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Abstract. Soil organic carbon (SOC) is the largest carbon
pool in terrestrial ecosystems and may play a key role in bio-
spheric feedbacks with elevated atmospheric carbon dioxide
(CO2) in a warmer future world. We examined the simulation
results of seven terrestrial biome models when forced with
climate projections from four representative-concentration-
pathways (RCPs)-based atmospheric concentration scenar-
ios. The goal was to specify calculated uncertainty in global
SOC stock projections from global and regional perspectives
and give insight to the improvement of SOC-relevant pro-
cesses in biome models. SOC stocks among the biome mod-
els varied from 1090 to 2650 Pg C even in historical periods
(ca. 2000). In a higher forcing scenario (i.e., RCP8.5), in-
consistent estimates of impact on the total SOC (2099–2000)
were obtained from different biome model simulations, rang-
ing from a net sink of 347 Pg C to a net source of 122 Pg C.
In all models, the increasing atmospheric CO2 concentration
in the RCP8.5 scenario considerably contributed to carbon
accumulation in SOC. However, magnitudes varied from 93
to 264 Pg C by the end of the 21st century across biome mod-
els. Using the time-series data of total global SOC simu-
lated by each biome model, we analyzed the sensitivity of
the global SOC stock to global mean temperature and global
precipitation anomalies (1T and1P respectively) in each

biome model using a state-space model. This analysis sug-
gests that1T explained global SOC stock changes in most
models with a resolution of 1–2◦C, and the magnitude of
global SOC decomposition from a 2◦C rise ranged from al-
most 0 to 3.53 Pg C yr−1 among the biome models. However,
1P had a negligible impact on change in the global SOC
changes. Spatial heterogeneity was evident and inconsistent
among the biome models, especially in boreal to arctic re-
gions. Our study reveals considerable climate uncertainty in
SOC decomposition responses to climate and CO2 change
among biome models. Further research is required to im-
prove our ability to estimate biospheric feedbacks through
both SOC-relevant and vegetation-relevant processes.

1 Introduction

Soil organic carbon (SOC) is considered to be the largest car-
bon pool in terrestrial ecosystems (Davidson and Janssens,
2006). Soil provides many ecosystem services, such as reg-
ulating, provisioning, and societal services (Breure et al.,
2012). In ecosystem services, SOC is critical for ensuring
sustainable food production owing to its nutrient retention
function and water-holding capacity (Lal, 2004, 2010). Thus,
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the maintenance of SOC is important for global and social
sustainability (e.g.,Mol and Keesstra, 2012). In climate sys-
tems, because of the vast carbon pool of SOC, the behavior
of SOC is key for understanding the feedback of terrestrial
ecosystems to atmospheric CO2 concentrations in a warmer
world (Heimann and Reichstein, 2008; Thum et al., 2011).
However, a large number of uncertainties exist in the ob-
servation and modeling of SOC dynamics (e.g.,Post et al.,
1982; Todd-Brown et al., 2013). For example, in the Cou-
pled Model Intercomparison Project Phase 5 (CMIP5),Todd-
Brown et al. (2013) reported that the (simulated) present-
day global SOC stocks range from 514 to 3046 Pg C among
11 Earth system models (ESMs). Soil processes in terrestrial
ecosystem models are significantly simpler than actual pro-
cesses or above-ground processes, and thus exist structural
uncertainties in SOC dynamics in ESMs.

Temperature and precipitation are critical factors for
the feedback of terrestrial ecosystems to atmospheric CO2
(Seneviratne et al., 2006). Similarly, SOC dynamics are
strongly affected by temperature and precipitation, because
SOC dynamics in biome models are parameterized as a func-
tion of soil temperature, moisture, and other factors (e.g.,
Davidson and Janssens, 2006; Ise and Moorcroft, 2006;
Falloon et al., 2011). The differences in these functions
and their parameters have important effects on the projec-
tion of global SOC stocks and their behavior (Davidson and
Janssens, 2006; Ise and Moorcroft, 2006).

In this study, we examined the SOC dynamics simulated
by seven biome models as part of the Inter-Sectoral Im-
pact Model Intercomparison Project (ISI-MIP) (Warszawski
et al., 2014), which were forced using the bias-corrected out-
puts of five global climate models (GCMs) in newly de-
veloped climate scenarios, i.e., representative concentration
pathways (RCPs). We aimed to investigate the impact of cli-
mate change on the global SOC stock with respect to changes
in global mean temperature and precipitation and explore the
uncertainties in future global SOC stock projections.

In order to analyze the first-order behavior of the simu-
lated global SOC-dynamics, we focused on the interannual
responses of the biome models under the assumption that
SOC is one-compartment of Earth’s system. First, we con-
sidered global SOC dynamics as the following simple, dif-
ferential equation:

dSOC

dt
= Input − kSOC, (1)

where Input is carbon derived primarily from photosynthesis
products via chemical and microbial humification (Wershaw,
1993), andk is the global SOC turnover rate. In most conven-
tional models (Li et al., 2014), SOC decomposition functions
as a first-order decay process as in Eq. (1). SOC dynamics
are regulated by the balance between the input from vegeta-
tion biomass carbon and SOC decomposition. In this study,
we examined a simple hypothesis: can global mean tem-
perature and precipitation anomalies (1T (◦C) and1P (%),

respectively) be used as explanatory variables of global SOC
decomposition dynamics in future (projections over the 21st
century). If true, this would mean that1T and1P can ex-
plain k during a projection period in biome models. This
simplification enables us to review the global impact of cli-
mate change on SOC dynamics and identify the character-
istics of biome models especially in global SOC behavior.
Subsequently, we assessed whether the time evolution of the
estimation uncertainties for SOC can be explained by1T

and1P sensitivities during the 21st century for each biome
model. Furthermore, we compared the spatial distributions
of global SOC pools and their changes to evaluate regional
differences, focusing on detailed processes in the interaction
with vegetation dynamics.

2 Materials and methods

2.1 Method and models

In this study, we examined SOC processes using seven biome
models obtained from the ISI-MIP. The biome models are
Hybrid4 (Friend and White, 2000), JeDi (Jena Diversity-
Dynamic Global Vegetation model) (Pavlick et al., 2013),
JULES (Joint UK Land Environment Simulator;Clark et al.,
2011; Best et al., 2011), LPJmL (Lund–Potsdam–Jena man-
aged landSitch et al., 2003), SDGVM (Sheffield Dynamic
Global Vegetation Model;Woodward et al., 1995), VISIT
(Vegetation Integrative Simulator for Trace gases) (Ito and
Oikawa, 2002; Ito and Inatomi, 2012), and ORCHIDEE (Or-
ganizing Carbon and Hydrology in Dynamic Ecosystems;
Krinner et al., 2005). In this study, Hybrid4, JeDi, JULES,
and LPJmL are dynamic global vegetation models, and the
others are fixed vegetation models, in this study. General in-
formation about SOC processes is summarized in Table 1.

In the ISI-MIP framework, these models were run with
5 GCM× 4 RCP scenarios and a fixed CO2 control was also
run with RCP8.5 climate condition scenarios. In this study,
for the biome model forcing, we used climate variables in
HadGEM2-ES (HadGEM – Hadley Centre Global Environ-
mental Model) with bias correction for temperature and pre-
cipitation fromHempel et al.(2013). For the spin-up of each
model, we used de-trending forcing data for the years 1951–
1980 repeatedly until reaching equilibrium of VegC (vegeta-
tion carbon) and SOC. For CO2, we used the CO2 concentra-
tion for 1950 while running the 30 yr spin-ups. The global
climate variables (atmospheric CO2 concentration, global
mean terrestrial temperature anomaly1T (◦C), and global
terrestrial precipitation anomaly1P (%)) in each RCP sce-
nario for HadGEM are summarized in Fig.1. 1T and1P

were set to 0 as the averages of their values between 1980
and 2000. In addition, there was no anthropogenic land-use
change for the entire simulation period in this study. More
detail about the experimental setup is available in the litera-
ture (Warszawski et al., 2014).
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Table 1.Description of SOC-relevant processes in each biome model.

Model f (T )∗ f (M)∗ Compartment Permafrost Soil Citation
depth

Hybrid4 Exponential with optimum Optimum curve 8 None Non-explicitFriend and White(2000)
JeDi Exponential (Q10; 1.4) none 1 None Over 5 m Pavlick et al.(2013)
JULES Exponential (Q10; 2.0) Linear with plateau 4 None Non-explicit Clark et al.(2011)
LPJmL Lloyd & Taylor Linear 2 Considered 3 m Sitch et al.(2003)
SDGVM Optimum curve Optimum curve 4 None 1 m Woodward et al.(1995)
VISIT Lloyd & Taylor Optimum curve 1 None 1 m Ito and Inatomi(2012)
ORCHIDEE Exponential (Q10; 2.0) Quadratic 3 None Non-explicit Krinner et al.(2005)

∗ f (T ) andf (M) indicate the function of temperature and moisture sensitivities of SOC. Compartments indicates the number of SOC compartment considered in SOC pool
(e.g., slow, fast decomposition compartments included in LPJmL).

2.2 Estimation of1T and 1P sensitivity of global SOC

We used a state-space model (more properly vector autore-
gression) (Sims and Zha, 1998) to evaluate the sensitivity of
global SOC decomposition to global temperature and pre-
cipitation anomalies in each biome model. This vector au-
toregression model considers only process uncertainty, not
observation uncertainty in a state-space model. We applied
this analysis to annual global SOC time-series data in each
biome model simulated in the five scenarios (three scenar-
ios for ORCHIDEE), i.e., the four RCPs and the fixed CO2
experiment with RCP8.5 climate conditions in HadGEM
(Figs.1, 2).

We first modeled the likelihood function using the follow-
ing equation. The model outputs were archived for each year;
therefore, we discretized the equation as the annual time
stept .

SOC[n,t] ∼ normal
(
µ[n,t−1], σps

)
, (2)

where SOC[n,t] is the global SOC stock at timet (year) in
scenarion, andσps is the process error.µ[n,t−1] is defined as
follows:

µ[n,t−1] = αVegC[n,t−1] + e(−k−β11T[n,t−1]−β21P[n,t−1]) SOC[n,t−1], (3)

where VegC[n,t] indicates the global vegetation biomass C
stock at timet in scenarion, andα is the fraction of VegC
transformed into SOC per year, which is assumed to repre-
sent the annual input of SOC.k is the turnover rate for global
SOC (yr−1) under standardized global mean temperature and
precipitation conditions (averages between 1980 and 2000).
β1 andβ2 are the global SOC sensitivities to1T and1P ,
respectively (units: yr−1 1T −1 and yr−1 1P −1).

The priors of these parameters are defined as follows:

σps ∼ uniform(0, 100), (4)

α ∼ uniform(0, 0.1), (5)

k ∼ uniform(0, 1), (6)

β1 ∼ normal(0, 100), (7)

β2 ∼ normal(0, 100). (8)
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Fig. 1. Climate variables for CO2 (RCPs), and global mean annual
temperature and global annual precipitation anomalies in HadGEM.

We used vague priors forβ1 andβ2 to estimate the1T and
1P effect onk. Forα andk, we used uniform priors, which
are sufficiently broad theoretically.

Then, the joint posterior is given by following equation.

p
(
α, β1, β2, k, σpr|data

)
∼ p

(
data|α, β1, β2, k, σpr

)
× p(α)p(k)p (β1) p (β2) p

(
σpr

)
. (9)
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We used the Hamiltonian Monte Carlo method to sample the
posterior with STAN (Stan Development Team, 2012) and R
(R Core Team, 2012).

2.3 Evaluation of stimulated global SOC decomposition
in 1T from posteriors

Using posteriors in the steady-state model, we simulated the
global SOC decomposition stimulated by increased global
mean temperature at1 2, 1 3, and1 4◦C.

Stimulated SOC decomposition= e(−k−β11T ) SOC2000 − e−k SOC2000 (10)

We used the global SOC stock SOC for the year of 2000
for each biome model to calculate the global SOC de-
composition and obtained posterior simulations by draw-
ing 1000 samples from the posterior distributions. From the
1000 iterations, we evaluated the predictive posterior inter-
vals for the stimulated global SOC decomposition values at
each1T .

In addition, to standardize the SOC2000 in each biome
model, we used the value of 1255 Pg C (95 % CI; 891–
1657 Pg C) estimated byTodd-Brown et al.(2013) instead of
the original SOC2000of each biome model to evaluate the ef-
fect of current SOC stocks on the global SOC decomposition
to 1T in each model. This procedure enable us to evaluate
the effects of the estimated current global SOC stock in each
model on the response to1T raising.

3 Results

3.1 Global SOC and VegC projection in HadGEM

The increase of1T depends on the RCP scenario, with
the maximum increase in RCP8.5 being 7.5◦C in 2099 in
HadGEM2. In RCP2.6, the maximum1T was 1.9◦C during
the entire simulation period and showed signs of leveling off
in 2050. In all RCP scenarios,1P increased to 11 (RCP4.5)
and 16 % (RCP8.5). However, there were high amplitudes of
1P within each RCP scenario; thus, there were no obvious
differences between RCPs.

For 2000, in HadGEM, the global SOC stocks varied from
1090 (Hybrid4) to 2646 Pg C (JULES) between the biome
models (Fig.2). The mean global SOC stock in the six mod-
els was 1772 Pg C (standard deviation; 568 Pg C). An esti-
mated empirical global SOC stock was 1255 Pg C (Todd-
Brown et al., 2013). However, global VegC stocks in 2000
ranged from 510 (VISIT) to 1023 Pg C (JULES). The mean
global VegC among the seven biome models was 809 Pg C
(SD (standard deviation); 223 Pg C) (Fig.2). The global
VegC stocks in most models were comparable with the VegC
(493 Pg C) estimated by the IPCC Tier-1 method (Ruesch
and Gibbs, 2008).

In the projection period (2000–2099), the SOC stock in
the six models (except for Hybrid4) increased in all RCPs

compared to that in 2000. The global SOC stock in Hybrid4
continuously decreased in all RCPs during the projection pe-
riod (Fig. 2). Under the RCPs, the maximum SOC stock in-
crease for the projection period was observed in JeDi with
RCP8.5, with a value of 347 Pg C. In the fixed CO2 scenar-
ios, the global SOC stocks continuously decreased in most
biome models, showing global SOC changes from−299 to
65 Pg C at the end of the simulation period.

The global VegC stocks increased in nearly all RCPs and
biome models compared to the global VegC in 2000. How-
ever, the global VegC stocks in Hybrid4 and LPJmL with
RCP8.5 did not continuously increase in the projection pe-
riod and were not the largest stock at the end of the simula-
tion period during the projection period. In the fixed CO2 sce-
narios, the global VegC stocks also continuously decreased,
and global VegC changes ranged from−517 to−40 Pg C at
the end of the simulation period (Fig.2).

The rank order of the SOC stock over each RCP at the end
of the simulation (2099) is in good agreement with the rank
order of each corresponding VegC stock in the same period
in JeDi, JULES, LPJmL, and SDGVM. However, the orders
of the SOC stock in the other biome models are different
than those of the global VegC stocks. These stock changes
are attributed to the different SOC decomposition processes.

3.2 Posteriors of the state-space model; global SOC
sensitivity to 1T and 1P

The Gelman and Rubin convergence statistics (R̂) of all pa-
rameters were lower than 1.01 in all models; therefore, the
parameters represented successful convergences (data not
shown). The posterior distributions of the parameters for
each biome model are summarized in Table 2.

α, which is the fraction of annual translation of VegC to
SOC, among the biome models varied from 0.721 % in Hy-
brid4 to 3.860 % in VISIT. The SOC turnover ratek (yr−1)
ranged from 2.51× 103 in LPJmL to 16.10× 103 yr−1 in
VISIT.

The 95 % credible intervals (CI) in sensitivity of global
SOC to1T (β1) in each biome model did not cover 0 in
all models (Table 2). And the 95 % CI ofβ1 in each model
was not partially duplicated, which means that the sensi-
tivity to 1T could be statistically distinguished between
the biome models. The highestβ1 was observed in VISIT,
with a median value of 1.225× 10−3 yr−1 1T −1 (or ◦C−1).
The lowestβ1 was observed in JeDi and was approximately
0 yr−1 1T −1.

The sensitivity of global SOC to1P (β2) in the biome
models was lower compared to the SOC turnover ratek and
β1. Their values (yr−1 1P −1) were nearly one order of mag-
nitude less thanβ1. Considering the range of the values of
1P in the projection period, the impact on global SOC stock
dynamics is small in all biome models. Furthermore, the
95 % CIs ofβ2 in each model were partially duplicated.

Earth Syst. Dynam., 5, 197–209, 2014 www.earth-syst-dynam.net/5/197/2014/
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Table 2.Posteriors of statistical time-series analysis of each biome model.

Models α × 10−2 (fraction) k × 10−3 (yr−1) β1 × 10−3 (yr−1 1T −1) β2 × 10−4 (yr−1 1P−1) σ

Hybrid4 0.721 (0.663–0.781) 4.78 (4.35–5.23) 1.130 (0.885–1.039) 0.183 (−0.465–0.111) 0.932 (0.882–0.987)
JeDi 1.815 (1.762–1.867) 7.94 (7.86–8.21) −0.058 (−0.041–−0.076) 0.001 (−0.006–0.008) 0.442 (0.419–0.467)
Jules 3.727 (3.430–4.033) 13.99 (12.81–15.20) 0.669 (0.613–0.723) 0.333 (0.158–0.504) 1.312 (1.242–1.384)
LPJmL 0.730 (0.687–0.771) 2.51 (2.34–2.68) 0.210 (0.190–0.231) 0.025 (−0.049–0.098) 0.522 (0.495–0.552)
SDGVM 1.820 (1.615–2.030) 6.50 (5.71–7.29) 0.333 (0.266–0.398) 0.365 (0.154–0.575) 0.936 (0.887–0.989)
VISIT 3.860 (3.761–3.958) 16.10 (15.68–16.53) 1.225 (1.181–1.257) −0.121 (−0.119–−0.151) 0.371 (0.352–0.378)
ORCHIDEE∗ 1.343 (1.230–1.457) 7.01 (6.38–7.64) 0.903 (0.839–0.970) −0.009 (−0.031–0.014) 1.001 (0.934–1.076)

∗ In ORCHIDEE, the parameters were estimated from time-series data compiled in three scenarios (RCP2.6, RCP8.5, and Fixed CO2).

On the basis of the posterior parameters, we estimated
the stimulated global SOC decomposition for1 2, 1 3, and
1 4◦C, assuming that each global SOC stock is at the 2000
level (Fig. 3). A statistical difference was observed among
the 1 2, 1 3, and1 4◦C in five biome models (i.e., Hy-
brid4, JULES, LPJmL, VISIT, and ORCHIDEE). However,
the magnitudes of the stimulated global SOC decomposi-
tion varied. At 1 4◦C, it ranged from 1.9 (in LPJmL) to
8.1 Pg C yr−1 (in JULES). In SDGVM, there were no statis-
tical differences in the stimulated global SOC decomposition
between1 3 and1 4◦C. There were also no differences in
this term among1 2, 1 3, and1 4◦C in JeDi.

3.3 Latitudinal δSOC (2099–2000 and CO2-fixed CO2)
in HadGEM RCP8.5

Latitudinal SOC stock in the HWSD (Figs.4, 5a) displays
a double peak in both the northern high latitudes and low
latitudes. The most SOC stock is found around 60◦ N. In
all biome models, large SOC stocks were also observed in
high-latitude zones (50–75◦ N; Figs. 5a and S1 in the Sup-
plement). However, the range of simulated SOC change dur-
ing this century (kg C m−2) in each biome model was differ-
ent. The upper 99 percentile of SOC accumulation in each
biome model varied from 23.8 in SDGVM to 97.6 kg C m−2

in LPJmL (Fig. S1 in the Supplement).
For differences between 2099 and 2000 in HadGEM

RCP8.5, a large variance among biome models was ob-
served between 30◦ S and 10◦ N (tropic region) and be-
tween 40 and 75◦ N (boreal to Arctic region) (Figs.4, 5a)
in the biome models. There were four types of latitudinal
changes: (i) SOC increase in both regions (JeDi, SDGVM,
ORCHIDEE), (ii) SOC increase in boreal to arctic regions
and decrease in the tropics (JULES, VISIT), (iii) SOC in-
crease in the tropics and decrease in boreal to arctic regions
(LPJmL), and (iv) SOC decrease in both regions (Hybrid4).
The maximum difference was observed in the boreal regions,
where it reached more than 20 Pg 2.5◦

−1
.

There were also differences between the increasing CO2
scenario (RCP8.5) and the fixed CO2 scenario with the
RCP8.5 climate condition in SOC (1SOCCO2−fixedCO2)
(Fig. 5c). This suggests that the increases of plant production

and biomass due to CO2 fertilizer effects in the increasing
CO2 scenario (RCP8.5) contributed to the SOC stock in-
creases because of the increase of C input to soil (indirect
CO2 effect). We observed bimodal increases in six biome
models, and the peaks were between 30 and 70◦ N and be-
tween 30◦ S and 10◦ N. In Hybrid4, the large SOC increase
due to CO2 was unimodal around the boreal regions. The
maximum difference between the increasing CO2 scenario
and the fixed CO2 scenario was observed around 60◦ N,
which was approximately 10 Pg 2.5◦

−1

The different values of 1SOCCO2−fixedCO2/1
VegCCO2−fixedCO2 (Fig. 5d) indicate a different turnover
rate of vegetation carbon to SOC (via litter) among
the biome models and regions. This is because of the
assumption of almost the same states except in VegC
dynamics between RCP8.5 and fixed CO2 scenarios.
1SOCCO2−fixedCO2/1VegCCO2−fixedCO2 varied with latitude
and among the biome models. In almost all the models,
1SOCCO2−fixedCO2/1VegCCO2−fixedCO2 was the highest
in the higher latitude regions. In the Hybrid4 model, the
1SOCCO2−fixedCO2/1VegCCO2−fixedCO2 was relatively low
in all regions, compared with other model results.

4 Discussion

4.1 Global mean temperature and precipitation
impact(s) on global SOC decomposition and
projection uncertainties

During the projection period (2000–2099), the global SOC
stock changes in all RCPs (without the fixed CO2 scenario)
ranged from−6 to 280 Pg C under RCP2.6 (mean± SD:
89± 104 Pg C). Under RCP8.5, the SOC changes varied
from −124 to 392 Pg C (113± 176 Pg C) (Fig.2) at the end
of the projection period. These global SOC stock changes
are equivalent to−185 to +58 ppmv in atmospheric CO2
concentration. Thus, in higher radiative forcing scenarios,
uncertainties associated with future global SOC projection
increase. These ranges of the global SOC stock changes by
2099 were comparable with the VegC changes (Fig.2). How-
ever, in the projection period, the global VegC stocks primar-
ily act as sinks for atmospheric CO2, while the global SOC

www.earth-syst-dynam.net/5/197/2014/ Earth Syst. Dynam., 5, 197–209, 2014
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Fig. 2. Changes in global SOC and VegC stocks of each biome model in HadGEM forced by each RCP.
Upper bar charts indicate global SOC and VegC stocks in 2000. In the bar chart for global SOC, blue lines
indicate the empirical global SOC stock estimated by Todd-Brown et al. (2013) based on Harmonized
World Soil Database (solid line indicates mean and dotted lines indicate 95 % confidence intervals). In
the bar chart for global VegC, blue line indicates empirical global VegC stock estimated by Ruesch and
Gibbs (2008).
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Fig. 2. Changes in global SOC and VegC stocks of each biome model in HadGEM forced by each RCP. Upper bar charts indicate global
SOC and VegC stocks in 2000. In the bar chart for global SOC, blue lines indicate the empirical global SOC stock estimated byTodd-Brown
et al.(2013) based on the Harmonized World Soil Database (solid line indicates mean and dotted lines indicate 95 % confidence intervals).
In the bar chart for global VegC, blue lines indicates empirical global VegC stock estimated byRuesch and Gibbs(2008).

stocks act as either sinks or sources depending on the biome
model. There were similar SOC projections in the same pe-
riod (2000–2100) from multiple model simulations in previ-
ous studies. In the C4MIP study, for example, the global SOC
stock changes ranged from approximately−50 to 300 Pg
by the end of the simulation period among the 11 coupled
climate–carbon models (Friedlingstein et al., 2006; Eglin
et al., 2010). It has also been predicted that SOC stocks in

2100 differ by approximately 200 Pg among five DGVMs un-
der forced A1FI and B1 scenarios (Sitch et al., 2008), which
is the highest forcing scenario in the AR4 assessment. Com-
pared with these studies, the SOC changes simulated in this
study varied comparably or showed slightly higher uncer-
tainty than those of previous projections.

The magnitude of global SOC decomposition and the
response to1T primarily depend on the amount of the
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in each biome model based on the original global SOC stock
at 2000 (blue symbols) and standardized as the empirical global
SOC stock (1255 Pg C, 95 % CI; 891–1657 Pg C) estimated inTodd-
Brown et al.(2013). Different letters indicate no partial duplication
among 95 % CI for each biome model (Table 2).

global SOC stock and a turnover rate of SOC decomposi-
tion process. As has been reported in a CMIP5 experiment
(Todd-Brown et al., 2013), our study has also shown that
simulated global present-day SOC stocks in seven ecosys-
tem models show high variation (1090–2646 Pg C) com-
pared to the variation of global present-day VegC stocks
(Fig. 2). There were some estimations available for global
SOC stock, ranging from 700 (Bolin, 1970) to 3000 Pg C
(Bohn, 1976). The most widely cited studies (Post et al.,
1982; Batjes, 1996) estimated global SOC stock to be about
1500 Pg C (0–100 cm depth). However, in the CMIP5 ex-
periment, the simulated global SOC stock by ESMs var-
ied from 510 to 3040 Pg C (Todd-Brown et al., 2013). Even
though the global SOC stocks for the year 2000 in this study
were within range of those inTodd-Brown et al.(2013), this
SOC stock uncertainty could still invoke future projection
uncertainty in SOC dynamics. To test this issue, we esti-
mated the global SOC standardized impact of each1T by
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Fig. 4. Maps of SOC changes by 2099 from 2000 and cumulative
density function (CDF) in each biome model in HadGEM RCP8.5.
In the plot of CDF, red lines indicate 2.5 and 97.5 percentiles of
SOC changes.

a simple substitution, which assumed that the global SOC
stock in each biome model is equal to the value (1255 Pg C,
95 % CI; 891–1657 Pg C) empirically estimated from the new
global data set byTodd-Brown et al.(2013). The standard-
ized global SOC decomposition was smaller than the origi-
nal SOC decomposition in some models, which showed large
differences in the global SOC stocks compared to the refer-
ence SOC stock (Todd-Brown et al., 2013) (Figs.2, 5). In ad-
dition, overall uncertainties among the biome models became
relatively small by about 30 % in total variance. This shows
that global SOC estimation is critical to the magnitude of
SOC feedback. Thus, the estimated dynamic model revealed
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Fig. 5. Latitudinal SOC stocks(a), SOC changes (2099–2000 in RCP8.5)(b), and indirect CO2 effect on SOC (CO2 experiment–fixed
CO2 experiment at 2099 in RCP8.5)(c), and indirect CO2 effect on SOC (CO2 experiment–fixed CO2 experiment at 2099 in RCP8.5) in
HadGEM. In(a), the line of HWSD (broken black line) indicates the data from harmonized soil database (Hiederer and Köchy, 2011).

that the sensitivity of global SOC to1T varied among the
biome models and that the present-day global SOC stock can
be used to make more reliable SOC projections. Although
actual global SOC stock estimation still has significant un-
certainty, global SOC stock constraints are essential for re-
ducing uncertainty in global SOC projections in ecosystem
models.

Our simplified global dynamic model for the global SOC
stock revealed that the balance of the global SOC stock
turnover and input from VegC is quite different among the
biome models, which further implies the different sensitivi-
ties to1T of the global SOC stocks among the biome mod-
els (Table 1). Hybrid4-simulated global SOC stocks decrease
by 2099 in all RCPs because of the relatively high1T sen-
sitivity in addition to the low turnover rate (high residence
time) in VegC to SOC (Table 2,Friend et al., 2014). Al-
though temperature is the most significant regulation fac-
tor of SOC dynamics (Raich and Schlesinger, 1992), discus-
sion of the effect of increasing global mean temperature on
SOC stocks is still lacking. According to our statistical anal-
ysis (Table 2), most biome models had adequate resolution
to describe the global SOC stock change among the1 1◦C

(or 2◦C for SDGVM) difference in the projection period. In
these models, the global mean temperature1T could be a
measure of the robustness of global SOC stock projection.
However, the global SOC in JeDi was not sensitive to1T

in this projection period. According to our estimation, the
highest global SOC sensitivity was observed in VISIT, in
which the rate of global SOC stock change was enhanced
by −6.95 Pg C yr−1 in 1 4◦C (Fig.3). However, the highest
magnitude of SOC decomposition stimulated by increasing
1T was observed in JULES (−8.13 Pg C yr−1 in 1 4◦C) due
to high global SOC stock in JULES. The Carnegie–Ames–
Stanford approach model showed global SOC decomposition
sensitivity of 2.26 Pg C yr−1 1 ◦C−1, which is nearly equiv-
alent to results obtained from JULES when the1 4◦C value
was derived from simple extrapolation (Zhou et al., 2009).
There is still a lack of observation-based estimation of global
SOC response intensity to1T . Both global SOC stocks and
data-oriented parameters such inRaich et al.(2002) could
represent important information for the constraint and vali-
dation of global SOC dynamics.

However,β2 was not effective for global SOC dynamics in
all ecosystem models in our analysis, which does not mean
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that precipitation is not important in SOC dynamics. Precip-
itation trends are globally heterogeneous; therefore, the rep-
resentative1P might not be a useful index of SOC stock dy-
namics at a global scale in this projection period. However,
precipitation is quite important in both soil decomposition
(Falloon et al., 2011) and vegetation processes (Seneviratne
et al., 2006), which considerably contribute to regional SOC
dynamics.

4.2 SOC stock changes from vegetation dynamics and
regional aspect

There were consistent latitudinal (geographic) patterns
among the biome models (Figs.5a, 1), and the highest SOC
stock was observed between 40 and 75◦ N. However, we
found that the amount of SOC stocks among the biome mod-
els significantly vary in this region. The models’ SOC densi-
ties are different, possibly because of the balance of input and
decomposition and the consideration of depth in the biome
models (1 to 3 m or not explicit, Table 1).Tarnocai et al.
(2009) estimated SOC stock depth up to 3 m, with a value
of 1672 Pg C in permafrost-affected regions only. Thus, the
SOC stock of this region and the global SOC stock in the
biome models may be significantly underestimated.

From a regional perspective, the biome models showed
quite different spatial patterns of SOC changes under
HadGEM RCP8.5 (Figs.4, 5), while the spatial patterns of
VegC changes were generally more consistent among the
biome models (Friend et al., 2014). We found that this spa-
tial heterogeneity among the biome models was also present
in the SOC stock changes in different scenarios (data not
shown). In particular, in boreal to arctic regions, SOC acts
as a sink and source of C depending on the biome model
(Fig. 5). This result indicates that there is an underlying
mechanistic difference among the biome models in these re-
gions. Two models show decreased SOC stocks by 2099 in
this region in HadGEM RCP8.5. LPJmL shows unique fea-
tures in SOC stocks and changes in this region. This implies
that high SOC accumulations (over 80 kg-C m−2) (Figs. 5
and S1 in the Supplement) will be reduced with decreasing
VegC by 2099 (Fig. S2 in the Supplement) in this region. This
trend would result in low water availability in the permafrost
regions, because the prediction is based on a mechanistic per-
mafrost scheme (Beer et al., 2007; Schaphoff et al., 2013).
Because LPJmL incorporated a freeze-and-thaw thermody-
namics explicitly in discrete layers, it can simulate vertical
water and carbon distributions in the model. This scheme en-
ables LPJmL to describe the surface soil water deficit due to
permafrost melting. Whereas, in Hybrid4, SOC decomposi-
tion is the main factor contributing to reduced SOC in this
region. Dynamic vegetation and freeze–thaw schemes are
important for SOC dynamics in permafrost zones, because
they provide more accurate prediction of the balance of C
input from successive vegetation and old soil carbon decom-
position (Schuur et al., 2008, 2009; Schaphoff et al., 2013).

However, in this study, dynamic vegetation and freeze–thaw
schemes are only implemented in LPJmL. The potential re-
lease from SOC in permafrost regions could have a large im-
pact on the global C cycle (Koven et al., 2011; Burke et al.,
2012; MacDougall et al., 2012), and further model develop-
ment is essential for the modification of projections for this
region.

Previous extensive field research has shown that the CO2
fertilizer effect on plant growth in higher CO2 concentra-
tions could also result in the accumulation of SOC (De Graaff
et al., 2006). For the RCP8.5 climate forcing, the fixed CO2
experiment suggested that the CO2 fertilizer effect on plant
production contributed considerably to the global SOC stock
increase in all biome models. The indirect CO2 fertilizer
effect on the global SOC stock varied from 93 (Hybrid4)
to 264 Pg C (VISIT) (mean± SD; 196± 60 Pg C) at the end
of the simulation period, while VegC stock increased from
295 to 645 Pg C (275± 150 Pg C) by 2099 because of in-
creasing CO2 (Figs.2 and S2 in the Supplement). Thus, the
CO2 fertilizer effect on global SOC accumulation strongly
affects the biome models, and further quantitative assessment
might be needed. For example,Friend et al.(2014) focused
their attention on the effects of CO2 fertilizers on biomass
production and turnover rate of biomass. In addition to the
indirect CO2 effects, other nutrient limitations (e.g., nitrogen
and phosphorus) and their sensitivities could be large sources
of uncertainty in SOC projection via vegetation production
(Goll et al., 2012; Exbrayat et al., 2013). In our study frame-
work, we cannot adequately validate these issues since only a
few models consider them in their current versions (e.g., Hy-
brid4). Therefore, further interactions must be validated to
more comprehensively understand the uncertainty sources in
SOC projection.

A large variance in1SOCCO2−fixedCO2/1VegCCO2−fixedCO2

was observed among the biome models (Fig.5d), suggesting
that the vegetation–soil interactions including the vegetation
turnover rate (Friend et al., 2014) and litter decomposition
rate also had large uncertainties. This variance might cause
an SOC projection difference among the biome models.
To reduce these uncertainties, a more observation-based
validation is desirable. For the litter decomposition process,
for example, global database of the long-term intersite
decomposition experiment team (LIDET) is one useful
validation case study (Bonan et al., 2013). In addition,
the process in SOC formation from alteration of litter via
decomposition process (i.e., humification) and in their
stabilization have not yet been implemented robustly in
biome models when compared with actual SOC formation
processes (Sollins et al., 1996; Six et al., 2002). This is
another major process missing from the vegetation–soil
interaction in biome models. To comprehensively address
the biome model uncertainties in each successive process,
the traceability framework developed byXia et al. (2013)
could be helpful.
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4.3 SOC modeling issues

The accurate estimation of the present-day global SOC stock
remains difficult because of a lack of appropriate broad and
non-destructive investigation techniques to measure SOC
stock, such as satellite-based remote sensing. In fact, current
SOC was formed in slow turnover fractions over thousands
of years (Trumbore, 2000). Therefore, when getting an ini-
tial SOC by the spin-up phase in biome models, there may
not be enough information on the historical climate condi-
tions and vegetation dynamics to duplicate in the entire SOC
formation history. This is potentially one of the biggest is-
sues for accurate estimation of SOC stock in biome mod-
els. In addition, observations of global long-term SOC stock
dynamics for model validation are limited. Thus, it is very
difficult to assess projected global SOC trends in each biome
model. Therefore, in addition to quantitatively understanding
the SOC stock, deductive inferences based on the extensive
understanding of the processes are essential for minimizing
uncertainties in SOC stock prediction. For example, the ap-
parent variability in global SOC sensitivity to1T may result
from differences in model structures and parameters. Regard-
ing temperature sensitivity and the magnitude of response
to rising temperatures, the following topics require improve-
ment: (i) SOC compartments and their turnover rates (Jones
et al., 2005; Conant et al., 2011), (ii) the temperature sensi-
tivity parameter (e.g.,Q10) (Davidson and Janssens, 2006;
Allison et al., 2010), and (iii) soil temperature prediction (ra-
diation, heat production by microbes) (Luke and Cox, 2011;
Khvorostyanov et al., 2008). In addition, microbial dynamics
are a key component for the temperature acclimation of SOC
decomposition (Todd-Brown et al., 2012; Wang et al., 2013).
The acclimation response of SOC decomposition by micro-
bial physiology is not included in the biome models used in
this study. For SOC accumulation, soil mineralogical prop-
erties control soil C turnover (Torn et al., 1997). However,
the biome models do not exploit global soil classification in-
formation (i.e., volcanic or non-volcanic soils), which still
has significant uncertainties (Guillod et al., 2012; Hiederer
and Köchy, 2011). In this study, peat and wetland soils are
not explicitly simulated because of the large simulation grid
size. Because of large carbon stock and water regime changes
in future climates in such ecosystems, the SOC and soil-
water-holding capacity feedback should also be considered
in the SOC process in biome models (Ise et al., 2008). The
interactions between SOC decomposition and nutrients (ni-
trogen) are also influential factors for global SOC projection
(Manzoni and Porporato, 2007).

However, the details of these processes are beyond the
scope of this study; therefore, we did not explore these issues
in depth. A more specific model intercomparison, such as
an environmental-response-function-based assessment (e.g.,
Falloon et al., 2011; Sierra et al., 2012; Exbrayat et al.,
2013) is recommended. Furthermore, land-use change is not
included in our projection; however, the effect of land-use

changes on SOC dynamics is critical (Eglin et al., 2010). Es-
timating land-use change with high confidence is essential
for accurate global SOC stock projections and could be used
as a basis for policies that moderate the impacts of climate
change.

5 Conclusions

The uncertainties associated with SOC projections are sig-
nificantly high. The projected global SOC stocks by 2099
act as CO2 sources or sinks depending on the biome model,
even though models have similarly simulated historical SOC
trends. The uncertainties of the SOC changes increase with
higher forcing scenarios, and the global SOC stock change
varies from−157 to 225 Pg C in HadGEM under RCP8.5
across biome models.

By adopting the simplified approach of global SOC as
one compartment in the Earth system we can understand
the comprehensive characteristics of each biome model on
a global scale. The magnitude of SOC responses to global
mean temperature increase considerably differed depending
on the biome model. Our results confirmed that the SOC pro-
cess implementations are dissimilar among the biome models
at the global scale. In addition, global precipitation anoma-
lies could not explain the simulated future global SOC stock
changes. Moreover, the indirect CO2 fertilizer effect con-
tributed strongly to global SOC stock changes and projection
uncertainties. For more reliable projections, both SOC dy-
namics and vegetation processes require reliable global SOC
stock estimation and region-based improvements.

Supplementary material related to this article is
available online athttp://www.earth-syst-dynam.net/5/
197/2014/esd-5-197-2014-supplement.pdf.
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