i.e. sub-Antarctic versus
Antarctic). Those two habitats relate to broad-scale foraging zones,
and do not correspond to thewatermasses the SES passed through.
3. Results
(a) Satellite telemetry to investigate at-sea distribution
From 2004 to 2017, 64 complete post-moult foraging trips
(approx. 180 days) were collected from the 154 equipped adult
females. Most females travelled southeast of Kerguelen Islands
(figure 1). Amixture model of the number of latitudinal satellite
locations suggested that a threshold at 58° S couldbeused to split
individuals according to their foraging habitat (sub-Antarctic
north of 58° S, and Antarctic south of 58° S; electronic sup-
plementary material S1, figure S1). No significant shifts in the
latitudinal distribution of female SES was found for any of the
foraging habitats (lm: mean latitude[May–July], sub-Antarctic habitat =
−0.21 × year + 363.83, n= 38, p-value = 0.12, R2 = 0.07; lm:
mean latitude[May–July], Antarctic habitat = 0.10 × year −271.26, n= 22,
p-value = 0.37, R2 = 0.04).

(b) Insights into the foraging habitat through
stable isotopes

Linear models were established for adult females that were
blood-sampled during tag deployment or on retrieval
(during either the moult, n = 244 or breeding period, n = 153).
The blood δ13C values of adult females decreased significantly
with time (δ13C =−0.11 × year + 206; n = 396, p-value < 0.001,
R2 = 0.12), highlighting a mean overall decrease of −1.4‰
over the 2004–2017 period.

A multiple linear model on females which were fitted
with satellite tags and blood-sampled on their return ashore
following their post-moulting trip (δ13C = 0.13 ×mean lati-
tude− 0.09 × year + 181.10; n = 60, p-value < 0.001, R2 = 0.59)
revealed a significant effect of year (negative effect) and
mean latitude of trips from May to July (positive effect) on
the blood δ13C values of female SES. As expected, the δ13C
value of a female was also strongly correlated to the mean
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Figure 1. Satellite tracking of 64 complete post-moult foraging trips of adult female southern elephant seals from Kerguelen Islands. Trip colours represent the year
of tracking. Black lines indicate the coastline of adjacent landmasses (Antarctica, Kerguelen Islands, and Australia), and grey lines the 1000 m isobath. The marginal
plot depicts the density of satellite locations, and the dashed black line the −58° S latitudinal threshold. (Online version in colour.)

Table 1. Blood δ13C and δ15N values of southern elephant seal pups from 2006 to 2018 at Kerguelen Islands. Female-predicted values after [46] are displayed
in the last row.

year n

blood δ13C (‰) blood δ15N (‰)

min mean ± s.d. max min mean ± s.d. max

pup raw values 2006 214 −23.4 −21.2 ± 0.9 −18.9 10.3 11.3 ± 0.4 12.6

2007 57 −23.6 −20.9 ± 0.9 −19.0 10.4 11.1 ± 0.4 12.3

2008 231 −23.0 −20.9 ± 0.8 −19.1 10.2 11.5 ± 0.5 12.8

2009 275 −23.9 −21.3 ± 0.9 −18.8 10.1 11.4 ± 0.4 12.7

2010 204 −23.2 −21.1 ± 0.9 −19.2 10.5 11.4 ± 0.4 12.8

2011 110 −23.7 −21.5 ± 0.8 −19.0 10.7 11.4 ± 0.3 12.6

2012 96 −23.4 −21.7 ± 0.8 −19.9 10.8 11.5 ± 0.4 12.7

2013 85 −23.1 −21.5 ± 0.7 −19.9 11.0 11.5 ± 0.3 12.6

2014 112 −23.6 −21.6 ± 0.8 −20.0 10.8 11.5 ± 0.3 12.6

2015 123 −23.3 −21.7 ± 0.8 −19.8 9.4 11.3 ± 0.5 12.8

2016 77 −23.3 −21.8 ± 0.7 −20.0 9.7 11.3 ± 0.4 12.0

2018 100 −23.9 −22.1 ± 0.9 −20.2 10.5 11.2 ± 0.3 12.2

2006–2018 1684 −23.9 −21.4 ± 0.9 −18.8 9.4 11.4 ± 0.4 12.8

female estimated values 2006–2018 1684 −24.4 −21.8 ± 0.9 −19.2 9.2 10.2 ± 0.2 10.9
latitude of its trip for the months of May, June, and July
(ρ = 0.69, p-value < 0.0001, Spearman’s rank correlation).
Importantly, blood δ13C values decreased over the study
period for a given latitude visited by female SES.

Pup blood δ13C values range from −18.8‰ to −23.9‰,
with annual means between −20.9‰ and −22.1‰. Pup
blood δ15N values are less scattered, ranging from 9.4‰ to
12.8‰ with average annual means between 11.1‰ and
11.5‰ (table 1).

From 2006 to 2018, an annual decrease in δ13C was found
(linear model: δ13C =−0.09 × year + 160; n = 1684, p-value <
0.001, R2 = 0.11) resulting in an overall 1.08‰ decrease in the
mean δ13C value of pups (figure 2). A second linear model
applied on δ15N values suggested a decrease over time
(δ15N =−0.006 × year + 23; n = 1684, p-value = 0.04, R2 =
0.002). Considering the poor significance of the linear model
for δ15N, and because a β coefficient of −0.006 is irrelevant
regarding the precision of isotopic measurements and biologi-
cal meaning, only δ13C values were kept for further analyses
(see electronic supplementary material S2, figure S3).

The probability that a pup was born from a mother which
foraged in sub-Antarctic or Antarctic waters was estimated
using a mixture model on pup δ13C values between 2006
and 2018. The δ13C trend of −0.09‰ per year was included
in the model (electronic supplementary material S3, §§1
and 2). No change in the distribution of probability to
belong to either group (sub-Antarctic versus Antarctic) was
detected over the study period (linear model, p-value > 0.05;
electronic supplementary material S3, figure S5), suggesting
that the balance between the two foraging habitats remained
stable from 2006 to 2018 (figure 3). From 40.2% to 63.1% of
individuals were attributed to the Antarctic strategy, whereas
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Figure 3. Marginal probabilities of southern elephant seal pups to be assigned to the Antarctic or sub-Antarctic group. Each dot represents a pup. A pup with a
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group. Pups whose probability is higher than 0.5 were assigned to the Antarctic group, whereas those with a probability lower than 0.5 were assigned to the sub-
Antarctic group. The straight line represents the linear regression of the mixture proportions through years, and the shaded area highlights the 0.95% confidence
interval.
36.5% to 61.5% were assigned to the sub-Antarctic one
(electronic supplementary material S3, figure S6).
(c) Pup weaning mass
Of the 1684 pups in the study, 1550 were weighed and of
these, 1543 were sexed. The mixture model based on pup δ13C
value indicated a sub-Antarctic group of 826 individuals
whose mean weaning mass was 105.9 ± 23.0 kg. By contrast,
the mean weaning mass of the 858 pups assigned to
the Antarctic group was 100.1 ± 22.3 kg. Pups assigned to the
sub-Antarctic group (i.e. with less negative δ13C values)
were significantly heavier (+5.8 kg) at weaning than their
conspecifics (linear model: weaning mass = 100.1 + 5.8 ×
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Figure 4. Mean ± standard deviation of pup weaning mass through time. Dark grey squares correspond to mean weaning mass of pups assigned to the sub-
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foraging habitat;n = 1550, p-value < 0.0001,R2 = 0.016; figure 4).
A linear model revealed a decrease in pup weaning mass with
time (weaning mass =−0.9 × year + 1821; n = 826, p-value <
0.0005, R2 = 0.015) in the sub-Antarctic habitat, corresponding
to a mean decrease of 11.7 kg over the 2006–2018 period.
No significant trend was detected in the Antarctic group.

Those results were confirmed by a multiple linear model
(p < 0.0001, R² = 0.04, n = 1543) revealing that pup weaning
mass was significantly influenced by their birth year (p <
0.0001; negative effect), the probability of being assigned to a
foraging group (p < 0.0001; pups assigned to the sub-Antarctic
group being on average heavier at weaning), and sex (p <
0.0005; withmale pups being on average heavier than females).
4. Discussion
(a) Towards shifting foraging strategies or

environmental-driven changes?
This study aimed to investigate female SES foraging strategies
over 14 years, in order to detect any changes in behaviour. A
mean annual decrease of −0.09‰ in the blood δ13C values of
pups was detected over the 2006–2018 period, corresponding
to −1.2‰ in 13 years. Smaller datasets obtained from blood-
sampled adult females at moulting and breeding corroborated
the values from pups with a mean blood δ13C decrease of
−1.4‰ over the 2004–2017 period. We explore several possible
hypotheses to explain this decrease in seal blood δ13C values.

First, and perhaps most obviously, this decrease could have
been related to an increase in the proportion of female SES using
the Antarctic habitat compared to the sub-Antarctic one, and/
or a global southward shift of their at-sea distribution. How-
ever, our findings do not support this hypothesis. A decrease
in δ13C values with increasing latitude is well-documented in
the Southern Ocean [29,31]. If females travelled further south
to forage, this would lead to a decrease in their δ13C values
and those of their pups. The latitudinal distribution of adult
females suggests two main habitats during their post-moult
foraging trip (i.e. the Antarctic and the sub-Antarctic habitats),
confirming earlier observations [32,33]. We found no change
in the proportion of individuals foraging in the Antarctic
versus the sub-Antarctic habitat over the study period.
Inter-annual comparisons of the mean latitude of females’
post-moulting tracks for the months of May, June, and July
revealed a non-significant annually −0.21° trend in the distri-
bution of sub-Antarctic foraging females which corresponds
to a 300 km southward shift in 13 years. However, a minor
latitudinal shift such as this would not be sufficient to explain
the decrease in the δ13C values (see electronic supplementary
material S1, §2).

As the clear decrease in blood δ13C values cannot be
explained by a change in SES at-sea distribution, it may be
due to changes in abiotic conditions and/or other biotic com-
ponents in the Indian sector of the Southern Ocean. Blood
δ15N values strongly suggest that adult female SES from the
Kerguelen Islands feed primarily on mesopelagic fish, includ-
ing myctophids [57] with no indication of significant dietary
shifts over the study period. Hence, the decrease in blood
δ13C values is most likely unrelated to a change in SES fora-
ging ecology, but rather to changes in the environment itself.

An alternative explanation of the observed δ13C decrease is
a depletion in 13C at the base of the food web (δ13C baseline).
Oceanic dissolved inorganic carbon (DIC) δ13C relies on atmos-
pheric CO2 composition [58] and may be influenced by the
Suess effect [39], whose magnitude varies with latitude and
ocean basins [59]. Previous studies investigating metabolically
inert tissues in Arctic marine mammals and seabirds, and in
coral species in tropical ecosystems imputed a decrease in
δ13C values to the Suess effect [37,60] at times combined with
changes in primary productivity [35,38,39,61]. However, the
Southern Ocean’s Suess effect accounts for only approximately



−0.01‰ per decade [59,62], whereas our dataset showed a
tenfold greater decrease in blood δ13C values (i.e. −1‰ per
decade). DIC δ13C may also be influenced by remobilization
of deep 12C because of the benthic-pelagic δ13C gradient [63],
implying processes such as wind strengthening or upwelling.
However, no changes in the vertical distribution of abiotic
carbon have been detected south of the Polar Front over the
last decade in the Indian sector of the Southern Ocean (N
Metzl 2019, personal communication).

Population declines in a number of top predator species
across several oceans, including the Southern Ocean and over
the past few decades have been attributed to decreases in pri-
mary productivity of these ecosystems (e.g. Steller sea lions
[34]; rockhopper penguins [64]). It was recently revealed that
primary productivity has increased over the past 20 years in
the SouthernOcean [9] and is supported bya change in phenol-
ogy with blooms starting earlier in spring [65]. Changes in
Southern Ocean productivity and/or in the composition
of phytoplankton communities could contribute to the
observed decrease in seal δ13C values. Photosynthesis drives
δ13C baseline fluctuation for a given location through many
biotic processes, and δ13C values then vary little throughout
the food web [30,31]. The food chain δ13C value is mostly
affected by primary producers through the rate of C incorpor-
ation [66], cell surface/volume ratio and cell growth rate [67–
69], the timing of phytoplankton blooms, and phytoplankton
types [70,71]. A change in the proportion of 13C-rich phyto-
plankton species such as diatoms versus 13C-depleted nano-
and picophytoplankton could for example lead to a decrease
in the observed δ13C values in our study [70]. Changes in
diatom species composition can induce an approximately
10‰ isotopic shift in particulate organic carbon δ13C values
[72,73], hence investigating the evolution of phytoplankton
biomass and composition of the communities seems a promis-
ing line of investigation.

Interestingly, a recent study using scenario modelling
and investigating δ13C trends and their causal links in three
tuna species also supports the hypothesis of a global shift
in the structure of pelagic phytoplankton communities [74].
Our study suggests that investigating changes in primary
productivity and the composition of phytoplankton commu-
nities should be a research priority to help understand the
functional links between physical oceanography and primary
producers in the Indian sector of the Southern Ocean. More-
over, further multidisciplinary investigation across multiple
species is needed to assess to what extent a decrease in
food web δ13C baseline and associated changes may impact
upper trophic levels in the context of global change.
(b) From foraging habitat to reproductive success
Linking foraging behaviour to reproductive success in wide-
ranging species, including SES, remains challenging. Between
1970 and 1987, the Kerguelen SES population underwent a
significant decrease in the number of breeding females of
3.6% per annum [20]. Earlier studies suggested that this
decline was due to poor female foraging conditions [20],
implying a drop in maternal fitness and investment, leading
to an overall decrease in pup weaning mass, survival, and
subsequent recruitment [19,32]. It did identify that female
foraging strategies (i.e. Antarctic versus sub-Antarctic habi-
tat) are of critical importance for their pups’ survival rate,
and ultimately for the future of the population [44,75,76].
The influence of some abiotic factors such as sea ice extent
and chlorophyll-a concentration on pup weaning mass has
been suggested for SES breeding on Kerguelen, Macquarie,
and Marion Islands [23,32,77–79]. A similar strong positive
relationship was found between annual primary production
in an Antarctic polynya and pup production in Weddell
seals (Leptonychotes weddellii) [80]. This raises the question of
the viability of SES foraging strategies in the context of
global change, and the potential consequences for the SES
population from Kerguelen Islands [43].

Numerous studies have revealed the existence of distinct
foraging strategies among individuals from the same popu-
lation (e.g. loggerhead turtles, [81]; Antarctic fur seals, [82];
northern fur seals, [83]). Adult SES display fidelity to their
foraging site [40,41], and no significant change in the annual
proportion of seals assigned to the two foraging strategies
was detected over the study period. We suggest that both
strategies may persist in the population because current
environmental conditions in sub-Antarctic and Antarctic
habitats provide sustainable foraging grounds. However,
SES foraging success varies between individuals and with
environmental conditions for a given foraging zone [84],
hence generalizing the relationship between pup weaning
mass and the foraging habitat of their mothers may be
overly simplistic.

We found that pups born frommothers foraging in the sub-
Antarctic habitat were on average 5.8 kg heavier than their con-
specifics atweaning.Weaners that are 5 kg heavier could spend
10 more days fasting at-sea during their first foraging trip due
to their higher energy stores [85,86], suggesting a benefit to
sub-Antarctic foraging. However, we observed a decrease in
pup weaning mass only in the sub-Antarctic group (−11.7 kg
over the study period). A continuous decrease in pup weaning
mass should impact population recruitment through reduced
survival [19,26,85,86] and lead to a differing recruitment age
[24]. However, density dependence predicts that weaning
mass should decrease in growing populations inhabiting
rich foraging areas, as individuals should breed at a younger
age and thus be smaller [25]. A strong link between demo-
graphic trends and pup weaning mass has been found
in multiple studies [75,77,79], and a link between pup
weaning mass, the number and size of females ashore, and
even harem size was demonstrated for SES at Marion [79]
and Macquarie Islands [77]. The Kerguelen SES population
is now increasing (J Laborie 2019, et al., unpublished
data) raising the question of the consequences of increased
intraspecific competition.

Thepresentworkdoes not allowpartitioning thevariance to
explainwhether thedecrease inweaningmass (onlyobserved in
pups from the sub-Antarctic group) is a consequence of a den-
sity dependence mechanism alone, or a density dependence
mechanism combined with ecosystem changes. Hence, it is
important to explore further the relationships between foraging
strategies and reproductive success by maintaining this
monitoring over a longer time scale.
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