
HAL Id: hal-02927969
https://hal.science/hal-02927969v1

Submitted on 2 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semantic Optimization of Conjunctive Queries
Pablo Barceló, Diego Figueira, Georg Gottlob, Andreas Pieris

To cite this version:
Pablo Barceló, Diego Figueira, Georg Gottlob, Andreas Pieris. Semantic Optimization of Conjunctive
Queries. Journal of the ACM (JACM), 2020, 67 (6:34), �10.1145/3424908�. �hal-02927969�

https://hal.science/hal-02927969v1
https://hal.archives-ouvertes.fr

Semantic Optimization of ConjunctiveQueries

PABLO BARCELÓ, Pontificia Universidad Católica de Chile, Chile and IMFD Chile
DIEGO FIGUEIRA, University of Bordeaux, CNRS, Bordeaux INP, LaBRI, France
GEORG GOTTLOB, University of Oxford, UK
ANDREAS PIERIS, University of Edinburgh, UK

This work deals with the problem of semantic optimization of the central class of conjunctive queries (CQs).
Since CQ evaluation is NP-complete, a long line of research has focussed on identifying fragments of CQs that
can be efficiently evaluated. One of the most general such restrictions corresponds to generalized hypetreewidth
bounded by a fixed constant k ≥ 1; the associated fragment is denoted GHWk . A CQ is semantically in GHWk
if it is equivalent to a CQ in GHWk . The problem of checking whether a CQ is semantically in GHWk has
been studied in the constraint-free case, and it has been shown to be NP-complete. However, in case the
database is subject to constraints such as tuple-generating dependencies (TGDs) that can express, e.g., inclusion
dependencies, or equality-generating dependencies (EGDs) that capture, e.g., key dependencies, a CQ may turn
out to be semantically in GHWk under the constraints, while not being semantically in GHWk without the
constraints. This opens avenues to new query optimization techniques. In this paper, we initiate and develop
the theory of semantic optimization of CQs under constraints. More precisely, we study the following natural
problem: Given a CQ and a set of constraints, is the query semantically in GHWk , for a fixed k ≥ 1, under the
constraints, or, in other words, is the query equivalent to one that belongs to GHWk over all those databases
that satisfy the constraints? We show that, contrary to what one might expect, decidability of CQ containment
is a necessary but not a sufficient condition for the decidability of the problem in question. In particular, we
show that checking whether a CQ is semantically in GHW1 is undecidable in the presence of full TGDs (i.e.,
Datalog rules) or EGDs. In view of the above negative results, we focus on the main classes of TGDs for which
CQ containment is decidable, and that do not capture the class of full TGDs, i.e., guarded, non-recursive and
sticky sets of TGDs, and show that the problem in question is decidable, while its complexity coincides with
the complexity of CQ containment. We also consider key dependencies over unary and binary relations, and
show that the problem in question is decidable in elementary time. Furthermore, we investigate whether
being semantically in GHWk alleviates the cost of query evaluation. Finally, in case a CQ is not semantically
in GHWk , we discuss how it can be approximated via a CQ that falls in GHWk in an optimal way. Such
approximations might help finding “quick” answers to the input query when exact evaluation is intractable.

Authors’ addresses: Pablo Barceló, Pontificia Universidad Católica de Chile, Institute for Mathematical and Computational
Engineering, School of Engineering and Faculty of Mathematics, Avenida Vicuña Mackenna 4860, Macul, Santiago, 7820436,
Chile, IMFD Chile, Millennium Institute for Foundational Research on Data, pbarcelo@ing.puc.cl; Diego Figueira, University
of Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, Talence, F-33400, France, diego.figueira@labri.fr; Georg Gottlob,
University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK, georg.gottlob@cs.ox.ac.uk; Andreas Pieris,
University of Edinburgh, Informatics Forum, Crichton Street, Edinburgh, EH8 9AB, UK, apieris@inf.ed.ac.uk.

2 Pablo Barceló, Diego Figueira, Georg Gottlob, and Andreas Pieris

1 INTRODUCTION
Query optimization is a fundamental database task that amounts to transforming a query into
one that is arguably more efficient to evaluate. The database theory community has developed
several principled methods for optimization of conjunctive queries (CQs), many of which are based
on static analysis tasks such as containment [1]. In a nutshell, such methods compute a minimal
equivalent version of a CQ, called the core [32], where minimality refers to the number of atoms.
As argued by Abiteboul, Hull, and Vianu [1], this provides a theoretical notion of “true optimality”
for the reformulation of a CQ, as opposed to practical considerations based on heuristics. Although
the static analysis tasks that support CQ minimization are NP-complete [16], this is not a major
problem for real-life applications as the input (i.e., the CQ) is small.

It is known, on the other hand, that semantic information about the data, in the form of integrity
constraints, alleviates query optimization by reducing the space of possible reformulations. In the
above analysis, however, constraints play no role as CQ equivalence is defined over all databases.
Adding constraints yields a refined notion of CQ equivalence, which holds over those databases
that satisfy a given set of constraints only. But finding a minimal equivalent CQ in this context is
notoriously more difficult. This is because basic static analysis tasks such as containment become
undecidable when considered in full generality. This has motivated a long line of research for
finding larger “islands of decidability” of such containment problem based on syntactic restrictions
on constraints; see, e.g., [2, 11, 13, 15, 33].

1.1 Semantic Generalized Hypertreewidth
An important shortcoming of CQ minimization is that there is no theoretical guarantee that
the minimized CQ is actually easier to evaluate (recall that, in general, CQ evaluation is NP-
complete [16]). We know, on the other hand, quite a bit about classes of CQs that can be evaluated
efficiently. It is thus a natural question to ask whether constraints can be used to reformulate a
CQ as one in such tractable classes, and if so, what is the cost of computing such a reformulation.
Following Abiteboul et al., this would provide us with a theoretical guarantee of “true efficiency”
for those reformulations.

We focus on one of the most general and widely studied tractability conditions for CQs, that
is, bounded generalized hypertreewidth [29]; we fix an integer k ≥ 1, and write GHWk for the
class of CQs of generalized hypertreewidth bounded by k . Notice that the notion of generalized
hypertreewidth subsumes the well studied class of acyclic CQs [42]; in fact, acyclicity corresponds
to the lowest level GHW1 of the hierarchy. The main problem that we study is the following; as
usual, we write q ≡Σ q′ whenever the CQs q and q′ are equivalent over all databases that satisfy Σ:

PROBLEM : Semantic Generalized HypetreeWidth k

INPUT : A CQ q and a finite set Σ of constraints.

QUESTION : Is there a CQ q′ ∈ GHWk such that q ≡Σ q′?

We study the above problem, from now on abbreviated as SemGHWk , for the two most important
classes of database constraints:

(1) Tuple-generating dependencies (TGDs), i.e., expressions of the form∀x̄∀ȳ (ϕ (x̄ , ȳ) → ∃z̄ψ (x̄ , z̄)),
where ϕ andψ are conjunctions of atoms. TGDs subsume the important class of referential
integrity constraints (or inclusion dependencies).

Semantic Optimization of Conjunctive Queries 3

(2) Equality-generating dependencies (EGDs), i.e., expressions of the form ∀x̄ (ϕ (x̄) → y = z),
where ϕ is a conjunction of atoms and y, z are variables in x̄ . EGDs subsume keys and
functional dependencies (FDs).

1.2 The Relevance of Constraints
The constraint-free version of SemGHWk , i.e., checking whether a CQ q is equivalent to one

that falls in GHWk over the set of all databases, is rather well-understood. Regarding decidability,
it is not difficult to prove that a CQ q is semantically in GHWk if and only if its core q′ is in GHWk .
(Recall that such q′ is the minimal equivalent CQ to q). It is actually known that SemGHWk
in the absence of constraints is NP-complete (see, e.g., [8]). Regarding evaluation, CQs that are
semantically in GHWk can be evaluated efficiently [17, 19, 28]. From the above discussion, the
only reason why q is not in GHWk in the first place is because it has not been minimized. This
simply tells us that in the constraint-free case being semantically in GHWk is not really different
from usual minimization. The presence of constraints, on the other hand, yields a more interesting
notion of being semantically in GHWk . The reason is that the constraints can be applied on CQs to
produce reformulations of them that fall in GHWk .

Example 1.1. This example illustrates how constraints can be used to reformulate a CQ as an
acyclic one. Consider a database that stores information about customers, records, and musical
styles. The relation Interest holds pairs (c, s) such that the customer c has declared interest in style
s . The relation Class contains pairs (r , s) such that the record r is of style s . Finally, the relation
Owns contains pairs (c, r) such that the customer c owns the record r . Consider now the CQ

q(x ,y) = ∃z
(
Interest(x , z) ∧ Class(y, z) ∧ Owns(x ,y)

)
,

which asks for customer-record pairs (c, r), where the customer c owns the record r , and, in addition,
has expressed interest in at least one of the styles associated with r . This CQ is a core but it is not
acyclic. Thus, from our previous discussion, it is not equivalent to an acyclic CQ (in the absence of
constraints). Assume now that the database contains compulsive music collectors only. In particular,
each customer owns every record that is classified with a style in which he/she has expressed
interest. This means that the database satisfies the TGD:

τ = Interest(x , z),Class(y, z) → Owns(x ,y).
With this information at hand, we can easily reformulate q as the acyclic CQ:

q′(x ,y) = ∃z
(
Interest(x , z) ∧ Class(y, z)

)
.

Notice that q and q′ are in fact equivalent over every database that satisfies τ .

1.3 Research Challenges
Since basic reasoning with TGDs and EGDs is, in general, undecidable, we cannot expect SemGHWk
to be decidable for arbitrary such constraints. Thus, we ask the following:
Decidability: For which classes of TGDs and EGDs is SemGHWk decidable? In such cases, what is
the computational cost of the problem?

Since SemGHWk is defined in terms of CQ equivalence under constraints, and the latter has
received a lot of attention, another relevant question is the following:
CQ equivalence vs. SemGHWk : What is the relationship between CQ equivalence and SemGHWk?
Is the latter decidable for each class of TGDs/EGDs for which the former is decidable? If this is the
case, then one can transfer the mature theory of CQ equivalence to tackle SemGHWk .

4 Pablo Barceló, Diego Figueira, Georg Gottlob, and Andreas Pieris

Another interesting issue is to what extent the notion of being semantically in GHWk helps CQ
evaluation. Although a GHWk reformulation of a CQ can be evaluated efficiently, computing such
a reformulation might be very expensive. Thus, it is relevant to study the following question:

Evaluation: What is the computational cost of evaluating CQs that are semantically in GHWk under
a given set of constraints?

Finally, in case a query is not semantically in GHWk , it would be beneficial if it can be approx-
imated via a CQ in GHWk in an optimal way. Computing and evaluating such approximations
might be useful for finding “quick” (i.e., fixed-parameter tractable) answers to the input query when
exact evaluation is infeasible. Therefore, it is interesting to investigate the following questions:

Approximations: Is it possible to optimally approximate a CQ that is not semantically in GHWk via
a CQ that falls in GHWk? If this is the case, what is the computational cost of computing such
approximations? Does this help CQ evaluation?

1.4 Our Contributions
We first observe that the notion of being semantically in GHWk under constraints is not only more
powerful, but also technically more challenging than in the absence of constraints. We start by
studying decidability, and in the process we also clarify the relationship between CQ equivalence
and SemGHWk . We then concentrate on evaluation and approximations.

Results for TGDs: Under TGDs, having a decidable CQ containment problem is a necessary condition
for SemGHWk to be decidable.1 Surprisingly enough, it is not a sufficient condition. In particular,
contrary to what one might expect, there are natural classes of TGDs for which CQ containment is
decidable but SemGHW1 is not. This is the case for the well-known class of full TGDs (i.e., TGDs
without existentially quantified variables). In conclusion, we cannot directly export techniques
from CQ containment to deal with semantic acyclicity.

In view of the above results, we concentrate on classes of TGDs that (a) have a decidable CQ
containment problem, and (b) do not contain the class of full TGDs. These restrictions are satisfied by
several expressive languages considered in the literature. Such languages can be classified into three
main families: (i) guarded [11], (ii) non-recursive [22], and (iii) sticky sets of TGDs [13]. Notice that
guarded and sticky sets of TGDs generalize the well-known class of inclusion dependencies. Instead
of studying such languages one by one, we identify two semantic criteria that yield decidability for
SemGHWk , and then show that each one of the above languages satisfies one such criterion.
• The first criterion is generalized hypertreewidth preserving chase. This is satisfied by those

TGDs for which the application of the chase does not increase the generalized hypertreewidth
of the input instance. Guarded TGDs, with only one atom in the right-hand side,2 enjoy this
property. We establish that in this case SemGHWk is decidable and has the same complexity
as CQ containment: 2ExpTime-complete, ExpTime-complete in case of bounded arity, and
NP-complete for a fixed schema.
• The second criterion is UCQ rewritability; as usual, UCQ stands for union of CQs. Intuitively,

a class of sets of TGDs has this property if the CQ containment problem under that class can
be reduced to the UCQ containment problem without constraints. Non-recursive and sticky
sets of TGDs enjoy this property. In the former case, the complexity matches that of the CQ
containment problem: NExpTime-complete, even for bounded arity, and NP-complete if the

1Under some mild technical assumptions elaborated in the paper.
2This is a common assumption since every set of guarded TGDs can be easily transformed in this form.

Semantic Optimization of Conjunctive Queries 5

schema is fixed. In the latter case, we get a NExpTime upper bound and an ExpTime lower
bound. For a fixed schema, or even for bounded arity, the problem is NP-complete.

Let us stress that the NP bounds mentioned above should be seen as positive results: By spending
exponential time in the size of the (small) query, we can not only minimize it using known techniques,
but also find a GHWk reformulation, if one exists.

Results for EGDs: By adapting the proof for showing that SemGHW1 under full TGDs is undecidable,
we show that SemGHW1 under EGDs is also undecidable. In view of this fact, we focus on a
restricted class of EGDs, i.e., keys. Assuming schemas with unary and binary predicates only, we
show that keys enjoy the acyclicity preserving chase property, which in turn allows us to show that
SemGHW1 under keys is NP-complete. Unfortunately, this is not true once we go beyond acyclicity.
In other words, keys do not enjoy the generalized hypertreewidth preserving chase for k > 1,
even in the case of unary and binary relations. It is also easy to show that the UCQ rewritability
property does not hold. Thus, the techniques developed for TGDs cannot be used for studying
SemGHWk under keys, for k > 1, even if we focus on unary and binary predicates. Nevertheless,
we can show that the problem is decidable in elementary time. This is a rather involved result that
employs arguments based on monadic second-order logic (MSO). Whether SemGHWk under keys
over arbitrary schemas is decidable is a highly non-trivial problem that remains open.

Query evaluation: Let C be a class of TGDs or EGDs under which SemGHWk is decidable (i.e.,
guarded, non-recursive, and sticky sets of TGDs, as well as keys over unary and binary predicates).
We can use the following algorithm to evaluate a CQ q that is semantically in GHWk under a set
of constraints Σ that falls in C over a database D that satisfies the constraints:

(1) Convert q into a CQ q′ in GHWk that is equivalent to q under Σ.
(2) Evaluate q′ over D.
(3) Return q′(D).

The running time is O (| |D | |k+1 · f (| |q | |, | |Σ| |)), where f is a computable function. This holds since
q′ can be computed in elementary time for each one of the classes mentioned above, while CQs in
GHWk can be evaluated in polynomial time. This constitutes a fixed-parameter tractable algorithm
for evaluating q over D. No such algorithm is believed to exist for arbitrary CQs [37]. Therefore,
CQs that are semantically in GHWk under constraints that fall in C behave better than arbitrary
CQs in terms of query evaluation. Interestingly, in the absence of constraints, one can do better:
Evaluating CQs that are semantically in GHWk is in polynomial time [17]. It is natural to ask
whether this also holds in the presence of constraints. We show, by adopting a game-theoretic
approach, that this is the case for guarded sets of TGDs and (arbitrary) FDs. For the other classes of
constraints the problem remains to be investigated.

Query approximations: In case a CQ q is not equivalent to any CQ q′ in GHWk under a set Σ of
constraints, we can exploit our proof techniques for TGD-based constraints in order to compute an
approximation of q under Σ [6], that is, a CQ q′ in GHWk that is maximally contained in q under Σ.
Computing and evaluating such approximation yields “quick” answers to q when exact evaluation
is intractable. The problem of computing such query approximations in the presence of EGD-based
constraints remains open.

Remark. The problems that we study in this work, or simplified versions thereof, have originally
been studied in the conference papers [5, 23], which form the basis of the present journal paper.
Here, we clarify which results are directly coming from the above conference papers, and which
results are new and presented for the first time in this paper:

6 Pablo Barceló, Diego Figueira, Georg Gottlob, and Andreas Pieris

• The undecidability of SemGHW1 under full TGDs has been shown in [5]. However, the
decidability status of the same problem under EGDs has remained open, while it was not clear
how the undecidability proof for full TGDs can be adapted to cover the case of EGDs. In this
work, we provide a new proof for the fact that SemGHW1 under full TGDs is undecidable.
Although this new proof is more complex than the one in [5], it has the advantage that it can
be easily adapted to establish that SemGHW1 under EGDs is undecidable.
• The work [5] focussed on the TGD-based classes mentioned above for which CQ containment

is decidable, and studied all the problems in question, i.e., SemGHWk , query evaluation, and
query approximations, but only for k = 1. Here, we extend the results of [5] to any k ≥ 1.
• In [5], it has been also shown that evaluating a CQ that is semantically in GHW1 under a set

of (arbitrary) functional dependencies is tractable. We extend this result to any k ≥ 1.
• Finally, the work [23] established that the problem of deciding whether a CQ is equivalent

to one of bounded treewidth under keys over unary and binary predicates is decidable in
elementary time. We extend this to bounded generalized hypertreewidth queries.

Finite vs. infinite databases. All the results mentioned above interpret the notion of CQ equiva-
lence (and, thus, being semantically in GHWk) over the set of both finite and infinite databases. The
reason is that we heavily use the chase procedure in our proofs, which characterizes CQ equivalence
under arbitrary databases only. This is not a serious problem though as all the classes of TGDs that
we consider (i.e., guarded, non-recursive, sticky) are finitely controllable [3, 22, 25]. This means that
CQ equivalence under arbitrary databases and under finite databases coincide. The same holds
for EGDs since in this case the chase is always finite. In conclusion, our results can be directly
exported to the finite case for all the classes of constraints in question.

1.5 Organization
Preliminaries are given in Section 2. In Section 3 we introduce our main problem, that is, SemGHWk .
In Section 4 we investigate the frontiers of decidability for SemGHWk under TGDs. The property of
generalized hypertreewidth preserving chase is studied in Section 5, while UCQ rewritable classes
in Section 6. SemGHWk under arbitrary EGDs is studied in Section 7, while the case of keys over
unary and binary predicates in Section 8. Evaluation of CQs that are semantically in GHWk is
considered in Section 9. Finally, the problem of computing query approximations in the presence
of TGDs is studied in Section 10, while conclusions and open problems are given in Section 11.

2 PRELIMINARIES
In this section, we recall the basics on relational databases, conjunctive queries and constraints. We
assume disjoint countably infinite sets C, N and V of constants, (labeled) nulls and variables (used in
queries and constraints), respectively. We may refer to constants, nulls and variables as terms.

Relational databases. A (relational) schema σ is a finite set of relation symbols (or predicates)
with associated arity. We write R/n to denote the fact that R has arity n > 0. An atom over σ is an
expression of the form R (t̄), where R/n is a relation symbol in σ and t̄ is an n-tuple of terms. An
instance over σ is a (possibly infinite) set of atoms over σ that contains constants and nulls, while a
database over σ is simply a finite instance over σ . For an instance I we write dom(I) for the set of
terms occurring in I . We also write | |I | | for the size of I , i.e., the number of symbols occurring in I .

Generalized hypertreewidth. One of the central notions in our work is generalized hyper-
treewidth [29, 30], a.k.a. coverwidth [17], which measures the degree of acyclicity of an instance.
The definition of generalized hypertreewidth relies on the notion of tree decomposition. A tree

Semantic Optimization of Conjunctive Queries 7

{c 1 , c2, c5, c6}

{c1 , c3, c4, c5} {c2, c6 , c7}

{c2, c7 , c8}

{c1 , c2, c5, c6}
{R(c1 ,c2), R(c5, c6)}

{c1 , c3, c4, c5}
{P(c3 ,c1,c4), S(c3,c4,c5,c3)}

{c2, c6 , c7}
 {R(c1 ,c2), R(c6,c7)}

{c2, c7 , c8}
{P(c2 ,c8,c2), R(c8,c7)}

(b)(a)

Fig. 1. Tree decomposition and generalized hypertree decomposition.

decomposition of an instance I is a pair (T , χ), whereT = (V ,E) is a tree, and χ is a labeling function
V → 2dom(I) , i.e., it assigns a subset of dom(I) to each node of T , such that:

(1) For each R (t̄) ∈ I , there exists v ∈ V such that χ (v) contains all the terms in t̄ .
(2) For each t ∈ dom(I), the set {v ∈ V | t ∈ χ (v)} induces a connected subtree of T .

The second condition above is generally known as the connectedness condition.

Example 2.1. Consider the database D over {R/2, P/3, S/4} consisting of

R (c1, c2), P (c3, c1, c4), S (c3, c4, c5, c3),R (c5, c6),R (c6, c7), P (c2, c8, c2),R (c8, c7),

where c1, c2, . . . ∈ C . A tree decomposition of D is shown in Figure 1(a).

A generalized hypertree decomposition of I is a triple (T , χ , λ), where (T , χ) is a tree decomposition
of I , and, assuming T = (V ,E), λ is a labeling function V → 2I , i.e., it assigns a subset of the atoms
of I to each node of T , such that, for each v ∈ V , the terms in χ (v) are “covered” by the atoms in
λ(v), i.e., χ (v) ⊆ ⋃

R (t1, ...,tn)∈λ (v) {t1, . . . , tn }. The width of (T , χ , λ) is the number maxv ∈V {|λ(v) |},
i.e., the maximal size of a set of the form λ(v) over all nodes v of T . The generalized hypertreewidth
of an instance I is the minimum width over all its generalized hypertree decompositions.

Example 2.2. As an example, consider again the database D given in Example 2.1. A generalized
hypertree decomposition H = (T , χ , λ) of D is depicted in Figure 1(b); each node v consists of two
sets, where the first one is the set of terms assigned to v by χ , while the second one is the set of
atoms of D assigned to v by λ. Notice that, for each node v of H , |λ(v) | = 2, which means that
the width of H is two, and it can be shown that this is optimal. In fact, every attempt to build a
generalized hypertree decomposition of D such that, for each node v , |λ(v) | = 1, it will lead to a
violation of the connectedness condition, i.e., (T , χ) will not be a valid tree decomposition anymore.
Consequently, the generalized hypertreewidth of D is two.

Fork ≥ 1, we denote by GHWk the class of instances of generalized hypertreewidth at mostk . The
notion of generalized hypertreewidth subsumes the well studied class of acyclic instances [9, 26, 42].
In fact, the latter corresponds to the lowest level GHW1 of the hierarchy. Correspondingly, low
generalized hypertreewidth is associated with mild acyclicity [27]. For example, the database D
given in Example 2.1 is not acyclic, but it is mildly acyclic since it belongs to GHW2.

8 Pablo Barceló, Diego Figueira, Georg Gottlob, and Andreas Pieris

Conjunctive queries. A conjunctive query (CQ) over σ is a formula of the form:

q(x̄) := ∃ȳ
(
R1 (t̄1) ∧ · · · ∧ Rm (t̄m)

)
,

where each Ri (t̄i) (1 ≤ i ≤ m) is an atom that contains only variables3 of V over σ , each variable
mentioned in the t̄i ’s appears either in x̄ or ȳ, and x̄ contains all the free variables of q. A variable
appearing in q that is not free is called bound. If x̄ is empty, then q is a Boolean CQ. The evaluation
of CQs is defined in terms of homomorphisms. A homomorphism from a CQ q to an instance I is a
mapping h from the variables in q to the set of constants and nulls C ∪ N such that R (h(t̄)) ∈ I , for
each atom R (t̄) occurring in q; as usual, we write h(t1, . . . , tn) for (h(t1), . . . ,h(tn)). In the same way
we can define the notion of homomorphism between CQs. The evaluation of q(x̄) over I , denoted
q(I), is the set of all tuples h(x̄) such that h is a homomorphism from q to I .

It is known that CQ evaluation, i.e., the problem of determining whether a tuple t̄ belongs to
the evaluation q(D) of a CQ q over a database D, is NP-complete [16]. On the other hand, CQ
evaluation becomes tractable by restricting the syntactic shape of CQs. One of the most general
and widely studied such restrictions is bounded generalized hypertreewidth. Formally, a CQ q
has generalized hypetreewidth k ≥ 1 if the instance obtained from the atoms of q after replacing
each variable x in q with a fresh null ⊥x , called the canonical instance of q and denoted D[q], has
generalized hypetreewidth k . We slightly abuse notation and we write GHWk for the class of CQs
of generalized hypertreewidth bounded by k ≥ 1. It would be clear from the context when GHWk
refers to the class of instances or the class of CQs of generalized hypertreewidth bounded by k .

Example 2.3. Consider the schema σ = {Friends/2, Likes/2}, which describes a social network.
Intuitively speaking, the atom Friends(x ,y) states that x is a friend of y, while Likes(x ,y) means
that x likes the post y. The CQ

q(x ,y) := ∃z (Friends(x ,y) ∧ Likes(x , z) ∧ Likes(y, z))

asks for all the pairs of mutual friends that have some post they like in common. It is not difficult
to verify that it belongs to GHW2. Indeed, the canonical instance of q

{Friends(⊥x ,⊥y), Likes(⊥x ,⊥z), Likes(⊥y ,⊥z)}
has generalized hypertreewidth two, which is witnessed by the generalized hypertree decomposition
that has only one node labeled by

({⊥x ,⊥y ,⊥z }, {Likes(⊥x ,⊥z), Likes(⊥y ,⊥z)}).
Notice that q < GHW1, i.e., it is not acyclic. However, it is easy to verify that the CQ

q′(x ,y) := ∃z∃z ′(Friends(x ,y) ∧ Likes(x , z) ∧ Likes(y, z ′)),

obtained from q by “breaking” the join on the variable z, which asks for all the pairs of mutual
friends that like at least one post, is in GHW1. This is witnessed by the generalized hypertree
decomposition whose root is labeled by ({⊥x ,⊥y }, {Friends(x ,y)}), while its two children are
labeled by ({⊥x ,⊥z }, {Likes(x , z)}) and ({⊥x ,⊥z′ }, {Likes(x , z ′)}).

The problem of evaluating a CQ q ∈ GHWk over a database D can be solved efficiently. As usual,
we write | |q | | for the size of q, i.e., the number of symbols occurring in q. The following holds:

Proposition 2.4. ([29], see also [27]) Fix k ≥ 1. The problem of deciding whether t̄ ∈ q(D), given a
database D, a CQ q(x̄) ∈ GHWk , and a tuple t̄ ∈ dom(D) |x̄ | , can be solved in time O (| |D | |k+1 · | |q | |).
3For technical clarity, we exclude constants from CQs. However, all of our results can be generalized to CQs with constants.

Semantic Optimization of Conjunctive Queries 9

Integrity Constraints. The specification of semantic properties that should be satisfied by the
input database can be achieved using integrity constraints, also known as dependencies. Two
central classes of integrity constraints are the class of tuple-generating dependencies, and the class
of equality-generating dependencies. The former allows us to specify properties of the form “if
some tuples occur in the database, then some other tuples should also be in the database”, while
the latter allows us to express properties of the form “if some tuples occur in the database, then
some values should be the same”. The formal definitions follow.

A tuple-generating dependency (TGD) over a schema σ is an expression

∀x̄∀ȳ
(
ϕ (x̄ , ȳ) → ∃z̄ψ (x̄ , z̄)

)
,

where ϕ andψ are conjunctions of atoms over σ that contain only variables of V. For simplicity,
we write this TGD as ϕ (x̄ , ȳ) → ∃z̄ψ (x̄ , z̄), and use comma instead of ∧ for conjoining atoms.
Further, we assume that each variable in x̄ is mentioned in some atom ofψ . We call ϕ andψ the
body and head of the TGD, respectively. The TGD above is logically equivalent to the expression
∀x̄ (qϕ (x̄) → qψ (x̄)), where qϕ (x̄) and qψ (x̄) are the CQs ∃ȳ ϕ (x̄ , ȳ) and ∃z̄ψ (x̄ , z̄), respectively.
Therefore, an instance I over σ satisfies this TGD if and only if qϕ (I) ⊆ qψ (I). An instance I satisfies
a set Σ of TGDs, denoted I |= Σ, if I satisfies every TGD in Σ. Let us clarify that we work with finite
sets of TGDs. Henceforth, whenever we refer to a set Σ of TGDs, it is implicit that Σ is finite.

An equality-generating dependency (EGD) over σ is an expression

∀x̄
(
ϕ (x̄) → xi = x j

)
,

where ϕ is a conjunction of atoms over σ that contain only variables, and xi ,x j ∈ x̄ . For clarity, we
write this EGD as ϕ (x̄) → xi = x j , and use comma for conjoining atoms. We call ϕ the body of the
EGD. An instance I over σ satisfies this EGD if, for every homomorphism h such that h(ϕ (x̄)) ⊆ I ,
it is the case that h(xi) = h(x j). An instance I satisfies a set Σ of EGDs, denoted I |= Σ, if I satisfies
every EGD in Σ. In the rest of the paper, sets of EGDs are always finite. Recall that EGDs subsume
functional dependencies, which in turn subsume keys. A functional dependency (FD) over σ is an
expression of the form R[A→B], where R/n is a relation symbol in σ , andA,B ⊆ {1, . . . ,n}, asserting
that the values of the attributes of B are determined by the values of the attributes ofA. For example,
R[{1}→{3}], where R is a ternary relation, is actually the EGD R (x ,y, z),R (x ,y ′, z ′) → z = z ′. An
FD R[A→B] is called key if A ∪ B = {1, . . . ,n}.
TGDs and the chase procedure. The chase is a useful tool when reasoning with TGDs; see,e.g., [11,
22, 33, 36]. We start by defining a single chase step. Let I be an instance over a schema σ and τ a
TGD of the form ϕ (x̄ , ȳ) → ∃z̄ψ (x̄ , z̄) over σ . We say that τ is applicable with respect to I if there
exists a tuple (t̄ , t̄ ′) of terms in I such that ϕ (t̄ , t̄ ′) holds in I . In this case, the result of applying τ
over I with (t̄ , t̄ ′) is the instance J that extends I with every atom inψ (t̄ , t̄ ′′), where t̄ ′′ is the tuple
obtained by simultaneously replacing each variable z ∈ z̄ with a fresh distinct null not occurring in
I . For such a single chase step we write:

I
τ , (t̄, t̄ ′)−−−−−→ J .

Let I be an instance and Σ a set of TGDs. A chase sequence for I under Σ is a sequence:

I0
τ0, (t̄0, t̄ ′0)−−−−−−−→ I1

τ1, (t̄1, t̄ ′1)−−−−−−−→ I2 . . .

of chase steps such that:
(1) I0 = I .
(2) For each i ≥ 0 we have that τi is a TGD in Σ.
(3) J |= Σ, where J = ⋃

i≥0 Ii .

10 Pablo Barceló, Diego Figueira, Georg Gottlob, and Andreas Pieris

The instance J is the result of this chase sequence, which always exists. Note that, in general,
different chase sequences lead to different results. However, it is well-known that those results are
the same up to null renaming, and thus, we refer to the chase for I under Σ, denoted chase(I , Σ).4
Moreover, for a CQ q we write chase(q, Σ) for the instance chase(D[q], Σ). The key property of
the chase procedure is that the instance chase(I , Σ) is universal, i.e., for every instance J such that
J ⊇ I and J |= Σ, there is a homomorphism from chase(I , Σ) to J [20, 22].
EGDs and the chase procedure. As for TGDs, the chase is a useful tool when reasoning with
EGDs. Let us first define a single chase step. Consider an instance I over schema σ and an EGD
ϵ of the form ϕ (x̄) → xi = x j over σ . We say that ϵ is applicable with respect to I if there exists
a homomorphism h such that h(ϕ (x̄)) ⊆ I and h(xi) , h(x j). In this case, the result of applying ϵ
over I with h is as follows: If h(xi),h(x j) are constants, then the result is “failure”; otherwise, it is
the instance J obtained from I by identifying h(xi) and h(x j) as follows: If one is a constant, then
every occurrence of the null is replaced by the constant, and if both are nulls, the one is replaced
everywhere by the other. We can define the notion of the chase sequence for an instance I under a
set Σ of EGDs. Such a non-failing sequence is finite and unique (up to null renaming); thus, we
refer to the chase for I under Σ, denoted chase(I , Σ). Observe that, if chase(I , Σ) exists, then the
chase sequence that leads to it gives rise to a homomorphism hI,Σ : dom(I) → dom(chase(I , Σ)),
which is the identity on dom(chase(I , Σ)), such that hI,Σ (I) = chase(I , Σ). For a CQ q we write
chase(q, Σ) for chase(D[q], Σ), which always exists since q is constant-free, and we write hq,Σ for
hD[q],Σ.
Containment and equivalence. Let q and q′ be CQs and Σ a set of TGDs or EGDs. Then q is
contained in q′ under Σ, denoted q ⊆Σ q′, if q(I) ⊆ q′(I) for every instance I such that I |= Σ.
Furthermore, q is equivalent to q′ under Σ, denoted q ≡Σ q′, whenever q ⊆Σ q′ and q′ ⊆Σ q (or,
equivalently, if q(I) = q′(I) for every I such that I |= Σ). The following well-known characterization
of CQ containment in terms of the chase will be widely used in our proofs. For a tuple of variables
x̄ , we write ⊥(x̄) for the tuple of nulls obtained by replacing each variable x ∈ x̄ with the null ⊥x .

Lemma 2.5. Let q(x̄),q′(x̄ ′) be CQs, with |x̄ | = |x̄ ′ |, and Σ a set of TGDs (resp., EGDs). Then q ⊆Σ q′
if and only if ⊥(x̄) (resp., hq,Σ (⊥(x̄))) belongs to the evaluation of q′ over chase(q, Σ).

A problem that is quite important for our work is CQ containment under constraints (TGDs or
EGDs), defined as follows: Given CQs q,q′ and a set Σ of TGDs or EGDs, is it the case that q ⊆Σ q′?
Whenever Σ is bound to belong to a certain class C of sets of TGDs or EGDs, we denote this problem
as Cont(C). It is clear that Lemma 2.5 provides a decision procedure for the containment problem
under EGDs. However, this is not the case for TGDs since the result of the chase can be infinite.
Decidable containment of CQs under TGDs. It is not surprising that Lemma 2.5 does not
provide a decision procedure for solving CQ containment under TGDs since this problem is known
to be undecidable [10]. This has led to an intensive research activity for identifying syntactic
restrictions on sets of TGDs that lead to decidable CQ containment (even in the case when the
chase does not terminate).5 Such restrictions are often classified into three main paradigms:
Guardedness: A TGD is guarded if its body contains an atom, called guard, that contains all the
body-variables. Although the chase under a set of guarded TGDs does not necessarily terminate,
query containment is decidable. This follows from the fact that the result of the chase has finite
(hyper)treewidth. More formally, let G be the class of sets of guarded TGDs. Then:
4This holds since we consider the oblivious version of the chase, where a TGD is blindly triggered as long as its body is
satisfied, without checking whether the head is satisfied.
5In fact, these restrictions are designed to obtain decidable query answering under TGDs. However, this problem is equivalent
to query containment under TGDs (Lemma 2.5).

Semantic Optimization of Conjunctive Queries 11

(a)

 T(x,yyyy,z) → ∃w S(x,w)

 R(x,yyyy), P(yyyy,z) → ∃w T(x,y,w)

(b)

×
 T(x,y,z) → ∃w S(y,w)

 R(x,y), P(y,z) → ∃w T(x,y,w)

 T(x,y,z) → ∃w S(x,w)

 R(x,y), P(y,z) → ∃w T(x,y,w)

Fig. 2. Stickiness and marking.

Proposition 2.6. [11] Cont(G) is 2ExpTime-complete, ExpTime-complete if the arity of the schema
is fixed, and NP-complete if the schema is fixed.

A key subclass of guarded TGDs is the class of linear TGDs, that is, TGDs whose body consists
of a single atom [12], which in turn subsume the well-known class of inclusion dependencies (linear
TGDs without repeated variables neither in the body nor in the head) [21]. Let L and ID be the
classes of sets of linear TGDs and inclusions dependencies, respectively. Then:

Proposition 2.7. [33] Cont(C), for C ∈ {L, ID}, is PSpace-complete, and NP-complete if the arity
of the schema is fixed.

Non-recursiveness: A set Σ of TGDs is non-recursive if its predicate graph contains no directed cycles.
Recall that the nodes of the predicate graph of Σ are the predicates occurring in Σ, and there is an
edge from P to R if and only if there is a TGD τ ∈ Σ such that P occurs in the body and R occurs
in the head of τ . Notice that non-recursive sets of TGDs are also known as acyclic [22, 35], but
we reserve this term for CQs. Non-recursiveness ensures the termination of the chase, and thus
decidability of CQ containment. Let NR be the class of non-recursive sets of TGDs. Then:

Proposition 2.8. [35] Cont(NR) is complete for NExpTime, even if the arity of the schema is fixed.
It becomes NP-complete if the schema is fixed.

Stickiness: This condition ensures neither termination nor bounded (hyper)treewidth of the chase.
Instead, the decidability of query containment is obtained by exploiting query rewriting techniques.
The goal of stickiness is to capture joins among variables that are not expressible via guarded
TGDs, but without forcing the chase to terminate. The key property underlying this condition
can be described as follows: During the chase, terms that are associated (via a homomorphism)
with variables that appear more than once in the body of a TGD (i.e., join variables) are always
propagated (or “stick”) to the inferred atoms. This is illustrated in Figure 2(a); the first set of TGDs is
sticky, while the second is not. The formal definition, which is given below, is based on an inductive
marking procedure that marks the variables that may violate the semantic property of the chase
described above [13]. Roughly, during the base step of this procedure, a variable that appears in
the body of a TGD τ but not in every head-atom of τ is marked. Then, the marking is inductively
propagated from head to body as shown in Figure 2(b). Stickiness requires every marked variable
to appear only once in the body of a TGD. The formal definition follows.

Consider a set Σ of TGDs; w.l.o.g., we assume that the TGDs in Σ do not share variables. For
notational convenience, given an atom R (t̄) and a variable x ∈ t̄ , pos(R (t̄),x) is the set of positions

12 Pablo Barceló, Diego Figueira, Georg Gottlob, and Andreas Pieris

in R (t̄) at which x occurs; the i-th position in R (t̄) identifies the i-th attribute of the predicate R.
Let τ ∈ Σ and x a variable in the body of τ . We inductively define when x is marked in Σ as follows:
• If there exists an atom R (t̄) in the head of τ such that x < t̄ , then x is marked in Σ.
• Assuming that there is an atom R (t̄) in the head of τ such that x ∈ t̄ , if there is τ ′ ∈ Σ that has

in its body an atom of the form R (t̄ ′), and each variable in R (t̄ ′) at a position of pos(R (t̄),x)
is marked in Σ, then x is marked in Σ.

We say that Σ is sticky if there is no TGD that contains two occurrences of a variable that is marked
in Σ. Let S be the class of sticky sets of TGDs. Then:

Proposition 2.9. [13] Cont(S) is ExpTime-complete, and NP-complete for fixed arity schemas.

Weak versions: Each one of the previous classes has an associated weak version, called weakly-
guarded [11], weakly-acyclic [22], and weakly-sticky [13], respectively, that guarantees the decid-
ability of query containment. The underlying idea is always the same: Relax the conditions in
the definition of the class, so that only those positions that receive null values during the chase
procedure are taken into consideration. The formal definitions of those classes are not important
for the present work, and thus are omitted. However, it is important to recall that all those classes
extend the class of full TGDs, i.e., those without existentially quantified variables. This is not the
case for the “unrelaxed” versions presented above.

3 SEMANTIC GENERALIZED HYPERTREEWIDTH
The main task of the present work is to study the problem of checking whether a CQ q is equivalent
to a CQ of generalized hypertreewidth at most k , for some fixed k ≥ 1, over those instances that
satisfy a set Σ of TGDs or EGDs. Whenever this is the case, we say that q is semantically in GHWk
under Σ. In case k = 1, q is also called semantically acyclic under Σ since GHW1 coincides with the
class of acyclic CQs. The associated decision problem is defined below; C is a class of sets of TGDs
(e.g., guarded, non-recursive, sticky, etc.) or sets of EGDs (e.g., arbitrary EGDs, FDs, etc.):

PROBLEM : SemGHWk (C)
INPUT : A CQ q and a finite set Σ ∈ C of TGDs or EGDs, both over a schema σ .
QUESTION : Is there a CQ q′ ∈ GHWk over σ such that q ≡Σ q′?

One may ask whether there exist CQs that are in general not semantically in GHWk , but are
semantically in GHWk under a set of constraints that falls in a class introduced in Section 2. We
show via a couple of examples that this is the case. Notice that if this was not the case, then
SemGHWk (C), where C is a class of TGDs or EGDs introduced in the previous section, is an
artificial problem that coincides with the problem of checking whether the given CQ is semantically
in GHWk without taking into account the constraints. Our first example focusses on TGDs, and
shows that even constraints of a very simple form can make a difference:

Example 3.1. Consider the CQ
q = ∃x∃y∃z (R (x ,y) ∧ S (y, z) ∧ S (z,x)).

It is easy to verify that q < GHW1, i.e., it is not acyclic. Moreover, we know that q, which is a core,
is not semantically acyclic [8]. Consider now the set Σ of TGDs consisting of

R (x ,y) → ∃z P (x ,y, z) P (x ,y, z) → S (y, z) P (x ,y, z) → S (z,x).

Notice that the above set of TGDs corresponds to the set of inclusion dependencies
R[1, 2] ⊆ P[1, 2] P[2, 3] ⊆ S[1, 2] P[3, 1] ⊆ S[1, 2].

Semantic Optimization of Conjunctive Queries 13

Moreover, observe that Σ belongs to all the classes of TGDs mentioned in the previous section, i.e.,
G, NR and S. Interestingly, q is equivalent to the acyclic CQ

q′ = ∃x∃y∃z (R (x ,y) ∧ S (y, z) ∧ S (z,x) ∧ P (x ,y, z))
if we focus on databases that satisfy Σ, i.e., q ≡Σ q′. Thus, although q is not semantically acyclic in
general, it is semantically acyclic under Σ.

Our second example shows that a similar effect may take place via a very simple EGD:

Example 3.2. Consider the CQ
q = ∃x∃y∃z (R (x ,y) ∧ R (y, z) ∧ R (z,x) ∧ R (x , z)).

As above, it is easy to verify that q is not acyclic, and we also know that is not semantically acyclic.
Consider now the set Σ consisting of the single EGD

R (x ,y),R (x , z) → y = z,

which simply states that the first attribute of the predicate R is the key. Thus, the above EGD is a
simple key constraint. Interestingly, q is equivalent to the acyclic CQ

q′ = ∃y R (y,y)
if we focus on databases that satisfy Σ, i.e., q ≡Σ q′. Thus, although q is not semantically acyclic in
general, it is semantically acyclic under Σ.

The above discussion shows that SemGHWk (C), where C is a class of TGDs or EGDs from
Section 2, deviates from the version of the problem without constraints. As said, one of our main
tasks is to perform an in-depth investigation of SemGHWk (C).

3.1 Infinite Instances vs. Finite Databases
It is important to clarify that SemGHWk (C) asks for the existence of a CQ q′ in GHWk that is
equivalent to q under Σ focussing on arbitrary (finite or infinite) instances. However, in practice
we are concerned only with finite databases. Therefore, one may claim that the natural problem to
investigate is FinSemGHWk (C), which accepts as input a CQ q and a set Σ ∈ C of TGDs or EGDs,
and asks whether there is a CQ q′ ∈ GHWk such that q(D) = q′(D) for every (finite) database D
that satisfies Σ. Interestingly, for all the classes of sets of TGDs discussed in the previous section,
and the class of (arbitrary) EGDs, SemGHWk and FinSemGHWk coincide due to the fact that they
ensure the so-called finite controllability of CQ containment. This means that query containment
under arbitrary instances and query containment under finite databases are equivalent problems.
For non-recursive and weakly-acyclic sets of TGDs, as well as for sets of EGDs, this immediately
follows from the fact that the chase terminates. For inclusion dependencies this has been shown
by Rosati [38], while for the more general setting of guarded TGDs it has been shown in [3]. For
the sticky-based classes of sets of TGDs this has been shown in [25]. The reason why we focus
on SemGHWk (C), instead of FinSemGHWk (C), is given by Lemma 2.5: CQ containment under
arbitrary instances can be characterized in terms of the chase, which is not true for finite databases
simply because the chase is, in general, infinite.

3.2 A Note on the Combination of TGDs and EGDs
Observe that our main problem SemGHWk (C) is defined for TGDs or EGDs, i.e., C is a class of
TGDs or EGDs. The reason why we do not consider classes of constraints that combine TGDs
and EGDs is that CQ containment becomes undecidable very quickly. In particular, even if we
consider the class that combines inclusion dependencies (the simplest class of TGDs), and key

14 Pablo Barceló, Diego Figueira, Georg Gottlob, and Andreas Pieris

dependencies (the simplest class of EGDs), CQ containment is undecidable [14]. Actually, the
situation is worse than that. Even if we consider the well-known class of constraints that combines
inclusion dependencies with key dependencies in a non-conflicting way [14], which essentially
means that we can ignore the key dependencies as long as they are satisfied by the input database,
CQ containment under finite databases is undecidable [38].6

4 SEMANTIC GENERALIZED HYPETREEWIDTH UNDER TGDS
It is clear that SemGHWk (C) and Cont(C), where C is a class of constraints, are closely related
problems. If we are not able to solve the latter, then it is unlikely that we can solve the former since
we need to check whether two CQs are equivalent under a set Σ ∈ C. In view of the fact that CQ
containment under TGDs is undecidable [10], the question that comes up is whether the decidability
of Cont(C) for a class C of TGDs is a necessary condition for the decidability of SemGHWk (C).
Of course, it is also interesting to ask the converse, i.e., whether the decidability of Cont(C) is a
sufficient condition for the decidability of SemGHWk (C). We proceed to give answers to the above
fundamental questions, which help us to better understand SemGHWk under TGDs.

4.1 Decidability of CQ Containment Under TGDs is Necessary
For each k ≥ 1, there is a restricted version of CQ containment under sets of TGDs that can be
reduced to SemGHWk . To provide such a reduction, we first need to establish an auxiliary technical
lemma. A Boolean CQ is connected if its Gaifman graph is connected – the nodes of the Gaifman
graph of a CQ q are the variables occurring in q, and there is an edge between variables x and y if
and only if they appear together in an atom of q. A component of a Boolean CQ q is essentially a
maximally connected subquery of q. Formally, a component of q = ∃ȳ∧

1≤i≤m Ri (t̄i) is a Boolean
connected CQ q′ = ∃ȳ ′∧1≤j≤k Ri j (t̄i j), where ȳ ′ ⊆ ȳ, {Ri j (t̄i j)}1≤j≤k ⊆ {Ri (t̄i)}1≤i≤m , and the CQ
obtained by adding an atom of {Ri (t̄i)}1≤i≤m \ {Ri j (t̄i j)}1≤j≤k to q′ is not connected. Finally, a TGD
τ is body-connected if its body, which can be seen as a CQ, is connected. The following holds:

Lemma 4.1. Consider a set Σ of body-connected TGDs, and two Boolean CQs q,q′, where q′ is
connected. If q ⊆Σ q′, then there exists a component q′′ of q such that q′′ ⊆Σ q′.

Proof. By Lemma 2.5, it suffices to show that there exists a component q′′ of q such that
q′(chase(q′′, Σ)) , ∅. By hypothesis and Lemma 2.5, q′(chase(q, Σ)) , ∅. Let q1, . . . ,qk , where
k ≥ 1, be the components of q. By exploiting the fact that Σ is body-connected, it is not difficult
to show that chase(q, Σ) can be partitioned into {I1, . . . , Ik } such that, for each i ∈ {1, . . . ,k }, the
atoms of Ii depend only on qi . In other words, for each atom R (t̄) ∈ Ii , the chase derivation that
derives R (t̄) starts from atoms of qi . Since q′ is connected, q′(chase(q, Σ)) , ∅ implies that there is
i ∈ {1, . . . ,k } such that q′(Ii) , ∅, i.e., q′(chase(qi , Σ)) , ∅, and the claim follows with q′′ = qi .

We proceed to give the desired reduction from a restricted version of CQ containment under
sets of TGDs to SemGHWk , and show its correctness by exploiting the above lemma. Given two
Boolean CQs q = ∃ȳ∧

1≤i≤n Ri (t̄i) and q′ = ∃z̄∧
1≤i≤m R′i (v̄i), let conj(q,q′) be the Boolean CQ

∃ȳ∃z̄ ′
(
R1 (t̄1) ∧ · · · ∧ Rn (t̄n) ∧ R′1 (v̄ ′1) ∧ · · · ∧ R′m (v̄ ′m)

)
,

where z̄ ′ is obtained from z̄ by replacing each z ∈ z̄ by a fresh variable z ′, and for each i ∈ {1, . . . ,m},
v̄ ′i is obtained form vi by replacing each v ∈ v̄i by a fresh variable v ′. In other words, conj(q,q′) is
the conjunction of q and q′ after renaming the variables occurring in q′ so that q and q′ have no
variables in common. We can then show the following:
6Note that unrestricted CQ containment under the non-conflicting combination of inclusion dependencies and key depen-
dencies is decidable [14]. However, as discussed in Section 3.1, we are only concerned about finite databases.

Semantic Optimization of Conjunctive Queries 15

Proposition 4.2. Fix k ≥ 1. Consider a set Σ of body-connected TGDs, and Boolean and connected
CQs q,q′ such that q ∈ GHWk and q′ is not semantically in GHWk under Σ. It holds that q ⊆Σ q′ if
and only if conj(q,q′) is semantically in GHWk under Σ.

Proof. (⇒) It is clear that q ⊆Σ conj(q,q′). Moreover, conj(q,q′) ⊆Σ q holds trivially. Therefore,
conj(q,q′) ≡Σ q, and the claim follows since, by hypothesis, q ∈ GHWk .

(⇐) By hypothesis, there exists a Boolean CQ q⋆ ∈ GHWk such that conj(q,q′) ≡Σ q⋆. Let
q⋆1 , . . . ,q

⋆
k , where k ≥ 1, be the components of q⋆. By definition, q and q′ are the components of

conj(q,q′). Therefore, by Lemma 4.1, for each i ∈ {1, . . . ,k } it is the case that q ⊆Σ q⋆i or q′ ⊆Σ q⋆i .
We define the following two sets of indices:

Sq = {i ∈ {1, . . . ,k } | q ⊆Σ q⋆i } and Sq′ = {i ∈ {1, . . . ,k } | q′ ⊆Σ q⋆i and q ⊈Σ q
∗
i };

clearly, Sq and Sq′ form a partition of {1, . . . ,k }. We proceed to show that q ⊆Σ q′ by considering
the following two cases:
• Case 1. Assume that Sq′ = ∅. This implies that for each i ∈ {1, . . . ,k } it is the case that
q ⊆Σ q⋆i ; thus, q ⊆Σ q⋆. By hypothesis, q⋆ ⊆Σ conj(q,q′), which immediately implies that
q⋆ ⊆Σ q′. Therefore, q ⊆Σ q′, as needed.
• Case 2. Assume now that Sq′ , ∅. Given that q⋆ ⊆Σ q′, and it is the case that Σ is body-

connected and q′ is connected, Lemma 4.1 implies that there exists j ∈ {1, . . . ,k } such that
q⋆j ⊆Σ q′. Observe that j < Sq′ ; otherwise, q′ ⊆Σ q⋆j , and thus q′ ≡Σ q⋆j , which contradicts
the fact that q′ is not semantically in GHWk under Σ. Therefore j ∈ Sq , which implies that
q ⊆Σ q⋆j . We conclude that q ⊆Σ q′, as needed.

This completes the proof of Proposition 4.2.

As an immediate corollary of Proposition 4.2, we obtain an initial boundary for the decidability
of SemGHWk : We can only obtain a positive result for those classes of sets of TGDs that ensure the
decidability of the restricted containment problem presented above. Formally, for k ≥ 1 we define
RestContk (C) as the problem of deciding whether q ⊆Σ q′ given a set Σ of body-connected TGDs
in C, and two Boolean and connected CQs q and q′ such that q ∈ GHWk and q′ is not semantically
in GHWk under Σ. By Proposition 4.2, we immediately conclude the following.

Corollary 4.3. Consider a class C of TGDs. It holds that SemGHWk (C) is decidable only if
RestContk (C) is decidable.

As we shall discuss later, RestContk is not easier than general CQ containment under TGDs.
This means that the only classes of TGDs for which we know the former to be decidable are those
for which we know the latter to be decidable (e.g., those introduced in Section 2).

4.2 Decidability of CQ Containment Under TGDs is Not Sufficient
At this point, one may be tempted to think that some version of the converse of Proposition 4.2 also
holds, that is, for a class C of sets of TGDs, SemGHWk (C) can be reduced to Cont(C). This would
immediately imply the decidability of SemGHWk (C) whenever Cont(C) is decidable. However, as
the next result shows, the picture is more complicated than this as SemGHW1 (F) is undecidable,
where F is the class of full TGDs, a class which ensures the decidability of CQ containment:7

Theorem 4.4. SemGHW1 (F) is undecidable, even if we allow only unary and binary predicates.

7Recall that full TGDs are TGDs without existentially quantified variables. This implies that the chase always terminates,
and thus, by Lemma 2.5, we get that Cont(F) is decidable.

16 Pablo Barceló, Diego Figueira, Georg Gottlob, and Andreas Pieris

We provide a high-level description of the proof of the above result, while the rather long
complete proof can be found in the appendix. We show Theorem 4.4 by a reduction from the
Post correspondence problem (PCP) over the alphabet {a,b}. The input to this problem are two
equally long lists u1, . . . ,un and v1, . . . ,vn of non-empty words over the alphabet {a,b}, and we
ask whether there is a solution, i.e., a sequence i1 . . . im , wherem ≥ 1, of indices in {1, . . . ,n} such
that ui1 · · ·uim = vi1 · · ·vim . Consider an instance of PCP over {a,b} given by the lists u1, . . . ,un
and v1, . . . ,vn . Our goal is to construct a Boolean CQ q, and a set Σ of full TGDs, both over the
schema σ that consists of the binary predicates

{a,b, (♢i,∗)1≤i≤n , (♢∗,i)1≤i≤n , (♢i, j)1≤i, j≤n , start, end,η1,η2,η},
such that the PCP instance has a solution if and only if there exists a CQ q′ ∈ GHW1 (i.e., an acyclic
CQ) such that q ≡Σ q′, or, equivalently, q is semantically in GHW1 under Σ. Since σ consists only
of binary predicates, we can naturally represent CQs over σ as directed graphs in which edges
are labeled with symbols from σ . Intuitively speaking, if there exists a CQ q′ ∈ GHW1 such that
q ≡Σ q′, then q′ “encodes” a solution i1 . . . im to the PCP instance, i.e., ui1 . . .uim = vi1 . . .vim . In
particular, such a solution is “encoded” in q′ in a directed path, which is labeled by a word w over
the alphabet {a,b, (♢i,∗)1≤i≤n , (♢∗,i)1≤i≤n , (♢i, j)1≤i, j≤n , start, end} such that:
• after removing from w the symbols ♢∗, j , for 1 ≤ j ≤ n, we obtain a word of the form:

startui1♢i1,r1 . . .uim♢im,rm end,
where r j ∈ {∗, 1, . . . ,n} for each 1 ≤ j ≤ m, and
• after removing from w the symbols ♢j,∗, for 1 ≤ j ≤ n, we obtain a word of the form:

startvi1♢r1,i1 . . .vim♢rm,im end,
where r j ∈ {∗, 1, . . . ,n} for each 1 ≤ j ≤ m.

In other words, the symbols ♢i,∗ and ♢∗,i , for 1 ≤ i ≤ n, mark how w is formed in terms of the ui ’s
and vi ’s, respectively. The symbols ♢i, j , for 1 ≤ i, j ≤ n, are used to mark positions that represent
synchronous ocurrences of ui and vj .

The predicates η1, η2, and η in the set Σ of full TGDs are used to check that q′ is of the desired
form. In particular, this should take care of checking that the sequence of indices used to construct
the wordw by concatenating the ui ’s coincides with the sequence used to constructw from thevj ’s.
This boils down to the following check. Let w1 be the word that is obtained from w after removing
the symbols ♢∗, j , for 1 ≤ j ≤ n, and, analogously, let w2 be the word that is obtained from w after
removing the symbols ♢j,∗, for 1 ≤ j ≤ n. Then the following statements hold:

(1) The word w1 is of the form:
startui1♢i1,r1 . . .uim♢im,rm end,

for 1 ≤ i1, . . . , im ≤ n, and r1, . . . , rm ∈ {∗, 1, . . . ,n}. That is, each word ui j is in fact followed
by a symbol of the form ♢i j ,r j that marks occurrences of such word.

(2) The word w2 is of the form:
startvj1♢r1, j1 . . .vjt ♢rt , jt end,

for 1 ≤ j1, . . . , jt ≤ n, and r1, . . . , rt ∈ {∗, 1, . . . ,n}. That is, each word vi j is in fact followed
by a symbol of the form ♢r j ,i j that marks occurrences of such word.

(3) It is the case that i1 . . . im = j1 . . . jt (and, therefore,m = t).
In order to ensure that the above conditions hold, we define the predicates η1, η2, and η in the set

Σ of full TGDs as a way to check that there is a “matching” betweenw1 andw2. This matching starts
by “synchronizing” the pair (x0,x

′
0) of positions immediately following the start symbol in w1 and

Semantic Optimization of Conjunctive Queries 17

w2, respectively. For j ≥ 0, let x j+1 be the position inw1 that occurs immediately after the (j + 1)-th
occurrence of a symbol of the form ♢i,r . Analogously, we define x ′j+1 overw2, but this time counting
occurrences of symbols of the form ♢r,i . The matching then recursively “synchronizes” pairs of
the form (x j+1,x

′
j+1) as long as the following holds: (a) the pair (x j ,x

′
j) is already synchronized,

and (b) there exists an 1 ≤ i ≤ n such that, starting from x j and finishing at x j+1, it is possible to
read a word of the form ui♢i,r in w1, while starting from x ′j and finishing at x ′j+1, it is possible to
read a word of the form vi♢r,i in w2. Lastly, we apply a finalization rule checking that the last pair
(xm ,x

′
m) is synchronized, and there is an 1 ≤ i ≤ n such that starting from xm it is possible to read

a word of the form ui♢i,i end in w1, while starting from x ′m it is possible to read a word of the form
vi♢i,i end in w2. Notice, however, that this synchronization process will have to be carried out over
a single path in the acyclic CQ q′, which is one of the technical issues that our proof has to deal
with. As already said, the formal proof of Theorem 4.4 can be found in the appendix.

Theorem 4.4 rules out any class of TGDs that captures the class of full TGDs, e.g., weakly-guarded,
weakly-acyclic and weakly-sticky sets of TGDs. The main question is whether the non-weak versions
of the above classes, i.e., guarded, non-recursive and sticky sets of TGDs, ensure the decidability of
SemGHWk , and what is the exact complexity. This is the subject of Sections 5 and 6.

5 GENERALIZED HYPERTREEWIDTH PRESERVING CHASE
We propose a semantic criterion for a classC of sets of TGDs, the so-called generalized hypertreewidth
preserving chase (or simply GHW-preserving chase), that ensures the decidability of SemGHWk (C).
This criterion guarantees that, starting from an instance in GHWk , it is not possible to increase its
generalized hypertreewidth during the construction of the chase. We then proceed to show that
the class of guarded sets of TGDs has GHW-preserving chase, which implies the decidability of
SemGHWk (G), and we pinpoint the complexity of the latter problem. Notice that non-recursiveness
and stickiness do not fulfil this criterion, even in the restrictive setting where only unary and binary
predicates can be used; more details are given in the next section. The formal definition of our
semantic criterion follows; in the rest of this section, we fix k ≥ 1.

Definition 5.1. (GHW-preserving chase) We say that a class C of sets of TGDs has generalized
hypertreewidth preserving chase (or simply GHW-preserving chase) if, for every CQ q ∈ GHWk , set
Σ ∈ C, and chase sequence for D[q] under Σ of the form

D[q] = I0
τ0, (t̄0, t̄ ′0)−−−−−−−→ I1

τ1, (t̄1, t̄ ′1)−−−−−−−→ I2 . . .

it holds that the instance ⋃
i≥0 Ii belongs to GHWk .

Recall that the purpose of the above property is to ensure the decidability of SemGHWk (C), for a
class C of TGDs. Let us first show that it ensures the decidability of Cont(C). To this end, we exploit
the classical result that the satisfiability problem for a fragment L of first-order logic that enjoys
the finite treewidth model property (FTMP) is decidable, that is, the problem of deciding whether a
sentence that falls in L has a model is decidable [18]. Recall that the treewidth of an instance is the
minimum width over all its tree decompositions, while the width of a tree decomposition (T , χ),
with T = (V ,E), is the number maxv ∈V {|χ (v) |} − 1. A fragment of first-order logic L enjoys the
FTMP if, for every sentence Φ that falls in L, if Φ has a model, then it has a model of finite treewidth
– note that a model of Φ can be naturally seen as a relational instance. We can now show that:

Proposition 5.2. For a classC of sets of TGDs that has GHW-preserving chase, Cont(C) is decidable.

Proof. Consider an instance of Cont(C), that is, two CQs q(x̄) and q′(x̄ ′), and a set Σ ∈ C
of TGDs. By Lemma 2.5, we need to show that the problem of deciding whether ⊥(x̄) belongs

18 Pablo Barceló, Diego Figueira, Georg Gottlob, and Andreas Pieris

v1
v2

v3

v4

v5

u1

u2

u3

v1

v2

v3

v4

v5

u4

u1

u2

u3

v1

v2

v3

v4

v5

u4

(b)(a) (c)

Fig. 3. The construction of the tree F = (V ,E) in the proof of Lemma 5.4.

to the evaluation of q′ over chase(q, Σ), or, equivalently, the Boolean CQ q′(⊥(x̄)), obtained by
instantiating the free variables x̄ ′ with ⊥(x̄), can be homomorphically mapped to chase(q, Σ), is
decidable. The latter is equivalent to say that each model of the first-order sentence ϕq,Σ obtained
by considering the conjunction of atoms in chase(q, Σ), with each null being interpreted as an
existentially quantified variable, is a model of q′(⊥(x̄)), i.e., the sentence Φq,q′,Σ = ϕq,Σ∧¬q′(⊥(x̄))
is unsatisfiable. Consequently, to show that Cont(C) is decidable, it suffices to show that the
satisfiability problem for the fragment of first-order logic that allows for sentences Φq,q′,Σ, where
q,q′ are CQs, and Σ ∈ C, is decidable. To this end, we show that this fragment enjoys the FTMP.
Consider an arbitrary sentence Φq,q′,Σ that falls in this fragment. If Φq,q′,Σ is satisfiable, then it has
a (possibly infinite) model M that has the same treewidth as the instance chase(q, Σ). Since Σ falls
in a class that has GHW-preserving chase, the generalized hypertreewidth of M conincides with
the generalized hypertreewidth of D[q], and thus, is finite. Since, by definition, the treewidth of an
instance is bounded by its generalized hypertreewidth times the maximum arity of the underlying
schema, we conclude that the treewdith of M is finite. This implies that the fragment of first-order
logic in question enjoys the FTMP, and the claim follows.

Of course, Proposition 5.2 alone is not enough for showing that GHW-preserving chase ensures
the decidability of SemGHWk . We also need to show that, if the given query q is semantically in
GHWk under the given set Σ of TGDs, then there exists a CQ q′ ∈ GHWk of “small” size such that
q ≡Σ q′. We proceed to show such a small query property. By abuse of notation, for a CQ q, we
write |q | for the number of atoms occurring in q.

Proposition 5.3. Consider a set Σ of TGDs over a schema σ that belongs to a class that has
GHW-preserving chase, and a CQ q over σ . If q is semantically in GHWk under Σ, then there exists a
CQ q′ ∈ GHWk over σ , where |q′ | ≤ |q | · (2k + 1), such that q ≡Σ q′.

Before giving the proof of the above result, we need to establish the main technical result of this
section, which will also be used later in our investigation. At this point, we should say that a CQ
may contain infinitely many atoms. The notions of evaluation, canonical instance, and generalized
hypertreewidth, as well as Lemma 2.5, can be extended to infinite CQs. We show the following:

Lemma 5.4. Consider a CQ q and a (possibly infinite) CQ q′ ∈ GHWk , both over a schema σ , such
that q′ ⊆ q. There exists a CQ q′′ ∈ GHWk over σ such that q′ ⊆ q′′ ⊆ q and |q′′ | ≤ |q | · (2k + 1).

Proof. Since, by hypothesis, q′ ∈ GHWk , the canonical instance of q′ admits a generalized
hypertree decomposition (T , χ , λ) of width k . Our goal is, by exploiting the existence of (T , χ , λ)
and the fact that q′ ⊆ q, to first define a database D ∈ GHWk over σ with at most |q | · (2k + 1)
atoms, and then show that D can be converted into a CQ q′′ over σ such that q′ ⊆ q′′ ⊆ q.

Semantic Optimization of Conjunctive Queries 19

The Definition of the Database D

By hypothesis, q′(x̄ ′) ⊆ q(x̄), and Lemma 2.5 implies the existence a homomorphism h from q to the
canonical instance of q′ such that h(x̄) = ⊥(x̄ ′). We assume that q is of the form ∃ȳ∧

1≤i≤m Ri (t̄i).
By definition, the atoms R1 (h(t̄1)), . . . ,Rm (h(t̄m)) are covered by some nodes v1, . . . ,vn , where
n ≤ m, of T . In other words, for each 1 ≤ i ≤ m, there exists 1 ≤ j ≤ n such that χ (vj) contains all
the nulls occurring in h(t̄i). Consider now the subtree Tq of T consisting of v1, . . . ,vn and their
ancestors in T . From Tq we extract the tree F = (V ,E) defined as follows:
• V consists of the root node of Tq , all the leaf nodes of Tq , and all the inner nodes of Tq with

at least two children.
• For v,u ∈ V , (v,u) ∈ E if and only if u is descendant of v in Tq , and the only nodes of V that

occur on the unique shortest path from v to u in Tq is v and u.
The construction of F is graphically illustrated in Figure 3. The generalized hypertree decomposition
(T , χ , λ) of q′ is shown in Figure 3(a), where the shaded part are the nodes that cover the atoms
in the image of the CQ q according to the homomorphism h. The subtree Tq of T is depicted in
Figure 3(b), where the red nodes form the node set V of F . Finally, the tree F = (V ,E) is shown in
Figure 3(c), which is essentially obtained fromTq by replacing the unique shortest path between two
red nodes with a single edge. Let D ′ = ⋃

v ∈V λ(v), i.e., D ′ is the database consisting of the atoms
that label the nodes of F . At this point, one may be tempted to think that (F , χ ′, λ′), where χ ′ (resp.,
λ′) is the restriction of χ (resp., λ) over the nodes of V , is a generalized hypertree decomposition
of D ′. Unfortunately, this is not the case; it is easy to verify that we may have an atom R (t̄) ∈ D ′,
but no v ∈ V such that χ ′(v) contains all the nulls occurring in t̄ . However, from (F , χ ′, λ′) we can
construct a triple (F , χ ′′, λ′′) that is a generalized hypertree decomposition of the database

D ′′ =
⋃

1≤i≤m
Ri (h(t̄i)) ∪

⋃

v ∈V
λ′′(v)

with width k , which in turn implies that D ′′ ∈ GHWk . The construction of (F , χ ′′, λ′′) from
(F , χ ′, λ′) follows. Consider an arbitrary node v of F such that χ ′(v) = {t1, . . . , tℓ }, where ℓ ≥ 1,
and the nulls in λ′(v) are {t1, . . . , tℓ } ∪ {tℓ+1, . . . , tℓ+p }, where p ≥ 0; notice that p = 0 implies
{tℓ+1, . . . , tℓ+p } = ∅. Then χ ′′(v) = {t1, . . . , tℓ,⊥ℓ+1, . . . ,⊥ℓ+p }, where ⊥ℓ+1, . . . ,⊥ℓ+p are fresh
nulls occurring only in χ ′′(v), i.e., there is no node u , v such that χ ′′(u) contains any of those
nulls, and λ′′(v) is obtained from λ′(v) by replacing each null tℓ+i , for 1 ≤ i ≤ p, with the
null ⊥ℓ+i . For example, assume that χ ′(v) = {t1, t2} and λ′(v) = {R (t1, t3), P (t2, t3, t4)}. Then
χ ′′(v) = {t1, t2,⊥3,⊥4} and λ′′(v) = {R (t1,⊥3), P (t2,⊥3,⊥4)}. It is easy to verify that (F , χ ′′, λ′′)
is indeed a generalized hypertree decomposition of D ′′ with width k , and thus D ′′ ∈ GHWk . It
remains to show that D ′′ has at most |q | · (2k + 1) atoms, which then implies that the desired
database D is precisely the database D ′′. By construction, F has 2 · |q | nodes, while, for each node
v , |λ′′(v) | ≤ k . Therefore, |D ′′ | ≤ (2 · |q | · k + |q |) = |q | · (2k + 1).

Converting D into a Query

We proceed to convert D into the desired CQ q′′. We first observe that, by construction, for each
x ∈ x̄ ′ the null ⊥x occurs in D. Let q′(x̄ ′) be the CQ obtained by considering the conjunction
of atoms in D, after renaming each null ⊥ into a variable v (⊥), with v (⊥x) = x for each x ∈ x̄ ′.
It is clear that q′′ ∈ GHWk since D ′′ ∈ GHWk , and |q′′ | ≤ |q | · (2k + 1) since D ′′ contains at
most |q | · (2k + 1) atoms. Moreover, ⊥(x̄ ′) belongs to the evaluation of q over D[q′′] due to the
homomorphism h, and thus, by Lemma 2.5, q′′ ⊆ q. Furthermore, there is a homomorphism µ
from q′′ to the canonical instance of q′ such that µ (x̄ ′) = ⊥(x̄ ′), and hence, by Lemma 2.5, q′ ⊆ q′′.

20 Pablo Barceló, Diego Figueira, Georg Gottlob, and Andreas Pieris

The homomorphism µ is obtained by reversing the renaming substitutions applied during the
construction of (F , χ ′′, λ′′) from (F , χ ′, λ′). Since q′ ⊆ q′′ ⊆ q the claim follows.

A result similar to Lemma 5.4 is implicit in [6] (see Claim 6.2), where the problem of approximating
CQs is investigated. However, from the results of [6], we can only conclude the existence of an
exponentially sized CQ q′′ ∈ GHWk such that q′ ⊆ q′′ ⊆ q, while the above lemma establishes the
existence of a polynomially sized query. This is decisive for our later complexity analysis. Having
the above lemma in place, it is not difficult to establish Proposition 5.3.

Proof. (of Proposition 5.3) Since, by hypothesis, q is semantically in GHWk under Σ, there is a
CQ q′′(x̄) ∈ GHWk such that q ≡Σ q′′. Let q′′Σ be the (possibly infinite) CQ obtained by applying
the chase procedure over the atoms of q′′ using the TGDs of Σ. More formally, q′′Σ (x̄) is the CQ
obtained by considering the (possibly infinite) conjunction of atoms in chase(q′′, Σ), after renaming
each null ⊥ occurring in chase(q′′, Σ) into a variablev (⊥), withv (⊥x) = x for each x ∈ x̄ . By using
Lemma 2.5, we can show that q′′ ⊆Σ q implies q′′Σ ⊆ q. Since q′′ ∈ GHWk and Σ belongs to a class
that has GHW-preserving chase, we conclude that q′′Σ ∈ GHWk . Thus, by Lemma 5.4, there is a CQ
q̂ ∈ GHWk such that q′′Σ ⊆ q̂ ⊆ q and |q̂ | ≤ |q | · (2k +1). Since q′′Σ ⊆ q̂ we get that q′′ ⊆Σ q̂; as above,
this can be shown by using Lemma 2.5. By hypothesis, q ⊆Σ q′′, and hence q ⊆Σ q′′ ⊆Σ q̂ ⊆Σ q
since q̂ ⊆ q immediately implies q̂ ⊆Σ q. Therefore, q̂ ≡Σ q and the claim follows with q′ = q̂.

The problem of determining whether a CQ q belongs to GHWk is decidable. In fact, it is feasible
in linear time for k = 1 [41], and NP-complete for k > 1 [24]. Therefore, Propositions 5.2 and 5.3
provide a decision procedure for SemGHWk (C) whenever C has GHW-preserving chase. More
precisely, given a CQ q and a set Σ ∈ C, both over a schema σ :

(1) Guess a CQ q′ over σ such that |q′ | ≤ |q | · (2k + 1).
(2) If q′ ∈ GHWk , q ⊆Σ q′ and q′ ⊆Σ q, then accept; otherwise, reject.
The next decidability result follows:
Theorem 5.5. For a class C of sets of TGDs that has GHW-preserving chase, SemGHWk (C) is

decidable.

5.1 Guardedness
We proceed to show that SemGHWk (G) is decidable and has the same complexity as Cont(G). As
usual, for technical clarity, we assume that guarded TGDs have only one atom in the head. This is
a common assumption since every set Σ ∈ G can be transformed in linear time into a set Σ′ ∈ G
with the desired property, while this transformation preserves containment; see, e.g., [11, 12].

Theorem 5.6. SemGHWk (G) is 2ExpTime-complete, and it becomes ExpTime-complete if the arity
of the schema is fixed and NP-complete if the schema is fixed.

Upper Bounds
The rest of this section is devoted to establishing Theorem 5.6. We first focus on the upper bounds,
and start by showing that the classG has GHW-preserving chase. To this end, we need the auxiliary
notion of the guarded chase forest, which is essentially a tree-like representation of the instance
constructed by the chase. Consider an instance I , a set Σ ∈ G, and an arbitrary chase sequence

I = I0
τ0, (t̄0, t̄ ′0)−−−−−−−→ I1

τ1, (t̄1, t̄ ′1)−−−−−−−→ I2 . . .

for I under Σ. The guarded chase forest for I and Σ (w.r.t. the above chase sequence) is a labeled
forest F = (V ,E, λ), where λ : V → chase(I , Σ), and

Semantic Optimization of Conjunctive Queries 21

R(a,b)

S(b)

R(⊥1,a)

S(a)

R(⊥2,⊥1)

S(⊥1)

R(⊥3,⊥2)

S(⊥2)

...

Fig. 4. Guarded chase forest.

• For each R (t̄) ∈ chase(I , Σ), there exists exactly one node v ∈ V such that λ(v) = R (t̄), and
no other nodes occur in V , i.e., λ is a bijection.
• The edge (v,u) belongs to E if and only if, assuming that the atom λ(u) is generated by the
i-th chase step, i.e., Ii+1 \ Ii = {λ(u)}, λ(v) ∈ Ii , and the guard of τi is satisfied by λ(v).8

Example 5.7. Consider the database D = {R (a,b), S (b)}, the set Σ consisting of

τ = R (x ,y), S (y) → ∃z R (z,x) τ ′ = R (x ,y) → S (x),

and the chase sequence for D under Σ

D
τ , (a,b)−−−−−→ D ∪ {R (⊥1,a)}

τ ′, (a,b)−−−−−−→ D ∪ {R (⊥1,a), S (a)}
τ , (⊥1,a)−−−−−−→

D ∪ {R (⊥1,a), S (a),R (⊥2,⊥1)}
τ ′, (⊥1,a)−−−−−−−→ D ∪ {R (⊥1,a), S (a),R (⊥2,⊥1), S (⊥1)} . . . ,

where ⊥1,⊥2, . . . ∈ N. The guarded chase forest for D and Σ is depicted in Figure 4.

We are now ready to show that:

Proposition 5.8. G has GHW-preserving chase.

Proof. Consider a CQ q ∈ GHWk , and a set of TGDs Σ ∈ G. We need to show that chase(q, Σ),
that is, the result of an arbitrary chase sequence

D[q] = I0
τ0, (t̄0, t̄ ′0)−−−−−−−→ I1

τ1, (t̄1, t̄ ′1)−−−−−−−→ I2 . . .

for D[q] under Σ, belongs to GHWk , or, equivalently, it admits a generalized hypertree decomposi-
tion of width at most k . Let F = (V ,E, λ) be the guarded chase forest for D[q] and Σ. We first show
that each connected component of F , which is a tree with its root labeled by an atom α of D[q],
denotedTα , enjoys the following property: For each term (constant or null) t occurring inTα , the set
{v ∈ V | t occurs in λ(v)} induces a connected subtree of Tα . Towards a contradiction, assume that
the latter does not hold. This implies that there exists a path vw1 . . .wnu in Tα , where n ≥ 1, and a
term t that occurs in λ(v) and λ(u), but t does not occur in λ(wi), for each i ∈ {1, . . . ,n}. Assume
that λ(u) was generated during the i-th application of the chase step, i.e., Ii+1 \ Ii = {λ(u)}. Since t
does not occur in λ(wn), we conclude that τi is not guarded. But this contradicts our hypothesis that
Σ ∈ G; thus,Tα enjoys the desired property. This allows us to convertTα into the generalized hyper-
tree decomposition (Tα , χ , λ) of width 1, where, for eachv ∈ V , χ (v) consists of the nulls occurring
in λ(v). Since q ∈ GHWk , it admits a generalized hypetree decomposition (Tq , χ

′, λ′) of width at
most k . Having (Tα , χ , λ), for each atom α ∈ D[q], and (Tq , χ

′, λ′) in place, we can now construct a
generalized hypertree decomposition (T , χ ′′, λ′′) of width at most k for chase(q, Σ) as follows: For
each α ∈ D[q], we attach (Tα , χ , λ) to vα , where vα is a node in Tq such that χ ′(vα) contains all
the nulls in α . Note that vα always exists since (Tq , χ

′) is a tree decomposition for q. Moreover,
8Here, we assume, w.l.o.g., that the chosen chase sequence is such that every chase step generates a different atom, i.e., for
every i > 0, Ii+1 \ Ii , ∅. This allows us to refer to the chase step that generates an atom of chase(I, Σ) \ I .

22 Pablo Barceló, Diego Figueira, Georg Gottlob, and Andreas Pieris

(T , χ ′′) is a tree decomposition for chase(q, Σ) since, for two distinct atoms R1 (t̄1),R2 (t̄2) ∈ D[q],
TR1 (t̄1) and TR2 (t̄2) share only the nulls occurring both in t̄1 and t̄2. This completes our proof.

Proposition 5.8, together with Theorem 5.5, implies the decidability of SemGHWk (G). However,
this does not say anything about the complexity of the problem. With the aim of pinpointing
the exact complexity of SemGHWk (G), we proceed to analyze the complexity of the algorithm
underlying Theorem 5.5. Recall that, given a CQ q and a set Σ ∈ G, both over a schema σ , we simply
need to guess a CQ q′ over σ such that |q′ | ≤ |q | · (2k + 1), and verify that q′ ∈ GHWk and q ≡Σ q′.
It is clear that this algorithm runs in non-deterministic polynomial time with a call to a C oracle,
where C is a complexity class powerful enough for checking whether a CQ belongs to GHWk
and solving Cont(G). Recall that checking whether a CQ belongs to GHWk is in NP [24]. Thus,
Proposition 2.6 implies that SemGHWk (G) is in 2ExpTime, in ExpTime if the arity of the schema is
fixed, and in NP if the schema is fixed; recall that for C ∈ {2ExpTime,ExpTime}, NPC = C. At this
point, one may ask why for a fixed schema the obtained upper bound is NP and not NPNP = ΣP2
since C = NP. Observe that the oracle is called only once in order to solve two problems that are
already in NP, and thus it is not really needed in this case.
Lower Bounds
We proceed to show that the above complexity upper bounds are optimal. By Proposition 4.2,
RestContk (G) can be reduced in linear time to SemGHWk (G). Thus, to obtain the desired lower
bounds, it suffices to reduce in polynomial time Cont(G) to RestContk (G). Interestingly, the lower
bounds given in Section 2 for Cont(G) hold even if we focus on Boolean CQs and the left-hand side
query belongs to GHW1. In fact, this is true, not only for guarded, but also for non-recursive and
sticky sets of TGDs. Let BoolContk (C) be the following problem: Given a Boolean CQ q ∈ GHWk ,
a Boolean CQ q′, and a set Σ ∈ C of TGDs, is it the case that q ⊆Σ q′?

From the above discussion, to establish the desired lower bounds for guarded sets of TGDs (and
also for the other classes of TGDs considered in this work), it suffices to reduce in polynomial
time BoolContk to RestContk . To this end, we introduce the so-called connecting operator, which
provides a generic reduction from BoolContk to RestContk .
Connecting operator. Consider a Boolean CQ q ∈ GHWk , a Boolean CQ q′, and a set Σ of TGDs.
Assume that q,q′ are of the form ∃ȳ

(
R1 (t̄1) ∧ · · · ∧ Rm (t̄m)

)
. The application of the connecting

operator on (q,q′, Σ) returns the triple (c(q), c(q′), c(Σ)), where
• c(q) is the query

∃ȳ∃w
(
R⋆

1 (t̄1,w) ∧ · · · ∧ R⋆
m (t̄m ,w) ∧ Aux(w,w)

)
,

where w is a new variable not in q, each R⋆
i is a new predicate, and Aux is a new binary

predicate not occurring in q, q′ or Σ.
• c(q′) is the query

∃ȳ∃w1 . . . ∃w2(k+1)
(
R⋆

1 (t̄1,w1) ∧ · · · ∧ R⋆
m (t̄m ,w1) ∧

∧

1≤i<j≤2(k+1)
Aux(wi ,w j)

)
,

where w1, . . . ,w2(k+1) are new variables not in q.
• Finally, c(Σ) = {c(τ) | τ ∈ Σ}, where for τ = ϕ (x̄ , ȳ) → ∃z̄ψ (x̄ , z̄), c(τ) is the TGD

ϕ⋆(x̄ , ȳ,w) → ∃z̄ψ⋆(x̄ , z̄,w),

where ϕ⋆(x̄ , ȳ,w) and ψ⋆(x̄ , z̄,w) are obtained from ϕ (x̄ , ȳ) and ψ (x̄ , z̄), respectively, by
replacing each atom R (x1, . . . ,xn) with R⋆(x1, . . . ,xn ,w), where w is a new variable.

Semantic Optimization of Conjunctive Queries 23

This concludes the definition of the connecting operator. A class C of sets of TGDs is closed under
connecting if, for every set Σ ∈ C, c(Σ) ∈ C. It is not difficult to see that q ⊆Σ q′ if and only if
c(q) ⊆c(Σ) c(q′). It is easy to verify that c(q) belongs to GHWk and is connected, c(Σ) is a set of
body-connected TGDs, and c(q′) is connected. However, we need to argue a bit more why c(q′)
is not semantically in GHWk under c(Σ). To this end, we need an auxiliary result, which can be
obtained from [8]. Recall that the core of a CQ q, which is unique up to variable renaming, is a CQ
q′ that is equivalent to q, i.e., q(D) = q′(D), for every database D, and there is no CQ q′′ with fewer
atoms than q′ that is equivalent to q. Recall also that a CQ q is semantically in GHWk (without
the presence of constraints) if there exists a CQ q′ ∈ GHWk that is equivalent to q. It is implicit
in [8] that a CQ q is semantically in GHWk if and only if the core of q belongs to GHWk . Actually,
the latter is shown only for k = 1, i.e., for acyclic CQs (see Proposition 8.4 in [8]), but it is an easy
exercise to extend the proof to any k ≥ 1. Now, observe that, by construction, the core of c(q′)
contains a clique-query over 2(k + 1) variables in which only the binary predicate Aux is involved.
This implies that c(q′) is not semantically in GHWk since the clique-query over n variables belongs
to GHW ⌈ n2 ⌉ but not to GHW ⌈ n2 ⌉−1. Since the predicate Aux does not occur in c(Σ), we get that c(q′)
is not semantically in GHWk under c(Σ). From the above discussion, it is clear that the connecting
operator provides a polynomial time reduction from BoolContk to RestContk , for every class C of
sets of TGDs that is closed under connecting. We can then easily show the following result:

Proposition 5.9. For a class C of sets of TGDs that is closed under connecting, and BoolContk (C)
is C-hard, where C is a complexity class closed under polynomial time reductions, then SemGHWk (C)
is also C-hard.

Proof. It suffices to show that BoolContk (C) can be reduced in polynomial time to SemGHWk (C).
Since C is closed under connecting, the connecting operator provides a polynomial time reduction
from BoolContk (C) to RestContk (C). Moreover, by Proposition 4.2, we know that RestContk (C)
can be reduced in linear time to SemGHWk (C). By composing these two reductions, we get a
polynomial time reduction from BoolContk (C) to SemGHWk (C), and the claim follows.

Back to guardedness. It is clear that the class of guarded sets of TGDs is closed under connecting.
Thus, the lower bounds for SemGHWk (G) stated in Theorem 5.6 follow from Proposition 2.6 and
Proposition 5.9. Note that, although Proposition 2.6 refers to Cont(G), the lower bounds hold for
BoolContk (G); this can be observed after a careful inspection of the hardness proofs in [11].

As mentioned in Section 2, a key subclass of guarded sets of TGDs is the class of linear TGDs
(L), i.e., TGDs whose body consists of a single atom, which in turn subsumes the class of inclusion
dependencies (ID). By exploiting the non-deterministic procedure employed for SemGHWk (G),
and Proposition 2.7, we conclude that SemGHWk (C), where C ∈ {L, ID}, is in PSpace, and in
NP if the arity of the schema is fixed. Moreover, since, by construction, L and ID are closed under
connecting, we get matching lower bounds, and the next complexity result follows:

Theorem 5.10. SemGHWk (C), whereC ∈ {L, ID}, is PSpace-complete, and it becomes NP-complete
if the arity of the schema is fixed.

6 UCQ REWRITABILITY
Although the GHW-preserving chase criterion was very useful for solving SemGHWk (G), it is of
little use for non-recursive and sticky sets of TGDs. As illustrated in the following example, neither
NR nor S has GHW-preserving chase:

Example 6.1. Consider the CQ and the TGD
q = P (x1) ∧ · · · ∧ P (xn) τ = P (x), P (y) → R (x ,y),

24 Pablo Barceló, Diego Figueira, Georg Gottlob, and Andreas Pieris

where q ∈ GHW1, and {τ } is non-recursive and sticky, but not guarded. In chase(q, {τ }) the
predicate R holds all the pairs that can be formed using the nulls ⊥x1 , . . . ,⊥xn . More precisely,

chase(q, Σ) = D[q] ∪
⋃

1≤i, j≤n
{R (⊥xi ,⊥x j)}.

Therefore, even though q is acyclic, chase(q, {τ }) is highly cyclic; in fact, the generalized hyper-
treewidth of chase(q, {τ }) is ⌈n2 ⌉.

Since the methods devised in Section 5 cannot be used for non-recursive and sticky sets of TGDs,
new techniques must be developed. Interestingly, NR and S share an important property, which
turned out to be very useful for our purposes, that is, UCQ rewritability. A union of conjunctive
queries (UCQ) over a schema σ is an expression

Q (x̄) = qi (x̄) ∨ · · · ∨ qn (x̄)
where each qi is a CQ over σ . The evaluation of Q over an instance I , denoted Q (I), is defined as⋃

1≤i≤n qi (I). The formal definition of UCQ rewritability follows:

Definition 6.2. (UCQ Rewritability) We say that a class C of sets of TGDs is UCQ rewritable if,
for every CQ q and Σ ∈ C, both over a schema σ , we can construct a UCQ Q over σ such that, for
every (finite or infinite) CQ q′, q′ ⊆Σ q if and only if q′ ⊆ Q .

The above semantic property simply says that the problem of CQ containment under TGDs can
be reduced to the problem of checking whether a CQ is contained into a UCQ. Since the latter is
decidable (in fact, it is NP-complete) [39], we get that:

Proposition 6.3. For a class C of sets of TGDs that is UCQ rewritable, Cont(C) is decidable.

Let us stress that the reduction to the UCQ containment problem provided by UCQ rewritability
depends only on the right-hand side CQ and the set of TGDs, but not on the left-hand side query.
This is crucial for establishing the desirable small query property whenever we focus on sets of
TGDs that belong to a UCQ rewritable class. At this point, let us clarify that the class of guarded
sets of TGDs is not UCQ rewritable, which justifies our choice of a different semantic property,
that is, GHW-preserving chase, for its study. This is shown via a simple example; for clarity, we
use constants in the CQs, but the same can be shown even for constant-free queries:

Example 6.4. Consider the Boolean CQ and guarded TGD

q = P (b) and τ = R (x ,y), P (x) → P (y)

where b ∈ C. Assume that there exists a UCQ Q such that, for every Boolean CQ q′, q′ ⊆{τ } q if
and only if q′ ⊆ Q . Suppose that q′ is of the form P (a) ∧ϕ, where ϕ is a conjunction of atoms of the
form R (c,d), where c,d ∈ C. Recall that q′ ⊆ Q if and only if Q (D[q′]) , ∅. This means that Q can
check whether in D[q′] there exists a sequence of atoms R (⊥a ,⊥1),R (⊥1,⊥2), . . . ,R (⊥n−1,⊥b) of
unbounded length. However, it is well-known that this is not possible via a finite (non-recursive)
UCQ, which implies that G is not UCQ rewritable.

Let us now show the desirable small query property. For each UCQ rewritable class C of sets of
TGDs, there exists a computable function fC (·, ·) from the set of pairs (q, Σ), where q is a CQ and
Σ ∈ C, to the natural numbers, such that the following holds: For every CQ q, set Σ ∈ C, and UCQ
rewriting Q of q and Σ, the maximal size of its disjuncts is at most fC (q, Σ). The existence of the
function fC follows by the definition of UCQ rewritability. We then show the following; in the rest
of this section, we fix k ≥ 1.

Semantic Optimization of Conjunctive Queries 25

Proposition 6.5. Consider a set Σ of TGDs over a schema σ that belongs to a UCQ rewritable class
C, and a CQ q over σ . If q is semantically in GHWk under Σ, then there exists a CQ q′ ∈ GHWk over
σ , where |q′ | ≤ fC (q, Σ) · (2k + 1), such that q ≡Σ q′.

Proof. Since, by hypothesis, q is semantically in GHWk under Σ, there exists a CQ q′′ ∈ GHWk
such that q ≡Σ q′′. The fact that C is UCQ rewritable implies that there exists a UCQ Q over σ
such that, for every (finite or infinite) CQ p, p ⊆Σ q if and only if p ⊆ Q . Since q′′ ⊆Σ q, we get
that q′′ ⊆ Q . This implies that there exists a disjunct q̂(x̄) of Q such that q′′ ⊆ q̂. By Lemma 5.4,
there exists a CQ q′ ∈ GHWk such that q′′ ⊆ q′ ⊆ q̂ and |q′ | ≤ |q̂ | · (2k + 1) ≤ fC (q, Σ) · (2k + 1).
It remains to show that q ≡Σ q′. By hypothesis, q ⊆Σ q′′, and thus, q ⊆Σ q′ since q′′ ⊆ q′.

For the other direction, it suffices to show that q̂ ⊆Σ q, which immediately implies that q′ ⊆Σ q
since q′ ⊆ q̂. Towards a contradiction, assume that q̂ ⊈Σ q. This means that there exists an instance
I such that I |= Σ and q̂(I) ⊈ q(I), i.e., there is a tuple t̄ ∈ dom(I) |x̄ | such that t̄ ∈ q̂(I) and t̄ < q(I).
Without loss of generality, we assume that t̄ = (⊥x1 , . . . ,⊥xn), where x̄ = (x1, . . . ,xn) are the free
variables of q̂, with ⊥x1 , . . . ,⊥xn being nulls. Since I |= Σ, chase(I , Σ) can be homomorphically
mapped into I via a homomorphism that is the identity on dom(I), and thus, t̄ < q(chase(I , Σ));
otherwise, t̄ ∈ q(I) which contradicts the fact that t̄ < q(I). Since q̂ is a disjunct of Q , we get that
t̄ ∈ Q (I). Consider now the (possibly infinite) CQ qI obtained by converting I into a CQ. More
precisely, qI (x̄) is obtained by considering the conjunction of atoms in I , after renaming each null
⊥ into a fresh variable v (⊥), with v (⊥x) = x for each x ∈ x̄ . Clearly, ⊥(x̄) < q(chase(qI , Σ)) and
⊥(x̄) ∈ Q (D[qI]). Hence, by Lemma 2.5, qI ⊈Σ q and qI ⊆ Q . But this contradicts the fact that, for
every (finite or infinite) CQ p, p ⊆Σ q if and only if p ⊆ Q , and thus q̂ ⊆Σ q.

It is clear that Propositions 6.3 and 6.5 provide a decision procedure for SemGHWk (C) whenever
C is UCQ rewritable. More precisely, given a CQ q and a set Σ ∈ C, both over a schema σ , we can
decide whether q is semantically in GHWk under Σ as follows:

(1) Guess a CQ q′ over σ such that |q′ | ≤ fC (q, Σ) · (2k + 1).
(2) If q′ ∈ GHWk , q ⊆Σ q′ and q′ ⊆Σ q, then accept; otherwise, reject.
The next decidability result follows:

Theorem 6.6. For a class C of sets of TGDs that is UCQ rewritable, SemGHWk (C) is decidable.

6.1 Non-Recursiveness
As already said, the crucial property ofNR that we are going to exploit for solving SemGHWk (NR)
is UCQ rewritability. For a set Σ of TGDs, let bΣ be the maximum number of atoms in the body of a
TGD of Σ, and pΣ be the number of predicates occurring in Σ. The next result is implicit in [31]:9

Proposition 6.7. NR is UCQ rewritable with fNR (q, Σ) = |q | · (bΣ)pΣ .

The above result, together with Theorem 6.6, implies that SemGHWk (NR) is decidable. For
the exact complexity of the problem, we need to analyze the complexity of the non-deterministic
algorithm underlying Theorem 6.6. Observe that when the schema is fixed the function fNR is
polynomial, and therefore, Proposition 6.7 guarantees the existence of a polynomially sized CQ in
GHWk . In this case, the fact that checking whether a CQ falls in GHWk is in NP together with the
fact that Cont(NR) is in NP (by Proposition 2.8) immediately imply that SemGHWk (NR) is in NP.

Things are a bit cryptic when the schema is not fixed. In this case, fNR is exponential, and thus
we have to guess a CQ q′ of exponential size. It is clear that checking whether q′ falls in GHWk is
9Let us clarify that the work [31] does not explicitly consider the class NR. However, the rewriting algorithm proposed in
that paper works also for non-recursive sets of TGDs.

26 Pablo Barceló, Diego Figueira, Georg Gottlob, and Andreas Pieris

in NExpTime. However, the fact that Cont(NR) is in NExpTime (by Proposition 2.8) alone is not
enough to conclude that SemGHWk (NR) is also in NExpTime. We need to understand better the
complexity of the query containment algorithm for NR. Recall that given two CQs q(x̄),q′(x̄), and
a set Σ ∈ NR, by Lemma 2.5, q ⊆Σ q′ if and only if ⊥(x̄) ∈ q′(chase(q, Σ)). We know from [35] that
if ⊥(x̄) ∈ q′(chase(q, Σ)), then there exists a chase sequence

D[q] = I0
τ0, (t̄0, t̄ ′0)−−−−−−−→ I1

τ1, (t̄1, t̄ ′1)−−−−−−−→ I2 . . . In−1
τn−1, (t̄n−1, t̄ ′n−1)−−−−−−−−−−−−→ In

for D[q] and Σ, where n = |q′ | · (bΣ)O (pΣ) , such that⊥(x̄) ∈ q′(In). The query containment algorithm
for NR simply guesses such a chase sequence for D[q] and Σ, and checks whether ⊥(x̄) ∈ q′(In).
Since n is exponential, this algorithm runs in non-deterministic exponential time. Now, recall that
for SemGHWk (NR) we need to perform two containment checks where either the left-hand side
or the right-hand side query is of exponential size. But in both cases the containment algorithm
for NR runs in non-deterministic exponential time, and hence SemGHWk (NR) is in NExpTime.
The lower bounds are inherited from BoolContk (NR) since NR is closed under connecting (see
Proposition 5.9). From the above discussion we conclude that:

Theorem 6.8. SemGHWk (NR) is NExpTime-complete, even if the arity of the schema is fixed, and
it becomes NP-complete if the schema is fixed.

6.2 Stickiness
We now focus on sticky sets of TGDs. As for NR, the key property of S that we are going to use is
UCQ rewritability. For a CQ q and a set Σ of TGDs, let pq,Σ be the number of predicates occurring
in q and Σ, and aq,Σ be the maximum arity over all those predicates. The next result is from [31]:

Proposition 6.9. S is UCQ rewritable with fS (q, Σ) = pq,Σ · (aq,Σ · |q | + 1)aq,Σ .

The above result, together with Theorem 6.6, implies that SemGHWk (S) is decidable. Moreover,
Proposition 6.9 allows us to establish an optimal upper bound when the arity of the schema is fixed
since in this case the function fS is polynomial. In fact, we show that SemGHWk (S) is NP-complete
when the arity of the schema is fixed. The NP-hardness is inherited from BoolContk (S) since S
is closed under connecting (see Proposition 5.9). However, when the arity of the schema is not
fixed the picture is still foggy. In this case, the function fS is exponential, and thus, by following the
usual guess and check approach we get that SemGHWk (S) is in NExpTime, while Proposition 5.9
implies ExpTime-hardness. Summing up, our machinery based on UCQ rewritability shows that:

Theorem 6.10. SemGHWk (S) is in NExpTime and ExpTime-hard. It becomes NP-complete if the
arity of the schema is fixed.

An interesting question that comes up is whether for sticky sets of TGDs a stronger small query
property than Proposition 6.5 can be established, which guarantees the existence of a polynomially
sized equivalent CQ that falls in GHWk . It is clear that such a result would allow us to establish an
ExpTime upper bound for SemGHWk (S). At this point, one may think that this can be achieved by
showing that the function fS is actually polynomial, even if the arity of the schema is not fixed.
Unfortunately, this is not the case. There exists a CQ q and a family {Σn }n>0 of sticky sets of TGDs,
where aq,Σn = n + 2, such that fS (q, Σn) ≥ 2n . The set Σn ∈ S consists of the following TGDs; for
brevity, we write x̄ ji for the tuple of variables xi ,xi+1, . . . ,x j :

Ri (x̄
i−1
1 , z, x̄

n
i+1, z,o),Ri (x̄

i−1
1 ,o, x̄

n
i+1, z,o) → Ri−1 (x̄

i−1
1 , z, x̄

n
i+1, z,o), 1 ≤ i ≤ n,

R0 (z, . . . , z︸ ︷︷ ︸
n

, z,o) → Ans(z,o),

Semantic Optimization of Conjunctive Queries 27

while q = Ans(0, 1). Let us clarify that Σn is indeed a sticky set of TGDs since, for every TGD
τ ∈ Σn , all the variables in the body of τ appear also in the head of τ . This means that there are
no variables that are marked in Σn , which implies that stickiness is trivially satisfied. Consider
now an arbitrary (Boolean) UCQ Q such that, for every CQ q′, q′ ⊆Σn q if and only if q′ ⊆ Q (or,
equivalently, Q (D[q′]) , ∅). It is not difficult to see that the disjunct of Q that mentions only the
predicate Rn contains exactly 2n atoms. This implies that the maximal size of the disjuncts of Q is
at least 2n , i.e., fS (q, Σn) ≥ 2n , as needed. Therefore, we need a more refined property for stickiness
than UCQ rewritability, which will allow us to close the complexity of SemGHWk (S) when the
arity is not fixed (unless the problem is NExpTime-hard). This is left as an interesting open problem.

7 SEMANTIC GENERALIZED HYPETREEWIDTH UNDER EGDS
In the previous sections, we were dealing with TGDs. Let us now concentrate on EGDs. From
Lemma 2.5, and the fact that the chase under EGDs always terminates, we immediately get the
decidability of CQ containment under sets of EGDs. One might think that this allows us to solve
SemGHWk (EGD), where EGD is the class of sets of EGDs. Unfortunately, the problem is undecid-
able even for k = 1. The proof is along the lines of the proof of Theorem 4.4, which establishes the
undecidability of SemGHW1 under full TGDs, and can be found in the appendix.

At this point, we would like to clarify that the conference paper [5] provides a proof for the fact
that SemGHW1 (F) is undecidable that is simpler than the proof of Theorem 4.4. However, it is not
clear at all how the proof in [5] can be adapted to the case of EGDs. Thus, although the proof of
Theorem 4.4 is more complicated than the one given in [5], it has the advantage that it can be easily
adapted to the case of EGDs, which leads to the following undecidability result:

Theorem 7.1. SemGHW1 (EGD) is undecidable, even if we allow only unary and binary predicates.

7.1 Towards Positive Results
Theorem 7.1 brings us to the crucial question whether restricted classes of EGDs ensure the
decidability of SemGHWk . At this point, one may wonder whether the techniques developed in
the previous sections for TGDs can be applied for EGD-based classes of constraints. Unfortunately,
the situation changes dramatically even for simple EGD-based classes such as keys. Recall that a
functional dependency (FD) over a schema σ is an expression of the form R[A→B], where R/n is
a relation symbol in σ , and A,B ⊆ {1, . . . ,n}, asserting that the values of the attributes of B are
determined by the values of the attributes of A. A FD R[A→B] is called key if A ∪ B = {1, . . . ,n}.

It is not difficult to show that the techniques developed in the previous sections for TGDs cannot
be used for studying SemGHWk under EGDs. Indeed, although the notions of GHW-preserving
chase (Definition 5.1) and UCQ rewritability (Definition 6.2) can be naturally defined for EGDs, are
of little use even if we focus on keys. It is easy to show via a simple example that keys do not enjoy
the GHW-preserving chase property:

Example 7.2. Let q ∈ GHW1 be the CQ
R (x ,y) ∧ S (x ,y, z) ∧ S (x , z,w) ∧ S (x ,w,v) ∧ R (x ,v).

After applying on q the key R[1→ 2]10 we obtain the CQ
R (x ,y) ∧ S (x ,y, z) ∧ S (x , z,w) ∧ S (x ,w,y),

which clearly falls in GHW2 but not in GHW1.
It is also not hard to show that keys over unary and binary predicates are not UCQ rewritable.

This is not surprising due to the transitive nature of equality. Here is a simple example:
10For brevity, we write R[1→ 2] instead of the more formal R[{1} → {2}].

28 Pablo Barceló, Diego Figueira, Georg Gottlob, and Andreas Pieris

Example 7.3. Consider the Boolean CQs and key
q = ∃x (R (x ,x) ∧ P (x)) and τ = R[1→ 2].

Assume there exists a UCQQ such thatq′ ⊆{τ } q if and only ifq′ ⊆ Q . Thus, the latter holds for every
Boolean CQq′ of the form ∃x̄ (R (x ,x)∧ϕ∧P (y)), where x ,y ∈ x̄ andϕ is a conjunction of atoms that
use only the predicate R and variables from x̄ . Recall that q′ ⊆ Q if and only ifQ (D[q′]) , ∅. Hence,
Q checks whether in D[q′] there is a sequence of atoms R (⊥x ,⊥1),R (⊥1,⊥2), . . . ,R (⊥n−1,⊥y) of
unbounded length. However, this can only be done via a recursive query, and thus, it is not possible
via a finite UCQ, which implies that keys are not UCQ rewritable.

From the above discussion, it is clear that we cannot reuse the techniques introduced in Sections 5
and 6 for EGD-based classes such as keys. However, Example 7.2 leaves some room for using the
GHW-preserving chase property if we focus on schemas consisting of unary and binary predicates.
Indeed, the example relies on the fact that both binary and ternary predicates are mentioned in the
CQ. Interestingly, assuming schemas with unary and binary predicates only, we can show that the
class of keys, denoted K, enjoys the GHW-preserving chase property as long as we focus on CQs
from GHW1, i.e., acyclic CQs. In other words, K has acyclicity-preserving chase, which is defined in
the obvious way; roughly, given q ∈ GHW1 and Σ ∈ K, chase(q, Σ) is acyclic.

Proposition 7.4. For schemas with unary and binary predicates, K has acyclicity-preserving chase.

Proof. Consider a CQ q ∈ GHW1 over unary and binary predicates. It suffices to show that, after
applying a key R[1→2] on q, the obtained query q′ is in GHW1. Note that over unary and binary
predicates, GHW1 is equivalent to acyclicity of the underlying undirected graph of q, without
self-loops nor parallel edges. Note that q′ is obtained from q by collapsing two nodes at distance
≤ 2 of this graph. Since acyclicity is preserved by this operation on graphs the claim follows.

Having the above result in place, we can then establish a small query property for K, similar
to the one given in Proposition 5.3 for classes of TGDs that have GHW-preserving chase. This,
together with the fact that CQ containment under K is in NP, shows that checking whether a CQ
is semantically acyclic under a set of keys (assuming unary and binary predicates) is in NP. A
matching lower bound follows from [19], which shows that the problem of checking whether a
Boolean CQ over a single binary relation is equivalent to an acyclic one is NP-hard. Then:

Theorem 7.5. Assuming schemas with unary and binary predicates, SemGHW1 (K) is NP-complete.

Can we generalize Proposition 7.4 to queries from GHWk , for any k ≥ 1? In other words, can we
show that K has GHW-preserving chase, always assuming unary and binary predicates, without
focussing on acyclic CQs? Such a generalization of Proposition 7.4 will immediately show that
Theorem 7.5 extends to SemGHWk (K), for every k ≥ 1. Unfortunately, as shown by the following
example, this is not the case. Actually, we can show that the chase can arbitrarily increase the
generalized hypertreewidth by using one key only. This shows that keys behave in a fundamentally
different way when we focus on acyclic CQs and when we consider CQs from GHWk , for k > 1.

Example 7.6. Consider the schema σ = {R/2, S/2}, and let Σ = {R[1→2]}. For every n ≥ 2, we
can construct a CQ qn ∈ GHW2, while the instance chase(qn , Σ) belongs to GHW ⌈ n2 ⌉ . The CQ qn
is defined as the one in Figure 5. It is clear that chase(qn , Σ) is of the form

{S (⊥i, j ,⊥i+1, j) | i ∈ {1, . . . ,n − 1} and j ∈ {1, . . . ,n}}
∪ {R (⊥i, j ,⊥i, j+1) | i ∈ {1, . . . ,n} and j ∈ {1, . . . ,n − 1}}.

It is easy to verify that chase(qn , Σ) is of width at least ⌈n2 ⌉ since it corresponds to an n × n grid.

Semantic Optimization of Conjunctive Queries 29

R

S S

R

R

S S

R

R

S

R

R

S S

R

R

S

R

R

S

R

R

S

RR

R
. . .

z }| {

R

S S

R

S

R
R

R

S S
R

R

S

R

R

S

R

R

S

RR

R
. . .

R

S S
R

R

S

R

R

S

R

R

S

RR

R
. . .

. . .
|

{z
}

n

n

q2

q3

qn

Fig. 5. Depiction of q2, q3, qn .

Assuming unary and binary predicates, can we show that SemGHWk (K), for k > 1, is decidable
by exploiting different techniques than the ones employed so far? It turned out that this is a highly
non-trivial question, which we affirmatively answer in the next section via a rather involved proof.
Such a positive result may have interesting implications to graph databases and description logics,
where only unary and binary predicates are employed. In fact, the main result of the next section
has been already used in [4], which studies similar problems concerning description logics.

8 SEMANTIC GENERALIZED HYPETREEWIDTH UNDER KEYS
The goal of this section is to show that SemGHWk (K), for k > 1, is decidable assuming schemas
with unary and binary predicates only. Actually, for technical clarity, we exclude unary predicates,
and we also assume that binary relations have at most one key, which in turn allows us to focus on
keys of the form R[1→ 2], i.e., always the first attribute functionally determines the second one.
We refer to this kind of schemas as binary. However, our decidability result can be easily extended
to the general case, where unary predicates can be used, and binary predicates can have more than
one key. The main result of this section follows; henceforth, we fix k > 1:

Theorem 8.1. For binary schemas, SemGHWk (K) is decidable in elementary time.

Before we present the proof of this theorem, we need to introduce some terminology. For clarity,
we are going to focus on Boolean CQs (BCQ), but the proof can be easily extended to non-Boolean
CQs. Consider two BCQs q and p. We write q −→ p for the fact that there is a homomorphism from
q to p, and we write h : q −→ p to say that h is a homomorphism that witnesses the fact q −→ p. We
call q and p homomorphically equivalent (or simply hom-equivalent) if q −→ p and p −→ q. We say
that q and p are isomorphic, denoted by q � p, if there are h : q −→ p and д : p −→ q such that h is the
inverse of д, i.e., if both h ◦ д and д ◦ h are the identity. The core of a BCQ q, denoted by core(q), is
a subquery p of q of minimal size that is homomorphically equivalent to q, i.e., q ≡ p.

Recall that chase(q, Σ), where q is a BCQ and Σ a set of keys, refers to the instance chase(D[q], Σ),
which can be naturally seen as a BCQ: simply consider the conjunction of the atoms occurring in
chase(D[q], Σ), and then rename each null ⊥ into an existentially quantified variable v (⊥). Notice
that in this case chase(q, Σ) is always finite. We write q ⇒Σ p to denote that D[p] can be obtained
from D[q] via a single chase step, i.e., D[p] is the result of one application of a key of Σ that is
applicable to D[q]. We write⇒∗Σ for the reflexive-transitive closure of⇒Σ. Note that each step of
the chase q ⇒Σ p induces a homomorphism h that maps q to p by identifying the variables affected
by the chase. This extends to a sequence of chase steps by composition of homomorphisms. For any

30 Pablo Barceló, Diego Figueira, Georg Gottlob, and Andreas Pieris

q ⇒∗Σ p we refer to its induced homomorphism h that maps q to p as the provenance homomorphism,
since it tracks the set of variables that give rise to any variable of the chased query.

8.1 General Structure of the Proof
A bird’s eye view of the proof of Theorem 8.1 is as follows:
• We first characterize the class of BCQs that are semantically in GHWk in terms of the

existence of certain BCQs. In fact, we show that a BCQ q is semantically in GHWk if and
only if there is a BCQ in GHWk such that the core of its chase is isomorphic to the core of
the chase of q (Proposition 8.2).
• We then check for the existence of such a BCQ via a Monadic Second-Order (MSO) sentence by

relying on the fact that satisfiability of MSO sentences over databases of bounded generalized
hypertreewidth is decidable (Proposition 8.3).

Let us give more details for each of the above steps. The first one is easy. Consider a BCQ q and
a set Σ of keys. We first define the set of BCQs

Wq,Σ = {p | core(chase(p, Σ)) � core(chase(q, Σ))},
which simply collects all the BCQs such that the core of their chase is isomorphic to the core of the
chase of q. We can then show the following:

Proposition 8.2. Consider a BCQ q and a set Σ of keys. The following are equivalent:
(1) q is semantically in GHWk under Σ.
(2) Wq,Σ ∩ GHWk , ∅.

Proof. For (1) ⇒ (2), by hypothesis, there exists a BCQ p ∈ GHWk such that q ≡Σ p, and thus,
chase(q, Σ) ≡ chase(p, Σ) from Lemma 2.5. It is well-known that if two BCQs are hom-equivalent,
then their cores are isomorphic (see, e.g., [32]). Hence, core(chase(p, Σ)) � core(chase(q, Σ)), which
implies that p ∈ Wq,Σ ∩ GHWk , ∅, as needed. For (2) ⇒ (1), by hypothesis, there exists a BCQ
p ∈ Wq,Σ ∩ GHWk . By Lemma 2.5, we conclude that q ≡Σ p, and the claim follows.

The second main step of the proof of Theorem 8.1 is to show that the problem of deciding
whether Wq,Σ ∩ GHWk , ∅ can be reduced to the satisfiability problem of MSO sentences over
databases that belong to GHWk . In particular, we want to show the following:

Proposition 8.3. Consider a BCQ q and a set Σ of keys. There is an MSO-definable set Mq,Σ of
BCQs such that the following are equivalent:

(1) Wq,Σ ∩ GHWk , ∅;
(2) Mq,Σ ∩ GHWk , ∅.

Furthermore, Mq,Σ is definable via an MSO sentence ξq,Σ that can be computed in single exponential
time from q and Σ, and has a fixed number of quantifier alternations.

The combination of Propositions 8.2 and 8.3 imply Theorem 8.1. Indeed, since satisfiability of MSO
is decidable on databases of bounded generalized hypertreewidth (by a simple adaptation of the
same result on bounded treewidth databases [40]), we would therefore obtain a decision procedure
for SemGHWk (K). This procedure takes elementary time since the sentence ξq,Σ provided by
Proposition 8.3 can be computed in exponential time, and it has a fixed number ℓ ≥ 1 of quantifier
alternations (i.e., ℓ is independent of q and Σ), and hence the problem of checking whether ξq,Σ has
a model in GHWk can be solved in ℓ-ExpTime [40].

At this point, one might wonder whether Proposition 8.3 could be established by simply showing
that the set Wq,Σ is MSO-definable, that is, by showing that there exists an effective MSO sentence

Semantic Optimization of Conjunctive Queries 31

.
. . . .n m t

pn,m qt

Fig. 6. Counterexample of Lemma 8.4.

φ such that p ∈ GHWk belongs to Wq,Σ iff D[p] is a model of φ. Unfortunately, as we show below,
this is not possible since the pre-image of the chase is, in general, not MSO-definable.

Lemma 8.4. For a BCQ q and a set of keys Σ, {p | chase(p, Σ) � q} is not MSO-definable.

Proof. Let qt andpn,m , for t ,n,m ≥ 1, be BCQs as defined in Figure 6 over a schema consisting of
a single binary relation R. That is,pn,m consists of two “nested” R-cycles of sizen andm, wheren and
m refers to the number of edges, and qt is a single R-cycle of size t . Let Σ = {R[1→2]}. Notice that
for n > m we have that pn,m ⇒∗Σ pn−m,m and chase(pn,n , Σ) = qn . Thus, chase(pn,m , Σ) essentially
computes the greatest common divisor of n andm, GCD(n,m), through the Euclidean algorithm,
i.e., chase(pn,m , Σ) � qGCD(n,m) . Suppose now, for the sake of contradiction, that there exists an
MSO sentence ϕ of quantifier rank ℓ such that, for every BCQ q, it is the case that D[q] |= ϕ iff
chase(q, Σ) = q1, where q1 corresponds to a singleton node with a loop, that is, the query ∃x R (x ,x).
For two BCQs q and q′, we write q ≡ℓ q′ to denote that q and q′ are indistinguishable by MSO
sentences of quantifier rank ℓ. It is well-known that the equivalence class ≡ℓ is of finite index
(cf., [34]). It is not hard to prove, using a standard argument based on Ehrenfeucht-Fraïssé games,
that if qn ≡ℓ qn′ and qm ≡ℓ qm′ , where n,n′,m,m′ ≥ 1, then also pn,m ≡ℓ pn′,m′ . Let si be the i-th
smallest positive prime number. Since ≡ℓ is of finite index, there must be i and j with i < j such
that qsi ≡ℓ qsj . Therefore, D[psj , (sj−1)!] |= ϕ iff D[psi , (sj−1)!] |= ϕ, which is in contradiction with our
assumption since GCD(pj , (pj − 1)!) = 1 but GCD(pi , (pj − 1)!) , 1.

Since the BCQs in the proof above are all cores, we also have that:

Corollary 8.5. For a BCQ q and a set of keys Σ, Wq,Σ is not MSO-definable.

In view of the above negative result, the statement of Proposition 8.3 makes now more sense. To
prove it, we will define the set Mq,Σ as an MSO-definable superset of Wq,Σ in such a way that every
BCQ p ∈ Mq,Σ can be modified into a BCQ p̂, without increasing its width, such that p̂ ∈ Wq,Σ. In
this way, we obtain Proposition 8.3, as illustrated in Figure 7. We call p̂ the “expansion” of p, since
it consists of attaching to each variable of p a query of width 2 (at most).

p p̂

30 Pablo Barceló, Diego Figueira, Georg Go�lob, and Andreas Pieris

Fig. 6. Counterexample of Lemma 8.4.

The second main step of the proof of Theorem 8.1 is to show that the problem of deciding
whether Wq,� \ GHWk , ? can be reduced to the satis�ability problem of MSO formulas over
databases that belong to GHWk . Recall that chase(q, �) can be computed in polynomial time, while
the core of a CQ can be computed in exponential time. Thus, core(chase(q, �)) is of polynomial
size, while it can be computed in exponential time. Hence, we can assume that the input query q is
already a chase and a core. We want to show the following:Diego:

where are
we using
this?

Diego:
where are
we using
this? P���������� 8.3. For every BCQ q and set � of dependencies, there is a set Mq,� ✓ BCQ, de�nable

with an MSO sentence �q,� with a �xed number of quanti�er alternations, such that, for every k � 2
the following are equivalent:

(1) Wq,� \ GHWk , ?;
(2) Mq,� \ GHWk , ?.

It is clear that Propositions 8.2 and 8.3 imply Theorem 8.1. In fact, since satis�ability of MSO
is decidable on databases of bounded generalized hypertreewidth (by a simple adaptation of the
same result on bounded treewidth databases [37]), we would therefore obtain a decision procedure
for SemGHWk (K). This procedure takes elementary time since the sentence �q,� provided by
Proposition 8.3 can be computed in polynomial time and it has a �xed number ` � 1 of quanti�er
alternations (i.e., ` is independent of q and �), and hence the problem of checking if �q,� has a
model in GHWk can be solved in `-E��T��� [37].

At this point, one might expect that Proposition 8.3 is established by simply showing that the set
Wq,� is MSO-de�nable, i.e., there exists an MSO sentence � such that p 2 GHWk belongs to Wq,�
i� D[p] is a model of �. Unfortunately, as we show below, this is not possible since the pre-image
of the chase is, in general, not MSO-de�nable.

L���� 8.4. For a BCQ q and a set of keys �, {p | chase(p, �) � q} is not MSO-de�nable.

P����. Let qt andpn,m , for t ,n,m � 1, be BCQs as de�ned in Figure 6 over a schema consisting of
a single binary relation R. That is,pn,m consists of two “nested” R-cycles of sizen andm, wheren and
m refers to the number of edges, and qt is a single R-cycle of size t . Let � = {R[1!2]}. Notice that
for n > m we have that pn,m)⇤� pn�m,m and chase(pn,n , �) = qn . Thus, chase(pn,m , �) essentially
computes the greatest common divisor of n andm, GCD(n,m), through the Euclidean algorithm,
i.e., chase(pn,m , �) � qGCD(n,m) . Suppose now, for the sake of contradiction, that there exists an
MSO sentence � of quanti�er rank ` such that, for every BCQ q, it is the case that D[q] |= � i�
chase(q, �) = q1, where q1 corresponds to a singleton node with a loop, that is, the query 9x R (x ,x).
For two BCQs q and q0, we write q ⌘` q0 to denote that q and q0 are indistinguishable by MSO
sentences of quanti�er rank `. It is well-known that the equivalence class ⌘` is of �nite index
(cf., [31]). It is not hard to prove, using a standard argument based on Ehrenfeucht-Fraïssé games,
that if qn ⌘` qn0 and qm ⌘` qm0 , where n,n0,m,m0 � 1, then also pn,m ⌘` pn0,m0 . Let si be the i-th
smallest positive prime number. Since ⌘` is of �nite index, there must be i and j with i < j such

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2019.

30 Pablo Barceló, Diego Figueira, Georg Go�lob, and Andreas Pieris

Fig. 6. Counterexample of Lemma 8.4.

The second main step of the proof of Theorem 8.1 is to show that the problem of deciding
whether Wq,� \ GHWk , ? can be reduced to the satis�ability problem of MSO formulas over
databases that belong to GHWk . Recall that chase(q, �) can be computed in polynomial time, while
the core of a CQ can be computed in exponential time. Thus, core(chase(q, �)) is of polynomial
size, while it can be computed in exponential time. Hence, we can assume that the input query q is
already a chase and a core. We want to show the following:Diego:

where are
we using
this?

Diego:
where are
we using
this? P���������� 8.3. For every BCQ q and set � of dependencies, there is a set Mq,� ✓ BCQ, de�nable

with an MSO sentence �q,� with a �xed number of quanti�er alternations, such that, for every k � 2
the following are equivalent:

(1) Wq,� \ GHWk , ?;
(2) Mq,� \ GHWk , ?.

It is clear that Propositions 8.2 and 8.3 imply Theorem 8.1. In fact, since satis�ability of MSO
is decidable on databases of bounded generalized hypertreewidth (by a simple adaptation of the
same result on bounded treewidth databases [37]), we would therefore obtain a decision procedure
for SemGHWk (K). This procedure takes elementary time since the sentence �q,� provided by
Proposition 8.3 can be computed in polynomial time and it has a �xed number ` � 1 of quanti�er
alternations (i.e., ` is independent of q and �), and hence the problem of checking if �q,� has a
model in GHWk can be solved in `-E��T��� [37].

At this point, one might expect that Proposition 8.3 is established by simply showing that the set
Wq,� is MSO-de�nable, i.e., there exists an MSO sentence � such that p 2 GHWk belongs to Wq,�
i� D[p] is a model of �. Unfortunately, as we show below, this is not possible since the pre-image
of the chase is, in general, not MSO-de�nable.

L���� 8.4. For a BCQ q and a set of keys �, {p | chase(p, �) � q} is not MSO-de�nable.

P����. Let qt andpn,m , for t ,n,m � 1, be BCQs as de�ned in Figure 6 over a schema consisting of
a single binary relation R. That is,pn,m consists of two “nested” R-cycles of sizen andm, wheren and
m refers to the number of edges, and qt is a single R-cycle of size t . Let � = {R[1!2]}. Notice that
for n > m we have that pn,m)⇤� pn�m,m and chase(pn,n , �) = qn . Thus, chase(pn,m , �) essentially
computes the greatest common divisor of n andm, GCD(n,m), through the Euclidean algorithm,
i.e., chase(pn,m , �) � qGCD(n,m) . Suppose now, for the sake of contradiction, that there exists an
MSO sentence � of quanti�er rank ` such that, for every BCQ q, it is the case that D[q] |= � i�
chase(q, �) = q1, where q1 corresponds to a singleton node with a loop, that is, the query 9x R (x ,x).
For two BCQs q and q0, we write q ⌘` q0 to denote that q and q0 are indistinguishable by MSO
sentences of quanti�er rank `. It is well-known that the equivalence class ⌘` is of �nite index
(cf., [31]). It is not hard to prove, using a standard argument based on Ehrenfeucht-Fraïssé games,
that if qn ⌘` qn0 and qm ⌘` qm0 , where n,n0,m,m0 � 1, then also pn,m ⌘` pn0,m0 . Let si be the i-th
smallest positive prime number. Since ⌘` is of �nite index, there must be i and j with i < j such

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2019.

30 Pablo Barceló, Diego Figueira, Georg Go�lob, and Andreas Pieris

Fig. 6. Counterexample of Lemma 8.4.

The second main step of the proof of Theorem 8.1 is to show that the problem of deciding
whether Wq,� \ GHWk , ? can be reduced to the satis�ability problem of MSO formulas over
databases that belong to GHWk . Recall that chase(q, �) can be computed in polynomial time, while
the core of a CQ can be computed in exponential time. Thus, core(chase(q, �)) is of polynomial
size, while it can be computed in exponential time. Hence, we can assume that the input query q is
already a chase and a core. We want to show the following:Diego:

where are
we using
this?

Diego:
where are
we using
this? P���������� 8.3. For every BCQ q and set � of dependencies, there is a set Mq,� ✓ BCQ, de�nable

with an MSO sentence �q,� with a �xed number of quanti�er alternations, such that, for every k � 2
the following are equivalent:

(1) Wq,� \ GHWk , ?;
(2) Mq,� \ GHWk , ?.

It is clear that Propositions 8.2 and 8.3 imply Theorem 8.1. In fact, since satis�ability of MSO
is decidable on databases of bounded generalized hypertreewidth (by a simple adaptation of the
same result on bounded treewidth databases [37]), we would therefore obtain a decision procedure
for SemGHWk (K). This procedure takes elementary time since the sentence �q,� provided by
Proposition 8.3 can be computed in polynomial time and it has a �xed number ` � 1 of quanti�er
alternations (i.e., ` is independent of q and �), and hence the problem of checking if �q,� has a
model in GHWk can be solved in `-E��T��� [37].

At this point, one might expect that Proposition 8.3 is established by simply showing that the set
Wq,� is MSO-de�nable, i.e., there exists an MSO sentence � such that p 2 GHWk belongs to Wq,�
i� D[p] is a model of �. Unfortunately, as we show below, this is not possible since the pre-image
of the chase is, in general, not MSO-de�nable.

L���� 8.4. For a BCQ q and a set of keys �, {p | chase(p, �) � q} is not MSO-de�nable.

P����. Let qt andpn,m , for t ,n,m � 1, be BCQs as de�ned in Figure 6 over a schema consisting of
a single binary relation R. That is,pn,m consists of two “nested” R-cycles of sizen andm, wheren and
m refers to the number of edges, and qt is a single R-cycle of size t . Let � = {R[1!2]}. Notice that
for n > m we have that pn,m)⇤� pn�m,m and chase(pn,n , �) = qn . Thus, chase(pn,m , �) essentially
computes the greatest common divisor of n andm, GCD(n,m), through the Euclidean algorithm,
i.e., chase(pn,m , �) � qGCD(n,m) . Suppose now, for the sake of contradiction, that there exists an
MSO sentence � of quanti�er rank ` such that, for every BCQ q, it is the case that D[q] |= � i�
chase(q, �) = q1, where q1 corresponds to a singleton node with a loop, that is, the query 9x R (x ,x).
For two BCQs q and q0, we write q ⌘` q0 to denote that q and q0 are indistinguishable by MSO
sentences of quanti�er rank `. It is well-known that the equivalence class ⌘` is of �nite index
(cf., [31]). It is not hard to prove, using a standard argument based on Ehrenfeucht-Fraïssé games,
that if qn ⌘` qn0 and qm ⌘` qm0 , where n,n0,m,m0 � 1, then also pn,m ⌘` pn0,m0 . Let si be the i-th
smallest positive prime number. Since ⌘` is of �nite index, there must be i and j with i < j such

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2019.

Fig. 7. Basic idea of the proof of Proposition 8.3.

Fix a BCQ q and a set Σ of keys. In the rest of the section, we define the expansion of a BCQ
(Section 8.2) in a way that preserves the width, we define Mq,Σ (Section 8.3), we show that Wq,Σ ⊆

32 Pablo Barceló, Diego Figueira, Georg Gottlob, and Andreas Pieris

Mq,Σ (Section 8.4), and we show that the expansion of every query from Mq,Σ belongs to Wq,Σ (also
in Section 8.4). We conclude, in Section 8.5, with a brief reminder of how all the pieces fit together to
prove Theorem 8.1. Recall that whenever we focus on binary predicates, we can naturally represent
CQs as directed edge-labeled graphs. Hence, a ‘node’ of a BCQ p is simply a variable in p, and an
‘edge’ x R−→ y of p is an atom R (x ,y) in p. Moreover, we write p |Σ for the BCQ obtained by restricting
p to the atoms that have a relation name occurring in Σ.

8.2 The Expansion of a CQ
A Σ-cycle of a BCQ p is a subquery p ′ ⊆ p |Σ consisting of a directed simple cycle over the relations
of Σ. Similarly, a Σ-path of p is a subquery induced by a directed simple path in p |Σ. Given a Σ-cycle
C of p, a node x of p in the same strongly connected component (SCC) as C , and a (possibly empty)
simple Σ-path π of p from x to a node of C , let Px,π ,C be the query π ∪C , where all variables but x
are renamed to fresh variables. We call Px,π ,C a petal, and we say that a variable y , x of Px,π ,C is
a “copy” of a variable y ′ of π ∪C if y was the result of renaming y ′ to y. The flower decomposition
(w.r.t. Σ) of (p,x) is the union of all Px,π ,C for all Σ-paths π of q, and Σ-cycles C of q in the SCC of
x ; we illustrated this notion in Figure 8. We call x the root of the flower decomposition.

x x
…

q: flower decomposition of q, x:

Fig. 8. Example of flower decomposition with root x (not all petals are depicted). Variables with the same
color indicate copies of the same variable of p. Different styles of arrows correspond to different relations.

We establish a useful technical lemma concerning the notion of flower decomposition.

Lemma 8.6. Consider a BCQ p = p |Σ that consists of one strongly connected component, let x be a
node of p, and let p ′ be the flower decomposition of (p,x). Then:
1. p ′ ∈ GHW2.
2. p ′ ⇒∗Σ p with a provenance homomorphism that maps the variable x of p ′ to the variable x of p,

and every variable y , x of p ′ to the variable y ′ of p, where y is the copy of y ′.

Proof. Point 1 is trivial from the simple shape of the query: a bunch of lassos with one common
vertex (in particular, a pseudotree).

For point 2, let C1, . . . ,Cn be the set of all simple cycles of p, such that C1 contains x , and for
every i > 1 we have that Ci contains a variable from C1 ∪ · · · ∪ Ci−1. We prove by induction
that, for every i ∈ [n], p ′i ⇒∗Σ pi , where pi is the subquery C1 ∪ · · · ∪Ci of p, and p ′i is the flower
decomposition of (pi ,x). The base case is straightforward. For the inductive case i > 1, let Ci be a
simple cycle of p, and let {x1, · · · ,xm } be the (non-empty) set of variables of Ci that appear also in
C1 ∪ · · · ∪Ci−1. For every j ∈ [m], let πj be a simple path of pi−1 from x to x j . Observe that since,
by inductive hypothesis, p ′i−1 ⇒∗Σ pi−1, we have p ′i−1 ∪

⋃
j ∈[m] Px,πj ,Ci ⇒∗Σ pi−1 ∪⋃

j ∈[m] Px,πj ,Ci . It
is not hard to see that pi−1 ∪⋃

j ∈[m] Px,πj ,Ci ⇒∗Σ pi , since every πj assures that the copy of x j in
Px,πj ,Ci is “glued” to the variable x j of pi−1. From this it follows that p ′i ⇒∗Σ pi , as needed.

Consider two BCQs p,p ′ such that h : p ′ → p. The expansion (w.r.t. h and Σ) of p ′ is the BCQ p̂ ′
obtained by attaching the flower decomposition (w.r.t. Σ) of (p,h(x)) to every variable x of p ′. Note

Semantic Optimization of Conjunctive Queries 33

that if p ′ has width 1, then p̂ ′ has width at most 2, and if p ′ has width k > 1, then p̂ ′ has width k .
The homomorphism h can be canonically extended to a homomorphism ĥ : p̂ ′ → p, as shown in
Figure 9. We finally say that (p̂ ′, ĥ) is the Σ-expansion of (p ′,h).

32 Pablo Barceló, Diego Figueira, Georg Go�lob, and Andreas Pieris

2. The �ower decomposition p of q,x is so that p)⇤� q with a provenance homomorphisms which
maps variable x of p to variable x of p.

P����. Point 1 is trivial from the simple shape of the query: a bunch of lassos with one common
vertex (in particular a pseudotree).

For point 2, let C1, . . . ,Cn be the set of all simple cycles of q, such that C1 contains x and for
every i > 1 we have that Ci contains a variable from C1 [· · · [Ci�1. We prove by induction that
for every i 2 [n] we have pi)⇤� qi , where qi is the subqueryC1 [· · · [Ci of q, and pi is the �ower
decomposition of qi ,x .

The base case is straightforward. For the inductive case i > 1, let Ci be a simple cycle of q and
let {x1, · · · ,xm } be the (non-empty) set of variables of Ci which appear also in C1 [· · · [Ci�1. For
every j 2 [m] let �j be a simple path of qi�1 from x to x j . Observe that since by inductive hypothesis
pi�1)⇤� qi�1, we have pi�1 [S

j 2[m] Px,�j ,Ci)⇤� qi�1 [S
j 2[m] Px,�j ,Ci . It is not hard to see that

qi�1 [S
j 2[m] Px,�j ,Ci)⇤� qi , since every �j assures that the copy of x j in Px,�j ,Ci is ‘glued’ to the

variable x j of qi�1. From this it follows that pi)⇤� qi .

Given a homomorphism between BCQ h : p ! q let us de�ne the expansion p̂ of p as the result
of attaching the �ower decomposition of q,h(x) to every variable x of p. Note that if p has width 1,Diego:

again add
example

Diego:
again add
example then p̂ has width at most 2; and if p has width k � 2, then p̂ has width k . Given p,q,h as before, h

can be canonically extended to a homomorphism ĥ : p̂ ! q, as shown in Figure 9. We then say that

Fig. 9. caption

p̂, ĥ is the expansion of p,h.

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2019.

32 Pablo Barceló, Diego Figueira, Georg Go�lob, and Andreas Pieris

2. The �ower decomposition p of q,x is so that p)⇤� q with a provenance homomorphisms which
maps variable x of p to variable x of p.

P����. Point 1 is trivial from the simple shape of the query: a bunch of lassos with one common
vertex (in particular a pseudotree).

For point 2, let C1, . . . ,Cn be the set of all simple cycles of q, such that C1 contains x and for
every i > 1 we have that Ci contains a variable from C1 [· · · [Ci�1. We prove by induction that
for every i 2 [n] we have pi)⇤� qi , where qi is the subqueryC1 [· · · [Ci of q, and pi is the �ower
decomposition of qi ,x .

The base case is straightforward. For the inductive case i > 1, let Ci be a simple cycle of q and
let {x1, · · · ,xm } be the (non-empty) set of variables of Ci which appear also in C1 [· · · [Ci�1. For
every j 2 [m] let �j be a simple path of qi�1 from x to x j . Observe that since by inductive hypothesis
pi�1)⇤� qi�1, we have pi�1 [S

j 2[m] Px,�j ,Ci)⇤� qi�1 [S
j 2[m] Px,�j ,Ci . It is not hard to see that

qi�1 [S
j 2[m] Px,�j ,Ci)⇤� qi , since every �j assures that the copy of x j in Px,�j ,Ci is ‘glued’ to the

variable x j of qi�1. From this it follows that pi)⇤� qi .

Given a homomorphism between BCQ h : p ! q let us de�ne the expansion p̂ of p as the result
of attaching the �ower decomposition of q,h(x) to every variable x of p. Note that if p has width 1,Diego:

again add
example

Diego:
again add
example then p̂ has width at most 2; and if p has width k � 2, then p̂ has width k . Given p,q,h as before, h

can be canonically extended to a homomorphism ĥ : p̂ ! q, as shown in Figure 9. We then say that

Fig. 9. caption

p̂, ĥ is the expansion of p,h.

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2019.

32 Pablo Barceló, Diego Figueira, Georg Go�lob, and Andreas Pieris

2. The �ower decomposition p of q,x is so that p)⇤� q with a provenance homomorphisms which
maps variable x of p to variable x of p.

P����. Point 1 is trivial from the simple shape of the query: a bunch of lassos with one common
vertex (in particular a pseudotree).

For point 2, let C1, . . . ,Cn be the set of all simple cycles of q, such that C1 contains x and for
every i > 1 we have that Ci contains a variable from C1 [· · · [Ci�1. We prove by induction that
for every i 2 [n] we have pi)⇤� qi , where qi is the subqueryC1 [· · · [Ci of q, and pi is the �ower
decomposition of qi ,x .

The base case is straightforward. For the inductive case i > 1, let Ci be a simple cycle of q and
let {x1, · · · ,xm } be the (non-empty) set of variables of Ci which appear also in C1 [· · · [Ci�1. For
every j 2 [m] let �j be a simple path of qi�1 from x to x j . Observe that since by inductive hypothesis
pi�1)⇤� qi�1, we have pi�1 [S

j 2[m] Px,�j ,Ci)⇤� qi�1 [S
j 2[m] Px,�j ,Ci . It is not hard to see that

qi�1 [S
j 2[m] Px,�j ,Ci)⇤� qi , since every �j assures that the copy of x j in Px,�j ,Ci is ‘glued’ to the

variable x j of qi�1. From this it follows that pi)⇤� qi .

Given a homomorphism between BCQ h : p ! q let us de�ne the expansion p̂ of p as the result
of attaching the �ower decomposition of q,h(x) to every variable x of p. Note that if p has width 1,Diego:

again add
example

Diego:
again add
example then p̂ has width at most 2; and if p has width k � 2, then p̂ has width k . Given p,q,h as before, h

can be canonically extended to a homomorphism ĥ : p̂ ! q, as shown in Figure 9. We then say that

Fig. 9. caption

p̂, ĥ is the expansion of p,h.

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2019.

32 Pablo Barceló, Diego Figueira, Georg Go�lob, and Andreas Pieris

2. The �ower decomposition p of q,x is so that p)⇤� q with a provenance homomorphisms which
maps variable x of p to variable x of p.

P����. Point 1 is trivial from the simple shape of the query: a bunch of lassos with one common
vertex (in particular a pseudotree).

For point 2, let C1, . . . ,Cn be the set of all simple cycles of q, such that C1 contains x and for
every i > 1 we have that Ci contains a variable from C1 [· · · [Ci�1. We prove by induction that
for every i 2 [n] we have pi)⇤� qi , where qi is the subqueryC1 [· · · [Ci of q, and pi is the �ower
decomposition of qi ,x .

The base case is straightforward. For the inductive case i > 1, let Ci be a simple cycle of q and
let {x1, · · · ,xm } be the (non-empty) set of variables of Ci which appear also in C1 [· · · [Ci�1. For
every j 2 [m] let �j be a simple path of qi�1 from x to x j . Observe that since by inductive hypothesis
pi�1)⇤� qi�1, we have pi�1 [S

j 2[m] Px,�j ,Ci)⇤� qi�1 [S
j 2[m] Px,�j ,Ci . It is not hard to see that

qi�1 [S
j 2[m] Px,�j ,Ci)⇤� qi , since every �j assures that the copy of x j in Px,�j ,Ci is ‘glued’ to the

variable x j of qi�1. From this it follows that pi)⇤� qi .

Given a homomorphism between BCQ h : p ! q let us de�ne the expansion p̂ of p as the result
of attaching the �ower decomposition of q,h(x) to every variable x of p. Note that if p has width 1,Diego:

again add
example

Diego:
again add
example then p̂ has width at most 2; and if p has width k � 2, then p̂ has width k . Given p,q,h as before, h

can be canonically extended to a homomorphism ĥ : p̂ ! q, as shown in Figure 9. We then say that

Fig. 9. caption

p̂, ĥ is the expansion of p,h.

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2019.

32 Pablo Barceló, Diego Figueira, Georg Go�lob, and Andreas Pieris

2. The �ower decomposition p of q,x is so that p)⇤� q with a provenance homomorphisms which
maps variable x of p to variable x of p.

P����. Point 1 is trivial from the simple shape of the query: a bunch of lassos with one common
vertex (in particular a pseudotree).

For point 2, let C1, . . . ,Cn be the set of all simple cycles of q, such that C1 contains x and for
every i > 1 we have that Ci contains a variable from C1 [· · · [Ci�1. We prove by induction that
for every i 2 [n] we have pi)⇤� qi , where qi is the subqueryC1 [· · · [Ci of q, and pi is the �ower
decomposition of qi ,x .

The base case is straightforward. For the inductive case i > 1, let Ci be a simple cycle of q and
let {x1, · · · ,xm } be the (non-empty) set of variables of Ci which appear also in C1 [· · · [Ci�1. For
every j 2 [m] let �j be a simple path of qi�1 from x to x j . Observe that since by inductive hypothesis
pi�1)⇤� qi�1, we have pi�1 [S

j 2[m] Px,�j ,Ci)⇤� qi�1 [S
j 2[m] Px,�j ,Ci . It is not hard to see that

qi�1 [S
j 2[m] Px,�j ,Ci)⇤� qi , since every �j assures that the copy of x j in Px,�j ,Ci is ‘glued’ to the

variable x j of qi�1. From this it follows that pi)⇤� qi .

Given a homomorphism between BCQ h : p ! q let us de�ne the expansion p̂ of p as the result
of attaching the �ower decomposition of q,h(x) to every variable x of p. Note that if p has width 1,Diego:

again add
example

Diego:
again add
example then p̂ has width at most 2; and if p has width k � 2, then p̂ has width k . Given p,q,h as before, h

can be canonically extended to a homomorphism ĥ : p̂ ! q, as shown in Figure 9. We then say that

Fig. 9. caption

p̂, ĥ is the expansion of p,h.

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2019.

(expansion)

� = {S/2, R/2}

⌃ = {R[1 ! 2]}

S =

R =

where

”“

”“

Fig. 9. Example of an expansion from p to p̂ for a given h : p → q, and the canonical extension ĥ : p̂ → q of h.
Note that, for clarity, not all the petals of each flower decomposition are depicted in p̂. Different styles of
arrows correspond to different relations.

8.3 Definition of Mq,Σ

For a BCQ p, we define the partial order relation ⪯p among the variables of p, where x ⪯p y iff
there is a (possibly empty) directed path from x to y in p |Σ. Note that x ⪯p x for every variable x in
p |Σ. If x ⪯p y and y ⪯p x , then we write x ≡p y, which means that x and y belong to the same SCC
of p |Σ. If x ⪯p y and y ⪯̸p x , then we write x ≺p y. A regular cycling path of p (w.r.t. Σ) is either

(i) an empty path, starting and ending at the same node; or
(ii) a path of the form (x

R←− y) π (y
R−→ x), where y R−→ x is an edge in p |Σ, π is a regular cycling

path from y to y, and y ≺p x ; or
(iii) a path of the form (x1

R1↭1 y1) π1 · · · πn−1 (xn
Rn↭n yn), where,

• x1 = yn and xi ≡p yj for every i, j ∈ [n],
• xi

Ri↭i yi is either an edge xi
Ri−−→ yi or xi

Ri←−− yi in pΣ for every i ∈ [n], and
• πi is a regular cycling path from yi to xi+1 for every i ∈ [n − 1]; or

(iv) a path of the form π π ′, where for some variable x , both π and π ′ are regular cycling paths of
p from x to x .

Note that any regular cycling path induces a cycle in the underlying undirected graph (hence the
name cycling). Furthermore, these paths form a regular language over the alphabet {x R−→ y,y

R←− x |
x

R−→ y in p} (hence the name regular). This is because: rules of type (iii) do not need any nesting
(even if it is allowed) and they describe a regular language if seen on their own; rules of type (iv)

34 Pablo Barceló, Diego Figueira, Georg Gottlob, and Andreas Pieris

are actually regular, and they can be translated as a Kleene star; and rules of type (ii) can only be
nested up to a linear depth, due to the requirement y ≺p x .

Given an equivalence relation ∼ on the variables of p, let p/∼ be the quotient query obtained
by identifying the variables in the same equivalence class. We write [x]∼ to denote the variable of
p/∼ resulting from the identification of all the variables in the equivalence class of x , as shown
in Figure 10. Given two BCQs p,p ′, a homomorphism h : p ′ −→ p, and a directed path π between

x y

zt

w

[z]⇠

[x]⇠[w]⇠

p

⇠⇠

⇠
p/⇠

Fig. 10. The quotient p/∼ of a BCQ p.

two variables x ,y of p ′, we say that π is an h-regular cycling path if h(π), that is, the path obtained
after applying h to every node of π , is a regular cycling path of p. We write x ∼h y to denote the
existence of an h-regular cycling path from x to y in p ′. Observe that ∼h is an equivalence relation
on the variables of p ′. The interest of these paths will become evident below; the intuition is that
any pair of ∼h-related variables of p ′ are identified as one variable in chase(p ′, Σ), provided p ′ is an
expansion.

We can now define Mq,Σ as the set of BCQs
Mq,Σ = {p ∈ BCQ | there exists h : p → core(chase(q, Σ)) such that core(chase(q, Σ)) → p̂/∼ĥ ,

where (p̂, ĥ) is the Σ-expansion of (p,h)}
We proceed to show that Mq,Σ is indeed MSO-definable.

Lemma 8.7. There exists an MSO sentence ξq,Σ defining Mq,Σ. Further, ξq,Σ is of polynomial size,
has a fixed number of quantifier alternations, and it can be computed in exponential time.

Proof. Recall that chase(q, Σ) can be computed in polynomial time, while the core of a CQ
can be computed in exponential time. Thus, core(chase(q, Σ)) is of polynomial size, while it can
be computed in exponential time. Hence, we can assume that q � core(chase(q, Σ)). With an
existential MSO formula we can guess a function h : p → q and verify that it is a homomorphism;
this is standard, we can use one monadic variable Xy containing h−1 (y) for each variable y of q.

Using this guessing {Xy }y , one can define the relation ∼ĥ in MSO. Remember that p̂ has one
distinct copy of the flower decomposition of (q,h(x)) attached to each node x , and remember also
that ∼ĥ is an equivalence relation on the variables of p̂, and thus, we have to encode the new
elements of p̂. It is possible to define an MSO formula ψy,y′ (x ,x ′) which holds true at a pair of
variables x ,x ′ of p iff: y is a node of the flower decomposition of (q,h(x)); y ′ is a node of the flower
decomposition of (q,h(x ′)); and the y node of the copy of the flower decomposition of (q,h(x))
attached to x in p̂ is ∼ĥ-related to the the y ′ node of the copy of the flower decomposition of
(q,h(x ′)) attached to x ′. Indeed, this boils down to checking: (i) h(y) = h(y ′), and (ii) there is an
h-regular cycling path between x and x ′. Observe that this last condition asks whether there is a
path between x and x ′ belonging to some regular language (where both the relation names and the
Xy -labels of the nodes are part of the path alphabet).

Finally, with such a family of formulas {ψy,y′ }y,y′ at hand, we can verify the existence of д : q →
p̂/∼ĥ : We guess (using an existentially quantified first-order variable) one element zy from p for
each variable y of q, and for each such guessing zy we also guess a variable f (zy) of the flower

Semantic Optimization of Conjunctive Queries 35

decomposition of (q,h(zy)). This is to take into account the case where д(y) is in p̂ but not in p.
Finally, we check that, for every y R−→ y ′ in q, there exist z ′y , z ′y′ and variables f (z ′y), f (z ′y′) of the
flower decompositions of (q,y) and (q,y ′) such thatψf (zy),f (z′y) (zy , z ′y) ∧ψf (zy′),f (z′y′) (zy′, z ′y′) and

• z ′y = z ′y′ and f (z ′y)
R−→ f (z ′y′) in the flower decomposition of (q,h(z ′y)); or

• z ′y , z ′y′ , and both f (z ′y) and f (z ′y′) are the root of the respective flower decompositions, and

z ′y
R−→ z ′y′ is in p.

8.4 Suitability of Mq,Σ

In this section we prove the following two statements:
(a) Wq,Σ ⊆ Mq,Σ (Lemma 8.9), and
(b) for everyp ∈ Mq,Σ∩GHWk such thath : p → core(chase(q, Σ)), it holds that p̂ ∈ Wq,Σ∩GHWk ,

where (p̂, ĥ) is the Σ-expansion of (p,h) (Lemma 8.10).
Both statements follow from the following lemma, which is the main focus of this section:

Lemma 8.8. Consider a BCQ p. If h : p → core(chase(q, Σ)), then chase(p̂, Σ) � p̂/∼ĥ , where (p̂, ĥ)
is the Σ-expansion of (p,h).

Let us first show that indeed the above statements (a) and (b) are consequences of Lemma 8.8.

Lemma 8.9. It holds that Wq,Σ ⊆ Mq,Σ.

Proof. Consider a BCQ p ∈ Wq,Σ. We prove the following chain of homomorphic mappings
p → chase(p, Σ) → chase(q, Σ) → core(chase(q, Σ)) → core(chase(p, Σ)) → chase(p̂, Σ) → p̂/∼ĥ ,
where h is the homomorphic mapping that embeds p into chase(q, Σ). The first mapping p →
chase(p, Σ) is the provenance homomorphism which holds by the properties of the chase, the
second homomorphism chase(p, Σ) → core(chase(q, Σ)) holds by definition of Wq,Σ. chase(q, Σ) →
core(chase(q, Σ)) holds by definition of core. By definition of Wq,Σ, chase(p, Σ) and chase(q, Σ)
are hom-equivalent (i.e., chase(p, Σ) → chase(q, Σ) and chase(q, Σ) → chase(p, Σ)), and thus the
fourth homomorphism holds. Now let us define h : p → core(chase(q, Σ)) as the composition
of the first three homomorphisms. Since core(chase(q, Σ)) → chase(p, Σ) (by definition of core)
and chase(p, Σ) → chase(p̂, Σ) (since p is a subquery of p̂), we have that core(chase(q, Σ)) →
chase(p̂, Σ) by composition of homomorphisms. Finally, by Lemma 8.8, chase(p̂, Σ) � p̂/∼ĥ , where
(p̂, ĥ) is the Σ-expansion of (p,h). Thus, core(chase(q, Σ)) → p̂/∼ĥ , which in turn implies that
p ∈ Mq,Σ.

Lemma 8.10. For every BCQ p ∈ Mq,Σ ∩ GHWk with h : p → core(chase(q, Σ)), it holds that
p̂ ∈ Wq,Σ ∩ GHWk , where (p̂, ĥ) is the Σ-expansion of (p,h).

Proof. Let q′ = core(chase(q, Σ)). Since p ∈ Mq,Σ, there is h : p → q′ such that q′ → p̂/∼ĥ ,
where p̂, ĥ is the expansion of p,h. Remember that the width of p̂ is bounded by k as a consequence
of Lemma 8.6-1. By Lemma 8.8 we have p̂/∼ĥ � chase(p̂, Σ) and thus

q′ → chase(p̂, Σ). (1)

Since we also have ĥ : p̂ → q′, and since ∼ĥ relates only nodes with equal ĥ-image, we have
p̂/∼ĥ → q′ and thus by Lemma 8.8

chase(p̂, Σ) → q′. (2)

36 Pablo Barceló, Diego Figueira, Georg Gottlob, and Andreas Pieris

From (1) and (2) we obtain core(chase(p̂, Σ)) � q′, which shows p̂ ∈ Wq,Σ.

Towards proving Lemma 8.8, we define some notation related to the stepwise computation of the
chase. Consider a BCQ p. For any partition S of the nodes of p, let ≈S be the equivalence relation
on the nodes of p associated to S , and, for every node x of p, let [x]S be the set of S containing x .
(Think of ≈S as the equivalence classes of all variables that have been “glued together” after some
steps of the chase.) Let Sp0 be the finest partition, that is, the set of all singletons {x } such that x is a
variable of p. We now define a binary relation

p
=⇒Σ over the set of all partitions of the variables of

p in the following way: S
p
=⇒Σ S ′ if, and only if, there are R[1 → 2] ∈ Σ and x

R−→ y, x ′ R−→ z in p

such that x ≈S x ′, y ̸≈S z and S ′ = S \ {[y]S , [z]S } ∪ {[y]S ∪ [z]S }. The intuition is that S
p
=⇒Σ S

′ if
glueing together variables according to S allows the chase to glue, in one step, [y]S and [z]S . The
next lemma follows directly from the definitions of⇒Σ and

p
=⇒Σ.

Lemma 8.11. For every n ≥ 0, and BCQs p,p ′, the following are equivalent:
(1) p ⇒n

Σ p
′.

(2) p ′ � p/≈S for some S such that Sp0
p
=⇒n

Σ S .

We now establish the last technical lemma of this section that, together with Lemma 8.11,
immediately shows Lemma 8.8.

Lemma 8.12. Consider a BCQ p, with h : p → core(chase(q, Σ)), and let (p̂, ĥ) be the Σ- expansion
of (p,h). The following are equivalent:

(1) x ≈S x ′ for some S such that S p̂0
p̂
=⇒∗Σ S .

(2) x ∼ĥ x ′.

Proof. We first show that (1) implies (2). We proceed by induction on the number n of
p̂
=⇒Σ steps.

The base case n = 0 is trivial since x ∼ĥ x for every x . Suppose now that z ′ ≈S y ′ for S p̂0
p̂
=⇒n+1

Σ S .

We need to show that z ′ ∼ĥ y ′. Without loss of generality, assume that S p̂0
p̂
=⇒n

Σ S ′
p̂
=⇒Σ S , where,

for some key R[1→ 2] ∈ Σ and variables x1,x2,y, z, we have x1
R−→ y, x2

R−→ z, x1 ≈S ′ x2, y ≈S ′ y ′,
z ≈S ′ z ′ and y ̸≈S ′ z. That is, we are in this situation:

R

R

Semantic Optimization of Conjunctive �eries 35

• p)n
� p
0,

• p 0 � p/⇠S for some S such that Sp
0

p
=)n

� S .

L���� 8.12. Given BCQ p,q, a homomorphism h : p ! q, and its expansion p̂, ĥ, and assuming q
is a chase, the following are equivalent

(1) x ⇠S x 0 for some S such that S p̂
0

p̂
=)⇤� S ,

(2) x ⇠ĥ x 0.

P����. We �rst show (1)) (2). We proceed by induction on the number of
p̂
=)� steps. Suppose

that � 0 ⇠S z 0 for S p̂
0

p̂
=)n

� S 0
p̂
=)� S , and let, without any loss of generality, Y , Z such that Y ,Z 2 S 0,

Y [Z 2 S , � 0 2 Y , z 0 2 Z . That is we are in this situation:
[FIGURE]
By inductive hypothesis, there is an ĥ-regular cycling path between any two x ,x 0 2 X , any two

�,� 0 2 Y and any two z, z 0 2 Z . (In particular, ĥ(x) = ĥ(x 0), ĥ(�) = ĥ(� 0), ĥ(z) = ĥ(z 0).) Further,
there is some x1,x2 2 X , � 2 Y and z 2 Z such that x1

R�! � and x2
R�! z in p̂ (where R[1! 2] 2 �).

Note that this implies that ĥ(�) = ĥ(z), as otherwise q would note be a chase (there is ĥ(x1)
R�! ĥ(�)

and ĥ(x2) = ĥ(x1)
R�! ĥ(z) in q).

Consider the ĥ-regular cycling paths of p̂:
• �x2,x1 between x2 and x1,
• ��,�0 between � and � 0,
• �z0,z between z 0 and z.

They exist by inductive hypothesis. Observe that the path � = �z0,z · (z R � x2) ·�x2,x1 · (x1
R�! �) ·��,�0

between z 0 and � 0 is an ĥ-regular cycling path in p̂. Indeed, there are two cases to consider:
(1) ĥ(x1) = ĥ(x2) ⌘q ĥ(z) = ĥ(z 0) = ĥ(�) = ĥ(� 0),
(2) ĥ(x1) = ĥ(x2) �q ĥ(z) = ĥ(z 0) = ĥ(�) = ĥ(� 0).

By de�nition of ĥ-regular cycling path in both cases � is a valid path.

We now show (2)) (1). Since
p̂
=)� is monotone in the sense that it coarsens the partition, it is

su�cient to prove the statement for the coarsest partition S such that S p̂
0

p̂
=)⇤� S (i.e., the partition S

so that chase(p̂, �) � p̂/⇠S). We proceed by structural induction on the ĥ-regular cycling path � of
p between the variables x ,x 0. The base case (i) is the empty path � where x = x 0, which trivially
veri�es x ⇠S x 0. The case (iv) of concatenation ĥ(�) = �1 · �2 goes by induction plus transitivity of
⇠S . The case (ii) where ĥ(�) = (�

R � � 0)� (� 0
R�! �) goes by inductive hypothesis plus de�nition of

p̂
=)�. The only interesting case is (iii), where ĥ(�) is of the form (x1

R1!1 �1) �1 · · · �n�1 (xn
Rn!n �n),

where, x1 = �n , xi ⌘q �j for each i, j 2 [n], xi
Ri!i �i is either an edge xi

Ri��! �i or xi
Ri �� �i

in q |� for each i 2 [n], and �i is a regular cycling path from �i to xi+1 for each i 2 [n � 1]. Let
� = (x 01

R1!1 �
0
1) � 01 · · · � 0n�1 (x 0n

Rn!n � 0n) where ĥ(x 0i) = xi , ĥ(� 0i) = �i and ĥ(� 0i) = �i . By inductive
hypothesis, � 0i ⇠S x 0i+1 for every i .

For a variable z of q, let scc (q, z) be the subquery of q |� consisting of the strongly connected
component of z in q |�. In view of Lemma 8.11 and Lemma 8.6-2 , note that for every node x of Diego:

make
statement
stronger

Diego:
make
statement
stronger

� , p̂/⇠S has attached a homomorphic copy of scc (q, ĥ(x)) —that is, there is a homomorphism
scc (q, ĥ(x)) ! p̂/⇠S mapping ĥ(x) to [x]⇠S . Therefore for every x R�! � of p̂, where ĥ(x), ĥ(�) are in

J. ACM, Vol. 1, No. 1, Article . Publication date: October 2019.

R

R

x1

x2

y y0

z

z0

x1

x2

y y0

z

z0[x1]S0 = [x2]S0

[y]S0 = [y0]S0

[z]S0 = [z0]S0

[z]S = [z0]S = [y]S = [y0]S

6=

Note that this implies that ĥ(y) = ĥ(z) since there is ĥ(x1)
R−→ ĥ(y) and ĥ(x2) = ĥ(x1)

R−→ ĥ(z) in
core(chase(q, Σ)), while core(chase(q, Σ)) satisfies Σ. By induction hypothesis, there is an ĥ-regular
cycling path between any two variables in [x1]S ′ , any two variables in [y]S ′ and any two variables
in [z]S ′ (and, in particular, they have the same ĥ-image). Consider the following ĥ-regular cycling
paths of p̂: πx2,x1 between x2 and x1, πy,y′ between y and y ′, and πz′,z between z ′ and z, which they
exist by induction hypothesis. Now, observe that the path π = πz′,z · (z R←− x2) ·πx2,x1 · (x1

R−→ y) ·πy,y′
between z ′ and y ′ is an ĥ-regular cycling path in p̂. Indeed, there are two cases to consider:

Semantic Optimization of Conjunctive Queries 37

1. ĥ(x1) = ĥ(x2) ≡core(chase(q,Σ)) ĥ(z) = ĥ(z
′) = ĥ(y) = ĥ(y ′),

2. ĥ(x1) = ĥ(x2) ≺core(chase(q,Σ)) ĥ(z) = ĥ(z
′) = ĥ(y) = ĥ(y ′).

These cases are covered, respectively, by items (ii) and (iii) in the definition of regular cycling path,
and therefore, π is a valid ĥ-regular cycling path. Thus, y ′ ∼ĥ z ′.

We now show that (2) implies (1). For brevity, let q′ = core(chase(q, Σ)). Since
p̂
=⇒Σ is monotone in

the sense that it coarsens partitions, it is sufficient to prove the statement for the coarsest partition

S such that S p̂0
p̂
=⇒∗Σ S (i.e., the partition S so that chase(p̂, Σ) � p̂/≈S in view of Lemma 8.11).

We proceed by structural induction on the ĥ-regular cycling path π of p between the variables
x ,x ′. The base case (i) is the empty path ε where x = x ′, which trivially verifies x ≈S x ′. The
case (iv) of concatenation ĥ(π) = π1 · π2 goes by induction plus transitivity of ≈S . The case (ii)

where ĥ(π) = (y
R←− y ′)π (y ′ R−→ y) goes by induction hypothesis and the definition of

p̂
=⇒Σ. The

only interesting case is (iii), where ĥ(π) is of the form (x1
R1↭1 y1) π1 · · · πn−1 (xn

Rn↭n yn),
where, x1 = yn , xi ≡q′ yj for every i, j ∈ [n], xi

Ri↭i yi is either an edge xi
Ri−−→ yi or xi

Ri←−− yi
in q′ |Σ for every i ∈ [n], and πi is a regular cycling path from yi to xi+1 for every i ∈ [n − 1].
Let π = (x ′1

R1↭1 y
′
1) π

′
1 · · · π ′n−1 (x ′n

Rn↭n y ′n) where ĥ(x ′i) = xi , ĥ(y ′i) = yi and ĥ(π ′i) = πi . By
induction hypothesis, y ′i ≈S x ′i+1 for every i . For a variable z of q′, let scc(q′, z) be the subquery of
q′ |Σ consisting of the strongly connected component of q′ |Σ containing z. In view of Lemma 8.11
and Lemma 8.6-2, note that for every node x of π , p̂/≈S has attached a homomorphic copy of
scc (q′, ĥ(x)) —that is, there is a homomorphism scc (q′, ĥ(x)) → p̂/≈S mapping ĥ(x) to [x]≈S .
Therefore, for every x

R−→ y of p̂, where ĥ(x), ĥ(y) are in the same strongly connected component
of q′ |Σ and R[1→ 2] ∈ Σ, we have that the homomorphic copies of scc (q′, ĥ(x)) and scc (q′, ĥ(y))
attached to x and y respectively are actually “merged” into one in p̂/≈S (since S is the coarsest
partition). In particular, y ≈S y ′ where y ′ is the element corresponding to ĥ(y) in the homomorphic
copy of scc (q′, ĥ(x)). This means that, since ĥ(x1) = ĥ(xn), since y ′i ≈S x ′i+1 for every i , and since
every xi , yi is in the selfsame strongly connected component of q′ |Σ, we have that x1 ≈S xn , as
needed.

Lemma 8.8 follows as a direct corollary of Lemmas 8.11 and 8.12.

8.5 Finalizing the Decidability Proof
We finally refresh here the arguments scattered throughout the previous sections to prove decid-
ability of SemGHWk (K), for k > 1. Let us first recall and properly show the crucial Proposition 8.3.

Proposition 8.3 (restatement). Consider a BCQ q and a set Σ of keys. There is an MSO-definable
set Mq,Σ of BCQs such that the following are equivalent:

(1) Wq,Σ ∩ GHWk , ∅;
(2) Mq,Σ ∩ GHWk , ∅.

Furthermore, Mq,Σ is definable via an MSO sentence ξq,Σ that can be computed in single exponential
time from q and Σ, and has a fixed number of quantifier alternations.

Proof. The fact that (1) implies (2) is an immediate consequence of the fact that Wq,Σ ⊆ Mq,Σ by
Lemma 8.9. For showing that (2) implies (1), consider an arbitrary BCQ p ∈ Mq,Σ ∩ GHWk , where
k > 1. Assuming that h : p → core(chase(q, Σ)), Lemma 8.10 implies that p̂ ∈ Wq,Σ ∩ GHWk ,
where (p̂, ĥ) is the Σ-expansion of (p,h). Therefore, Wq,Σ ∩ GHWk , ∅, and the claim follows.

38 Pablo Barceló, Diego Figueira, Georg Gottlob, and Andreas Pieris

We are now ready to provide a proof for the main decidability result of this section.

Theorem 8.1 (restatement). For binary schemas, SemGHWk (K) is decidable in elementary time.

Proof. Consider a BCQ q, and a set Σ of keys. By Proposition 8.2, the problem of deciding
whether q is semantically in GHWk under Σ is equivalent to checking whether Wq,Σ ∩GHWk , ∅,
which in turn, by Proposition 8.3, is equivalent to checking whether Mq,Σ ∩GHWk , ∅. The latter,
again by Proposition 8.3, is equivalent to deciding whether the MSO sentence ξq,Σ has a model in
GHWk , which is feasible in ℓ-ExpTime, assuming that ℓ is the number of quantifier alternations
of ξq,Σ [40]. Since ξq,Σ can be computed in single exponential time, and has a fixed number of
quantifies alternations, the claim follows.

9 QUERY EVALUATION
As it has been noted in different scenarios in the absence of constraints, the property of being
semantically in GHWk , for k ≥ 1, has a positive impact on query evaluation [7, 8, 17, 19]. The
crucial question that comes up is whether such a good behavior extends to the notion of being
semantically in GHWk , for k ≥ 1, in the presence of constraints. Interestingly, the answer to the
above question is affirmative. We first discuss that, for each class C of constraints considered in the
previous sections, the fact that we have a decision procedure for solving SemGHWk (C) allows us
to show that the problem of evaluating a CQ q that is semantically in GHWk under a set Σ ∈ C is
fixed-parameter tractable. The crucial fact here is that our techniques for solving SemGHWk (C)
yields an equivalent CQ q′ ∈ GHWk in case q is semantically in GHWk under Σ. We then ask
ourselves whether a pure tractability result can be obtained. We show that this is the case for the
class of guarded sets of TGDs, and the class of (arbitrary) functional dependencies. Crucially, for
those classes of constraints, computing an equivalent CQ that falls in GHWk is not needed for
query evaluation purposes.

Before we proceed further, let us introduce the query evaluation problem. In the rest of this
section, we fix k ≥ 1. Let C be a class of sets of TGDs or EGDs. We define:

PROBLEM : EvalSemGHWk (C)
INPUT : A set Σ ∈ C, a CQ q(x̄) that is semantically in GHWk under Σ,

a database D such that D |= Σ, and a tuple t̄ ∈ dom(D) |x̄ | .
QUESTION : Is t̄ ∈ q(D)?

9.1 Fixed-parameter Tractable Evaluation
We show that EvalSemGHWk (C), for C ∈ {G,NR,S}, as well as EvalSemGHWk (K) assuming
unary and binary predicates, is fixed-parameter tractable (fpt) with the parameter being (| |q | |+ | |Σ| |);
as usual, | |q | | and | |Σ| | represent the size of reasonable encodings of q and Σ, respectively. Recall
that fpt means that the problem can be solved in time

O (| |D | |c · f (| |q | | + | |Σ| |))
where c ≥ 1 and f : N→ N is a computable function. Then:

Theorem 9.1. EvalSemGHWk (C), where C ∈ {G,NR,S}, can be solved in time

O
(
| |D | |k+1 · 22O (| |q | |+| |Σ| |)

)
,

and thus is fixed-parameter tractable.

Semantic Optimization of Conjunctive Queries 39

Proof. Consider an arbitrary instance of EvalSemGHWk (C), i.e, a set Σ ∈ C, a CQ q(x̄) that is
semantically in GHWk under Σ, a database D such that D |= Σ, and a tuple t̄ ∈ dom(D) |t̄ | . We can
decide whether t̄ ∈ q(D) as follows:

(1) Compute a CQ q′ such that q′ ∈ GHWk and q ≡Σ q′.
(2) Accept if t̄ ∈ q′(D); otherwise, reject.

The decision procedures underlying Theorems 5.6, 6.8 and 6.10 allow us to compute the CQ q′
in double-exponential time in (| |q | | + | |Σ| |). The size of q′ is at most exponential in (| |q | | + | |Σ| |);
for G is polynomial, while for NR and S is exponential. Proposition 2.4 implies that the cost of
computing q′ and checking if t̄ ∈ q′(D) is:

O
(
22O (| |q | |+| |Σ| |)

)

︸ ︷︷ ︸
Step 1

+ O
(
| |D | |k+1 · 2O (| |q | |+ | |Σ | |))

︸ ︷︷ ︸
Step 2

.

Clearly, the running time of the algorithm is dominated by

O
(
| |D | |k+1 · 22O (| |q | |+| |Σ| |)

)

and the claim follows.

Analogously, by exploiting the decision procedure underlying Theorem 8.1, we can show the
same for keys over binary signatures:

Theorem 9.2. Assuming binary signatures, EvalSemGHWk (K) can be solved in time

O
(
| |D | |k+1 · f (O (| |q | | + | |Σ| |))

)
,

where f is an elementary function, and thus is fixed-parameter tractable.

Indeed, Theorems 9.1 and 9.2 provide an improvement over general CQ evaluation for which no
fpt algorithm is believed to exist [37]. It is worth remarking, nonetheless, that EvalSemGHWk (C)
corresponds to a promise version of the evaluation problem, where the property that defines the
class is at least NP-hard for each k ≥ 1, and class C in question.

9.2 Tractable Evaluation
We proceed to establish a pure tractability result if we focus on sets of guarded TGDs and sets of
(arbitrary) FDs. The class of FDs is denoted FD.

Theorem 9.3. EvalSemGHWk (C), where C ∈ {G,FD}, is in PTime.

The case of FDs is very interesting since, although EvalSemGHWk (FD) is tractable, the decid-
ability of checking whether a CQ is semantically in GHWk under a set of FDs is a challenging open
problem – recall that we have decidability only for keys assuming schemas with unary and binary
predicates only. The rest of this section is devoted to establishing Theorem 9.3.

Recall that computing a CQ q′ in GHWk that is equivalent to the given CQ q under the given
set Σ of constraints might take double-exponential time. Thus, in order to achieve tractability of
evaluation, we should avoid the explicit computation of q′. Indeed, computing such a CQ q′ is not
needed at the moment of evaluating CQs that are semantically in GHWk under a set Σ of constraints
that falls in G or FD. The high-level idea behind the proof of Theorem 9.3, which avoids the explicit
computation of q′, can be described as follows. Evaluating a CQ q that is semantically in GHWk
in the absence of constraints over a database D, amounts to checking the existence of a winning
strategy for the duplicator in a particular version of the pebble game, known as the existential
k-cover game, on q and D [17]. The existence of such a winning strategy, denoted q →k D, can be

40 Pablo Barceló, Diego Figueira, Georg Gottlob, and Andreas Pieris

checked in polynomial time. Now, when q is semantically in GHWk under a set Σ of TGDs or EGDs,
and in addition D |= Σ, evaluating q over D amounts to checking whether chase(q, Σ) →k D (see
Proposition 9.5 below). Having this technical result in place, Theorem 9.3 is obtained as follows:
• If Σ ∈ FD, then chase(q, Σ) can be computed in polynomial time. This implies that checking

whether chase(q, Σ) →k D is feasible in polynomial time, and thus, EvalSemGHWk (FD) is
in PTime. In fact, this shows that EvalSemGHWk (C) is in PTime for any class C of sets of
TGDs or EGDs for which the chase can be computed in polynomial time.
• If Σ ∈ G, then, although chase(q, Σ) may be infinite, we can prove that:

chase(q, Σ) →k D ⇐⇒ q →k D.

That is, the problem boils down to checking q →k D, i.e., evaluating q as if it was semantically
in GHWk without constraints, and thus, EvalSemGHWk (G) is in PTime.

We proceed to formalize the above high-level description.
Existential k-cover game. Let us first recall the existential k-cover game from [17], and show
our technical result (Proposition 9.5), which establishes the desired connection between query
evaluation and the existence of a winning strategy for the duplicator. The existential k-cover game
is played by spoiler and duplicator on pairs (I , t̄) and (I ′, t̄ ′), where I and I ′ are instances and t̄ and
t̄ ′ are two equally long tuples of terms of dom(I) and dom(I ′), respectively. The game proceeds in
rounds. In each round, the spoiler places (resp., removes) a pebble on (resp., from) a term occurring
in I , while the duplicator responds by placing (resp., removing) its corresponding pebble on (resp.,
from) a term in I ′. The number of pebbles is not bounded, but the spoiler is constrained as follows:
At any round r of the game, if c1, . . . , cℓ , where ℓ ≤ r , are the terms marked by the spoiler’s pebbles
in I , then there must be at most k atoms in I that contain all those terms (this is why the game is
called k-cover, as pebbled terms are covered by such k atoms). Duplicator wins if she can indefinitely
continue playing the game in such way that after each round, if c1, . . . , cℓ are the terms marked by
the spoiler’s pebbles in I and d1, . . . ,dℓ are the terms marked by the corresponding pebbles of the
duplicator in I ′, then, assuming that t̄ = (t1, . . . , tn) and t̄ ′ = (t ′1, . . . , t

′
n)

h = {ci 7→ di }1≤i≤ℓ ∪ {ti 7→ t ′i }1≤i≤n
is a partial homomorphism from I to I ′. In other words, for every atom R (e1, . . . , em) ∈ I , with
{e1, . . . , em } ⊆ {c1, . . . , cℓ, t1, . . . , tn }, R (h(e1, . . . , em)) ∈ I ′. The fact that duplicator wins the
existential k-cover game on (I , t̄) and (I ′, t̄ ′) is denoted (I , t̄) →k (I ′, t̄ ′).

The following proposition, which can be established by exploiting results from [17], collects a
couple of important facts. The first one relates the existential k-cover game with the evaluation
of CQs in GHWk , while the second one states that the existence of a winning strategy for the
duplicator can be checked efficiently:

Proposition 9.4. The following statements hold:
(1) Given instances I and I ′, and tuples t̄ ∈ dom(I)n and t̄ ′ ∈ dom(I ′)n , where n ≥ 0, if (I , t̄) →k

(I ′, t̄ ′), then for every CQ q ∈ GHWk , t̄ ∈ q(I) implies t ′ ∈ q(I ′).
(2) Given (finite) databases D and D ′, and tuples t̄ ∈ dom(D)n and t̄ ′ ∈ dom(D ′)n , where n ≥ 0,

(D, t̄) →k (D ′, t̄ ′) can be checked in polynomial time.

We are now ready to show that evaluating a CQ q that is semantically in GHWk under a set Σ of
TGDs or EGDs over an instance I that satisfies Σ amounts to checking whether chase(q, Σ) →k I .

Proposition 9.5. Consider a set Σ of TGDs or EGDs, a CQ q(x̄) that is semantically in GHWk
under Σ, an instance I that satisfies Σ, and a tuple t̄ ∈ dom(I) |x̄ | . Then:

t̄ ∈ q(I) ⇐⇒ (chase(q, Σ),⊥(x̄)) →k (I , t̄).

Semantic Optimization of Conjunctive Queries 41

Proof. (⇒) By hypothesis, there exists a homomorphism h from D[q] to I such that h(⊥(x̄)) = t̄ .
Since I |= Σ, by using the universality of the chase, we can show that h can be extended into a homo-
morphism h′ from chase(q, Σ) to I such that h′(⊥(x̄)) = t̄ . This implies that (chase(q, Σ),⊥(x̄)) →k
(I , t̄) since the duplicator can always respond during the game by exploiting the homomorphism h′.

(⇐) Conversely, assume that (chase(q, Σ),⊥(x̄)) →k (I , t̄). Since q is semantically in GHWk
under Σ, there exists a CQ q′ ∈ GHWk that is equivalent to q under Σ. Thus, by Lemma 2.5,
⊥(x̄) ∈ q′(chase(q, Σ)). By Proposition 9.4, we get that t̄ ∈ q′(I). Since q ≡Σ q′ and I |= Σ, we
conclude that t̄ ∈ q(I), and the claim follows.

Based on Proposition 9.5, we identify two conditions that lead to the tractability of the problem
EvalSemGHWk (C) for a class C of sets of TGDs or EGDs:
• The first condition corresponds to tractability of chase computation for sets of constraints in
C. This is satisfied, in particular, by the class FD of sets of FDs.
• The second condition corresponds to chase redundancy, which establishes that the problem

of checking chase(q, Σ) →k I , for a set Σ ∈ C and an instance I that satisfies Σ, boils down to
simply checking q →k I . This condition is satisfied, in particular, by the class G.

Efficiently computable chase. A class C of sets of TGDs or EGDs enjoys tractability of chase
computation, if the instance chase(q, Σ) can be computed in polynomial time, for every CQ q and set
Σ ∈ C. As an immediate corollary to Propositions 9.4 and 9.5, we obtain that if C enjoys tractability
of chase computation, then EvalSemGHWk (C) can be solved in polynomial time:

Proposition 9.6. For every class C of TGDs or EGDs that enjoys tractability of chase computation,
EvalSemGHWk (C) is in PTime.

Importantly, the class FD enjoys tractability of chase computation. This follows from two known
facts. Given a CQ q and a set Σ ∈ FD: (1) the length of an arbitrary chase sequence for D[q] under
Σ is polynomial (in fact, this holds even for arbitrary EGDs), and (2) a single chase step in such a
chase sequence takes polynomial time – for a FD ϵ , determining all the pairs of atoms in a database
that violate ϵ , and then applying ϵ over every such pair, takes polynomial time. Then:

Proposition 9.7. FD enjoys tractability of chase computation.

It is clear that Propositions 9.6 and 9.7 imply that EvalSemGHWk (FD) is in PTime. We proceed
to show that the same holds for EvalSemGHWk (G), which will conclude the proof of Theorem 9.3.
Redundancy of constraints. We say that a class C enjoys chase redundancy, if, for each k ≥ 1,
CQ q(x̄), set Σ ∈ C, instance I that satisfies Σ, and tuple t̄ ∈ dom(I) |x̄ | :

(chase(q, Σ),⊥(x̄)) →k (I , t̄) ⇐⇒ (D[q],⊥(x̄)) →k (I , t̄).

From Propositions 9.4 and 9.5 we immediately get that:

Proposition 9.8. For every class C of TGDs or EGDs that enjoys chase redundancy, it holds that
EvalSemGHWk (C) is in PTime.

Consequently, in order to show that EvalSemGHWk (G) is feasible in polynomial time, and
complete the proof of Theorem 9.3, it suffices to show that:

Proposition 9.9. G enjoys chase redundancy.

We proceed to sketch the proof of the above result; the full proof can be found in the appendix.
Let us first provide a useful characterization of the fact (I , t̄) →k (I ′, t̄ ′), where I and I ′ are instances,
t̄ = (t1, . . . , tn) ∈ dom(I)n , and t̄ ′ = (t ′1, . . . , t

′
n) ∈ dom(I ′)n , for n ≥ 0, that can be easily obtained

42 Pablo Barceló, Diego Figueira, Georg Gottlob, and Andreas Pieris

from a characterization in [17]. An instance J ⊆ I is a k-union of I if 1 ≤ |J | ≤ k , i.e., is a non-
empty subinstance of I with at most k atoms. For brevity, let UI,k be the set of all k-unions of
I , and HI→I ′ =

⋃
J ⊆I {h | h is a homomorphism from J to I ′}. Two homomorphisms h and h′ are

consistent if, for each term t that occurs in the domain of both h and h′, i.e., both h and h′ are
defined over t , it holds that h(t) = h′(t). A function µ : UI,k → HI→I ′ is called winning strategy for
the duplicator in the existential k-cover game on (I , t̄) and (I ′, t̄ ′) if, for each J ∈ UI,k :

(1) µ (J) = {h ∈ HI→I ′ | h(J) ⊆ I ′ and ti ∈ dom(J) =⇒ h(ti) = t ′i }, and
(2) for each h ∈ µ (J) and J ′ ∈ UI,k , there is h′ ∈ µ (J ′) such that h,h′ are consistent.
It is possible to show that:

Lemma 9.10. (I , t̄) →k (I ′, t̄ ′) if and only if there exists µ : UI,k → HI→I ′ that is a winning strategy
for the duplicator in the existential k-cover game on (I , t̄) and (I ′, t̄ ′).

Consider now a CQ q(x̄), a set Σ ∈ G of TGDs, an instance I that satisfies Σ, and a tuple
t̄ ∈ dom(I) |x̄ | . We need to show that, for each k ≥ 1:

(chase(q, Σ),⊥(x̄)) →k (I , t̄) ⇐⇒ (D[q],⊥(x̄)) →k (I , t̄).

(⇒) This direction holds trivially since D[q] ⊆ chase(q, Σ); recall that, by convention, we write
chase(q, Σ) for the instance chase(D[q], Σ).

(⇐) Assume now that (D[q],⊥(x̄)) →k (I , t̄). By Lemma 9.10, there is a winning strategy
µ for the duplicator in the existential k-cover game on (D[q],⊥(x̄)) and (I , t̄). Our goal is, by
exploiting µ, to show that there exists a winning strategy µ ′ for the duplicator in the existential
k-cover game on (chase(q, Σ),⊥(x̄)) and (I , t̄), which will immediately imply, by Lemma 9.10, that
(chase(q, Σ),⊥(x̄)) →k (I , t̄). In other words, with ⊥(x̄) = (⊥x1 , . . . ,⊥xn) and t̄ = (t1, . . . , tn), we
need to show that there is µ ′ : Uchase(q,Σ),k → Hchase(q,Σ)→I such that, for each J ∈ Uchase(q,Σ),k :

(1) µ ′(J) = {h ∈ Hchase(q,Σ)→I | h(J) ⊆ I and ⊥xi ∈ dom(J) =⇒ h(⊥xi) = ti }, and
(2) for each h ∈ µ ′(J) and J ′ ∈ Uchase(q,Σ),k , there exists h′ ∈ µ ′(J ′) such that h,h′ are consistent.
Suppose that chase(q, Σ) is obtained by the chase sequence for D[q] under Σ

D[q] = I0
τ0, (ū0,ū′0)−−−−−−−→ I1

τ1, (ū1,ū′1)−−−−−−−→ I2 . . .

We show that there are functions (µ j : UIj ,k → HIj→I)j≥0 such that, for each j ≥ 0:
(1) the function µ j is a winning strategy for the duplicator in the existential k-cover game on

(Ij ,⊥(x̄)) and (I , t̄), and
(2) for each J ∈ UIj ,k , µ j (J) = µ j+1 (J).

Having the above sequence of functions in place, the claim follows with µ ′ =
⋃

j≥0 µ j . The proof
that (µ j)j≥0 exists is by induction on j ≥ 0, and can be found in the appendix.

Let us conclude this section by saying that for the other classes C of TGDs considered above,
i.e., NR and S, the question whether EvalSemGHWk (C) is feasible in polynomial time is still
unanswered. This is left as an interesting open problem.

10 QUERY APPROXIMATIONS WITH TGDS
In this section, we study the more liberal notion of GHWk -approximation of a CQ under a set
of constraints. Given a CQ q, and a set Σ of TGDs that falls in G or NR or S, we can exploit the
techniques developed in Sections 5 and 6 in order to compute the CQs in GHWk , for k ≥ 1, that
are maximally contained in q and Σ. Following the recent database literature, such CQs correspond
to the GHWk -approximations of q under Σ; see, e.g., [6–8]. Computing and evaluating the GHWk -
approximations of q under Σ might help finding “quick” (i.e., fixed-parameter tractable) answers to

Semantic Optimization of Conjunctive Queries 43

it when exact evaluation is infeasible. We proceed to formalize the notion of GHWk -approximation
of q under Σ; in the rest of the section, we fix k ≥ 1:

Definition 10.1. Consider a CQ q and a set Σ of TGDs, both over a schema σ . A GHWk -
approximation of q under Σ is a CQ q′ ∈ GHWk over σ such that:

(1) q′ ⊆Σ q, and
(2) for every q′′ ∈ GHWk , q′ ⊆Σ q′′ ⊆Σ q =⇒ q′ ≡Σ q′′.

We write approxGHWk
(q, Σ) for all the GHWk -approximations of q under Σ (up to ≡Σ).

Intuitively, condition (1) corresponds to soundness, i.e., q′ only returns sound answers w.r.t. q and
Σ, while condition (2) corresponds to maximality, i.e., there is no CQ q′′ ∈ GHWk that approximates
q better than q′ in terms of containment under Σ. Notice that whenever q is semantically in GHWk
under Σ, i.e., there is a CQ q′ ∈ GHWk such that q ≡Σ q′, then the unique GHWk -approximation
of q under Σ is q′ itself. Therefore, the notion of GHWk -approximation under TGDs provides a
suitable extension of the notion of being semantically in GHWk under TGDs.

We proceed to present the main result of this section, which establishes some fundamental
properties of GHWk -approximations of a CQ q under a set Σ of TGDs that falls in one of the
decidable classes of TGDs considered in the previous sections. In particular, we show that they
always exist, they consist of exponentially many atoms (actually, in the case of guarded TGDs, they
consist of polynomially many atoms), and they can be computed in double-exponential time. In what
follows, for notational convenience, given a CQ q and a set Σ of TGDs, let дG (q, Σ) = |q | · (2k + 1),
and дC (q, Σ) = fC (q, Σ) · (2k + 1) if C ∈ {NR,S}; recall that the functions fNR and fS are given by
Propositions 6.7 and 6.9, respectively.

Theorem 10.2. Consider a CQ q and a set Σ ∈ C of TGDs, where C ∈ {G,NR,S}. Then:
(1) approxGHWk

(q, Σ) , ∅.
(2) |q′ | ≤ дC (q, Σ), for each q′ ∈ approxGHWk

(q, Σ).
(3) approxGHWk

(q, Σ) can be computed in double-exponential time in | |q | | + | |Σ| |.
Before giving the proof of the above result, we need to establish an auxiliary lemma, which is

reminiscent of Lemma 5.4 presented in Section 5. In fact, this auxiliary result is implicit in the proof
of Propositions 5.3 and 6.5. Nevertheless, for the sake of clarity and completeness, we would like to
explicitly state this lemma; its proof can be found in the appendix:

Lemma 10.3. Let q,q′ ∈ GHWk over a schema σ , and Σ ∈ C over σ , where C ∈ {G,NR,S}, such
that q′ ⊆Σ q. There is a CQ q′′ ∈ GHWk over σ such that q′ ⊆Σ q′′ ⊆Σ q and |q′′ | ≤ дC (q, Σ).

Having the above lemma in place, we can now give the proof of Theorem 10.2. In the sequel, given
a CQ q and a set Σ ∈ C of TGDs, we write contGHWk (q, Σ) for the set of CQs q′ ∈ GHWk such that
q′ ⊆Σ q and |q′ | ≤ дC (q, Σ). Moreover, we write maximalGHWk (q, Σ) for the ⊆Σ-maximal elements
of contGHWk (q, Σ). In other words, maximalGHWk (q, Σ) consists of the CQs q′ ∈ contGHWk (q, Σ)
for which there is no q′′ ∈ contGHWk (q, Σ) such that q′ ⊂Σ q′′, where the latter notation means
that q′ ⊆Σ q′′ and, in addition, there exists an instance I that satisfies Σ such that q′(I) ⊂ q′′(I).

Proof. (of Theorem 10.2) We first observe that there exists a CQ q′ ∈ GHWk such that q′ ⊆Σ q
and |q′ | ≤ |q |. Assuming that (x1, . . . ,xn) are the free variables of q, and R1/ℓ1, . . . ,Rm/ℓm are the
predicates occurring in q, then q′ is defined as

q′(x , . . . ,x︸ ︷︷ ︸
n

) := R1 (x , . . . ,x︸ ︷︷ ︸
ℓ1

) ∧ · · · ∧ Rm (x , . . . ,x︸ ︷︷ ︸
ℓm

).

44 Pablo Barceló, Diego Figueira, Georg Gottlob, and Andreas Pieris

It is clear that q′ is acyclic, i.e., q′ ∈ GHW1, which implies that q′ ∈ GHWk . Moreover, q′ ⊆Σ q since
(⊥x , . . . ,⊥x) belongs to the evaluation of q over chase(q′, Σ), and |q′ | ≤ |q | since m ≤ |q |. This
immediately implies that the set contGHWk (q, Σ) is non-empty, and thus, maximalGHWk (q, Σ) is non-
empty. We now show that the set maximalGHWk (q, Σ) consists of all the GHWk -approximations of
q under Σ (up to ≡Σ). Formally:

(†) For each q′ ∈ approxGHWk
(q, Σ), there is q′′ ∈ maximalGHWk (q, Σ) such that q′ ≡Σ q′′.

(††) For each q′ ∈ maximalGHWk (q, Σ), there is q′′ ∈ approxGHWk
(q, Σ) such that q′ ≡Σ q′′.

We first show that (†) holds. Consider an arbitrary q′ ∈ approxGHWk
(q, Σ). By definition,

q′ ∈ GHWk and q′ ⊆Σ q. Therefore, by Lemma 10.3, there exists a CQ q̂ ∈ GHWk such that
q′ ⊆Σ q̂ ⊆Σ q, and |q̂ | ≤ дC (q, Σ). Clearly, q̂ ∈ contGHWk (q, Σ), and thus, there exists a CQ
q′′ ∈ maximalGHWk (q, Σ) such that q′ ⊆Σ q̂ ⊆Σ q′′ ⊆Σ q. By definition, q′′ ∈ GHWk , which in turn
implies that q′ ≡Σ q′′ since q′ is a GHWk -approximation of q under Σ, and the claim follows.

We now show that (††) holds. Consider a CQ q′ ∈ maximalGHWk (q, Σ). We are going to show
that q′ ∈ approxGHWk

(q, Σ). Fix an arbitrary CQ q′′ ∈ GHWk . We need to show that q′ ⊆Σ q′′ ⊆Σ q
implies q′ ≡Σ q′′. Since, by hypothesis, q′′ ⊆Σ q, Lemma 10.3 implies the existence of a CQ
q̂ ∈ GHWk such that q′ ⊆Σ q′′ ⊆Σ q̂ ⊆Σ q, and |q̂ | ≤ дC (q, Σ). Clearly, q̂ ∈ contGHWk (q, Σ). Since
q′ ∈ maximalGHWk (q, Σ), either q̂ ⊆Σ q′, or q′ ⊈Σ q̂ and q̂ ⊈Σ q′. Notice that the latter case
contradicts the fact that q′ ⊆Σ q̂. Thus, the only valid case is q̂ ⊆Σ q′. Therefore, q′ ≡Σ q̂, which in
turn implies that q′ ≡Σ q′′, and the claim follows.

It is now easy to establish items (1), (2) and (3). Recall that maximalGHWk (q, Σ) is non-empty since
contGHWk (q, Σ) is non-empty. Thus, approxGHWk

(q, Σ) , ∅ since maximalGHWk (q, Σ) consists of
all the GHWk -approximations of q under Σ (up to ≡Σ), and (1) follows. Item (2) follows by definition,
since each CQ q′ ∈ maximalGHWk (q, Σ) consists of at most дC (q, Σ) atoms. Finally, for item (3)
it suffices to show that the set maximalGHWk (q, Σ) can be computed in double-exponential time
in | |q | | + | |Σ| |. This is done by simply enumerating all CQs q′ such that |q′ | ≤ дC (q, Σ), and for
each one we check that (a) q′ ∈ GHWk , (b) q′ ⊆Σ q, and (c) there is no CQ q′′ ∈ GHWk such that
q′ ⊂Σ q′′ ⊆Σ q and |q′′ | ≤ дC (q, Σ). In general, we have to consider double-exponentially many
queries (in fact, exponentially many when C = G), and for every query, each one of the above steps
can be carried out in double-exponential time in | |q | | + | |Σ| |.

Let us conclude this section by saying a few words about that problem of evaluating the GHWk -
approximations of a CQ under a set of TGDs, that is, given a CQ q(x̄), a set Σ ∈ C of TGDs, where
C ∈ {G,NR,S}, a database D such that D |= Σ, and a tuple t̄ ∈ dom(D) |x̄ | , decide whether there
exists a GHWk -approximation q′ of q under Σ such that t̄ ∈ q′(D). Since each such q′ is contained
in q under Σ, we can then be sure that t̄ is a sound answer to q over D. By Theorem 10.2, the set
approxGHWk

(q, Σ) can be computed in double-exponential time in | |q | | + | |Σ| |, while each GHWk -
approximation of q under Σ is of single-exponential size. This allows us to show that checking
whether t̄ ∈ q′(D) for some GHWk -approximation q′ of q under Σ takes time:

O
(
| |D | |k+1 · 22p (| |q | |+| |Σ| |)

)
,

for a suitable polynomial p : N → N. This shows that the problem of evaluating the GHWk -
approximations of a CQ q under a set Σ of TGDs that falls in G or NR or S is fixed-parameter
tractable. Thus, as said above, computing and evaluating the GHWk -approximations of q under Σ
might help finding “quick” answers to it when exact evaluation is infeasible.

The crucial question that comes up is whether the above results can be established in the presence
of functional dependencies, or, more generally, in the presence of equality-generating dependencies.
This is left as an interesting open problem.

Semantic Optimization of Conjunctive Queries 45

11 CONCLUSIONS AND OPEN PROBLEMS
We have concentrated on the static analysis task of checking whether a CQ is semantically in the
class of CQs of generalized hypertreewidth bounded by a fixed constant k ≥ 1, denoted GHWk ,
under a set of database constraints; in fact, TGDs or EGDs. In other words, we check whether the
given CQ is equivalent to one that belongs to GHWk over all those databases that satisfy the given
set of constraints. This problem has been dubbed SemGHWk .

Surprisingly, we have shown that there are classes of constraints for which containment is
decidable, while SemGHW1 is undecidable. In particular, this holds for full TGDs, i.e., TGDs
without existentially quantified variables in the head, and EGDs; in both cases, the undecidability
holds even if we focus on unary and binary predicates. We have then focussed on the main classes
of TGDs for which CQ containment is decidable, and do not subsume full TGDs, i.e., guarded, non-
recursive and sticky sets of TGDs. For these classes we have shown that SemGHWk is decidable,
and obtained several complexity results. We have also shown that SemGHWk is decidable in
elementary time if we focus on keys assuming schemas with unary and binary predicates only.
Moreover, we have considered the problem of evaluating a CQ that is semantically in GHWk under
a set Σ of constraints over a database that satisfies Σ. We have shown that whenever Σ falls in one
of the classes of constraints mentioned above, the problem is fixed-parameter tractable. Moreover,
in the case of guarded TGDs and (arbitrary) functional dependencies, we obtain a pure tractability
result. Finally, we have considered the problem of optimally approximating a CQ, which is not
semantically in GHWk , via a CQ in GHWk , and show that for our TGD-based classes of constraints
such an approximation always exists. Computing and evaluating such approximations might help
finding “quick” answers to the input query when exact evaluation is infeasible.

11.1 Open Problems
Our technical results provide a comprehensive picture of SemGHWk in the presence of constraints,
as well as of the problems of query evaluation and approximation. Nevertheless, there are still
interesting, and some of them highly non-trivial, open problems that we are planning to tackle:

(1) The precise complexity of SemGHWk under sticky sets of TGDs is still unknown. Recall
that we have a NExpTime upper bound and an ExpTime lower bound (Theorem 6.10). As
discussed in Section 6, our goal is to identify a more refined property than UCQ rewritability,
which will allow us to show that SemGHWk under sticky sets of TGDs is in ExpTime.

(2) The exact complexity of SemGHWk under keys over unary and binary predicates is still
unknown. We have shown via an involved proof that this problem is decidable in elementary
time (Theorem 8.1). In fact, as shown in the conference paper [23], this can be reduced to
2ExpTime by exploiting tree-walking automata.

(3) The decidability status of SemGHWk under arbitrary key or functional dependencies, without
any assumption on the underlying schema, is still open. We conjecture that in this case
SemGHW1 is undecidable. However, it seems that this is a highly non-trivial result. Let
us stress that the EGDs employed in the proof that SemGHW1 under EGDs is undecidable
(Theorem 7.1) are far from being keys or FDs.

(4) The question whether the evaluation of CQs that are semantically in GHWk under non-
recursive or sticky sets of TGDs is tractable remains open. Recall that the above problem is
fixed-parameter tractable (Theorem 9.1), while for guarded TGDs and functional dependencies
is even tractable (Theorem 9.3). Can we establish such a pure tractability result for non-
recursive and sticky sets of TGDs?

(5) Recall that for the classes of TGDs considered in this work we can always approximate a
CQ, which is not semantically in GHWk , via a CQ that falls in GHWk in an optimal way

46 Pablo Barceló, Diego Figueira, Georg Gottlob, and Andreas Pieris

(Theorem 10.2). The question whether this result can be extended to keys, or, more generally,
to EGDs, remains unanswered.

ACKNOWLEDGMENTS
The authors would like to thank Thomas Schwentick and Luc Segoufin for reading a previous
version of this manuscript and spotting two major bugs in the proofs. Barceló is supported by the
Millennium Institute for Foundational Research on Data (IMFD Chile) and Fondecyt grant 1170109.
Figueira is partially supported by ANR project DéLTA (grant ANR-16-CE40-0007) and ANR project
QUID (grant ANR-18-CE40-0031). Gottlob is a Royal Society Research Professor and acknowledges
support by the Royal Society in the context of the project “RAISON DATA” (Project reference:
RP/R1/201074). Gottlob is also supported by the EPSRC Programme Grant EP/M025268/ VADA.
Pieris is supported by the EPSRC grant EP/S003800/1 EQUID.

REFERENCES
[1] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases. Addison-Wesley.
[2] Jean-François Baget, Marie-Laure Mugnier, Sebastian Rudolph, and Michaël Thomazo. 2011. Walking the Complexity

Lines for Generalized Guarded Existential Rules. In IJCAI. 712–717.
[3] Vince Bárány, Georg Gottlob, and Martin Otto. 2014. Querying the Guarded Fragment. Logical Methods in Computer

Science 10, 2 (2014).
[4] Pablo Barceló, Cristina Feier, Carsten Lutz, and Andreas Pieris. 2019. When is Ontology-Mediated Querying Efficient?.

In LICS. 1–13.
[5] Pablo Barceló, Georg Gottlob, and Andreas Pieris. 2016. Semantic Acyclicity Under Constraints. In PODS. 343–354.
[6] Pablo Barceló, Leonid Libkin, and Miguel Romero. 2014. Efficient Approximations of Conjunctive Queries. SIAM J.

Comput. 43, 3 (2014), 1085–1130.
[7] Pablo Barceló, Reinhard Pichler, and Sebastian Skritek. 2015. Efficient Evaluation and Approximation of Well-designed

Pattern Trees. In PODS. 131–144.
[8] Pablo Barceló, Miguel Romero, and Moshe Y. Vardi. 2016. Semantic Acyclicity on Graph Databases. SIAM J. Comput.

45, 4 (2016), 1339–1376.
[9] Catriel Beeri, Ronald Fagin, David Maier, Alberto O. Mendelzon, Jeffrey D. Ullman, and Mihalis Yannakakis. 1981.

Properties of Acyclic Database Schemes. In STOC. 355–362.
[10] Catriel Beeri and Moshe Y. Vardi. 1981. The Implication Problem for Data Dependencies. In ICALP. 73–85.
[11] Andrea Calì, Georg Gottlob, and Michael Kifer. 2013. Taming the Infinite Chase: Query Answering under Expressive

Relational Constraints. J. Artif. Intell. Res. 48 (2013), 115–174.
[12] Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. 2012. A general Datalog-based framework for tractable query

answering over ontologies. J. Web Sem. 14 (2012), 57–83.
[13] Andrea Calì, Georg Gottlob, and Andreas Pieris. 2012. Towards more expressive ontology languages: The query

answering problem. Artif. Intell. 193 (2012), 87–128.
[14] Andrea Calì, Domenico Lembo, and Riccardo Rosati. 2003. On the Decidability and Complexity of Query Answering

Over Inconsistent and Incomplete Databases. In PODS. 260–271.
[15] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. 2008. Conjunctive query containment and answering

under description logic constraints. ACM Trans. Comput. Log. 9, 3 (2008).
[16] Ashok K. Chandra and Philip M. Merlin. 1977. Optimal Implementation of Conjunctive Queries in Relational Data

Bases. In STOC. 77–90.
[17] Hubie Chen and Víctor Dalmau. 2005. Beyond Hypertree Width: Decomposition Methods Without Decompositions.

In CP. 167–181.
[18] Bruno Courcelle. 1989. The Monadic Second-Order Logic of Graphs, II: Infinite Graphs of Bounded Width. Mathematical

Systems Theory 21, 4 (1989), 187–221.
[19] Víctor Dalmau, Phokion G. Kolaitis, and Moshe Y. Vardi. 2002. Constraint Satisfaction, Bounded Treewidth, and

Finite-Variable Logics. In CP. 310–326.
[20] Alin Deutsch, Alan Nash, and Jeff B. Remmel. 2008. The Chase Revisisted. In PODS. 149–158.
[21] Ronald Fagin. 1981. A Normal Form for Relational Databases That Is Based on Domians and Keys. ACM Trans. Database

Syst. 6, 3 (1981), 387–415.
[22] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. 2005. Data exchange: Semantics and query

answering. Theor. Comput. Sci. 336, 1 (2005), 89–124.

Semantic Optimization of Conjunctive Queries 47

[23] Diego Figueira. 2016. Semantically Acyclic Conjunctive Queries under Functional Dependencies. In LICS. 847–856.
[24] Wolfgang Fischl, Georg Gottlob, and Reinhard Pichler. 2018. General and Fractional Hypertree Decompositions: Hard

and Easy Cases. In PODS. 17–32.
[25] Tomasz Gogacz and Jerzy Marcinkowski. 2017. Converging to the chase - A tool for finite controllability. J. Comput.

Syst. Sci. 83, 1 (2017), 180–206.
[26] Nathan Goodman and Oded Shmueli. 1982. Tree Queries: A Simple Class of Relational Queries. ACM Trans. Database

Syst. 7, 4 (1982), 653–677.
[27] Georg Gottlob, Gianluigi Greco, Nicola Leone, and Francesco Scarcello. 2016. Hypertree Decompositions: Questions

and Answers. In PODS. 57–74.
[28] Georg Gottlob, Gianluigi Greco, and Bruno Marnette. 2009. HyperConsistency Width for Constraint Satisfaction:

Algorithms and Complexity Results. In Graph Theory, Computational Intelligence and Thought. 87–99.
[29] Georg Gottlob, Nicola Leone, and Francesco Scarcello. 2002. Hypertree Decompositions and Tractable Queries. J.

Comput. Syst. Sci. 64, 3 (2002), 579–627.
[30] Georg Gottlob, Zoltán Miklós, and Thomas Schwentick. 2009. Generalized hypertree decompositions: NP-hardness

and tractable variants. J. ACM 56, 6 (2009).
[31] Georg Gottlob, Giorgio Orsi, and Andreas Pieris. 2014. Query Rewriting and Optimization for Ontological Databases.

ACM Trans. Database Syst. (2014).
[32] Pavol Hell and Jaroslav Nešetřil. 2004. Graphs and Homomorphisms. Oxford University Press.
[33] David S. Johnson and Anthony C. Klug. 1984. Testing Containment of Conjunctive Queries under Functional and

Inclusion Dependencies. J. Comput. Syst. Sci. 28, 1 (1984), 167–189.
[34] Leonid Libkin. 2004. Elements of Finite Model Theory. Springer.
[35] Thomas Lukasiewicz, Maria Vanina Martinez, Andreas Pieris, and Gerardo I. Simari. 2015. From Classical to Consistent

Query Answering under Existential Rules. In AAAI. 1546–1552.
[36] David Maier, Alberto O. Mendelzon, and Yehoshua Sagiv. 1979. Testing Implications of Data Dependencies. ACM

Trans. Database Syst. 4, 4 (1979), 455–469.
[37] Christos H. Papadimitriou and Mihalis Yannakakis. 1999. On the Complexity of Database Queries. J. Comput. Syst. Sci.

58, 3 (1999), 407–427.
[38] Riccardo Rosati. 2011. On the finite controllability of conjunctive query answering in databases under open-world

assumption. J. Comput. Syst. Sci. 77, 3 (2011), 572–594.
[39] Yehoshua Sagiv and Mihalis Yannakakis. 1980. Equivalences Among Relational Expressions with the Union and

Difference Operators. J. ACM 27, 4 (1980), 633–655.
[40] Detlef Seese. 1991. The structure of the models of decidable monadic theories of graphs. Annals of pure and applied

logic 53, 2 (1991), 169–195.
[41] Robert Endre Tarjan and Mihalis Yannakakis. 1984. Simple Linear-Time Algorithms to Test Chordality of Graphs, Test

Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs. SIAM J. Comput. 13, 3 (1984), 566–579.
[42] Mihalis Yannakakis. 1981. Algorithms for Acyclic Database Schemes. In VLDB. 82–94.

48 Pablo Barceló, Diego Figueira, Georg Gottlob, and Andreas Pieris

A ADDITIONAL PROOFS FROM SECTION 4
Theorem 4.4. SemGHW1 (F) is undecidable, even if we allow only unary and binary predicates.

For an instance of PCP over the alphabet {a,b} given by the lists u1, . . . ,un and v1, . . . ,vn , we
are going to construct a Boolean CQ q, and a set Σ ∈ F of TGDs, both over the schema σ described
above, such that the PCP instance has a solution if and only if there exists a CQ q′ ∈ GHW1 (i.e.,
an acyclic CQ) such that q ≡Σ q′. The proof is structured as follows:
• We first define the CQ q, and summarize some crucial syntactic properties of it (Claim A.1).
• We then define the set Σ ∈ F of TGDs, and show that q is closed under the applications of

the TGDs in Σ, i.e., D[q] = chase(q, Σ) (Claim A.2).
• We finally show that our construction is a reduction, i.e., the PCP instance has a solution if

and only if q is semantically in GHW1 under Σ. The proof exploits the syntactic properties of
q summarized in Claim A.1, and the fact that D[q] = chase(q, Σ) shown in Claim A.2.

The Boolean Conjunctive Query q

The query q mentions the variables y, z, and x1, . . . ,x2(n2+2n+2) , and is defined as follows; notice
that all the variables in q are existentially quantified, and whenever we use addition (+) we mean
addition modulo 2(n2 + 2n + 2):

∧

1≤i≤2(n2+2n+2)
start(y,xi) ∧ end(xi , z) ∧

∧

1≤i, j≤2(n2+2n+2)
η1 (xi ,x j) ∧ η2 (xi ,x j) ∧ η(xi ,x j) ∧

∧

1≤i≤2(n2+2n+2)
a(xi ,xi+1) ∧ a(xi+2,xi) ∧ b (xi ,xi+3) ∧ b (xi+4,xi) ∧

∧

1≤i≤2(n2+2n+2)

∧

1≤j≤n

(
♢j,∗ (xi ,xi+2j+3)∧♢j,∗ (xi+2j+4,xi) ∧ ♢∗, j (xi ,xi+2j+2n+3)∧♢∗, j (xi+2j+2n+4,xi)

)
∧

∧

1≤i≤2(n2+2n+2)

∧

1≤j, ℓ≤n
♢j, ℓ (xi ,xi+2(j−1)n+2ℓ+4n+3) ∧ ♢j, ℓ (xi+2(j−1)n+2ℓ+4n+4,xi)

Essentially, the variable y can be seen as a source that is linked via an edge labeled start to each
variable xi , for i ∈ {1, . . . , 2(n2 + 2n + 2)}. Correspondingly, the variable z can be seen as a sink that
has an incoming edge labeled end from each such variable xi . Moreover, all the pairs of variables
(xi ,x j), for 1 ≤ i, j ≤ 2(n2 + 2n + 2), are linked via edges labeled η1, η2, and η. Finally, each variable
xi , for i ∈ {1, . . . , 2(n2 + 2n + 2)}, has outgoing edges labeled a, b, ♢j,∗, ♢∗, j , and ♢j, ℓ , for each
1 ≤ j, ℓ ≤ 2(n2 + 2n + 2), as well as incoming edges with the same labels. In Figure 11, we depict
part of q comprised by variables y, z, and how variable xi is connected to all variables x j , with i < j .

The following claim, which holds by definition, summarizes some important syntactic properties
of the CQ q. As shown in Figure 11, q can be naturally seen as a directed graph in which edges are
labeled with binary predicates occurring in q. In the following claim, we see q as a directed graph.

Claim A.1. The following statements hold for q:

(1) For each wordw over {a,b, (♢k,∗)1≤k≤n , (♢∗,k)1≤k≤n , (♢k, ℓ)1≤k, ℓ≤n }, and i ∈ {1, . . . , 2(n2+2n+
2)}, there is a directed path that starts at xi , contains only variables from {x1, . . . ,x2(n2+2n+2) },
and is labeled by w .

(2) For each 1 ≤ i < j ≤ 2(n2 + 2n + 2), there is exactly one undirected edge between xi and
x j labeled with a symbol from {a,b, (♢k,∗)1≤k≤n , (♢∗,k)1≤k≤n , (♢k, ℓ)1≤k, ℓ≤n }. In other words, q

Semantic Optimization of Conjunctive Queries 49

y z

xi

xi+1
xi+2

xi+3
xi+4

xi+2j+3

xi+2j+4

xi+2j+2n+3

xi+2j+2n+4

xi+2(j−1)n+2ℓ+4n+3

xi+2(j−1)n+2ℓ+4n+4

𝗌𝗍𝖺𝗋𝗍
𝗌𝗍𝖺𝗋𝗍

𝗌𝗍𝖺𝗋𝗍
𝗌𝗍𝖺𝗋𝗍

… …
𝖾𝗇𝖽

𝖾𝗇𝖽

𝖾𝗇𝖽
𝖾𝗇𝖽

a

a

b

b

♦j,*
♦j,*

♦*, j

♦*, j

♦j,ℓ

♦j,ℓ

Fig. 11. A part of CQ q showing variables y, z, and how variable xi is connected to all variables x j , with i < j .
We omit relation symbols η, η1, and η2 from the figure, as all pairs (xi ,x j) are connected with an edge labeled
with all such symbols.

contains exactly one atom from the set
⋃

1≤i<j≤2(n2+2n+2)

{
R (xi ,x j),R (x j ,xi) | R ∈ {a,b, (♢k,∗)1≤k≤n , (♢∗,k)1≤k≤n , (♢k, ℓ)1≤k, ℓ≤n }

}
.

(3) Each self-loop is labeled only with η1,η2 and η. In other words, the only atoms of q that contain
exactly one variable are

⋃

1≤i≤2(n2+2n+2)
{η2 (xi ,xi),η1 (xi ,xi),η(xi ,xi)}.

The above claim will be exploited in the correctness proof given below. This concludes our
discussion on the query q. We proceed with the definition of Σ.

The Set Σ of Full TGDs

We start by introducing some terminology. Recall that our PCP instance is defined by two lists
u1, . . . ,un and v1, . . . ,vn of words over {a,b}. Consider the first one of the words ui , for 1 ≤ i ≤ n.
We denote by Extended(ui) the set of words that extendui by adding arbitrarily many occurrences of
symbols from {♢∗, j | 1 ≤ j ≤ n} at non-consecutive positions (apart from the last one). Formally, we
define Extended(ui) as the set of all words u ′i over the alphabet {a,b, ♢∗, j | 1 ≤ j ≤ n} such that: (a)
the restriction of u ′i to the alphabet {a,b} is precisely ui , (b) no two symbols from {♢∗, j | 1 ≤ j ≤ n}
appear consecutively in u ′i , and (c) the last symbol of u ′i is either a or b. Notice that each word
in Extended(ui) is of size at most 2 · |ui |, and, thus, Extended(ui) is a finite set. Analogously, we
define Extended(vi), for 1 ≤ i ≤ n. The only difference is that now words in Extended(vi) are

50 Pablo Barceló, Diego Figueira, Georg Gottlob, and Andreas Pieris

obtained from vi by adding arbitrarily many occurrences of symbols from {♢j,∗ | 1 ≤ j ≤ n} at
non-consecutive positions.

Let w be a word of the form t1 . . . tm , where each tj , for 1 ≤ j ≤ m, is a symbol in

{a,b, ♢∗,k , ♢k,∗, ♢k,l , start, end | 1 ≤ k, l ≤ n}.
In our TGDs, we write w (x ,y) as an abbreviation for t1 (x , z1), . . . , tm (zm−1,y), where the zi ’s are
fresh variables. Our set Σ ∈ F consists of the following TGDs:

(1) An initialization rule of the form:

start(x ,y),η1 (y, z),η2 (y, z
′) → η(z, z ′),η(z ′, z).

That is, if a variable y has an incoming edge labeled start and outgoing edges labeled η1 and
η2 pointing out to variables z and z ′, respectively, then z and z ′ are linked to each other via
edges labeled η. The recursive rules that define the predicate η, presented next, start iterating
from this initialization rule.

(2) For each 1 ≤ i ≤ n, words u ′i ∈ Extended(ui) and v ′i ∈ Extended(vi), and symbols r , r ′ ∈
{∗, 1, . . . ,n}, we have a recursive matching rule of the form:

η1 (x1,x),η2 (y1,y),η(x ,y),u
′
i (x1,x

∗), ♢i,r (x∗,x2),η1 (x2,x
′),

v ′i (y1,y
∗), ♢r ′,i (y∗,y2),η2 (y2,y

′) → η(x ′,y ′).

Intuitively, if in a certain path, a pair of nodes (x1,y1) is a “match” (represented by the presence
of the atoms η1 (x1,x),η2 (y1,y),η(x ,y)), and x2 and y2 are the nodes reached from x1 and y1
after reading ui♢i,r and vi♢r ′,i , respectively, then (x2,y2) is also a “match” (represented by
the presence of the atoms η1 (x2,x

′),η2 (y2,y
′) and the creation of the atom η(x ,y)).

The reason why we use a word u ′i in Extended(ui) instead of ui itself (resp., a word v ′i in
Extended(vi) instead of vi), is because the reading of ui from x1 (resp., vi from y1) might
need to “jump” over several occurrences of symbols of the form ♢∗, j (resp., ♢j,∗), for 1 ≤ j ≤ n.
These symbols occur non-consecutively, since the words in the PCP instance are non-empty,
and thus the word we read belongs to Extended(ui) (resp., to Extended(vi)).

(3) For each 1 ≤ i ≤ n, and words u ′i ∈ Extended(ui) and v ′i ∈ Extended(vi), we have a
finalization rule of the form:

start(y,x),η1 (z1, z
′
1),η2 (z2, z

′
2),η(z

′
1, z
′
2),u

′
i (z1,x

′
1),v

′
i (z2,x

′
1), ♢i,i (x ′1,x1),

a(x1,x2), . . . ,a(x2(n2+2n+2)−1,x2(n2+2n+2)), end(x2(n2+2n+2), z) → q,

where q is an abbreviation for the set of atoms in q (which are defined over the variables
y, z,x1, . . . ,x2(n2+2n+2) , as mentioned in the body of the TGDs).
Intuitively, this states that if a path encodes a solution to PCP (a condition that is stated in
the rules by the atoms η1 (z1, z

′
1),η2 (z2, z

′
2),η(z

′
1, z
′
2) and the synchronization via words ui♢i,i

and vi♢i,i on the node x1), then by appending a tail of 2(n2 + 2n + 2) edges labeled a, and a
final edge labeled end, we get a copy of q by applying the finalization rule. This allows D[q]
to be mapped to the chase of q′, in case the latter represents a solution to the PCP instance.

This concludes the definition of the set Σ ∈ F. Let us stress that Σ can be effectively constructed
since, as explained above, for each i ∈ [n], the sets Extended(ui) and Extended(vi) are finite. We
now establish a simple claim, which states that q is closed under the applications of the TGDs in Σ,
that will be used in the correctness proof.

Claim A.2. D[q] = chase(q, Σ).

Semantic Optimization of Conjunctive Queries 51

Proof. It suffices to show that D[q] satisfies Σ. It is clear that D[q] satisfies the initialization and
matching rules since, for each 1 ≤ i, j ≤ 2(n2 + 2n + 2), the atom η(xi ,x j) occurs in q. Consider
now the finalization rule τ , and assume that there is a homomorphism h that maps the body of
τ to D[q]. We need to show that h also maps q to D[q]. It is clear that h(y) = ⊥y and h(z) = ⊥z ,
while the variables z1, z2, z

′
1, z
′
2,x
′
1,x1, . . . ,x2(n2+2n+2) are mapped to nulls in {⊥x1 , . . . ,⊥x2(n2+2n+2)

}.
(Notice that h is not forced to map a variable x ∈ {x1, . . . ,x2(n2+2n+2) } to ⊥x). Thus, for each 1 ≤ i ≤
2(n2+2n+2)−1, it is the case thata(h(xi),h(x j)) ∈ D[q]. In other words,h(x1)h(x2) . . .h(x2(n2+2n+2))
is a directed path in D[q] whose edges are labeled a. It is not difficult to verify by inspection of
q that this path does not repeat nodes. This implies that there exists 1 ≤ j ≤ 2(n2 + 2n + 2) such
that, for each 1 ≤ i ≤ 2(n2 + 2n + 2), h(xi) = ⊥x j+i−1 . It is also not difficult to see that, for each
1 ≤ j ≤ 2(n2 + 2n + 2), there is an isomorphism from q to D[q] that maps y and z to ⊥y and ⊥z ,
respectively, and, for each 1 ≤ i ≤ 2(n2 + 2n + 2), it maps xi to ⊥xi+j−1 . Thus, h maps q to D[q], as
needed.

We now proceed to the last part of the proof of Theorem 4.4, which aims to show that the
instance of PCP has a solution if and only if q is semantically in GHW1 under Σ.

The Correctness Proof

We first explain how to represent solutions to the PCP instance with a word over the alphabet
{a,b, (♢i,∗)1≤i≤n , (♢∗,i)1≤i≤n , (♢i, j)1≤i, j≤n }. Assume that the solution s is given by the sequence
1 ≤ i1, . . . , im ≤ n of indices. Consider then the words:

ws
1 := ui1♢i1,∗ . . .uim♢im,∗ ws

2 := vi1♢∗,i1 . . .vim♢∗,im .
We define a new word ws

1 ⊗ws
2 that combines the information contained in ws

1 and ws
2 as follows.

We write ws
1 and ws

2 in two different tapes (each letter being in a different cell), and start reading
them in parallel from left-to-right using one head in each tape. Depending on the symbols read by
the heads, we will write a new symbol to an output tape. If the symbols read by the two heads are
the same, then we write such symbol to the output tape and move all heads one cell to the right
(including the one on the output tape). If the symbols are different, then it must be the case that
the symbol c1 read on the first tape is of the form ♢i,∗, or the symbol c2 read on the second tape is
of the form ♢∗,i , for 1 ≤ i ≤ n. This follows from the fact that ui1 . . .uim = vi1 . . .vim , and the way
the procedure is defined. Then, we consider three cases:
• If c1 = ♢i,∗ and c2 = ♢∗, j , for 1 ≤ i, j ≤ n, then we write the symbol ♢i, j to the output tape

and move all heads one cell to the right.
• If c1 = ♢i,∗, for 1 ≤ i ≤ n, while c2 is either a or b, then we write the symbol ♢i,∗ to the output

tape, and move the head of the first tape and the output tape one cell to the right; the head of
the second tape remains at the same position.
• If c2 = ♢∗,i , for 1 ≤ i ≤ n, while c1 is either a or b, then we write the symbol ♢∗,i to the output

tape, and move the head of the second tape and the output tape one cell to the right; the head
of the first tape remains at the same position.

As an example, consider the instance of PCP consisting of the lists u1,u2,u3,u4 and v1,v2,v3,v4
of words over the alphabet {a,b} such that:

u1 = bb,u2 = ab,u3 = bb,u4 = ab and v1 = bbab,v2 = b,v3 = ba,v4 = b .

Then the solution s given by the sequence (1, 2, 3, 4) yields the following words:

ws
1 = bb ♢1,∗ ab ♢2,∗ bb ♢3,∗ ab ♢4,∗ and ws

2 = bbab ♢∗,1 b ♢∗,2 ba ♢∗,3 b ♢∗,4.

52 Pablo Barceló, Diego Figueira, Georg Gottlob, and Andreas Pieris

y

!"#$" b b b♦ 1,* a ♦ 2,1 b ♦ *,2 b ♦ 3,* a ♦ *,3 b ♦ 4,4

x x1p1 p2 p3 p4 p5

η1 η1 η1 η1 η1 η1 η1

η2η2 η2η2 η2 η2 η2

Fig. 12. The initial part of CQ q[w], from y to x1, for w = bb ♢1,∗ ab ♢2,1 b ♢∗,2 b ♢3,∗ a ♢∗,3 b ♢4,4.

The combined word ws
1 ⊗ws

2 is then defined as:

bb ♢1,∗ ab ♢2,1 b ♢∗,2 b ♢3,∗ a ♢∗,3 b ♢4,4.

The key ingredient of the correctness proof is Lemma A.3 below. We first need some definitions.
Let w be a word over {a,b, (♢i,∗)1≤i≤n , (♢∗,i)1≤i≤n , (♢i, j)1≤i, j≤n } and consider a directed path

y
start−−−→ x

w−→ x1
a−→ x2

a−→ x3 · · · x2(n2+2n+2)−1
a−→ x2(n2+2n+2)

end−−−→ z

Here we use x
ℓ−→ x ′ as a visual representation of the expression ℓ(x ,x ′). In particular, x w−→ x1

means that there is a directed path from x to x1, composed of fresh internal nodes, that is labeled
w . We extend this path with the following edges:

• x
η1−−→ xη1 and x

η2−−→ xη2 , where xη1 and xη2 are fresh variables.
• For each variable p in the path from x to x1 with an incoming edge labeled ♢i,∗, ♢∗,i , or ♢i, j , for

1 ≤ i, j ≤ n, we add the edges p
η1−−→ pη1 and p

η2−−→ pη2 , where pη1 and pη2 are fresh variables.
We denote the obtained CQ q[w]. Clearly, q[w] is a directed tree, which in turn implies that it
belongs to GHW1, i.e., is acyclic. Figure 12 shows a graphical depiction of the initial part of q[w],
from y to x1, for w = bb ♢1,∗ ab ♢2,1 b ♢∗,2 b ♢3,∗ a ♢∗,3 b ♢4,4.

We can then prove the following crucial lemma.

Lemma A.3. The following statements hold:
(1) If the PCP instance has a solution s , then there is S ⊆ chase(q[ws

1 ⊗ws
2], Σ), where dom(S) =

{⊥y ,⊥z ,⊥x1 , . . . ,⊥x2(n2+2n+2)
}, and a bijection ι : dom(S) → dom(D[q]), such that ι (S) = D[q].

(2) Let w be a word the alphabet {a,b, (♢i,∗)1≤i≤n , (♢∗,i)1≤i≤n , (♢i, j)1≤i, j≤n }. If there exists S ⊆
chase(q[w], Σ), where dom(S) = {⊥y ,⊥z ,⊥x1 , . . . ,⊥x2(n2+2n+2)

}, and a bijection ι : dom(S) →
dom(D[q]) such that ι (S) = D[q], then the PCP instance has a solution.

Proof. We first prove (1). Assume that the solution s is given by the sequence 1 ≤ i1 . . . im ≤ n.
It is clear that η(⊥xη1 ,⊥xη2) ∈ chase(q[ws

1 ⊗ws
2], Σ), due to the initialization rule, since the atoms

start(⊥y ,⊥x), η1 (⊥x ,⊥xη1) and η2 (⊥x ,⊥xη2) occur in the canonical instance of q[ws
1 ⊗ws

2]. From
such an atom, the matching rules start iterating over the path (in the canonical instance ofq[ws

1⊗ws
2])

from ⊥x to ⊥x1 labeled ws
1 ⊗ ws

2 . We claim the following: Over such a path, the matching rules
generate all the atoms of the form η(⊥yη1

j
,⊥zη2

j
), for 1 ≤ j ≤ m, where the nulls ⊥yj and ⊥zj are

the ones that satisfy the following conditions. Suppose that the path from ⊥x to ⊥yj is labeled λ,
and the path from ⊥x to ⊥zj is labeled λ′, then:
• The restriction of λ to the alphabet {a,b} is precisely ui1 . . .ui j , and the last symbol of λ is of

the form ♢i j ,r , for r ∈ {∗, 1, . . . ,n}.

Semantic Optimization of Conjunctive Queries 53

• The restriction of λ′ to the alphabet {a,b} is precisely vi1 . . .vi j , and the last symbol of λ′ is
of the form ♢r ′,i j , for r ′ ∈ {∗, 1, . . . ,n}.

We prove this claim by induction on j ∈ {1, . . . ,m}. (We sometimes abuse notation, and write yj
and zj for the positions in ws

1 ⊗ws
2 that are naturally associated with ⊥yj and ⊥zj , respectively).

Base case. We assume that ui1 is shorter than vi1 – the other case can be treated in an anal-
ogous way. By construction, ws

1 ⊗ ws
2 has a prefix of the form ui1♢i1,∗u ′i1♢r,i1 , where ui1♢i1,∗u ′i1 ∈

Extended(vi1) and r ∈ {∗, 1, . . . ,n}. Therefore, the path from ⊥x to ⊥x1 , in the canonical instance
of q[ws

1 ⊗ws
2], contains an initial path of the form:

⊥x
ui1♢i1,∗−−−−−−→ ⊥y1

u′i1♢r ,i1−−−−−−→ ⊥z1 .

Observe that the the nulls⊥y1 and⊥z1 satisfy the conditions stated above. Moreover, sinceui1♢i1,∗u ′i1
belongs to Extended(vi1), the matching rule:

η1 (x ,x
η1),η2 (x ,x

η2),η(xη1 ,xη2),ui1 (x ,y
∗), ♢i1,∗ (y∗,y1),η1 (y1,y

η1
1),

[ui1♢i1,∗u ′i1](x , z∗), ♢r,i1 (z∗, z1),η2 (z1, z
η2
1) → η(y

η1
1 , z

η2
1)

is triggered, and the atom η(⊥yη1
1
,⊥zη2

1
) is generated.

Inductive step. By induction hypothesis, the atom η(⊥yη1
j
,⊥zη2

j
) has been generated during

the chase. By the construction of ws
1 ⊗ ws

2 , and the definition of ⊥yj and ⊥zj , the subword of
ws

1 ⊗ ws
2 from position yj to yj+1 is the word u ′i j+1

♢i j+1,r such that u ′i j+1
∈ Extended(ui j+1) and

r ∈ {∗, 1, . . . ,n}. Analogously, the subword of ws
1 ⊗ws

2 from zj to zj+1 is the word v ′i j+1
♢r ′,i j+1 such

that v ′i j+1
∈ Extended(vi j+1) and r ′ ∈ {∗, 1, . . . ,n}. Therefore, the matching rule:

η1 (yj ,y
η1
j),η2 (zj , z

η2
j),η(y

η1
j , z

η2
j),u ′i j+1 (yj ,y

∗), ♢i j+1,r (y
∗,yj+1),η1 (yj+1,y

η1
j+1),

v ′i j+1 (zj , z
∗), ♢r ′,i j+1 (z

∗, zj+1),η2 (zj+1, z
η2
j+1) → η(y

η1
j+1, z

η2
j+1)

is triggered, and the atom η(⊥yη1
j+1
,⊥zη2

j+1
) is generated. This completes the proof of the claim.

From the above discussion, we conclude that η(⊥yη1
m
,⊥zη2

m
) ∈ chase(q[ws

1 ⊗ws
2], Σ). We proceed

to show that the finalization rule will be triggered and generate an isomorphic copy S of D[q] with
dom(S) = {⊥y ,⊥z ,⊥x1 , . . . ,⊥x2(n2+2n+2)

}. We assume that vim is shorter than uim (the other case is
analogous). By the construction of ws

1 ⊗ ws
2 , and the definition of ⊥ym and ⊥zm , the subword of

ws
1 ⊗ws

2 fromym to the last position ofws
1 ⊗ws

2 is the wordu ′im♢im,r such thatu ′im ∈ Extended(uim)
and r ∈ {∗, 1, . . . ,n}. Analogously, the subword of ws

1 ⊗ws
2 from zm to the last position of ws

1 ⊗ws
2

is the word vim♢r ′,im such that r ′ ∈ {∗, 1, . . . ,n}. We conclude that r = r ′ = im . Therefore, the
finalization rule:

start(y,x),η1 (ym ,y
µ1
m),η2 (zm , z

µ2
m),η(y

µ1
m , z

µ2
m),u ′im (ym ,x

′
1),vim (zm ,x

′
1), ♢im,im (x ′1,x1),

a(x1,x2), . . . ,a(x2(n2+2n+2)−1,x2(n2+2n+2)), end(x2(n2+2n+2), z) → q,

is triggered, and generates in chase(q[ws
1 ⊗ws

2], Σ) an isomorphic copy S of D[q], where dom(S) =
{⊥y ,⊥z ,⊥x1 , . . . ,⊥x2(n2+2n+2)

}, as needed.

We now prove (2). Assume there is an isomorphic copy S of D[q], where dom(S) = {⊥y ,⊥z ,⊥x1 ,
. . . ,⊥x2(n2+2n+2)

}, in chase(q[w], Σ). This implies that the finalization rule was triggered during the
construction of chase(q[w], Σ). Let w1 be the word that is obtained from w by (i) removing each
occurrence of a symbol of the form ♢∗,i , and (ii) changing each occurrence of a symbol of the form
♢i, j by ♢i,∗. Analogously, we define w2 to be the word that is obtained from w by (i) removing each

54 Pablo Barceló, Diego Figueira, Georg Gottlob, and Andreas Pieris

occurrence of a symbol of the form ♢i,∗, and (ii) changing each occurrence of a symbol of the form
♢i, j by ♢∗, j . We claim that w1 and w2 are of the following form:

w1 = ui1♢i1,∗ . . .uim♢im,∗ and w2 = vi1♢∗,i1 . . .vim♢∗,im ,
for some sequence of indices 1 ≤ i1, . . . , im ≤ n. Towards a contradiction, assume that this is not
the case. Then, starting from the initialization rule, there would be no way for the matching rules
to go through the path from ⊥x to ⊥x1 , in the canonical instance of q[w], in order to force the
application of a finalization rule. Therefore, i1, . . . , im represents a solution to the PCP instance.

Having Lemma A.3 in place, we are now ready to conclude the correctness proof, i.e., show that
the PCP instance has a solution iff q is semantically in GHW1 under Σ.

(⇒) Assume the PCP instance has a solution s . We claim that q ≡Σ q[ws
1 ⊗ws

2], which in turn
implies that q is semantically in GHW1 under Σ since q[ws

1 ⊗ ws
2] ∈ GHW1. By Lemma 2.5, we

need to show that (i) D[q[ws
1 ⊗ws

2]] can be homomorphically mapped to chase(q, Σ), and (ii) D[q]
can be homomorphically mapped to chase(q[ws

1 ⊗ws
2], Σ). The first item of Claim A.1 implies that

there exists a path in q labeled

startw1 ⊗w2 aaa . . . a︸ ︷︷ ︸
2(n2+2n+2) times

end.

In particular, this path starts at y, moves via an edge labeled start to an arbitrary node xi , for
1 ≤ i ≤ 2(n2 + 2n + 2), then follows a path labeled

w1 ⊗w2 aaa . . . a︸ ︷︷ ︸
2(n2+2n+2) times

through the nodes {x1, . . . ,x2(n2+2n+2) }, and then finishes by moving through an edge labeled end
to the node z. Since each node of the form xi , for 1 ≤ i ≤ 2(n2 + 2n + 2), has outgoing edges labeled
η1 and η2 in q, we conclude that the canonical instance of q[ws

1 ⊗ ws
2] can be homomorphically

mapped to D[q], and thus, to chase(q, Σ). On the other hand, by Lemma A.3, chase(q[ws
1 ⊗ws

2], Σ)
contains an isomorphic copy of D[q], which immediately implies that D[q] can be homomorphically
mapped to chase(q[ws

1 ⊗ws
2], Σ).

(⇐) Assume that there is an acyclic CQ q′ such that q ≡Σ q′. To show that the PCP instance
has a solution, it suffices to show that q′ contains a subquery of the form q[w], where w is a word
over the alphabet {a,b, (♢i,∗)1≤i≤n , (♢∗,i)1≤i≤n , (♢i, j)1≤i, j≤n }, such that chase(q[w], Σ) contains an
isomorphic copy S of D[q] with dom(S) = {⊥y ,⊥z ,⊥x1 , . . . ,⊥x2(n2+2n+2)

}. This allows us to apply
the second item of Lemma A.3, and conclude that the PCP instance has a solution.

By Lemma 2.5, we get that D[q] can be homomorphically mapped to chase(q′, Σ), and D[q′] can
be homomorphically mapped to chase(q, Σ). Since, by Claim A.2, D[q] = chase(q, Σ), we get that
D[q′] can be homomorphically mapped to D[q]. We proceed to show the existence of q[w] by case
analysis on the shape of q′.

Case 1. We first assume that q′ is a directed rooted tree. SinceD[q] can be mapped to chase(q′, Σ),
we get that chase(q′, Σ) contains at least one edge labeled start and another one labeled end (because
D[q] contains such edges). Moreover, at least one edge of each such kind must have already been
present in D[q′]; otherwise, by definition of Σ, it is the case that chase(q′, Σ) contains no such an
edge, which is a contradiction. Moreover, an edge in D[q] is labeled start if and only if it leaves
the source node ⊥y , while an edge in D[q] is labeled end if and only if it reaches the sink node ⊥z .
Therefore, since there is a homomorphism from D[q′] to D[q], an edge in D[q′] is labeled start if

Semantic Optimization of Conjunctive Queries 55

and only it leaves the root element ⊥r . Moreover, the only nodes that can have incoming edges
labeled end in D[q′] are the leaves.

We now perform a “backchase” analysis as follows. Let h be a homomorphism from D[q] to
chase(q′, Σ). Then, h(⊥z) must correspond to a leaf ⊥z′ of D[q′] with an incoming edge labeled
end. Correspondingly, for each 1 ≤ i ≤ 2(n2 + 2n + 2), it must be the case that h(⊥xi) is a term of
dom(D[q′]) that has (i) an outgoing edge labeled end pointing out to ⊥z′ , and (ii) at least another
outgoing edge labeled a. No such a node exists in D[q′] (since in D[q′] every node has at most one
outgoing edge), and thus such edges must have been created during the chase. But the only way
this could have happened is by triggering a finalization rule. Let us assume that a finalization rule

start(y,x),η1 (z1, z
′
1),η2 (z2, z

′
2),η(z

′
1, z
′
2),u

′
i (z1,x

′
1),v

′
i (z2,x

′
1), ♢i,i (x ′1,x1),

a(x1,x2), . . . ,a(x2(n2+2n+2)−1,x2(n2+2n+2)), end(x2(n2+2n+2), z) → q,

where 1 ≤ i ≤ n, u ′i in Extended(ui), and v ′i in Extended(vi), is triggered for the first time before
any other finalization rule. This means that the unique path in D[q′] from the root ⊥r to the leaf
⊥z′ is of the form:

⊥r w ′−−→ ⊥z2

v ′′i−−→ ⊥z1

ui♢i,i−−−−→ ⊥x1
a−→ ⊥x2 . . .⊥x2(n2+2n+2)−1

a−→ ⊥x2(n2+2n+2)

end−−−→ ⊥z′,
assuming without loss of generality that ui is shorter than vi and that v ′i = v ′′i ui . But then, all
the atoms in such a path must have been already in D[q′]. This is because the initialization and
recursive matching rules can only generate atoms labeled η, and hence, none of these atoms could
have been generated by the chase before a finalization rule is applied. For the same reasons, D[q′]
also contains the atoms η1 (⊥z1 ,⊥z′1) and η2 (⊥z2 ,⊥z′2). But the atom η(⊥z′1 ,⊥z′2) also belongs to
chase(q′, Σ), and this atom could have only been generated during the chase. Assume otherwise,
i.e., η(⊥z′1 ,⊥z′2) ∈ D[q′]. Then D[q′] contains a path from ⊥z2 to ⊥z1 labeled v ′′i , and another one
labeled η1η(η2)

−, where (η2)
− represents a backward traversal of an edge labeled η2. These paths

are disjoint, apart from the external nodes. This contradicts the fact that D[q′] is acyclic. Therefore,
η(⊥z′1 ,⊥z′2) was either generated by the initialization rule, or the recursive matching rules. By
recursively applying this reasoning, we get that the unique path from ⊥r to ⊥z′ in D[q′] is

⊥r start−−−→ ⊥y w−→ ⊥x1
a−→ ⊥x2 . . .⊥x2(n2+2n+2)−1

a−→ ⊥x2(n2+2n+2)

end−−−→ ⊥z′,
where w is a word over the alphabet {a,b, (♢i,∗)1≤i≤n , (♢∗,i)1≤i≤n , (♢i, j)1≤i, j≤n }. Moreover, we can
assume, without loss of generality, that each term in the path from ⊥x to ⊥x1 with an incoming
edge labeled over {(♢i,∗)1≤i≤n , (♢∗,i)1≤i≤n , (♢i, j)1≤i, j≤n } has outgoing edges labeled η1 and η2 in
D[q′]. Therefore, such a path, with all such outgoing edges, forms a subquery of q′ of the form
q[w], where w is a word over the alphabet {a,b, (♢i,∗)1≤i≤n , (♢∗,i)1≤i≤n , (♢i, j)1≤i, j≤n }, as needed.

Case 2. Consider now the case where q′ contains parallel edges (in both directions). Notice first
that D[q′] cannot contain parallel edges labeled with two different symbols from {a,b, (♢i,∗)1≤i≤n ,
(♢∗,i)1≤i≤n , (♢i, j)1≤i, j≤n }. This is because D[q′] maps to D[q], and, by the second item of Claim A.1,
D[q] contains no such edges. Therefore, if D[q′] contains any parallel edges, it must be the case
that all of them, apart from at most one, are labeled η1, η2 or η.

The problem with our “backchase” analysis now is that D[q′] might contain “artificial” matching
edges labeled η, which are not generated by the chase, but are used to “cheat” such chase. For
instance, such edges might force an “artificial” triggering of the termination rules, thus not allowing
us to conclude (as in the previous case) that q′ contains a subquery q[w] of the required form.

We can however solve this technical problem by assuming, without loss of generality, that the
input to the PCP instance consists of words of even length only (if not, we simply replace each

56 Pablo Barceló, Diego Figueira, Georg Gottlob, and Andreas Pieris

occurrence of a letter a or b in one of the words of the PCP instance by aa or bb, respectively). In fact,
if one of these edges is used to trigger a matching rule, then all pairs of “matched” positions from
then on occur at odd distance from each other, thus forbidding the possibility of synchronization at
the end of the path.

Case 3. Let us assume now that q′ also admits self-loops. Since D[q′] homomorphically maps to
D[q], these loops can only be labeled η1, η2 or η (see item (3) in Claim A.1). This is not dangerous for
our “backchase” analysis since, if one of those loops is used as a starting point for a chase sequence,
it can only mean that the synchronization of the words in the PCP instance occurs earlier than
expected. Therefore, there is still a solution to the PCP instance.

Case 4. Finally, the case when the query q′ has, in addition, disconnected components is analo-
gous, since we can still carry out the previous analysis over one of the connected components of q′.
This finishes the proof.

B ADDITIONAL PROOFS FROM SECTION 7
Theorem 7.1. SemGHW1 (EGD) is undecidable, even if we allow only unary and binary predicates.

We adapt the proof of Theorem 4.4. In particular, we replace the initialization rule:
start(x ,y),η1 (y, z),η2 (y,w) → η(z,w),η(w, z).

by the initialization EGD:
start(x ,y),η1 (y, z),η2 (y,w) → z = w,

and each matching rule of the form:

η1 (x1,x),η2 (y1,y),η(x ,y),u
′
i (x1,x

∗), ♢i,r (x∗,x2),η1 (x2,x
′),

v ′i (y1,y
∗), ♢r ′,i (y∗,y2),η2 (y2,y

′) → η(x ′,y ′).

by a matching EGD of the form:
η1 (x1,x),η2 (y1,x),u

′
i (x1,x

∗), ♢i,r (x∗,x2),η1 (x2,x
′),v ′i (y1,y

∗), ♢r ′,i (y∗,y2),η2 (y2,y
′) → x ′ = y ′.

That is, we simply mimic the “matching” atom η(x ,y) by equating x and y. For the finalization
rules the modifications are a bit more cumbersome to describe. In fact, in order to emulate with a
set of EGDs a finalization rule of the form:

start(y,x),η1 (z1, z
′
1),η2 (z2, z

′
2),η(z

′
1, z
′
2),u

′
i (z1,x

′
1),v

′
i (z2,x

′
1), ♢i,i (x ′1,x1),

a(x1,x2), . . . ,a(x2(n2+2n+2)−1,x2(n2+2n+2)), end(x2(n2+2n+2), z) → q,

we have to add “dangling” edges to the body of the rule. In case such a body is satisfied, the
finalization EGDs will force several of the variables in such dangling edges to be equated, thus
generating as before a copy of q among the corresponding variables. Since the idea is easy to grasp,
yet quite tedious to write the actual EGDs, we keep the explanation at the intuitive level.

Let Σ= be the resulting set of EGDs. It is easy to see that if the PCP instance has a solution s , then
q ≡Σ q[ws

1 ⊗ws
2]=, where q[ws

1 ⊗ws
2]= is a suitable modification of q[ws

1 ⊗ws
2] with the dangling

edges. It follows that q is semantically in GHW1 under Σ= since q[ws
1 ⊗ws

2]= ∈ GHW1.
Assume, on the other hand, that there is an acyclic CQ q′ such that q ≡Σ= q′. As before, we

show that q′ must contain a subquery of the form q[w], where w is a word over the alphabet
{a,b, (♢i,∗)1≤i≤n , (♢∗,i)1≤i≤n , (♢i, j)1≤i, j≤n }, such that chase(q[w], Σ) contains a copy of q. This al-
lows us to apply the second item of Lemma A.3 and obtain that the PCP instance has a solution.
The key ingredient to our proof is, as before, a “backchase” analysis. In particular, it is necessary to
show that every time that the sink nodes of two dangling edges labeled η1 and η2, respectively, are

Semantic Optimization of Conjunctive Queries 57

Fig. 13. A part of CQ q showing variables y, z, and how variable xi is connected to all variables x j , with i < j .
We omit relation symbols η, η1, and η2 from the figure, as all pairs (xi ,x j) are connected with an edge labeled
with all such symbols.

equated, it is due to an application of a matching rule. Notice, however, that this is not straight-
forward to achieve since the equality of variables generated by EGDs is transitive, and thus, such
variables could have been equated for transitivity reasons. An example of this phenomenon is
depicted in Figure 13, where we have a “blurred” equality being generated from the upper path
and three “dashed” equalities generated from the lower one (vertical strokes are dangling edges).
The transitivity of the equalities generated by the EGDs forces two variables to be equated with no
justification due to the matching rules (this is the “dotted” equality). This might cause an artificial
triggering of the matching rules ending in the firing of the finalization rule even when no solution
to the PCP instance exists.

This problem, however, only appears when two paths converge as shown in Figure 13. Let us
then examine this phenomenon in more detail. So, let us assume that q′ contains two such paths
that converge in variable z via edges from different variables x and y. If the labels of these two
edges are the same, then the issue can easily be solved by extending Σ= with each EGD of the form

R (x , z),R (y, z) → x = y, for R ∈ {a,b, (♢k,∗)1≤k≤n , (♢∗,k)1≤k≤n , (♢k, ℓ)1≤k, ℓ≤n }.
In fact, each one of these EGDs is satisfied by the query q, and, in addition, if q′ satisfies the extended
set Σ= then it means that no two paths can converge via two edges with the same label in the set
{a,b, (♢k,∗)1≤k≤n , (♢∗,k)1≤k≤n , (♢k, ℓ)1≤k, ℓ≤n }.

Let us consider then the case when the two edges have different labels. It is easy to see that
this leads to problems with transitivity only if the labels of these edges are of the form ♢k,r and
♢k ′,r ′ , or of the form ♢r,k and ♢r ′,k ′ , for 1 ≤ k < k ′ ≤ n and r , r ′ ∈ {∗, 1, . . . ,n}. In fact, consider for
instance that one of the edges is labeled ♢r,k and the other one is labeled a. Then the variable z is
a synchronization variable only for one of the two paths (namely, the one which enters z via the
edge labeled ♢k,r), and thus no interaction with the other path can cause undesired equalities of
variables. Consider now the case when one of the labels is of the form ♢k,r and the other one is of
the form ♢r ′,k ′ , for 1 ≤ k < k ′ ≤ n and r , r ′ ∈ {∗, 1, . . . ,n}. Then the path that enters z via an edge
labeled ♢k,r uses an edge labeled η1 for synchronization, while the other path uses an edge labeled
η2. Hence, no interaction between these two paths can cause undesired inequalities. All other cases
are similar.

Consider then the case when the two edges that converge in z are of the form ♢k,r and ♢k ′,r ′ ,
for 1 ≤ k < k ′ ≤ n and r , r ′ ∈ {∗, 1, . . . ,n}, as the other case is analogous. An easy way to solve
this problem is by using different dangling edges ηk1 and ηk2 , for each 1 ≤ k ≤ n. Hence, now the
element z will have two different dangling edges ηk1 and ηk ′1 : the first one corresponding to the

58 Pablo Barceló, Diego Figueira, Georg Gottlob, and Andreas Pieris

incoming edge labeled ♢k,r and the second one to the incoming edge labeled ♢k ′,r ′ . The dangling
edge labeled ηk1 can only “match” with another dangling edge labeled ηk2 , while the one labeled
ηk
′

1 can only match with another dangling edge labeled ηk ′2 . This prevents undesired inequalities
to arise, as we can now ensure that each edge labeled ηk1 is “matched” with at most one dangling
edge labeled ηk2 . The cost to be paid is that we now have to extend our query q with extra symbols
ηk1 and ηk2 , for each 1 ≤ k ≤ n, interpreted exactly as η1 and η2 before. We also need to adapt the
matching and finalization rules in Σ=; e.g., now matching rules have to use ηk1 and ηk2 as opposed
to simply η1 and η2 in the following way:

ηk
′

1 (x1,x),η
k ′
2 (y1,x),u

′
k (x1,x

∗), ♢k,r (x∗,x2),η
k
1 (x2,x

′),v ′k (y1,y
∗), ♢r ′,k (y∗,y2),η

k
2 (y2,y

′) → x ′ = y ′.

C ADDITIONAL PROOFS FROM SECTION 9
Proposition 9.9. G enjoys chase redundancy.

The first part of the proof has been already given in the main body of the paper. It only remains
to show that there are functions (µ j : UIj ,k → HIj→I)j≥0 such that, for each j ≥ 0:

(†) the function µ j is a winning strategy for the duplicator in the existential k-cover game on
(Ij ,⊥(x̄)) and (I , t̄), and

(††) for each J ∈ UIj ,k , µ j (J) = µ j+1 (J).
We proceed by induction on j ≥ 0.

Base case. For j = 0, we have that D[q] = I0. Thus, we can define µ0 to be µ.

Inductive step. By induction hypothesis, there exists µ j : UIj ,k → HIj→I that is a winning
strategy for the duplicator in the existential k-cover game on (Ij ,⊥(x̄)) and (I , t̄). For each J ∈
(UIj ,k ∩UIj+1,k), let µ j+1 (J) = µ j (J). We explain next how to define µ j+1 (J), for each J ∈ UIj+1,k \UIj ,k .
Recall that Ij+1 is the result of applying the TGD τj over Ij with (ūj , ū

′
j). Assume that τj is of the

form ϕ (x̄ , ȳ) → ∃z̄ψ (x̄ , z̄). This implies that Ij+1 = Ij ∪ψ (ūj ,⊥(z̄)), whereψ (ūj ,⊥(z̄)) is the set of
atoms obtained after replacing x̄ with ūj , and each variable z ∈ z̄ with a fresh null ⊥z .

Suppose that the guard of τj is R (x̄ , ȳ). Since ϕ (ūj , ū ′j) ⊆ Ij , we have that R (ūj , ū ′j) ∈ Ij , and,
therefore, µ j is defined over the 1-union {R (ūj , ū ′j)} of Ij . Consider an arbitrary homomorphism
h ∈ µ j ({R (ūj , ū ′j)}). We claim that ϕ (h(ūj),h(ū ′j)) ⊆ I . It is clear that R (h(ūj),h(ū ′j)) ∈ I . Consider
any other atom S (x̄ ′) in the body of τj . Since τj is guarded, all the variables in S (x̄ ′) occur also
in the guard atom R (x̄ , ȳ) of τj , i.e., x̄ ′ ⊆ x̄ ∪ ȳ. Let v̄j be the reduction of the tuple (ūj , ū

′
j)

that corresponds to the positions associated with x̄ ′. Since S (v̄j) ∈ Ij , µ j is defined over the 1-
union {S (v̄j)} of Ij . By the second condition in the definition of the winning strategy, there exists
h′ ∈ µ j ({S (v̄j)}) that is consistent with h. Since S (h′(v̄j)) ∈ I and S (h(v̄j)) = S (h′(v̄j)), we conclude
that S (h(v̄j)) ∈ I . Therefore, ϕ (h(ūj),h(ū ′j)) ⊆ I , as claimed above. Recall now that I |= Σ, which
means that I satisfies τj . Thus,ψ (h(ūj), w̄h) ⊆ I , where w̄h is a tuple of terms of dom(I). In other
words, every homomorphism h ∈ µ j ({R (ūj , ū ′j)}) naturally gives rise to a homomorphism hext from
ψ (ūj ,⊥(z̄)) ⊆ Ij+1 toψ (ūj , w̄h) ⊆ I . In particular, hext agrees with h over the terms of ūj , and maps
the nulls of ⊥(z̄) to their corresponding terms in w̄h . Clearly, h and hext are consistent.

Consider now an arbitrary J ∈ UIj+1,k \ UIj ,k . Observe that J can be partitioned into {J1, J2},
where J1 = J ∩ Ij and J2 = J \ J1. Notice that J2 is non-empty; otherwise, J would be a k-union of Ij .
Therefore, |J1 | ≤ k − 1, which implies that (J1 ∪ {R (ūj , ū ′j)}) ∈ UIj ,k . By the second condition in the
definition of the winning strategy, ifh ∈ µ j ((J1∪{R (ūj , ū ′j)})), then the restriction ofh over dom(J1),
denoted h | J 1 , belongs to µ j (J1). Analogously, the restriction of h over the set of terms occurring in
R (ūj , ū

′
j), denotedh |R (ūj ,ū′j) , belongs to µ j ({R (ūj , ū ′j)}). Consequently, from what we discussed above,

Semantic Optimization of Conjunctive Queries 59

h |R (ūj ,ū′j) gives rise to a homomorphism (h |R (ūj ,ū′j))
ext from ψ (ūj ,⊥(z̄)) to I , which is consistent

with h |R (ūj ,ū′j) . As usual, we write ((h |R (ūj ,ū′j))
ext) | J2 for the restriction of (h |R (ūj ,ū′j))

ext over dom(J2).
Notice that ((h |R (ūj ,ū′j))

ext) | J2 is consistent with h | J1 , since each term of dom(J1) ∩ dom(J2) belongs
to (ūj , ū

′
j). Therefore,

λh = h | J1 ∪
((
h |R (ūj ,ū′j)

)ext)

| J2
is a well-defined homomorphism from J = J1 ∪ J2 to I . We then define

µ j+1 (J) = {λh | h ∈ µ j (J1 ∪ {R (ūj , ū ′j)})}.
We proceed to show that µ j+1 satisfies (†) and (††). In fact, the condition (††), which states that

µ j (J) = µ j+1 (J) for each J ∈ UIj ,k , follows by construction since (UIj ,k ∩UIj+1,k) = UIj ,k . It remains
to show that (†) holds, that is, µ j+1 is a winning strategy for the duplicator in the existential k-cover
game on (Ij+1,⊥(x̄)) and (I , t̄). Equivalently, we need to show that, for each J ∈ UIj+1,k :

(1) µ j+1 (J) = {h ∈ HIj+1→I | h(J) ⊆ I and ⊥xi ∈ dom(J) =⇒ h(⊥xi) = ti }, and
(2) for each h ∈ µ j+1 (J) and J ′ ∈ UIj+1,k , there exists h′ ∈ µ j+1 (J

′) such that h,h′ are consistent.
We first prove that (1) holds. Fix an arbitrary J ∈ UIj+1,k . We proceed by considering two cases:
• J ∈ UIj ,k . Clearly, µ j (J) = µ j+1 (J), and the claim follows by induction hypothesis.
• J ∈ UIj+1,k \UIj ,k . Clearly, J can be partitioned into {J1, J2}, where J1 = J ∩ Ij and J2 = J \ J1.

By construction, µ j+1 = {λh | h ∈ µ j (J1 ∪ {R (ūj , ū ′j)})}, where λh = h | J1 ∪ ((h |R (ūj ,ū′j))
ext) | J2 .

Fix an arbitrary λh ∈ µ j+1 (J). As explained above, λh (J) ⊆ I . Assume now that ⊥xi ∈ dom(J).
If ⊥xi ∈ dom(J1), then, by induction hypothesis, λh (⊥xi) = ti since h | J1 ∈ µ j (J1). Now, if
⊥xi ∈ dom(J2) \ dom(J1), then it necessarily belongs to ūj since the terms ⊥(z̄) are nulls
generated by the chase procedure. Since λ′ = ((h |R (ūj ,ū′j))

ext) | J2 is consistent with h, we have
that λ′(⊥xi) = h(⊥xi). By induction hypothesis, h(⊥xi) = t̄i , and thus, λh (⊥xi) = t̄i .

We finally show that (2) holds. Fix arbitrary J , J ′ ∈ UIj+1,k and λ ∈ µ j+1 (J). We show that there is
λ′ ∈ µ j+1 (J

′) that is consistent with λ by considering the following cases:
• J , J ′ ∈ UIj ,k . The claim follows by induction hypothesis.
• J ∈ UIj ,k and J ′ ∈ UIj+1,k . Clearly, λ ∈ µ j (J) since J is a k-union of Ij . As usual, J ′ can be

partitioned into {J ′1, J ′2}, where J ′1 = J ′ ∩ Ij and J ′2 = J ′ \ J ′1 . Notice that J ′2 , ∅, which implies
that |J ′1 | ≤ k − 1. Thus, J ′ ∪ {R (ūj , ū ′j)} is a k-union of Ij . By induction hypothesis and the
second condition in the definition of the witness strategy, there exists a homomorphism
h ∈ µ j (J ′1 ∪ {R (ūj , ū ′j)}) that is consistent with λ. By definition, the homomorphism λh =

h | J ′1 ∪ ((h |R (ūj ,ū′j))
ext) | J ′2 belongs to µ j+1 (J

′). Observe that λ and λh are consistent since every
term that is shared by J and J ′2 occurs in (ūj , ū

′
j). The claim follows with λ′ = λh .

• J ∈ UIj+1,k and J ′ ∈ UIj ,k . It suffices to show that there exists λ′ ∈ µ j (J ′) that is consistent with
λ. We partition J into {J1, J2}, where J1 = J ∩ Ij and J2 = J \ J1. Observe that |J1 | ≤ k − 1, and
thus, J1 ∪ {R (ūj , ū ′j)} is a k-union of Ij . Clearly, λ is of the form λh = h | J1 ∪ ((h |R (ūj ,ū′j))

ext) | J2
for some h ∈ µ j (J1 ∪ {R (ūj , ū ′j)}). By induction hypothesis and the second condition in the
definition of the witness strategy, there exists a homomorphism χ ∈ µ j (J ′) that is consistent
with h. It is easy to see that χ | J1 ∈ µ j (J) is consistent with λh since J ′ and J2 share only terms
of (ūj , ū ′j). The claim follows with λ′ = χ | J1 .
• J , J ′ ∈ UIj+1,k \UIj ,k . As above, J and J ′ can be partitioned into {J1, J2} and {J ′1, J ′2}, respectively,

such that J1 = J ∩ Ij and J2 = J \ J1, and J ′1 = J
′ ∩ Ij and J ′2 = J

′ \ J ′1 . It is easy to verify that
|J1 |, |J ′1 | ≤ k − 1, and thus, J1 ∪ {R (ūj , ū ′j)} and J ′1 ∪ {R (ūj , ū ′j)} are k-unions of Ij . Clearly, λ
is of the form λh = h | J1 ∪ ((h |R (ūj ,ū′j))

ext) | J2 for some h ∈ µ j (J1 ∪ {R (ūj , ū ′j)}). By induction

60 Pablo Barceló, Diego Figueira, Georg Gottlob, and Andreas Pieris

hypothesis and the second condition in the definition of the witness strategy, there exists
a homomorphism χ ∈ µ j (J ′) that is consistent with h. By definition, the homomorphism
λχ = χ | J1 ∪ ((χ |R (ūj ,ū′j))

ext) | J2 belongs to µ j+1 (J
′). It is easy to verify that λh and λχ are

consistent. The claim follows with λ′ = λχ .

D ADDITIONAL PROOFS FROM SECTION 10
Lemma 10.3. Let q,q′ ∈ GHWk over a schema σ , and Σ ∈ C over σ , where C ∈ {G,NR,S}, such

that q′ ⊆Σ q. There is a CQ q′′ ∈ GHWk over σ such that q′ ⊆Σ q′′ ⊆Σ q and |q′′ | ≤ дC (q, Σ).
Assume first that C = G. We define q′Σ (x̄), where x̄ are the free variables of q′, as the CQ obtained

by considering the conjunction of atoms in chase(q′, Σ), after renaming each null ⊥ into a variable
v (⊥), with v (⊥x) = x for each x ∈ x̄ . By exploiting Lemma 2.5, it is easy to show that q′ ⊆Σ q
implies q′Σ ⊆ q. Since q′ ∈ GHWk and G has GHW-preserving chase (by Proposition 5.8), we
conclude that q′Σ ∈ GHWk . Hence, by Lemma 5.4, there exists a CQ q′′ ∈ GHWk over σ such that
q′Σ ⊆ q′′ ⊆ q and |q′′ | ≤ |q | · (2k + 1). By using Lemma 2.5, we can show that q′Σ ⊆ q′′ implies
q′ ⊆Σ q′′. Moreover, q′′ ⊆ q implies q′′ ⊆Σ q, and thus, q′ ⊆Σ q′′ ⊆Σ q.

Assume now that C ∈ {NR,S}. Since C is UCQ rewritable, there exists a UCQ Q over σ such
that q′ ⊆ Q . Thus, there exists a disjunct q̂ of Q such that q′ ⊆ q̂. By Lemma 5.4, there exists a
CQ q′′ ∈ GHWk over σ such that q′ ⊆ q′′ ⊆ q̂ and |q′′ | ≤ |q̂ | · (2k + 1) ≤ fC (q, Σ) · (2k + 1). It is
clear that q′ ⊆ q′′ implies q′ ⊆Σ q′′. Moreover, as shown in the proof of Proposition 6.5, q̂ ⊆Σ q.
Consequently, q′ ⊆Σ q′′ ⊆Σ q, as needed.

	Abstract
	1 Introduction
	1.1 Semantic Generalized Hypertreewidth
	1.2 The Relevance of Constraints
	1.3 Research Challenges
	1.4 Our Contributions
	1.5 Organization

	2 Preliminaries
	3 Semantic Generalized Hypertreewidth
	3.1 Infinite Instances vs. Finite Databases
	3.2 A Note on the Combination of TGDs and EGDs

	4 Semantic Generalized Hypetreewidth Under TGDs
	4.1 Decidability of CQ Containment Under TGDs is Necessary
	4.2 Decidability of CQ Containment Under TGDs is Not Sufficient

	5 Generalized Hypertreewidth Preserving Chase
	5.1 Guardedness

	6 UCQ Rewritability
	6.1 Non-Recursiveness
	6.2 Stickiness

	7 Semantic Generalized Hypetreewidth Under EGDs
	7.1 Towards Positive Results

	8 Semantic Generalized Hypetreewidth Under Keys
	8.1 General Structure of the Proof
	8.2 The Expansion of a CQ
	8.3 Definition of Mq,
	8.4 Suitability of Mq,
	8.5 Finalizing the Decidability Proof

	9 Query Evaluation
	9.1 Fixed-parameter Tractable Evaluation
	9.2 Tractable Evaluation

	10 Query Approximations with TGDs
	11 Conclusions and Open Problems
	11.1 Open Problems

	Acknowledgments
	References
	A Additional Proofs from Section 4
	B Additional Proofs from Section 7
	C Additional Proofs from Section 9
	D Additional Proofs from Section 10

