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Abstract

A wealth of astronomical data indicate the presence of mass discrepancies in the Universe.
The motions observed in a variety of classes of extragalactic systems exceed what can be
explained by the mass visible in stars and gas. Either (i) there is a vast amount of unseen mass
in some novel form – dark matter – or (ii) the data indicate a breakdown of our understanding
of dynamics on the relevant scales, or (iii) both. Here, we first review a few outstanding
challenges for the dark matter interpretation of mass discrepancies in galaxies, purely based
on observations and independently of any alternative theoretical framework. We then show
that many of these puzzling observations are predicted by one single relation – Milgrom’s law
– involving an acceleration constant 𝑎0 (or a characteristic surface density Σ† = 𝑎0/𝐺) on the
order of the square-root of the cosmological constant in natural units. This relation can at
present most easily be interpreted as the effect of a single universal force law resulting from a
modification of Newtonian dynamics (MOND) on galactic scales. We exhaustively review the
current observational successes and problems of this alternative paradigm at all astrophysical
scales, and summarize the various theoretical attempts (TeVeS, GEA, BIMOND, and others)
made to effectively embed this modification of Newtonian dynamics within a relativistic theory
of gravity.
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1 Introduction

Two of the most tantalizing mysteries of modern astrophysics are known as the dark matter and
dark energy problems. These problems come from the discrepancies between, on one side, the
observations of galactic and extragalactic systems (as well as the observable Universe itself in
the case of dark energy) by astronomical means, and on the other side, the predictions of general
relativity from the observed amount of matter-energy in these systems. In short, what astronomical
observations are telling us is that the dynamics of galactic and extragalactic systems, as well as
the expansion of the Universe itself, do not correspond to the observed mass-energy as they should
if our understanding of gravity is complete. Thus, this indicates either (i) the presence of unseen
(and yet unknown) mass-energy, or (ii) a failure of our theory of gravity, or (iii) both.

The third case is a priori the most plausible, as there are good reasons for there being more
particles than those of the standard model of particle physics [257] (actually, even in the case of
baryons, we suspect that a lot of them have not yet been seen and, thus, literally make up unseen
mass, in the form of “missing baryons”), and as there is a priori no reason that general relativity
should be valid over a wide range of scales, where it has never been tested [45], and where the
need for a dark sector actually prevents the theory from being tested until this sector has been
detected by other means than gravity itself1. However, either of the first two cases could be the
dominant explanation of the discrepancies in a given class of astronomical systems (or even in all
astronomical systems), and this is actually testable.

For instance, as far as (ii) is concerned, if the mass discrepancies in a class of systems are mostly
caused by some subtle change in gravitational physics, then there should be a clear signature of
a single, universal force law at work in this whole class of systems. If instead there is a distinct
dark matter component in these, the kinematics of any given system should then depend on the
particular distribution of both dark and luminous mass. This distribution would vary from system
to system, depending on their environment and past history of formation, and should, in principle,
not result in anything like an apparent universal force law2.

Over the years, there have been a large variety of such attempts to alter the theory of gravity
in order to remove the need for dark matter and/or dark energy. In the case of dark energy, there
is some wiggle room, but in the case of dark matter, most of these alternative gravity attempts
fail very quickly, and for a simple reason: once a force law is specified, it must fit all relevant
kinematic data in a given class of systems, with the mass distribution specified by the visible
matter only. This is a tall order with essentially zero wiggle room: at most one particular force
law can work. However, among all these attempts, there is one survivor: the Modified Newtonian
Dynamics (MOND) hypothesized by Milgrom almost 30 years ago [294, 295, 293] seems to come
close to satisfying the criterion of a universal force law in a whole class of systems, namely galaxies.
This success implies a unique relationship between the distribution of baryons and the gravitational
field in galaxies and is extremely hard to understand within the present dominant paradigm of the
concordance cosmological model, hypothesizing that general relativity is correct on every relevant
scale in cosmology including galactic scales, and that the dark sector in galaxies is made of non-
baryonic dissipationless and collisionless particles. Even if such particles are detected directly in
the near to far future, the success of MOND on galaxy scales as a phenomenological law, as well as
the associated appearance of a universal critical acceleration constant 𝑎0 ≃ 10−10 m s−2 in various,
seemingly unrelated, aspects of galaxy dynamics, will still have to be explained and understood
by any successful model of galaxy formation and evolution. Previous reviews of various aspects of

1 Up to now, all the dark-matter–particle candidates still elude both direct and indirect non-gravitational detec-
tion.

2 However, a way to effectively reproduce an apparent universal force law from an exotic dark component could
be to enforce an intimate connection between the distribution of baryons, the dark component, and the gravitational
field through, e.g., a fifth force effect. This possibility will be extensively discussed in Section 7, notably Section 7.9
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6 Benôıt Famaey and Stacy S. McGaugh

MOND, at an observational and theoretical level, can be found in [34, 81, 100, 151, 279, 311, 318,
401, 407, 429]. A website dedicated to this topic is also maintained, with all the relevant literature
as well as introductory level articles [263] (see also [238]).

Here, we first review the basics of the dark matter problem (Section 2) as well as the basic
ingredients of the present-day concordance model of cosmology (Section 3). We then point out a
few outstanding challenges for this model (Section 4), both from the point of view of unobserved
predictions of the model, and from the point of view of unpredicted observations (all uncannily
involving a common acceleration constant 𝑎0). Up to that point, the challenges presented are purely
based on observations, and are fully independent of any alternative theoretical framework3. We
then show that, surprisingly, many of these puzzling observations can be summarized within one
single empirical law, Milgrom’s law (Section 5), which can be most easily (although not necessarily
uniquely) interpreted as the effect of a single universal force law resulting from a modification of
Newtonian dynamics (MOND) in the weak-acceleration regime 𝑎 < 𝑎0, for which we present the
current observational successes and problems (Section 6). We then summarize the various attempts
currently made to embed this modification in a generally-covariant relativistic theory of gravity
(Section 7) and how such theories allow new predictions on gravitational lensing (Section 8) and
cosmology (Section 9). We finally draw conclusions in Section 10.

3 The first four sections provide the observational evidence for the MOND phenomenology through the different
appearances of 𝑎0 in galactic dynamics, but they are actually independent of any specific theory, while the reader
more specifically interested in MOND per se could go directly to Section 5.
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2 The Missing Mass Problem in a Nutshell

There exists overwhelming evidence for mass discrepancies in the Universe from multiple indepen-
dent observations. This evidence involves the dynamics of extragalactic systems: the motions of
stars and gas in galaxies and clusters of galaxies. Further evidence is provided by gravitational
lensing, the temperature of hot, X-ray emitting gas in clusters of galaxies, the large scale struc-
ture of the Universe, and the gravitating mass density of the Universe itself (Figure 1). For an
exhaustive historical review of the problem, we refer the reader to [394].

The data leave no doubt that when the law of gravity as currently known is applied to extra-
galactic systems, it fails if only the observed stars and gas are included as sources in the stress-
energy tensor. This leads to a stark choice: either the Universe is pervaded by some unseen form of
mass – dark matter – or the dynamical laws that lead to this inference require revision. Though the
mass discrepancy problem is now well established [394, 465], such a dramatic assertion warrants a
brief review of the evidence.

Historically, the first indications of the modern missing mass problem came in the 1930s shortly
after galaxies were recognized to be extragalactic in nature. Oort [342] noted that the sum of the
observed stars in the vicinity of the sun fell short of explaining the vertical motions of stars in
the disk of the Milky Way. The luminous matter did not provide a sufficient restoring force for
the observed stellar vertical oscillations. This became known as the Oort discrepancy. Around the
same time, Zwicky [518] reported that the velocity dispersion of galaxies in clusters of galaxies was
far too high for these objects to remain bound for a substantial fraction of cosmic time. The Oort
discrepancy was approximately a factor of two in amplitude, and confined to the Galactic disk – it
required local dark matter, not necessarily the quasi-spherical halo we now envision. It was long
considered a serious problem, but has now largely (though perhaps not fully) gone away [194, 240].
The discrepancy Zwicky reported was less subtle, as the required dark mass outweighed the visible
stars by a factor of at least 100. This result was apparently not taken seriously at the time.

One of the first indications of the need for dark matter in modern times came from the stability
of galactic disks. Stars in spiral galaxies like the Milky Way are predominantly on approximately
circular orbits, with relatively few on highly eccentric orbits [132]. The small velocity dispersion
of stars relative to their circular velocities makes galactic disks dynamically cold. Early simula-
tions [343] revealed that cold, self-gravitating disks were subject to severe instabilities. In order to
prevent the rapid, self-destructive growth of these instabilities, and hence preserve the existence
of spiral galaxies over a sizable fraction of a Hubble time, it was found to be necessary to embed
the disk in a quasi-spherical potential well – a role that could be played by a halo of dark matter,
as first proposed in 1973 by Ostriker & Peebles [343].

Perhaps the most persuasive piece of evidence was then provided, notably through the seminal
works of Bosma and Rubin, by establishing that the rotation curves of spiral galaxies are approx-
imately flat [67, 370]. A system obeying Newton’s law of gravity should have a rotation curve
that, like the Solar system, declines in a Keplerian manner once the bulk of the mass is enclosed:
𝑉𝑐 ∝ 𝑟−1/2. Instead, observations indicated that spiral galaxy rotation curves tended to remain
approximately flat with increasing radius: 𝑉𝑐 ∼ constant. This was shown to happen over and over
and over again [370] with the approximate flatness of the rotation curve persisting to the largest
radii observable [67], well beyond where the details of each galaxy’s mass distribution mattered, so
that Keplerian behavior should have been observed. Again, a quasi-spherical halo of dark matter
as proposed by Ostriker and Peebles was implicated.

Other types of galaxies exhibit mass discrepancies as well. Perhaps most notable are the dwarf
spheroidal galaxies that are satellites of the Milky Way [427, 477] and of Andromeda [217]. These
satellites are tiny by galaxy standards, possessing only millions, or in the case of the ultrafaint
dwarfs, thousands, of individual stars. They are close enough that the line-of-sight velocities of
individual stars can be measured, providing for a precise measurement of the system’s velocity
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Figure 1: Summary of the empirical roots of the missing mass problem (below line) and the generic
possibilities for its solution (above line). Illustrated lines of evidence include the approximate flatness of
the rotation curves of spiral galaxies, gravitational lensing in a cluster of galaxies, and the growth of large-
scale structure from an initially very-nearly–homogeneous early Universe. Other historically-important
lines of evidence include the Oort discrepancy, the need to stabilize galactic disks, motions of galaxies
within clusters of galaxies and the hydrodynamics of hot, X-ray emitting gas therein, and the apparent
excess of gravitating mass density over the mass density of baryons permitted by Big-Bang nucleosynthesis.
From these many distinct problems grow several possible solutions. Generically, the observed discrepancies
either imply the existence of dark matter, or the necessity to modify dynamical laws. Dark matter could,
in principle, be any combination of non-luminous baryons and/or some non-baryonic form of mass-like
neutrinos (hot dark matter) or some new particle, whose mass makes it dynamically cold or perhaps
warm. Alternatively, the observed discrepancies might point to the need to modify the equation of gravity
that is employed to infer the existence of dark matter, or perhaps some other fundamental dynamical
assumption like the equivalence of inertial mass and gravitational charge. Many specific ideas of each of
these types have been considered over the years. Note that none of these ideas are mutually exclusive, and
that some form or the other of dark matter could happily cohabit with a modification of the gravitational
law, or could even be itself the cause of an effective modification of the gravitational law. Question marks
on some tree branches represent the fruit of ideas yet to be had. Perhaps these might also address the
dark energy problem, with the most satisfactory result being a theory that would simultaneously explain
the acceleration scale in the dark matter problem as well as the accelerating expansion of the Universe,
and explain the coincidence of scales between these two problems, a coincidence exhibited in Section 4.1.
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dispersion. The mass inferred from these motions (roughly, 𝑀 ∼ 𝑟𝜎2/𝐺) greatly exceeds the mass
visible in luminous stars. Indeed, these dim satellite galaxies exhibit some of the largest mass
discrepancies observed. In contrast, bright giant elliptical galaxies (often composed of much more
than the ∼ 1011 stars of the Milky Way) exhibit remarkably modest and hard to detect mass
discrepancies [367]. Thus, it is inferred that fainter galaxies are progressively more dark-matter
dominated than bright ones. However, as we shall expand on in Section 4.3, the primary correlation
is not with luminosity, but with surface brightness: the lower the surface brightness of a system,
the larger its mass discrepancy [279].

On larger scales, groups and clusters of galaxies also show mass discrepancies, just as individual
galaxies do. One of the earliest lines of evidence comes from the “timing argument” in the Local
Group [213]. Presumably the material that was to become the Milky Way and Andromeda (M31)
was initially expanding apart with the general Hubble expansion. Currently they are approaching
one another at ∼ 100 km s−1. In order for the Milky Way and M31 to have overcome the initial
expansion and fallen back towards one another, there must be a greater-than-average gravitating
mass between the two. To arrive at their present separation with the observed blueshifted line of
sight velocity after a Hubble time requires a dynamical mass-to-light ratio 𝑀/𝐿 > 80. This greatly
exceeds the mass-to-light ratio of the stars themselves, which is of order unity in Solar units [42]
(the Sun is a fairly average star, so averaged over many stars each Solar mass produces roughly
one Solar luminosity).

Rich clusters of galaxies are rare structures containing dozens or even hundreds of bright galax-
ies. These objects exhibit mass discrepancies in several distinct ways. Measurements of the red-
shifts of individual cluster members give velocity dispersions in the vicinity of 1, 000 km s−1 typ-
ically implying dynamical mass-to-light ratios in excess of 100 [24]. The actual mass discrepancy
is not this large, as most of the detected baryonic mass in clusters is in a diffuse intracluster gas
rather than in the stars in the galaxies (something Zwicky was not aware of back in 1933). This
gas is heated to the virial temperature and emits X-rays. Mapping the temperature and emission
of this X-ray gas provides another probe of the cluster mass through the equation of hydrostatic
equilibrium. In order to hold the gas in the clusters at the observed temperatures, the dark matter
must outweigh the gas by a factor of ∼ 8 [175]. Furthermore, some clusters are observed to gravi-
tationally lens background galaxies (Figure 1). Once again, mass above and beyond that observed
is required to explain this phenomenon [227]. Thus, three independent methods all imply the need
for about the same amount of dark matter in clusters of galaxies.

In addition to the abundant evidence for mass discrepancies in the dynamics of extragalactic
systems, there are also strong motivations for dark matter in cosmology. Two observations are par-
ticularly important: (i) the small baryonic mass density Ω𝑏 inferred from Big-Bang nucleosynthesis
(BBN) (and from the measured Hubble parameter), and (ii) the growth of large scale structure by
a factor of ∼ 105 from the surface of last scattering of the cosmic microwave background at redshift
𝑧 ∼ 1000 until present-day 𝑧 = 0, implying Ω𝑚 > Ω𝑏. Together, these observations imply not only
the need for dark matter, but for some exotic new form of non-baryonic cold dark matter. Indeed,
observational estimates of the gravitating mass density of the Universe Ω𝑚, measured, for instance,
from peculiar galaxy (or large-scale) velocity fields, have, for several decades, persistently returned
values in the range 1/4 < Ω𝑚 < 1/3 [116]. While shy of the value needed for a flat Universe, this
mass density is well in excess of the baryon density inferred from BBN. The observed abundances
of the light isotopes deuterium, helium, and lithium are consistent with having been produced in
the first few minutes after the Big Bang if the baryon density is just a few percent of the critical
value: Ω𝑏 < 0.05 [480, 107]. Thus, Ω𝑚 > Ω𝑏. Consequently, we do not just need dark matter, we
need the dark matter to be non-baryonic.

Another early Universe constraint is provided by the Cosmic Microwave Background (CMB).
The small (microKelvin) amplitude of the temperature fluctuations at the time of baryon-photon
decoupling (𝑧 ∼ 1000) indicates that the Universe was initially very homogeneous, roughly to one
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part in 105. The Universe today (𝑧 = 0) is very inhomogeneous, at least on “small” scales of
less than ∼ 100 Mpc (∼ 3× 108 ly), with huge density contrasts between planets, stars, galaxies,
clusters, and empty intergalactic space. The only attractive long-range force acting on the entire
Universe, that can make such structures, is gravity. In a rich-get-richer while the poor-get-poorer
process, the small initial over-densities attract more mass and grow into structures like galaxies
while under-dense regions become less dense, leading to voids. The catch is that gravity is rather
weak, so this process takes a long time. If the baryon density from BBN is all we have to work
with, we can only obtain a growth factor of ∼ 102 in a Hubble time [424], orders of magnitude
short of the observed 105. The solution is to boost the growth rate with extra invisible mass
displaying larger density fluctuations: dark matter. In order not to make the same mark on the
CMB that baryons would, this dark matter must not interact with the photons. So, in effect, the
density fluctuations in the dark matter can already be very large at the epoch of baryon-photon
decoupling, especially if the dark matter is cold (i.e., with effectively zero Jeans length). The
baryons fall into the already deep dark matter potential wells only after that, once released from
their electromagnetic link to the photon bath. Before decoupling, the fluctuations in the baryon-
photon fluid did not grow but were oscillating in the form of acoustic waves, maintaining the same
amplitude as when they entered the horizon; actually they were even slightly diffusion-damped.
In principle, at baryon-photon decoupling, CMB fluctuations on smaller angular scales, having
entered the horizon earlier, would have been damped with respect to those on larger scales (Silk
damping). Nevertheless, the presence of decoupled non-baryonic dark matter would provide a net
forcing term countering the damping of the oscillations at recombination, meaning that the second
and third acoustic peaks of the CMB could then be of equal amplitude rather than exhibiting a
damping tail. The actual observation of a high third-peak in the CMB angular power spectrum
is another piece of compelling evidence for non-baryonic dark matter (see, e.g., [229]). Both BBN
and the CMB thus drive us to consider a form of mass that is non-baryonic and which does not
interact electromagnetically. Moreover, in order to form structure (see Section 3.2), the mass must
be dynamically cold (i.e., moving much slower than the speed of light when it decouples from the
photon bath), and is known as cold dark matter (CDM).

Now, in addition to CDM, modern cosmology also requires something even more mysterious,
dubbed dark energy. The fact that the baryon fraction in clusters of galaxies was such that
Ω𝑚 was implied to be much smaller than 1 – the value needed for a flat Euclidean Universe
favored by inflationary models – , as well as tensions between the measured Hubble parameter
and independent estimates of the age of the Universe, led Ostriker & Steinhardt [344] to propose
in 1995 a “concordance model of cosmology” or ΛCDM model, where a cosmological constant Λ
– supposed to represent vacuum energy or dark energy – provided the major contribution to the
Universe’s energy density. Three years later, the observations of SNIa [351, 365] indicating late-time
acceleration of the Universe’s expansion, led most people to accept this model. This concordance
model has since been refined and calibrated through subsequent large-scale observations of the
CMB and of the matter power spectrum, to lead to the favored cosmological model prevailing
today (see Section 3). However, as we shall see, curious coincidences of scales between the dark
matter and dark energy sectors (see Section 4.1) have prompted the question of whether these
two sectors are really physically independent, and the existence of dark energy itself has led to a
renewed interest in modified gravity theories as a possible alternative to this exotic fluid [100].
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3 A Brief Overview of the ΛCDM Cosmological Model

General relativity provides a clear and compelling cosmology, the Friedmann–Lemâıtre–Robertson–
Walker (FLRW) model. The expansion of the Universe discovered by Hubble and Slipher found a
natural explanation4 in this context. The picture of a hot Big-Bang cosmology that emerged from
this model famously predicted the existence of the 3 degree CMB and the abundances of the light
isotopes via BBN.

Within the FLRW framework, we are inexorably driven to infer the existence of both non-
baryonic cold dark matter and a non-zero cosmological constant as discussed in Section 2. The
resulting concordance ΛCDM model – first proposed in 1995 by Ostriker and Steinhardt [344] – is
encouraged by a wealth of observations: the consistency of the Hubble parameter with the ages of
the oldest stars [344], the consistency between the dynamical mass density of the Universe, that
of baryons from BBN (see also discussion in Section 9.2), and the baryon fraction of clusters [486],
as well as the power spectrum of density perturbations [103, 452]. A prediction of the concordance
model is that the expansion rate of the Universe should be accelerating; this was confirmed by
observations of high redshift Type Ia supernovae [351, 365]. Another successful prediction was the
scale of the baryonic acoustic oscillation [134]. Perhaps the most emphatic support for ΛCDM
comes from fits to the acoustic power spectrum of temperature fluctuations in the CMB [229].

For a brief review of the basics and successes of the concordance cosmological model we refer
the reader to, e.g., [87, 349] and all references therein. We note that, while most of the cosmological
probes in the above list are not uniquely fit by the ΛCDM model on their own, when they are
taken together they provide a remarkably tight set of constraints. The success of this now favoured
cosmological model on large scales is, thus, remarkable indeed, as there was a priori no reason that
such a parameterized cosmology could explain all these completely independent data sets with such
outstanding consistency.

In this model, the Hubble constant is 𝐻0 = 70 km s−1 Mpc−1 (i.e., ℎ = 0.7), the amplitude
of density fluctuations within a top-hat sphere of 8ℎ−1 Mpc is 𝜎8 = 0.8, the optical depth to
reionization is 𝜏 = 0.08, the spectral index measuring how fluctuations change with scale is 𝑛𝑠 =
0.97, and the price we pay for the outstanding success of the model is new physics in the form of
a dark sector. This dark sector is making up 95% of the mass-energy content of the Universe in
ΛCDM: it is composed separately of a dark energy sector and a cold dark matter sector, which we
briefly describe below.

3.1 Dark Energy (Λ)

In ΛCDM, dark energy is a non-vanishing vacuum energy represented by the cosmological constant
Λ in the field equations of general relativity. Einstein’s cosmological constant is equivalent to
vacuum energy with equation of state 𝑝/𝜌 = 𝑤 = −1. In principle, the equation of state could
be merely close to, but not exactly 𝑤 = −1. In this case, the dark energy could evolve and
clump, depending on the value of 𝑤 and its evolution �̇�. However, to date, there is no compelling
observational reason to require any form of dark energy more complex than the simple cosmological
constant introduced by Einstein.

The various observational datasets discussed above constrain the ratio of the dark energy density
to the critical density to be ΩΛ = Λ/3𝐻2

0 = 0.73, where 𝐻0 is Hubble’s constant and Λ is expressed
in 𝑠−2. This value, together with the matter density Ω𝑚 (see below), leads to a total Ω = ΩΛ+Ω𝑚 =
1, i.e., a spatially-flat Euclidean geometry in the Robertson–Walker sense that is nicely consistent
with the expectations of inflation. It is important to stress that this model relies on the cosmological
principle, i.e., that our observational location in the Universe is not special, and on the fact

4 Arguably, a non-static, expanding or contracting Universe was an a priori prediction of general relativity in its
original form, lacking the cosmological constant.
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that on large scales, the Universe is isotropic and homogeneous. For possible challenges to these
assumptions and their consequences, we refer the reader to, e.g., [83, 487, 488].

3.2 Cold Dark Matter (CDM)

In ΛCDM, dark matter is assumed to be made of non-baryonic dissipationless massive particles [48],
the “cold dark matter” (CDM). This dark matter outweighs the baryons that participate in BBN by
about 5:1. The density of baryons from the CMB is Ω𝑏 = 0.046, grossly consistent with BBN [229].
This is a small fraction of the critical density; with the non-baryonic dark matter the total matter
density is Ω𝑚 = ΩCDM +Ω𝑏 = 0.27.

The “cold” in cold dark matter means that CDM moves slowly so that it is non-relativistic when
it decouples from photons. This allows it to condense and begin to form structure, while the baryons
are still electromagnetically coupled to the photon fluid. After recombination, when protons and
electrons first combine to form neutral atoms so that the cross-section for interaction with the
photon bath suddenly drops, the baryons can fall into the potential wells already established by
the dark matter, leading to a hierarchical scenario of structure formation with the repeated merger
of smaller CDM clumps to form ever larger clumps.

Particle candidates for the CDM must be massive, non-baryonic, and immune to electromag-
netic interactions. The currently preferred CDM candidates are Weakly Interacting Massive Par-
ticles (WIMPs, [46, 47, 48]) that condensed from the thermal bath of the early Universe. These
should have masses on the order of about 100 GeV so that (i) the free-streaming length is small
enough to create small-scale structures as observed (e.g., dwarf galaxies), and (ii) that thermal
relics with cross-sections typical for weak nuclear reactions account for the right amount of matter
density Ω𝑚 (see, e.g., Eq. 28 of [48]). This last point is known as the WIMP miracle5.

For lighter particle candidates (e.g., ordinary neutrinos or light sterile neutrinos), the damping
scale becomes too large. For instance, a hot dark matter (HDM) particle candidate with mass of
a few to 15 eV would have a free-streaming length of about ∼ 100 Mpc, leading to too little power
at the small-scale end of the matter power spectrum. The existence of galaxies at redshift 𝑧 ∼ 6
implies that the coherence length should have been smaller than 100 kpc or so, meaning that even
warm dark matter (WDM) particles with masses between 1 and 10 keV are close to being ruled
out as well (see, e.g., [348]). Thus, ΛCDM presently remains the state-of-the-art in cosmology,
although some of the challenges listed in Section 4 are leading to a slow drift of the standard
concordance model from CDM to WDM [252], but this drift brings along its own problems, and
fails to address most of the current observational challenges summarized in the following Section 4,
which might perhaps point to a more radical alternative to the model.

5 However, the WIMP miracle seems to fade away with modern particle physics constraints [23].
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4 Some Challenges for the ΛCDM Model

The great concordance of independent cosmological observables from Gpc to Mpc scales lends a
certain air of inevitability to the ΛCDM model. If we accept these observables as sufficient to
prove the model, then any discrepancy appears as trivia that will inevitably be explained away.
If instead we require a higher standard, such as positive laboratory evidence for the dark sectors,
then ΛCDM appears as a yet unproven hypothesis that relies heavily on two potentially fictitious
invisible entities. Thus, an important test of ΛCDM as a scientific hypothesis is the existence
of dark matter. By this we mean not just unseen mass, but specifically CDM: some novel form
of particle with the right microscopic properties and correct cosmic mass density. Searches for
WIMPs are now rather mature and not particularly encouraging. Direct detection experiments
have as yet no positive detections, and have now excluded [19] the bulk of the parameter space
(interaction cross-section and particle mass) where WIMPs were expected to reside. Indirect
detection through the observation of 𝛾-rays produced by the self-annihilation6 of WIMPs in the
galactic halo and in nearby satellite galaxies have similarly returned null results [6, 84, 172] at
interestingly restrictive levels. For the most-plausible minimally-supersymmetric models, particle
colliders should already have produced evidence for WIMPs [2, 1, 23]. The right model need not
be minimal. It is always possible to construct a more complicated model that manages to evade all
experimental constraints. Indeed, it is readily possible to imagine dark matter candidates that do
not interact at all with the rest of the Universe except through gravity. Though logically possible,
such dark matter candidates are profoundly unsatisfactory in that they could not be detected in
the laboratory: their hypothesized existence could neither be confirmed nor falsified.

Apart from this current non-detection of CDM candidates, there also exists prominent observa-
tional challenges for the ΛCDM model, which might point towards the necessity of an alternative
model (or, at the very least, an improved one). These challenges are that (i) some of the parameters
of the model appear fine-tuned (Section 4.1), and that (ii) as far as galaxy formation and evolution
are concerned (mainly processes happening on kpc scales so that the predictions are more difficult
to make because the baryon physics should play a more prominent role), many predictions that
have been made were not successful (Section 4.2); (iii) what is more, a number of observations on
these galactic scales do exhibit regularities that are fully unexpected in any CDM context without
a substantial amount of fine-tuning in terms of baryon feedback (Section 4.3).

4.1 Coincidences

What is generally considered as the biggest problem for the ΛCDM model is that it requires a large
and still unexplained fine-tuning to reduce by 120 orders of magnitude the theoretical expectation of
the vacuum energy to yield the observed cosmological-constant value, and, even more importantly,
that it faces a coincidence problem to explain why the dark energy density ΩΛ is precisely of the
same order of magnitude as the other cosmological components today7. This uncanny coincidence is
generally seen as evidence for some yet-to-be-discovered underlying cosmological mechanism ruling
the evolution of dark energy (such as quintessence or generalized additional fluid components, see,
e.g., [106]). But it could also indicate that the effect attributed to dark energy is rather due to a
breakdown of general relativity (GR) on the largest scales [158].

Then, as we shall see in more detail in Section 4.3, another coincidence, which is central to
this whole review, is the appearance of a characteristic scale – dubbed 𝑎0 – in the behavior of
the dark matter sector, a scale with units of acceleration. This acceleration scale appears in
various seemingly unrelated galactic scaling relations, mostly unpredicted by the ΛCDM model

6 The simplest WIMPs are their own antiparticle.
7 In addition, the time-averaged value of the deceleration parameter 𝑞 over the present age of the Universe is

quite consistently ⟨𝑞⟩ = 0 [473], another currently unexplained coincidence.
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(see Section 4.3). The value of this scale is 𝑎0 ≃ 10−10 m s−2, which yields in natural units8,
𝑎0 ∼ 𝐻0 (or, more precisely, 𝑎0 ≈ 𝑐𝐻0/2𝜋). It is perhaps even more meaningful [51, 298, 304] to
note that, in these same units:

𝑎20 ∼ Λ, (1)

where Λ is the currently-favored value of the cosmological constant9. Whether these numerical co-
incidences are physically relevant or just true (insignificant) coincidences remains an open question,
closely related to the nature of the dark sector, which we are going to elaborate on in Sections 5 –
10. But, at this stage, it is in any case striking that the dark matter and dark energy sectors do
have such a common scale. This coincidence of scales, together with the coincidence of energy
densities at redshift zero, might perhaps be a strong indication that one should cease to consider
dark energy as an additional component physically independent from the dark matter sector [7],
and/or cease to consider that GR correctly describes gravity on the largest scales and in extremely
weak gravitational fields, in order to perhaps address the two above coincidence problems at the
same time.

Finally, let us note that the existence of the 𝑎0-scale is actually not the only dark-matter–
related coincidence, as there is also, in principle, absolutely no reason why the mechanism leading
to the baryon asymmetry (between baryonic matter and antimatter) would simultaneously leave
both the baryon and dark matter densities with a similar order of magnitude (ΩDM/Ω𝑏 = 5). If
the effects we attribute to dark matter are actually also due to a breakdown of GR on cosmological
scales, then such a coincidence might perhaps appear more natural as the baryons would then be
the actual source of the effect attributed to the dark matter sector.

4.2 Unobserved predictions

Apart from the above puzzling coincidences, the concordance ΛCDM model also has a few more
concrete empirical challenges to address, in the sense of having made a few predictions in contradic-
tion with observations (with the caveat in mind that the model itself is not always that predictive
on small scales). These include the following non-exhaustive list:

1. The bulk flow challenge. Peculiar velocities of galaxy clusters are predicted to be on the
order of 200 km/s in the ΛCDM model. These can actually be measured by studying the
fluctuations in the CMB generated by the scattering of the CMB photons by the hot X-ray-
emitting gas inside clusters (the kinematic SZ effect). This yields an observed coherent bulk
flow of order 1000 km/s (5 times more than predicted) on scales out to at least 400 Mpc [221].
This bulk flow challenge appears not only in SZ studies but also in galaxy studies [483].
A related problem is the collision velocity larger than 3100 km/s for the merging bullet
cluster 1E0657-56 at 𝑧 = 0.3, much too high to be accounted for by ΛCDM [249, 455].
These observations would seem to indicate that the attractive force between DM particles
is enhanced compared to what ΛCDM predicts, and changing CDM into WDM would not
solve the problem.

2. The high-z clusters challenge. Observation of even a single massive cluster at high
redshift can falsify ΛCDM [331]. In this respect the existence of the galaxy cluster XMMU

8 𝑐 = 𝐺 = ℎ̄ = 1.
9 We have that Λ ∼ 𝑎20/𝑐

2 if expressed in inverse time-squared or Λ ∼ 𝑎20/𝑐
4 if expressed in inverse length-squared

(more precisely, the natural scale associated with the cosmological constant is 𝑎0 ≈ (𝑐2/2𝜋)
√︀

(Λ/3)). Another way
of expressing this coincidence is to say that predictions of GR from visible matter alone always break down for
physics involving a length-scale constant on the order of the Hubble radius 𝑙 ∼ Λ−1/2 ∼ 𝑐2/𝑎0. This scale 𝑙 could
perhaps play a similar role to the Planck scale 𝑙𝑃 [233, 43], at the other end of the ladder (as we have 𝑙 ≈ 1060𝑙𝑃 ).
However, this is not the length at which the modification would be seen, exactly as quantum mechanics does not
depart from classical physics at a given length.
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J2235.3-2557 [368] with a mass of of ∼ 4× 1014 𝑀⊙ at 𝑧 = 1.4, even though not sufficient to
rule out the model, is very surprising and could indicate that structure formation is actually
taking place earlier and faster than in ΛCDM (see also [420] on the Shapley supercluster and
the Sloan Great Wall).

3. The Local Void challenge. The Local Volume is composed of 562 known galaxies at
distances smaller than 8 Mpc from the center of the Local Group, and the region known
as the “Local Void” hosts only 3 of them. This is much less than the expected ∼ 20 for
a typical similar void in ΛCDM [350]. What is more, in the Local Volume, large luminous
galaxies are over-represented by a factor of 6 in the underdense regions, exactly opposite to
what is expected from ΛCDM. This could mean that the Local Volume is just a statistical
anomaly, but it could also point, in line with the two previous challenges, towards more rapid
structure formation, allowing sparse regions to more quickly form large galaxies cleaning their
environment, making the galaxies larger and the voids emptier at early times [350].

4. The missing satellites challenge. It has long been known that the model predicts an
overabundance of dark subhalos orbiting Milky-Way–sized galaxies compared to the observed
number of satellite galaxies around the Milky Way [329]. This is a different problem from the
above-predicted overabundance of small galaxies in voids. It has subsequently been suggested
that stellar feedback and heating processes limit baryonic growth, that re-ionisation prevents
low-mass dark halos from forming stars, and that tidal forces from the host halo limit growth
of the dark-matter sub-halos and lead to their truncation. This important theoretical effort
has led recent semi-analytic models to predict a reduced number of ∼ 100 to 600 faint
satellites rather than the original thousands. Moreover, during the past 15 years 13 “new”
and mostly ultra-faint satellite galaxies have been found in addition to the 11 previously-
known classical bright ones. Since these new galaxies have been largely discovered with
the Sloan Digital Sky Survey (SDSS), and since this survey covered only one fifth of the
sky, it has been argued that the problem was solved. However, there are actually still
missing satellites on the low mass and high mass end of the mass function predicted by
“ΛCDM+re-inoisation” semi-analytic models. This is best illustrated on Figure 2 of [239]
showing the cumulative distribution for the predicted and observationally-derived masses
within the central 300 pc of Milky Way satellites. A lot of low-mass satellites are still missing,
and the most massive predicted subhaloes are also incompatible with hosting any of the
known Milky Way satellites [73, 75, 74]. This is the modern version of the missing satellites
challenge. An obvious but rather discomforting way-out would be to simply state that the
Milky Way must be a statistical outlier, but this is contradicted by the study of [447] on
the abundance of bright satellites around Milky Way-like galaxies in SDSS. Another solution
would be to change from CDM to WDM [252] (it is actually one of the only listed challenges
that such a change would probably immediately solve).

5. The satellites phase-space correlation challenge. In addition to the above challenge,
the distribution of dark subhalos around the Galaxy is also predicted by ΛCDM to be
isotropic, or quasi-isotropic. However, the Milky Way satellites are currently observed to be
correlated in phase-space: they lie within a seemingly rotation-supported disk [239]. Young
halo globular clusters define the same disk, and streams of stars and gas, tracing the orbits of
the objects from which they are stripped, preferentially lie in this disk, too [347]. Since SDSS
covered only one fifth of the sky, it will be interesting to see whether future surveys such
as Pan-Starrs will confirm this state of affairs. Whether or not this phase-space correlation
would be unique to the Milky Way should also be carefully checked, the evidence in M31 be-
ing currently much less convincing, with a richer and more complex satellite population [289].
But in any case, the current distribution of satellites around the Milky Way is statistically
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incompatible with the predictions of ΛCDM at a very high level of confidence, even when
taking into account the observational bias from SDSS [239]. While this might perhaps have
been explained by the infall of a small group of galaxies that would have retained correlated
orbits, this solution is ruled out by the fact that no nearby groups are observed to be any-
where near as spatially small as the disk of satellites [290]. Another solution might be that
most Milky Way satellites are actually not primordial galaxies but old tidal dwarf galaxies
created in an early major merger event, accounting for their presently-correlated phase-space
distribution [346]. Note in passing that if only one or two long-lived tidal dwarfs are cre-
ated in each gas-dissipational galaxy encounter, they could probably account for most of the
dwarf galaxy population in the Universe, leaving no room for small CDM subhalos to cre-
ate galaxies, which would transform the missing satellites challenge into a missing satellites
catastrophe [239].

6. The cusp-core challenge. Another long-standing problem of ΛCDM is the fact that the
simulations of the collapse of CDM halos lead to a density distribution as a function of radius,
𝜌(𝑟), which is well fitted by a smooth function asymptoting to a central cusp with slope
𝑑 ln 𝜌/𝑑 ln 𝑟 = −1 in the central parts [126, 332], while observations clearly point towards
large constant density cores in the central parts [118, 169, 479]. Even though the latest
simulations [333] rather point towards Einasto [133] profiles with 𝑑 ln 𝜌/𝑑 ln 𝑟 ∝ −𝑟(1/𝑛)

(with 𝑛 slightly varying with halo mass, and 𝑛 ∼ 6 for a Milky Way-sized halo, meaning that
the slope is zero only very close to the nucleus [177], and is still ∼ −1 at 200 pc from the
center), fitting such profiles to observed galactic kinematical data such as rotation curves [88]
leads to values of 𝑛 that are much smaller than simulated values (meaning that they have
much larger cores), which is another way of re-assessing the old cusp problem of ΛCDM. Note
that a change from CDM to WDM could solve the problem in dwarf galaxies, by leading to
the formation of small cores, but certainly not in large galaxies where large cores are needed
from observations. Thus, one has to rely on baryon feedback to erase the cusp from all
galaxies. But this is not easily done, as the adiabatic cooling of baryons in the center of
dark matter halos should lead to an even more concentrated dark matter distribution. A
possibility would be that angular momentum transfer from a rotating stellar bar destroys
dark-matter cusps: however, significant cusp destruction requires substantially more angular
momentum than is realistically available in stellar bars [89, 286]. Note also that not all
galaxies are barred (e.g., M33 is not). The state-of-the-art solution nowadays is to enforce
strong supernovae outflows that move large amounts of low-angular-momentum gas from the
central parts and that “pull” on the central dark matter concentration to create a core [176],
but this is still a highly fine-tuned process, which fails to address the baryon fraction problem
(see challenge 10 below).

7. The angular momentum challenge. As a consequence of the merger history of galaxy
disks in a hierarchical formation scenario, as well as of the associated transfer of angular
momentum from the baryonic disk to the dark halo, the specific angular momentum of the
baryons ends up being much too small in simulated disks, which in turn end up much smaller
than the observed ones [4]. Similarly, elliptical systems end up too concentrated as well.
Addressing this challenge within the standard paradigm essentially relies on forming disks
through late-time quiescent gas accretion from large-scale filaments, with much less late-time
mergers than presently predicted in ΛCDM.

8. The pure disk challenge. Related to the previous challenge, large bulgeless thin disk
galaxies are extremely difficult to produce in simulations. This is because major mergers, at
any time in the galaxy formation process, typically create bulges, so bulgeless galaxies would
represent the quiescent tail of a distribution of merger histories for galaxies of the Local
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Volume. However, these bulgeless disk galaxies represent more than half of large galaxies
(with 𝑉𝑐 > 150 km/s) in the Local Volume [178, 231]. Solving this problem would rely, e.g.,
on suppressing central spheroid formation for mergers with mass ratios lower than 30% [228].

9. The stability challenge. Round CDM halos tend to stabilize very low surface density
disks against the formation of bars and spirals, due to a lack of disk self-gravity [291]. The
observation [282] of Low Surface Brightness (LSB) disk galaxies with strong bars and spirals
is thus challenging in the absence of a significant disk component of dark matter. What is
more, in the absence of such a disk DM component, the lack of disk self-gravity prevents the
creation of very-large razor-thin LSB disks, but these are observed [222, 260]. In the standard
context, these observations would tend to point towards an additional disk DM component,
either a CDM-one linked to in-plane accretion of satellites or a baryonic one in the form of
molecular gas.

10. The missing baryons challenge(s). As mentioned above, constraints from the CMB imply
Ω𝑚 = 0.27 and Ω𝑏 = 0.046. However, our inventory of known baryons in the local Universe,
summing over all observed stars, gas, etc., comes up short of the total. For example, [42]
estimate that the sum of stars and cold gas is only ∼ 5% of Ω𝑏. While there now seems to be
a good chance that many of the missing baryons are in the form of highly ionized gas in the
warm-hot intergalactic medium (WHIM), we are still far from being able to give a confident
account of where all the baryons reside. Indeed, there could be multiple distinct reservoirs in
addition to the WHIM, each comparable to the mass in stars, within the current uncertainties.
But there is another missing baryons challenge, namely the halo-by-halo missing baryons.
Indeed, each CDM halo can, to a first approximation, be thought of as a microcosm of the
whole. As such, one would naively expect each halo to have the same baryon fraction as the
whole Universe, 𝑓𝑏 = Ω𝑏/Ω𝑚 = 0.17. On the scale of clusters of galaxies, this is approximately
true (but still systematically low), but for individual galaxies, observations depart from this
in a systematic way which we have yet to understand, and which has nothing to do with the
truncation radius. The ratio of the galaxy-detected baryon fraction over the cosmological
one, 𝑓𝑑, is plotted as a function of the potential well of the systems in Figure 2 [284]. There
is a clear correlation, less massive objects being much more dark-matter dominated than
massive ones. This correlation is a priori not predicted at all by ΛCDM, at least not with the
correct shape [273]. This missing baryons challenge is actually closely related to the baryonic
Tully–Fisher relation, which we expand on in Section 4.3.1.

However, let us note that, while challenges 1 to 3 are not real smoking guns yet for the ΛCDM
model, challenges 4 to 10 are concerned with processes happening on kpc scales, for which it is
fair to consider that the model is not very predictive because the baryon physics should play a
more important role, and this is hard to take into account rigorously. However, it is not sufficient
to qualitatively invoke handwavy baryon physics to avoid confronting predictions of ΛCDM with
observations. It is also mandatory to show that the feedback from the baryons, which is needed to
solve the observational problems, is what would quantitatively happen in a physical galaxy. This,
presently, is not yet the case for the aforementioned challenges. However, these challenges are
“model-dependent problems”, in the sense of being failed predictions of a given model, but would
not have appeared a priori surprising without the standard concordance model at hand. This
means that subtly changing some parameters of the model (like, e.g., swapping CDM for WDM,
making DM more self-interacting, etc.) might help solving at least a few of them. But what is
even more challenging is a set of observations that appear surprising independently of any specific
dark matter model, as they involve a fine-tuned relation between the distribution of visible and
dark matter. These are what we call hereafter “unpredicted observations”.
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Figure 2: The fraction of the expected baryons that are detected as a function of potential-well depth
(bottom axis) and mass (top). Measurements are referenced to the radius 𝑅500, where the enclosed
density is 500 times the cosmic mean [284]. The detected baryon fraction 𝑓𝑑 = 𝑀𝑏/(0.17𝑀500), where
𝑀𝑏 is the detected baryonic mass, 0.17 is the universal baryon fraction [229], and 𝑀500 is the dynamical
mass (baryonic + dark mass) enclosed by 𝑅500. Each point is a bin representing many objects. Gray
triangles represent galaxy clusters, which come close to containing the cosmic fraction. The detected
baryon fraction declines systematically for smaller systems. Dark-blue circles represent star-dominated
spiral galaxies. Light-blue circles represent gas-dominated disk galaxies. Orange squares represent Local
Group dwarf satellites for which the baryon content can be less than 1% of the cosmic value. Where these
missing baryons reside is one of the challenges currently faced by ΛCDM.

4.3 Unpredicted observations

There are several important examples of systematic relations between the dynamics of galaxies (in
theory presumed to be dominated by dark matter) and their baryonic content. These relations
are fully empirical, and as such must be explained by any viable theory. As we shall see, they
inevitably involve a critical acceleration scale, or equivalently, a critical surface density of baryonic
matter.

4.3.1 Baryonic Tully–Fisher relation

One of the strongest correlations in extragalactic astronomy is the Tully–Fisher relation [467].
Originally identified as an empirical relation between a galaxy’s luminosity and its HI line-width,
it has been widely employed as a distance indicator. Though extensively studied for decades, the
physical basis of the relation remains unclear.

Luminosity and line-width are readily accessible observational quantities. The optical lumi-
nosity of a galaxy is a proxy for its stellar mass, and the HI line-width is a proxy for its rotation
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velocity. The quality of the correlation improves as more accurate indicators of these quantities
are employed. For example, resolved rotation curves, where the flat portion of the rotation curve
𝑉𝑓 or the maximum peak velocity 𝑉𝑝 can be measured, give relations that are tighter than those
utilizing only line-width information [108]. Similarly, the scatter declines as we shift from optical
luminosities to those in the near-infrared [475] as the latter are expected to give a more reliable
mapping of starlight to stellar mass [42].

It was then realized [322, 157, 283] that a more fundamental relation was that between the
total observed baryonic mass and the rotation velocity. In most bright galaxies, the stars harbor
the majority of the detected baryonic mass, so luminosity suffices as a proxy for mass. The next-
most–important known reservoir of baryons is the neutral atomic hydrogen (HI) of the interstellar
medium. As studies have probed down the mass spectrum to lower mass, more slowly rotating
systems, a higher preponderance of gas rich galaxies is found. The luminous Tully–Fisher relation
breaks down [283, 272], but a tight relation persists if instead of luminosity, the detected baryonic
mass 𝑀𝑏 = 𝑀* + 𝑀𝑔 is used [283, 475, 42, 272, 353, 31, 445, 462, 276]. This is the Baryonic
Tully–Fisher Relation (BTFR), plotted on Figure 3.

The luminous Tully–Fisher relation extends over about two decades in luminosity. Recent work
extending the relation to low mass, typically LSB and gas rich galaxies [31, 445, 462] extends the
dynamic range of the BTFR to five decades in baryonic mass. Over this range, the BTFR has
remarkably little intrinsic scatter (consistent with zero given the observational errors) and is well
described as a power law, or equivalently, as a straight line in log-log space:

log𝑀𝑏 = 𝛼 log 𝑉𝑓 − log 𝛽 (2)

with slope 𝛼 = 4 [272, 445, 276]. This slope is consistent with a constant acceleration scale
a = 𝑉 4

𝑓 /(𝐺𝑀𝑏) such that10 the normalization constant 𝛽 = 𝐺a.

The acceleration scale a ≈ 10−10 m s−2 ∼ Λ1/2 (Eq. 1) is thus present in the data. Figure 4
shows the distribution of this acceleration 𝑉 4

𝑓 /𝑀𝑏, around the best fit line in Figure 3, strongly

peaked around∼ 2×10−62 in natural units. As we shall see, this acceleration scale arises empirically
in a variety of distinct situations involving the mass discrepancy problem.

A BTFR of the observed form does not arise naturally in ΛCDM. The naive expectation is
𝛼 = 3 and 𝛽 = 10𝑓3

𝑉 𝐺𝐻0 [446]11 where 𝐻0 is the Hubble constant and 𝑓𝑉 is a factor of order
unity (currently estimated to be ≈ 1.3 [361]) that relates the observed 𝑉𝑓 to the circular velocity
of the potential at the virial radius12. This modest fudge factor is necessary because ΛCDM does
not explicitly predict either axis of the observed BTFR. Rather, there is a relationship between
total (baryonic plus dark) mass and rotation velocity at very large radii. This simple scaling fails
(dashed line in Figure 3), obliging us to introduce an additional fudge factor 𝑓𝑑 [273, 284] that
relates the detected baryonic mass to the total mass of baryons available in a halo. This mismatch
drives the variation in the detected baryon fraction 𝑓𝑑 seen in Figure 2. A constant 𝑓𝑑 is excluded
by the difference between the observed and predicted slopes; 𝑓𝑑 must vary with 𝑉𝑓 , or 𝑀 , or the
gravitational potential Φ.

10 As we shall see (Section 5 and 6), MOND was constructed to predict a relation 𝑎0 = 𝑉 4
𝑓 /(𝐺𝑀) for a point

mass 𝑀 (however, note that the slope of 4 is a pure consequence of the acceleration base; it is not possible to
get an arbitrary slope from such an idea). Since spiral galaxies are not point masses, but rather flattened mass
distributions that rotate faster than the equivalent spherical mass distribution [52], the empirical acceleration a is
close to but not identical to 𝑎0 in MOND. The geometric correction is about 20% so that 𝑎0 = 0.8a [272].

11 The factor 10 arises from the commonly adopted definition of the virial radius of the dark matter halo at an
overdensity of 200 times the critical density of the Universe [332].

12 Note that [180] claimed to measure a slope of 3 for the BTFR, but they relied on unresolved line-widths
from single dish 21 cm observations to estimate rotation velocity rather than measuring 𝑉𝑓 from resolved rotation
curves. Line-widths give a systematically different estimate of the slope of the BTFR than 𝑉𝑓 , even for the same
galaxies [277, 340, 475], and they cannot be related at all to the circular velocity of the potential at the virial radius,
nor to the prediction of MOND (Section 5 and 6).
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Figure 3: The Baryonic Tully–Fisher (mass–rotation velocity) relation for galaxies with well-measured
outer velocities 𝑉𝑓 . The baryonic mass is the combination of observed stars and gas: 𝑀𝑏 = 𝑀* + 𝑀𝑔.
Galaxies have been selected that have well observed, extended rotation curves from 21 cm interferrometric
observations providing a good measure of the outer, flat rotation velocity. The dark blue points are galaxies
with 𝑀* > 𝑀𝑔 [272]. The light blue points have 𝑀* < 𝑀𝑔 [276] and are generally less precise in velocity,
but more accurate in terms of the harmlessness on the result of possible systematics on the stellar mass-to-
light ratio. For a detailed discussion of the stellar mass-to-light ratios used here, see [272, 276]. The dotted
line has slope 4 corresponding to a constant acceleration parameter, 1.2 × 10−10 m s−2. The dashed line
has slope 3 as expected in ΛCDM with the normalization expected if all of the baryons associated with
dark matter halos are detected. The difference between these two lines is the origin of the variation in the
detected baryon fraction in Figure 2.
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Figure 4: Histogram of the accelerations a = 𝑉 4
𝑓 /(𝐺𝑀𝑏) in m s−2 (bottom axis) and natural units

[𝑐4/(𝐺𝑚𝑃 ) where 𝑚𝑃 is the Planck mass] for galaxies with well measured 𝑉𝑓 . The data are peaked around
a characteristic value of ∼ 10−10 m s−2 (∼ 2× 10−62 in natural units).

This brings us to the first fine-tuning problem posed by the data. There is essentially zero
intrinsic scatter in the BTFR [276], while the detected baryon fraction 𝑓𝑑 could, in principle, obtain
any value between zero and unity. Somehow galaxies must “know” what the circular velocity of
the halo they reside in is so that they can make observable the correct fraction of baryons.

Quantitatively, in the ΛCDM picture, the baryonic mass plotted in the BTFR (Figure 3) is
𝑀𝑏 = 𝑀* + 𝑀𝑔 while the total baryonic mass available in a halo is 𝑓𝑏𝑀tot. The difference
between these quantities implies a reservoir of dark baryons in some undetected form, 𝑀other. It
is commonly speculated that the undetected baryons could be in a hard-to-detect hot, diffuse,
ionized phase mixed in with the dark matter halo (and extending to comparable radius), or that
the missing baryons have been entirely blown away by winds from supernovae. For the purposes
of this argument, it does not matter which form the dark baryons take. All that matters is that a
substantial mass of them are required so that [283]

𝑓𝑑 =
𝑀𝑏

𝑓𝑏𝑀tot
=

𝑀* +𝑀𝑔

𝑀* +𝑀𝑔 +𝑀other
. (3)

Since there is negligible intrinsic scatter in the observed BTFR, there must be effectively zero
scatter in 𝑓𝑑. By inspection of Eq. 3, it is apparent that small scatter in 𝑓𝑑 can only be obtained
naturally in the limits 𝑀* +𝑀𝑔 ≫ 𝑀other so that 𝑓𝑑 → 1 or 𝑀* +𝑀𝑔 ≪ 𝑀other so that 𝑓𝑑 → 0.
Neither of these limits apply. We require not only an appreciable mass in dark baryons 𝑀other,
but we need the fractional mass of these missing baryons to vary in lockstep with the observed
rotation velocity 𝑉𝑓 . Put another way, for any given galaxy, we know not only how many baryons
we see, but also how many we do not see — a remarkable feat of non-observation.

Another remarkable fact about the BTFR is that it shows no residuals with variations in
the distribution of baryons [517, 443, 109, 271]. Figure 5 shows deviations from the BTFR as
a function of the characteristic baryonic surface density of the galaxies, as defined in [271], i.e.,
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Figure 5: Residuals (𝛿 log 𝑉𝑓 ) from the baryonic Tully–Fisher relation as a function of a galaxy’s char-
acteristic baryonic surface density (Σ𝑏 = 0.75𝑀𝑏/𝑅

2
𝑝 [271], 𝑅𝑝 being the radius at which the contribution

of baryons to the rotation curve peaks). Color differentiates between star (dark blue) and gas (light blue)
dominated galaxies as in Figure 3, but not all galaxies there have sufficient data (especially of 𝑅𝑝) to plot
here. Stellar masses have been estimated with stellar population synthesis models [42]. More accurate
data, with uncertainty on rotation velocity less than 5%, are shown as larger points; less accurate data
are shown as smaller points. The rotation velocity of galaxies shows no dependence on the distribution of
baryons as measured by Σ𝑏 or 𝑅𝑝. This is puzzling in the conventional context, where 𝑉 2 = 𝐺𝑀/𝑟 should
lead to a strong systematic residual [109].

Σ𝑏 = 0.75𝑀𝑏/𝑅
2
𝑝 where 𝑅𝑝 is the radius at which the rotation curve 𝑉𝑏(𝑟) of baryons peaks. Over

several decades in surface density, the BTFR is completely insensitive to variations in the mass
distribution of the baryons. This is odd because, a priori, 𝑉 2 ∼ 𝑀/𝑅, and thus 𝑉 4 ∼ 𝑀Σ.
Yet the BTFR is 𝑀𝑏 ∼ 𝑉 4

𝑓 with no dependence on Σ. This brings us to a second fine-tuning
problem. For some time, it was thought [156] that spiral galaxies all had very nearly the same
surface brightness (a condition formerly known as “Freeman’s Law”). If this is indeed the case,
the observed BTFR naturally follows from the constancy of Σ. However, there do exist many LSB
galaxies [264] that violate the constancy of surface brightness implied in Freeman’s Law. Thus,
one would expect them to deviate systematically from the Tully–Fisher relation, with lower surface
brightness galaxies having lower rotation velocities at a given mass. Yet they do not. Thus, one
must fine-tune the mass surface density of the dark matter to precisely make up for that of the
baryons [279]. As the surface density of baryons declines, that of the dark matter must increase
just so as to fill in the difference (Figure 6 [271]). The relevant quantity is the dynamical surface
density enclosed within the radius, where the velocity is measured. The latter matters little along
the flat portion of the rotation curve, but the former is the sum of dark and baryonic matter.

One might be able to avoid fine-tuning if all galaxies are dark-matter dominated [109]. In
the limit Σ𝐷𝑀 ≫ Σ𝑏, the dynamics are entirely dark-matter dominated and the distribution of
the baryons is irrelevant. There is some systematic uncertainty in the mass-to-light ratios of
stellar populations [42], making such an approach a priori tenable. In effect, we return to the
interpretation of Σ ∼ constant originally made by [3] in the context of Freeman’s Law, but now
we invoke a constant surface density of CDM rather than of baryons. But as we will see, such an
interpretation, i.e., that Σ𝑏 ≪ Σ𝐷𝑀 in all disk galaxies, is flatly contradicted by other observations
(e.g., Figure 9 and Figure 13).

The Tully–Fisher relation is remarkably persistent. Originally posited for bright spirals, it
applies to galaxies that one would naively expected to deviate from it. This includes low-luminosity,
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Figure 6: The fractional contribution to the total velocity 𝑉𝑝 at the radius 𝑅𝑃 where the contribution
of the baryons peaks for both baryons (𝑉𝑏/𝑉𝑝, top) and dark matter (𝑉𝐷𝑀/𝑉𝑝, bottom). Points as per
Figure 5. As the baryonic surface density increases, the contribution of the baryons to the total gravitating
mass increases. The dark matter contribution declines in compensation, maintaining a see-saw balance
that manages to leave no residual in the BTFR (Figure 5). The absolute amplitude of 𝑉𝑏 and 𝑉𝐷𝑀 depends
on choice of stellar mass estimator, but the fine-tuning between them must persist for any choice of 𝑀*/𝐿.
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24 Benôıt Famaey and Stacy S. McGaugh

gas-dominated irregular galaxies [445, 462, 276], LSB galaxies of all luminosities [517, 443], and
even tidal dwarfs formed in the collision of larger galaxies [165]. Such tidal dwarfs may be especially
important in this context (see also Section 6.5.4). Galactic collisions should be very effective at
segregating dark and baryonic matter. The rotating gas disks of galaxies that provide the fodder
for tidal tails and the tidal dwarfs that form within them initially have nearly circular, coplanar
orbits. In contrast, the dark-matter particles are on predominantly radial orbits in a quasi-spherical
distribution. This difference in phase space leads to tidal tails that themselves contain very little
dark matter [72]. When tidal dwarfs form from tidal debris, they should be largely devoid13 of dark
matter. Nevertheless, tidal dwarfs do appear to contain dark matter [72] and obey the BTFR [165].

The critical acceleration scale of Eq. 1 also appears in non-rotating galaxies. Elliptical galaxies
are three-dimensional stellar systems supported more by random motions than organized rotation.
First of all, in such systems of measured velocity dispersion 𝜎, the typical acceleration 𝜎2/𝑅 is also
on the order of 𝑎0 within a factor of a few, where 𝑅 is the effective radius of the system [401]. More-
over, they obey an analogous relation to the Tully–Fisher one, known as the Faber–Jackson relation
(Figure 7). In bulk, the data for these star-dominated galaxies follow the relation 𝜎4/(𝐺𝑀*) ∝ 𝑎0
(dotted line in Figure 7). This is not strictly analogous to the flat part of the rotation curves
of spiral galaxies, the dispersion typically being measured at smaller radii, where the equivalent
circular velocity curve is often falling [367, 323], or in a temporary plateau before falling again
(see also Section 6.6.1). Indeed, unlike the case in spiral galaxies, where the distribution of stars
is irrelevant, it clearly does matter in elliptical galaxies (the Faber–Jackson relation is just one
projection of the “fundamental plane” of elliptical galaxies [85]). This is comforting: at small radii
in dense stellar systems where the baryonic mass of stars is clearly important, the data behave as
Newton predicts.

The acceleration scale 𝑎0 is clearly imprinted on the data for local galaxies. This is an empirical
statement that might not hold at all times, perhaps evolving over cosmic time or evaporating
altogether. Substantial efforts have been made to investigate the Tully–Fisher relation to high
redshift. To date, there is no persuasive evidence of evolution in the zero point of the BTFR out
to 𝑧 = 0.6 [356, 357] and perhaps even to 𝑧 = 1 [485]. One must exercise caution in interpreting
such results given the difficulty inherent in peering many Gyr back in cosmic time. Nonetheless,
it appears that the scale 𝑎0 remains present in the data and has not obviously changed over the
more recent half of the age of the Universe.

4.3.2 The role of surface density

The Freeman limit [156] is the maximum central surface brightness in the distribution of galaxy
surface brightnesses. Originally thought to be a universal surface brightness, it has since become
clear that instead galaxies exist over a wide range in surface brightness [264]. In the absence
of a perverse and fine-tuned anti-correlation between surface brightness and stellar mass-to-light
ratio [517], this implies a comparable range in baryonic surface density (Figure 8).

An upper limit to the surface brightness distribution is interesting in the context of disk stability.
Recall that dynamically cold, purely Newtonian disks are subject to potentially–self-destructive
instabilities, one cure being to embed them in the potential wells of spherical dark-matter ha-
los [343]. While the proper criterion for stability is much debated [131, 415], it is clear that the
dark matter halo moderates the growth of instabilities and that the ratio of halo to disk self gravity

13 The difference in phase space between gas and dark matter also prevents the accretion of tidal gas onto any
dark matter sub-halos that may be present. It does not suffice for a tidal tail to intersect the location of a sub-halo
in coordinate space, they must also dock in velocity space. The gas is moving at the characteristic velocity of the
entire system (typically ∼ 200 km s−1), which, by definition, exceeds the escape speed of typical sub-halos (usually
< 100 km s−1). Therefore, the odds of capture are effectively zero unless the tail and sub-halo happen to be on
very nearly the same orbit initially, which is itself very unlikely because of the initial difference in their phase space
distribution.
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Figure 7: The Faber–Jackson relation for spheroidal galaxies, including both elliptical galaxies (red
squares, [85, 232]) and Local Group dwarf satellites [285] (orange squares are satellites of the Milky Way;
pink squares are satellites of M31). In analogy with the Tully–Fisher relation for spiral galaxies, spheroidal
galaxies follow a relation between stellar mass and line of sight velocity dispersion (𝜎). The dotted line
represents a constant value of the acceleration parameter 𝜎4/(𝐺𝑀*). Note, however, that this relation is
different from the BTFR because it applies to the bulk velocity dispersion while the BTFR applies to the
asymptotic circular velocity. In the context of Milgrom’s law (Section 5) the Faber–Jackson relation is
predicted only when relying on assumptions such as isothermality, isotropy, and the slope of the baryonic
density distribution (see 3rd law of motion in Section 5.2). In addition, not all pressure-supported systems
are in the weak-acceleration regime. So, in the context of Milgrom’s law, deviations from the weak-field
regime, from isothermality and from isotropy, as well as variations in the baryonic density distribution
slope, would thus explain the scatter in this relation.
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Figure 8: Size and surface density. The characteristic surface density of baryons as defined in Figure 5 is
plotted against their dynamical scale length 𝑅𝑝 in the left panel. The dark-blue points are star-dominated
galaxies and the light-blue ones gas-dominated. High characteristic surface densities at low 𝑅𝑝 in the left
panel are typical of bulge-dominated galaxies. The stellar disk component of most spiral galaxies is well
approximated by the exponential disk with Σ(𝑅) = Σ0𝑒

−𝑅/𝑅𝑑 . This disk-only central surface density and
the exponential scale length of the stellar disk are plotted in the right panel. Galaxies exist over a wide
range in both size and surface density. There is a maximum surface density threshold (sometimes referred
to as Freeman’s limit) above which disks become very rare [264]. This is presumably a stability effect, as
purely Newtonian disks are unstable [343, 415]. Stable disks only appear below a critical surface density
Σ† ≈ 𝑎0/𝐺 [299, 77].

is a relevant quantity. The more self-gravitating a disk is, the more likely it is to suffer undamped
growth of instabilities. But, in principle, galaxies with a baryonic disk and a dark matter halo
are totally scalable: if a galaxy model has a certain dynamics, and one multiplies all densities
by any (positive) constant (and also scales the velocities appropriately) one gets another galaxy
with exactly the same dynamics (with scaled time scales). So if one is stable, so is the other. In
turn, the mere fact that there might be an upper limit to Σ𝑏 is a priori surprising, and even more
so that there might be a coincidence of this upper limit with the acceleration scale 𝑎0 identified
dynamically.

The scale Σ† = 𝑎0/𝐺 is clearly present in the data (Figure 8). Selection effects make high–
surface-brightness (HSB) galaxies easy to detect and hence discover, but their intrinsic numbers
appear to decline exponentially when the central surface density of the stellar disk Σ0 > Σ† [264].
It seems natural to associate the dynamical scale 𝑎0 with the disk stability scale Σ† since they are
numerically indistinguishable and both arise in the context of the mass discrepancy. However, there
is no reason to expect this in ΛCDM, which predicts denser dark matter halos than observed [280,
169, 167, 241, 243, 478, 118]. Such dense dark matter halos could stabilize much higher density
disks than are observed to exist. Lacking a clear mechanism to specify this scale, it is introduced
into models by hand [115].

Poisson’s equation provides a direct relation between the force per unit mass (centripetal ac-
celeration in the case of circular orbits in disk galaxies), the gradient of the potential, and the
surface density of gravitating mass. If there is no dark matter, the observed surface density of
baryons must correlate perfectly with the dynamical acceleration. If, on the other hand, dark
matter dominates the dynamics of a system, as we might infer from Figure 5 [279, 109], then
there is no reason to expect a correlation between acceleration and the dynamically-insignificant
baryons. Figure 9 shows the dynamical acceleration as a function of baryonic surface density in
disk galaxies. The acceleration 𝑎𝑝 = 𝑉 2

𝑝 /𝑅𝑝 is measured at the radius 𝑅𝑝, where the rotation
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Figure 9: The dynamical acceleration 𝑎𝑝 = 𝑉 2
𝑝 /𝑅𝑝 in units of 𝑎0 plotted against the characteristic

baryonic surface density [275]. Points as per Figure 5. The dotted line shows the relation 𝑎𝑝 = 𝐺Σ𝑏 that
would be obtained if the visible baryons sufficed to explain the observed velocities in Newtonian dynamics.
Though the data do not follow this line, they do show a correlation (𝑎𝑝 ∝ Σ

1/2
𝑏 ). This clearly indicates a

dynamical role for the baryons, in contradiction to the simplest interpretation [109] of Figure 5 that dark
matter completely dominates the dynamics.

curve 𝑉𝑏(𝑟) of baryons peaks. Given the systematic variation of rotation curve shape [376, 495],
the specific choice of radii is unimportant. Nevertheless, this radius is advocated by [109] since
this maximizes the possibility of perceiving the baryonic contribution in the plot of Figure 5. That
this contribution is not present leads to the inference that Σ𝑏 ≪ Σ𝐷𝑀 in all disk galaxies [109].
This is directly contradicted by Figure 9, which shows a clear correlation between 𝑎𝑝 and Σ𝑏.

The higher the surface density of baryons, the higher the observed acceleration. The slope
of the relation is not unity, 𝑎𝑝 ∝ Σ𝑏, as we would expect in the absence of a mass discrepancy,

but rather 𝑎𝑝 ∝ Σ
1/2
𝑏 . To simultaneously explain Figure 5 and Figure 9, there must be a strong

fine-tuning between dark and baryonic surface densities (i.e., Figure 6), a sort of repulsion between
them, a repulsion which is however contradicted by the correlations between baryonic and dark
matter bumps and wiggles in rotation curves (see Section 4.3.4).

4.3.3 Mass discrepancy-acceleration relation

So far we have discussed total quantities. For the BTFR, we use the total observed mass of
a galaxy and its characteristic rotation velocity. Similarly, the dynamical acceleration–baryonic
surface density relation uses a single characteristic value for each galaxy. These are not the only
ways in which the “magical” acceleration constant 𝑎0 appears in the data. In general, the mass
discrepancy only appears at very low accelerations 𝑎 < 𝑎0 and not (much) above 𝑎0. Equivalently,
the need for dark matter only becomes clear at very low baryonic surface densities Σ < Σ† = 𝑎0/𝐺.
Indeed, the amplitude of the mass discrepancy in galaxies anti-correlates with acceleration [270].
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28 Benôıt Famaey and Stacy S. McGaugh

Figure 10: The mass discrepancy in spiral galaxies. The mass discrepancy is defined [270] as the ratio
𝑉 2/𝑉 2

𝑏 where 𝑉 is the observed velocity and 𝑉𝑏 is the velocity attributable to visible baryonic matter.
The ratio of squared velocities is equivalent to the ratio of total-to-baryonic enclosed mass for spherical
systems. No dark matter is required when 𝑉 = 𝑉𝑏, only when 𝑉 > 𝑉𝑏. Many hundreds of individual
resolved measurements along the rotation curves of nearly one hundred spiral galaxies are plotted. The
top panel plots the mass discrepancy as a function of radius. No particular linear scale is favored. Some
galaxies exhibit mass discrepancies at small radii while others do not appear to need dark matter until
quite large radii. The middle panel plots the mass discrepancy as a function of centripetal acceleration
𝑎 = 𝑉 2/𝑟, while the bottom panel plots it against the acceleration 𝑔𝑁 = 𝑉 2

𝑏 /𝑟 predicted by Newton
from the observed baryonic surface density Σ𝑏. Note that the correlation appears a little better with
𝑔𝑁 because the data are stretched out over a wider range in 𝑔𝑁 than in 𝑎. Note also that systematics
on the stellar mass-to-light ratios can make this relation slightly more blurred than shown here, but the
relation is nevertheless always present irrespective of the assumptions on stellar mass-to-light ratios [270].
Thus, there is a clear organization: the amplitude of the mass discrepancy increases systematically with
decreasing acceleration and baryonic surface density.
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In [270], one examined the role of various possible scales, as well as the effects of different
stellar mass-to-light ratio estimators, on the mass discrepancy problem. The amplitude of the
mass discrepancy, as measured by (𝑉/𝑉𝑏)

2, the ratio of observed velocity to that predicted by the
observed baryons, depends on the choice of estimator for stellar 𝑀*/𝐿. However, for any plausible
(non-zero) 𝑀*/𝐿, the amplitude of the mass discrepancy correlates with acceleration (Figure 10)
and baryonic surface density, as originally noted in [382, 266, 406]. It does not correlate with
radius and only weakly with orbital frequency14.

There is no reason in the dark matter picture why the mass discrepancy should correlate with
any physical scale. Some systems might happen to contain lots of dark matter; others very little.
In order to make a prediction with a dark matter model, it is necessary to model the formation of
the dark matter halo, the condensation of gas within it, the formation of stars therefrom, and any
feedback processes whereby the formation of some stars either enables or suppresses the formation
of further stars. This complicated sequence of events is challenging to model. Baryonic “gastro-
physics” is particularly difficult, and has thus far precluded the emergence of a clear prediction for
galaxy dynamics from ΛCDM.

ΛCDM does make a prediction for the distribution of mass in baryonless dark matter halos: the
NFW halo [332, 333]. These are remarkable for being scale free. Small halos have a profile similar
to large halos. No feature stands out that marks a unique physical scale as observed. Galaxies do
not resemble pure NFW halos [416], even when dark matter dominates the dynamics as in LSB
galaxies [241, 243, 118]. The inference in ΛCDM is that gastrophysics, especially the energetic
feedback from stellar winds and supernova explosions, plays a critical role in sculpting observed
galaxies. This role is not restricted to the minority baryonic constituents; it must also affect the
majority dark matter [176]. Simulations incorporating these effects in a quasi-realistic way are
extremely expensive computationally, so a comprehensive survey of the plausible parameter space
occupied by such models has yet to be made. We have no reason to expect that a particular
physical scale will generically emerge as the result of baryonic gastrophysics. Indeed, feedback
from star formation is inherently a random process. While it is certainly possible for simple laws
to emerge from complicated physics (e.g., the fact that SNIa are standard candles despite the
complicated physics involved), the more common situation is for chaos to beget chaos. Therefore,
it seems unnatural to imagine feedback processes leading to the orderly behavior that is observed
(Figure 10); nor is it obvious how they would implicate any particular physical scale. Indeed, the
dark matter halos formed in ΛCDM simulations [332, 333] provide an initial condition with greater
scatter than the final observed one [280, 478], so we must imagine that the chaotic processes of
feedback not only impart order, but do so in a way that cancels out some of the scatter in the
initial conditions.

In any case, and whatever the reason for it, a physical scale is clearly observationally present
in the data: 𝑎0 (Eq. 1). At high accelerations 𝑎 ≫ 𝑎0, there is no indication of the need for dark
matter. Below this acceleration, the mass discrepancy appears. It cannot be emphasized enough
that the role played by 𝑎0 in the BTFR and this role as a transition acceleration have strictly no
intrinsic link with each other, they are fully independent of each other. There is nothing in ΛCDM
that stipulates that these two relations (the existence of a transition acceleration and the BTFR)
should exist at all, and even less that these should harbour an identical acceleration scale.

Thus, it is important to realize not only that the relevant dynamical scale is one of acceleration,
not size, but also that the mass discrepancy appears only at extremely low accelerations. Just as
galaxies are much bigger than the Solar system, so too are the centripetal accelerations experienced
by stars orbiting within a galaxy much smaller than those experienced by planets in the Solar
system. Many of the precise tests of gravity that have been made in the Solar system do not explore
the relevant regime of physical parameter space. This is emphasized in Figure 11, which extends

14 Note that this correlation with acceleration was looked at notably because it was pointed to by Milgrom’s law
(see Section 5).
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Figure 11: The mass-discrepancy–acceleration relation from Figure 10 extended to solar-system scales
(each planet is labelled). This illustrates the large gulf in scale between galaxies and the Solar system
where high precision tests are possible. The need for dark matter only appears at very low accelerations.

the mass discrepancy–acceleration relation to Solar system scales. Many decades in acceleration
separate the Solar system from galaxies. Aside from the possible exception of the Pioneer anomaly,
there is no hint of a discrepancy in the Solar system: 𝑉 = 𝑉𝑏. Even the Pioneer anomaly15 is well
removed from the regime where the mass discrepancy manifests in galaxies, and is itself much too
subtle to be perceptible in Figure 11. Indeed, to within a factor of ∼ 2, no system exhibits a mass
discrepancy at accelerations 𝑎 ≫ 𝑎0.

The systematic increase in the amplitude of the mass discrepancy with decreasing acceleration
and baryonic surface density has a remarkable implication. Even though the observed velocity is
not correctly predicted by the observed baryons, it is predictable from them. Independent of any
theory, we can simply fit a function 𝐷(𝐺Σ) to describe the variation of the discrepancy (𝑉/𝑉𝑏)

2

with baryonic surface density [270]. We can then apply it to any new system we encounter to
predict 𝑉 = 𝐷1/2𝑉𝑏. In effect, 𝐷 boosts the velocity already predicted by the observed baryons.
While this is a purely empirical exercise with no underlying theory, it is quite remarkable that
the distribution of dark matter required in a galaxy is entirely predictable from the distribution
of its luminous mass (see also [167]). In the conventional picture, dark matter outweighs baryonic
matter by a factor of five, and more in individual galaxies given the halo-by-halo missing baryon
problem (Figure 2), but apparently the baryonic tail wags the dark matter dog. And it does so
again through the acceleration scale 𝑎0. Indeed, at very low accelerations, the mass discrepancy
is precisely defined by the inverse of the square-root of the gravitational acceleration generated by
the baryons in units of 𝑎0. This actually asymptotically leads to the BTFR.

So, up to now, we have seen five roles of 𝑎0 in galaxy dynamics. (i) It defines the zero point of
the Tully–Fisher relation, (ii) it appears as the characteristic acceleration at the effective radius of
spheroidal systems, (iii) it defines the Freeman limit for the maximum surface density of pure disks,
(iv) it appears as a transition-acceleration above which no dark matter is needed, and below which
it appears, and (v) it defines the amplitude of the mass-discrepancy in the weak-field regime (this
last point is not a fully independent role as it leads to the Tully–Fisher relation). Let us eventually
note that there is yet a final role played by 𝑎0, which is that it defines the central surface density
of all dark matter halos as being on the order of 𝑎0/(2𝜋𝐺) [129, 167, 313].

15 The Pioneer anomaly has an amplitude on the order of ∼ 10−9 m s−2 but appears at a location in the
solar system where the total gravitational acceleration is ∼ 10−6 m s−2. Thus, the discrepancy in Figure 11 is
(𝑉/𝑉𝑏)

2 ≈ 1.001.
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4.3.4 Renzo’s rule

The relation between dynamical and baryonic surface densities appears as a global scaling relation
in disk galaxies (Figure 9) and as a local correspondence within each galaxy (Figure 10). When all
galaxies are plotted together as in Figure 10, this connection appears as a single smooth function
𝐷(𝑎). This does not suffice to illustrate that individual galaxies have features in their baryon
distribution that are reflected in their dynamics. While the above correlations could be interpreted
as a sort of repulsion between dark and baryonic matter, the following rather indicates closer-than-
natural attraction.

Figure 12 shows the spiral galaxy NGC 6946. Two multi-color images of the stellar component
are given. The optical bands provide a (nearly) true color picture of the galaxy, which is perceptibly
redder near the center and becomes progressively more blue further out. This is typical of spiral
galaxies and reflects real differences in stellar content: the stars towards the center tend to be older
and more dominated by the light of red giants, while those further out are younger on average
so the light has a greater fractional contribution from bright-but-short-lived main sequence stars.
The near-infrared bands [209] give a more faithful map of stellar mass, and are less affected by dust
obscuration. Radio synthesis imaging of the 21 cm emission from the hydrogen spin-flip transition
maps the atomic gas in the interstellar medium, which typically extends to rather larger radii than
the stars.

Surface density profiles of galaxies are constructed by fitting ellipses to images like those illus-
trated in Figure 12. The ellipses provide an axisymmetric representation of the variation of surface
brightness with radius. This is shown in the top panels of Figure 13 for NGC 6946 (Figure 12) and
the nearby, gas rich, LSB galaxy NGC 1560. The 𝐾-band light distribution is thought to give the
most reliable mapping of observed light to stellar mass [42], and has been used to trace the run of
stellar surface density in Figure 13. The sharp feature at the center is a small bulge component
visible as the red central region in Figure 12. The bulge contains only 4% of the 𝐾-band light. The
remainder is the stellar disk; a straight line fit to the data outside the central bulge region gives
the parameters of the exponential disk approximation, Σ0 and 𝑅𝑑. Similarly, the surface density of
atomic gas is traced by the 21 cm emission, with a correction for the cosmic abundance of helium
– the detected hydrogen represents 75% of the gas mass believed to be present, with most of the
rest being helium, in accordance with BBN.

Mass models (bottom panels of Figure 13) are constructed from the surface density profiles
by numerical solution of the Poisson equation [52, 472]. No approximations (like sphericity or
an exponential disk) are made at this step. The disks are assumed to be thin, with radial scale
length exceeding their vertical scale by 8:1, as is typical of edge-on disks [236]. Consequently,
the computed rotation curves (various broken lines in Figure 13) are not smooth, but reflect the
observed variations in the observed surface density profiles of the various components. The sum
(in quadrature) leads to the total baryonic rotation curve 𝑉𝑏(𝑟) (the solid lines in Figure 13): this
is what would be observed if no dark matter were implicated. Instead, the observed rotation (data
points in Figure 13) exceeds that predicted by 𝑉𝑏(𝑟): this is the mass discrepancy.

It is often merely stated that flat rotation curves require dark matter. But there is considerably
more information in rotation curve data than asymptotic flatness. For example, it is common that
the rotation curve in the inner parts of HSB galaxies like NGC 6946 is well described by the
baryons alone. The data are often consistent with a very low density of dark matter at small radii
with baryons providing the bulk of the gravitating mass. This condition is referred to as maximum
disk [471], and also runs contrary to our inferences of dark matter dominance from Figure 5 [414].
More generally, features in the baryonic rotation curve 𝑉𝑏(𝑟) often correspond to features in the
total rotation 𝑉𝑐(𝑟).

Perhaps the most succinct empirical statement of the detailed connection between baryons and
dynamics has been given by Renzo Sancisi, and known as Renzo’s rule [379]: “For any feature in
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Figure 12: The spiral galaxy NGC 6946 as it appears in the optical (color composite from the 𝐵𝑉 𝑅
bands, left; image obtained by SSM with Rachel Kuzio de Naray using the Kitt Peak 2.1 m telescope),
near-infrared (𝐽𝐻𝐾 bands, middle [209]), and in atomic gas (21 cm radiaiton, right [481]). The images
are shown at the same physical scale, illustrating how the atomic gas typically extends to greater radii
than the stars. Images like these are used to construct mass models representing the observed distribution
of baryonic mass.

the luminosity profile there is a corresponding feature in the rotation curve.” Both galaxies shown
in Figure 13 illustrate this statement. In the inner region of NGC 6946, the small but compact
bulge component causes a sharp feature in 𝑉𝑏(𝑟) that declines rapidly before the rotation curve
rises again, as mass from the disk begins to contribute. The up-down-up morphology predicted by
the observed distribution of the baryons is observed in high resolution observations [54, 114]. A
dark matter halo with a monotonically-varying density profile cannot produce such a morphology;
the stellar bulge must be the dominant mass component at small radii in this galaxy.

A surprising aspect of Renzo’s rule is that it applies to LSB galaxies as well as those of high
surface brightness. That the baryons should have some dynamical impact where their surface
density is highest is natural, though there is no reason to demand that they become competitive
with dark matter. What is distinctly unnatural is for the baryons to have a perceptible impact
where dark matter must clearly dominate. NGC 1560 provides an example where they appear to
do just that. The gas distribution in this galaxy shows a substantial kink in its surface density
profile [28] (recently confirmed by [163]) that has a distinct impact on 𝑉𝑏(𝑟). This occurs at a
radius where 𝑉 ≫ 𝑉𝑏, so dark matter should be dominant. A spherical–dark-matter halo with
particles on randomly oriented, highly radial orbits cannot support the same sort of structure as
seen in the gas disk, and the spherical geometry, unlike a disk geometry, would smear the effect on
the local acceleration. And yet the wiggle in the baryonic rotation curve is reflected in the total,
as per Renzo’s rule.16

One inference that might be made from these observations is that the dark matter is baryonic.
This is unacceptable from a cosmological perspective, but it is possible to have a multiplicity of
dark matter components. That is, we could have baryonic dark matter in the disks of galaxies in

16 Note that such wiggles are often associated with spiral arm features (the existence of which in LSB galaxies
being itself challenging in the presence of a massive dark matter halo, see Section 4.2), and hence associated
with non-circular motions. It is conceivable that such observed wiggles are partly due to these, but the effect of
local density contrasts due to spiral arms on the tangential velocity should be damped by the global effect of the
spherical–dark-matter halo, which is apparently not the case.
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Figure 13: Surface density profiles (top) and rotation curves (bottom) of two galaxies: the HSB spiral
NGC 6946 (Figure 12, left) and the LSB galaxy NGC 1560 (right). The surface density of stars (blue circles)
is estimated by azimuthal averaging in ellipses fit to the 𝐾-band (2.2𝜇m) light distribution. Similarly, the
gas surface density (green circles) is estimated by applying the same procedure to the 21 cm image. Note the
different scale between LSB and HSB galaxies. Also note features like the central bulge of NGC 6946, which
corresponds to a sharp increase in stellar surface density at small radius. In the lower panels, the observed
rotation curves (data points) are shown together with the baryonic mass models (lines) constructed from
the observed distribution of baryons. Velocity data for NGC 6946 include both HI data that define the
outer, flat portion of the rotation curve [66] and H𝛼 data from two independent observations [54, 114]
that define the shape of the inner rotation curve. Velocity data for NGC 1560 come from two independent
interferometric HI observations [28, 163]. Baryonic mass models are constructed from the surface density
profiles by numerical solution of the Poisson equation using GIPSY [472]. The dashed blue line is the
stellar disk, the red dot-dashed line is the central bulge, and the green dotted line is the gas. The solid
black line is the sum of all baryonic components. This provides a decent match to the rotation curve at
small radii in the HSB galaxy, but fails to explain the flat portion of the rotation curve at large radii.
This discrepancy, and its systematic ubiquity in spiral galaxies, ranks as one of the primary motivations
for dark matter. Note that the mass discrepancy is large at all radii in the LSB galaxy.
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addition to a halo of non-baryonic cold dark matter. It is often possible to scale up the atomic
gas component to fit the total rotation [193]. That implies a component of mass that is traced
by the atomic gas – presumably some other dynamically cold gas component – that outweighs the
observed hydrogen by a factor of six to ten [193]. One hypothesis for such a component is very
cold molecular gas [352]. It is difficult to exclude such a possibility, though it also appears to be
hard to sustain in LSB galaxies[292]. Dynamically, one might expect the extra mass to destabilize
the LSB disk. One also returns to a fine-tuning between baryonic surface density and mass-to-light
ratio. In order to maintain the balance observed in Figure 5, relatively more dark molecular gas
will be required in LSB galaxies so as to maintain a constant surface density of gravitating mass,
but given the interactions at hand, this might be at least a bit more promising than explaining it
with CDM halos.

As a matter of fact, LSB galaxies play a critical role in testing many of the existing models for
dark matter. This happens in part because they were appreciated as an important population of
galaxies only after many relevant hypotheses were established, and thus provide good tests of their
a priori expectations. Observationally, we infer that LSB disks exhibit large mass discrepancies
down to small radii [119]. Conventionally, this means that dark matter completely dominates their
dynamics: the surface density of baryons in these systems is never high enough to be relevant.
Nevertheless, the observed distribution of baryons suffices to predict the total rotation [279, 120].
Once again, the baryonic tail wags the dark matter dog, with the observations of the minority
baryonic component sufficing to predict the distribution of the dominant dark matter. Note that,
conversely, nothing is “observable” about the dark matter, in present-day simulations, that predicts
the distribution of baryons.

Thus, we see that there are many observations, mostly on galaxy scales, that are unpredicted,
and perhaps unpredictable, in the standard dark matter context. They mostly involve a unique
relationship between the distribution of baryons and the gravitational field, as well as an acceler-
ation constant 𝑎0 on the order of the square-root of the cosmological constant, and they represent
the most significant challenges to the current ΛCDM model.
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5 Milgrom’s Empirical Law and “Kepler Laws” of Galactic
Dynamics

Up to this point in this review, the challenges that we have presented have been purely based on
observations, and fully independent of any alternative theoretical framework. However, at this
point, it would obviously be a step forward if at least some of these puzzling observations could
be summarized and empirically unified in some way, as such a unifying process is largely what
physics is concerned with, rather than simply exposing a jigsaw of apparently unrelated empirical
observations. And such an empirical unification is actually feasible for many of the unpredicted
observations presented in the previous Section 4.3, and goes back to a rather old idea of the Israeli
physicist Mordehai Milgrom.

Almost 30 years ago, back in 1983 (and thus before most of the aforementioned observations
had been carried out), simply prompted by the question of whether the missing mass problem
could perhaps reflect a breakdown of Newtonian dynamics in galaxies, Milgrom [293] devised a
formula linking the Newtonian gravitational acceleration 𝑔𝑁 to the true gravitational acceleration
𝑔 in galaxies. Such attempts to rectify the mass discrepancy by gravitational means often begin
by noting that galaxies are much larger than the solar system. It is easy to imagine that at some
suitably large scale, let’s say on the order of 1 kpc, there is a transition from the usual dynamics
applicable in the comparatively-tiny solar system to some more general theory that applies on the
scale of galaxies in order to explain the mass discrepancy problem. If so, we would expect the mass
discrepancy to manifest itself at a particular length scale in all systems. However, as already noted,
there is no universal length scale apparent in the data (Figure 10) [382, 266, 406, 279, 270]. The
mass discrepancy appears already at small radii in some galaxies; in others there is no apparent
need for dark matter until very large radii. This now observationally excludes all hypotheses that
simply alter the force law at a linear length-scale.

5.1 Milgrom’s law and the dielectric analogy

Before such precise data were available, Milgrom [293] already noted that other scales were also
possible, and that one that is as unique to galaxies as size is acceleration. The typical centripetal
acceleration of a star in a galaxy is of order ∼ 10−10 m s−2. This is eleven orders of magnitude
less than the surface gravity of the Earth. As we have seen in Section 4, this acceleration constant
appears “miraculously” in very different scaling relations that should not, in principle, be related
to each other17. This observational evidence for the universal appearance of 𝑎0 ≃ 10−10 m s−2 in
galactic scaling relations was not at all observationally evident back in 1983. What Milgrom [293]
then hypothesized was a modification of Newtonian dynamics below this acceleration constant 𝑎0,
appropriate to the tiny accelerations encountered in galaxies18. This new constant 𝑎0 would then
play a similar role as the Planck constant ℎ in quantum physics or the speed of light 𝑐 in special
relativity. For large acceleration (or force per unit mass), 𝐹/𝑚 = 𝑔 ≫ 𝑎0, everything would be
normal and Newtonian, i.e., 𝑔 = 𝑔𝑁 . Or, put differently, formally taking 𝑎0 → 0 should make the
theory tend to standard physics, just like recovering classical mechanics for ℎ → 0. On the other
hand, formally taking 𝑎0 → ∞ (and 𝐺 → 0), or equivalently, in the limit of small accelerations
𝑔 ≪ 𝑎0, the modification would apply in the form:

𝑔 =
√
𝑔𝑁𝑎0, (4)

17 Note that many of these relations were scrutinized during the last 30 years because they were pointed to by
Milgrom’s law. Thus, this law has already achieved the important role of a theoretical idea, i.e., to point and direct
observations and their arrangement

18 Of course, there is also a natural length scale associated with this acceleration constant, 𝑙 = 𝑐2/𝑎0, but this
length scale will enter the modification nonlinearly, and is thus not the length at which the modification would be
seen in galaxies, as it is rather on the order of the Hubble radius
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36 Benôıt Famaey and Stacy S. McGaugh

where 𝑔 = |g| is the true gravitational acceleration, and 𝑔𝑁 = |g𝑁 | the Newtonian one as calculated
from the observed distribution of visible matter. Note that this limit follows naturally from the
scale-invariance symmetry of the equations of motion under transformations (𝑡, 𝑟) → (𝜆𝑡, 𝜆𝑟) [315].
This particular modification was only suggested in 1983 by the asymptotic flatness of rotation
curves and the slope of the Tully–Fisher relation. It is indeed trivial to see that the desired
behavior follows from equation (4). For a test particle in circular motion around a point mass
𝑀 , equilibrium between the radial component of the force and the centripetal acceleration yields
𝑉 2
𝑐 /𝑟 = 𝑔𝑁 = 𝐺𝑀/𝑟2. In the weak-acceleration limit this becomes

𝑉 2
𝑐

𝑟
=

√︂
𝐺𝑀𝑎0
𝑟2

. (5)

The terms involving the radius 𝑟 cancel, simplifying to

𝑉 4
𝑐 (𝑟) = 𝑉 4

𝑓 = 𝑎0𝐺𝑀. (6)

The circular velocity no longer depends on radius, asymptoting to a constant 𝑉𝑓 that depends only
on the mass of the central object and fundamental constants. The equation above is the equivalent
of the observed baryonic Tully–Fisher relation. It is often wrongly stated that Milgrom’s formula
was constructed in an ad hoc way in order to reproduce galaxy rotation curves, while this statement
is only true of these two observations: (i) the asymptotic flatness of the rotation curves, and (ii) the
slope of the baryonic Tully–Fisher relation (but note that, at the time, it was not clear at all that
this slope would hold, nor that the Tully–Fisher relation would correlate with baryonic mass rather
than luminosity, and even less clear that it would hold over orders of magnitude in mass). All the
other successes of Milgrom’s formula related to the phenomenology of galaxy rotation curves were
pure predictions of the formula made before the observational evidence. The predictions that are
encapsulated in this simple formula can be thought of as sort of “Kepler-like laws” of galactic
dynamics. These various laws only make sense once they are unified within their parent formula,
exactly as Kepler’s laws only make sense once they are unified under Newton’s law.

In order to ensure a smooth transition between the two regimes 𝑔 ≫ 𝑎0 and 𝑔 ≪ 𝑎0, Milgrom’s
law is written in the following way:

𝜇

(︂
𝑔

𝑎0

)︂
g = gN, (7)

where the interpolating function

𝜇(𝑥) → 1 for 𝑥 ≫ 1 and 𝜇(𝑥) → 𝑥 for 𝑥 ≪ 1. (8)

Written like this, the analogy between Milgrom’s law and Coulomb’s law in a dielectric medium
is clear, as noted in [56]. Indeed, inside a dielectric medium, the amplitude of the electric field 𝐸
generated by an external point charge 𝑄 located at a distance 𝑟 obeys the following equation:

𝜇(𝐸)𝐸 =
𝑄

4𝜋𝜖0𝑟2
, (9)

where 𝜇 is the relative permittivity of the medium, and can depend on 𝐸. In the case of a
gravitational field generated by a point mass 𝑀 , it is then clear that Milgrom’s interpolating
function plays the role of “ gravitational permittivity”. Since it is smaller than 1, it makes the
gravitational field stronger than Newtonian (rather than smaller in the case of the electric field in
a dielectric medium, where 𝜇 > 1). In other words, the gravitational susceptibility coefficient 𝜒
(such that 𝜇 = 1+ 𝜒) is negative, which is correct for a force law where like masses attract rather
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than repel [56]. This dielectric analogy has been explicitly used in devising a theory[60] where
Milgrom’s law arises from the existence of a “gravitationally polarizable” medium (see Section 7).

Of course, inverting the above relation, Milgrom’s law can also be written as

g = 𝜈

(︂
𝑔𝑁
𝑎0

)︂
gN, (10)

where
𝜈(𝑦) → 1 for 𝑦 ≫ 1 and 𝜈(𝑦) → 𝑦−1/2 for 𝑦 ≪ 1. (11)

However, as we shall see in Section 6, in order for g to remain a conservative force field, these
expressions (Eqs. 7 and 10) cannot be rigorous outside of highly symmetrical situations. Never-
theless, it allows one to make numerous very general predictions for galactic systems, or, in other
words, to derive “Kepler-like laws” of galactic dynamics, unified under the banner of Milgrom’s
law. As we shall see, many of the observations unpredicted by ΛCDM on galaxy scales natu-
rally ensue from this very simple law. However, even though Milgrom originally devised this as a
modification of dynamics, this law is a priori nothing more than an algorithm, which allows one
to calculate the distribution of force in an astronomical object from the observed distribution of
baryonic matter. Its success would simply mean that the observed gravitational field in galaxies is
mimicking a universal force law generated by the baryons alone, meaning that (i) either the force
law itself is modified, or that (ii) there exists an intimate connection between the distribution of
baryons and dark matter in galaxies.

It was suggested, for instance, [218] that such a relation might arise naturally in the CDM
context, if halos possess a one-parameter density profile that leads to a characteristic acceleration
profile that is only weakly dependent upon the mass of the halo. Then, with a fixed collapse
factor for the baryonic material, the transition from dominance of dark over baryonic occurs at a
universal acceleration, which, by numerical coincidence, is on the order of 𝑐𝐻0 and thus of 𝑎0 (see
also [411]). While, still today, it remains to be seen whether this scenario would quantitatively
hold in numerical simulations, it was noted by Milgrom [306] that this scenario only explained
the role of 𝑎0 as a transition radius between baryon and dark matter dominance in HSB galaxies,
precluding altogether the existence of LSB galaxies where dark matter dominates everywhere. The
real challenge for ΛCDM is rather to explain all the different roles played by 𝑎0 in galaxy dynamics,
different roles that can all be summarized within the single law proposed by Milgrom, just like
Kepler’s laws are unified under Newton’s law. We list these Kepler-like laws of galactic dynamics
hereafter, and relate each of them with the unpredicted observations of Section 4, keeping in mind
that these were mostly a priori predictions of Milgrom’s law, made before the data were as good
as today, not “postdictions” like we are used to in modern cosmology.

5.2 Galactic Kepler-like laws of motion

1. Asymptotic flatness of rotation curves. The rotation curves of galaxies are asymptot-
ically flat, even though this flatness is not always attained at the last observed point (see
point hereafter about the shapes of rotation curves as a function of baryonic surface density).
What is more, Milgrom’s law can be thought of as including the total acceleration with re-
spect to a preferred frame, which can lead to the prediction of asymptotically-falling rotation
curves for a galaxy embedded in a large external gravitational field (see Section 6.3).

2. 𝐺𝑎0 defining the zero-point of the baryonic Tully–Fisher relation. The plateau
of a rotation curve is 𝑉𝑓 = (𝐺𝑀𝑎0)

1/4. The true Tully–Fisher relation is predicted to be
a relation between this asymptotic velocity and baryonic mass, not luminosity. Milgrom’s
law yields immediately the slope (precisely 4) and zero-point of this baryonic Tully–Fisher
law. The observational baryonic Tully–Fisher relation should thus be consistent with zero
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scatter around this prediction of Milgrom’s law (the dotted line of Figure 3). And indeed
it is. All rotationally-supported systems in the weak acceleration limit should fall on this
relation, irrespective of their formation mechanism and history, meaning that completely
isolated galaxies or tidal dwarf galaxies formed in interaction events all behave as every
other galaxy in this respect.

3. 𝐺𝑎0 defining the zero-point of the Faber–Jackson relation. For quasi-isothermal
systems [296], such as elliptical galaxies, the bulk velocity dispersion depends only on the
total baryonic mass via 𝜎4 ∼ 𝐺𝑀𝑎0. Indeed, since the equation of hydrostatic equilibrium for
an isotropic isothermal system in the weak field regime reads 𝑑(𝜎2𝜌)/𝑑𝑟 = −𝜌(𝐺𝑀𝑎0)

1/2/𝑟,
one has 𝜎4 = 𝛼−2×𝐺𝑀𝑎0 where 𝛼 = 𝑑 ln 𝜌/𝑑 ln 𝑟. This underlies the Faber–Jackson relation
for elliptical galaxies (Figure 7), which is, however, not predicted by Milgrom’s law to be
as tight and precise (because it relies, e.g., on isothermality and on the slope of the density
distribution) as the BTFR.

4. Mass discrepancy defined by the inverse of the acceleration in units of 𝑎0. Or
alternatively, defined by the inverse of the square-root of the gravitational acceleration gen-
erated by the baryons in units of 𝑎0. The mass discrepancy is precisely equal to this in
the very–low-acceleration regime, and leads to the baryonic Tully–Fisher relation. In the
low-acceleration limit, 𝑔𝑁/𝑔 = 𝑔/𝑎0, so in the CDM language, inside the virial radius of any
system whose virial radius is in the weak acceleration regime (well below 𝑎0), the baryon
fraction is given by the acceleration in units of 𝑎0. If we adopt a rough relation 𝑀500 ≃
1.5×105 𝑀⊙×𝑉 3

𝑐 (km/s)−3, we get that the acceleration at 𝑅500, and thus the system baryon
fraction predicted by Milgrom’s formula, is 𝑀𝑏/𝑀500 = 𝑎500/𝑎0 ≃ 4 × 10−4 × 𝑉𝑐 (km/s)−1.
Divided by the cosmological baryon fraction, this explains the trend for 𝑓𝑑 = 𝑀𝑏/(0.17𝑀500)
with potential (Φ = 𝑉 2

𝑐 ) in Figure 2, thereby naturally explaining the halo-by-halo missing
baryon challenge in galaxies. No baryons are actually missing; rather, we infer their existence
because the natural scaling between mass and circular velocity 𝑀500 ∝ 𝑉 3

𝑐 in ΛCDM differs
by a factor of 𝑉𝑐 from the observed scaling 𝑀𝑏 ∝ 𝑉 4

𝑐 .

5. 𝑎0 as the characteristic acceleration at the effective radius of isothermal spheres.
As a corollary to the Faber–Jackson relation for isothermal spheres, let us note that the bary-
onic isothermal sphere would not require any dark matter up to the point where the internal
gravity falls below 𝑎0, and would thus resemble a purely baryonic Newtonian isothermal
sphere up to that point. But at larger distances, in the presence of the added force due
to Milgrom’s law, the baryonic isothermal sphere would fall [296] as 𝑟−4, thereby making
the radius at which the gravitational acceleration is 𝑎0 the effective baryonic radius of the
system, thereby explaining why, at this radius 𝑅 in quasi-isothermal systems, the typical
acceleration 𝜎2/𝑅 is almost always observed to be on the order of 𝑎0. Of course, this is valid
for systems where such a transition radius does exist, but going to very-LSB systems, if the
internal gravity is everywhere below 𝑎0, one can then have typical accelerations as low as one
wishes.

6. 𝑎0/𝐺 as a critical mean surface density for stability. Disks with mean surface density
⟨Σ⟩ ≤ Σ† = 𝑎0/𝐺 have added stability. Most of the disk is then in the weak-acceleration

regime, where accelerations scale as 𝑎 ∝
√
𝑀 , instead of 𝑎 ∝ 𝑀 . Thus, 𝛿𝑎/𝑎 = (1/2)𝛿𝑀/𝑀

instead of 𝛿𝑎/𝑎 = 𝛿𝑀/𝑀 , leading to a weaker response to small mass perturbations [299].
This explains the Freeman limit (Figure 8).

7. 𝑎0 as a transition acceleration. The mass discrepancy in galaxies always appears (tran-
sition from baryon dominance to dark matter dominance) when 𝑉 2

𝑐 /𝑅 ∼ 𝑎0, yielding a clear
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mass-discrepancy acceleration relation (Figure 10). This, again, is the case for every sin-
gle rotationally-supported system irrespective of its formation mechanism and history. For
HSB galaxies, where there exist two distinct regions where 𝑉 2

𝑐 /𝑅 > 𝑎0 in the inner parts
and 𝑉 2

𝑐 /𝑅 < 𝑎0 in the outer parts, locally measured mass-to-light ratios should show no
indication of hidden mass in the inner parts, but rise beyond the radius where 𝑉 2

𝑐 /𝑅 ≈ 𝑎0
(Figure 14). Note that this is the only role of 𝑎0 that the scenario of [218] was poorly trying
to address (forgetting, e.g., about the existence of LSB galaxies).

8. 𝑎0/𝐺 as a transition central surface density. The acceleration 𝑎0 defines the transition
from HSB galaxies to LSB galaxies: baryons dominate in the inner parts of galaxies whose
central surface density is higher than some critical value on the order of Σ† = 𝑎0/𝐺, while in
galaxies whose central surface density is much smaller (LSB galaxies), DM dominates every-
where, and the magnitude of the mass discrepancy is given by the inverse of the acceleration
in units of 𝑎0; see (5). Thus, the mass discrepancy appears at smaller radii and is more severe
in galaxies of lower baryonic surface densities (Figure 14). The shapes of rotation curves are
predicted to depend on surface density: HSB galaxies are predicted to have rotation curves
that rise steeply, then become flat, or even fall somewhat to the not-yet-reached asymptotic
flat velocity, while LSB galaxies are supposed to have rotation curves that rise slowly to
the asymptotic flat velocity. This is precisely what is observed (Figure 15), and is in ac-
cordance [162] with the more complex empirical parametrization of observed rotation curves
that has been proposed in [376]. Finally, the total (baryons+DM) acceleration is predicted to
decline with the mean baryonic surface density of galaxies, exactly as observed (Figure 16),

in the form 𝑎 ∝ Σ
1/2
𝑏 (see also Figure 9).

9. 𝑎0/2𝜋𝐺 as the central surface density of dark halos. Provided they are mostly
in the Newtonian regime, galaxies are predicted to be embedded in dark halos (whether
real or virtual, i.e., “phantom” dark matter) with a central surface density on the order of
𝑎0/(2𝜋𝐺) as observed19. LSBs should have a halo surface density scaling as the square-root
of the baryonic surface density, in a much more compressed range than for the HSB ones,
explaining the consistency of observed data with a constant central surface density of dark
matter [167, 313].

10. Features in the baryonic distribution imply features in the rotation curve. Because
a small variation in 𝑔𝑁 will be directly translated into a similar one in 𝑔, Renzo’s rule
(Section 4.3.4) is explained naturally.

As a conclusion, all the apparently independent roles that the characteristic acceleration 𝑎0
plays in the unpredicted observations of Section 4.3 (see end of Section 4.3.3 for a summary), as
well as Renzo’s rule (Section 4.3.4), have been elegantly unified by the single law proposed by
Milgrom [293] in 1983 as a unique scaling relation between the gravitational field generated by
observed baryons and the total observed gravitational force in galaxies.

19 Note that the denominator 2𝜋𝐺 comes from integrating the phantom dark matter density along a vertical line
as per [313], which leads to a slightly smaller characteristic surface density for phantom dark matter than the Σ†
defining Freeman limit in the 6th law.
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Figure 14: The mass discrepancy (as in Figure 10) as a function of radius in observed spiral galaxies.
The curves for individual galaxies (lines) are color-coded by their characteristic baryonic surface density
(as in Figure 5). In order to be completely empirical and fully independent of any assumption such as
maximum disk, stellar masses have been estimated with population synthesis models [42]. The amplitude
of the mass discrepancy is initially small in high–surface-density galaxies, and grows only slowly at large
radii. As the baryonic surface densities of galaxies decline, the mass discrepancy becomes more severe and
appears at smaller radii. This trend confirms one of the predictions of Milgrom’s law [294].

Figure 15: The shapes of observed rotation curves depend on baryonic surface density (color coding
as per Figure 14). High–surface-density galaxies have rotation curves that rise steeply then become flat,
or even fall somewhat to the asymptotic flat velocity. Low–surface-density galaxies have rotation curves
that rise slowly to the asymptotic flat velocity. This trend confirms one of the predictions of Milgrom’s
law [294].
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Figure 16: Centripetal acceleration as a function of radius and surface density (color coding as per
Figure 14). The critical acceleration 𝑎0 is denoted by the dotted line. Milgrom’s formula predicts that
acceleration should decline with baryonic surface density, as observed. Moreover, high–surface-density
galaxies transition from the Newtonian regime at small radii to the weak-field regime at large radii, whereas
low–surface-density galaxies fall entirely in the regime of low acceleration 𝑎 < 𝑎0, as anticipated by Mil-
grom [294].
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6 Milgrom’s Law as a Modification of Classical Dynamics:
MOND

Thus, it appears that many puzzling observations, that are difficult to understand in the ΛCDM
context (and/or require an extreme fine-tuning of the DM distribution), are well summarized by a
single heuristic law. Therefore, it would appear natural that this law derives from a universal force
law, and would reflect a modification of dynamics rather than the addition of massive particles
interacting (almost) only gravitationally with baryonic matter20. However, applying blindly Eq. 7
to a set of massive bodies directly leads to serious problems [150, 293] such as the non-conservation
of momentum. In a two-body configuration, as the implied force is not symmetric in the two
masses, Newton’s third law (action and reaction principle) does not hold, so the momentum is
not conserved. Consider a translationally invariant isolated system of two such masses 𝑚1 and
𝑚2 small enough to be in the very weak acceleration limit, and placed at rest on the 𝑥-axis. The
amplitude of the Newtonian force is then 𝐹𝑁 = 𝐺𝑚1𝑚2/(𝑥2 − 𝑥1)

2, and applying blindly Eq. 7,
would lead to individual accelerations |a𝑖| =

√︀
𝐹𝑁𝑎0/𝑚𝑖. This then immediately leads to

�̇� =
√︀
𝑎0𝐹𝑁 (

√
𝑚1 −

√
𝑚2) ̸= 0 if 𝑚1 ̸= 𝑚2, (12)

meaning that for different masses, the momentum of this isolated system is not conserved. This
means that Eq. 7 cannot truly represent a universal force law. If Eq. 7 is to be more than just a
heuristic law summarizing how dark matter is arranged in galaxies with respect to baryonic matter,
it must then be an approximation (valid only in highly symmetric configurations) of a more general
force law deriving from an action and a variational principle. Such theories at the classical level
can be classified under the acronym MOND, for Modified Newtonian Dynamics21. In this section,
we sketch how to devise such theories at the classical level, and list detailed tests of these theories
at all astrophysical scales.

6.1 Modified inertia or modified gravity: Non-relativistic actions

If one wants to modify dynamics in order to reproduce Milgrom’s heuristic law while still benefiting
from usual conservation laws such as the conservation of momentum, one can start from the action
at the classical level. Clearly such theories are only toy-models until they become the weak-field
limit of a relativistic theory (see Section 7), but they are useful both as targets for such relativistic
theories, and as internally consistent models allowing one to make predictions at the classical level
(i.e., neither in the relativistic or quantum regime).

A set of particles of mass 𝑚𝑖 moving in a gravitational field generated by the matter density
distribution 𝜌 =

∑︀
𝑖 𝑚𝑖𝛿(x − x𝑖) and described by the Newtonian potential Φ𝑁 has the following

20 Note that the main motivation for modifying dynamics is not to get rid of DM, but to explain why the observed
gravitational field in galaxies is apparently mimicking a universal force law generated by the baryons alone. The
simplest explanation is, of course, not that DM arranges itself by chance to mimic this force law, but rather that
the force law itself is modified. Note that at a fundamental level, relativistic theories of modified gravity often will
have to include new fields to reproduce this force law, so that dark matter is effectively replaced by “dark fields” in
these theories, or even by dark matter exhibiting a new interaction with baryons (one could speak of “dark matter”
if the stress-energy tensor of the new fields is numerically comparable to the density of baryons): this makes the
confrontation between modified gravity and dark matter less clear than often believed. The actual confrontation is
rather that between all sorts of theories embedding the phenomenology of Milgrom’s law vs. theories of DM made of
simple self-uninteracting billiard balls assembling themselves in galactic halos under the sole influence of unmodified
gravity, theories, which currently appear unable to explain the observed phenomenology of Milgrom’s law.

21 Generally covariant theories approaching these classical theories in the weak-field limit will then also be classified
under this same MOND acronym, even if they really are Modified Einsteinian Dynamics (see Section 7)
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action22:

𝑆𝑁 = 𝑆kin + 𝑆in + 𝑆grav =

∫︁
𝜌v2

2
𝑑3𝑥 𝑑𝑡 −

∫︁
𝜌Φ𝑁𝑑3𝑥 𝑑𝑡−

∫︁
|∇Φ𝑁 |2

8𝜋𝐺
𝑑3𝑥 𝑑𝑡. (13)

Varying this action with respect to configuration space coordinates yields the equations of motion
d2x/d𝑡2 = −∇Φ𝑁 , while varying it with respect to the potential leads to Poisson equation∇2Φ𝑁 =
4𝜋𝐺𝜌. Modifying the first (kinetic) term is generally referred to as “modified inertia” and modifying
the last term as “modified gravity”23.

6.1.1 Modified inertia

The first possibility, modified inertia, has been investigated by Milgrom [300, 321], who constructed
modified kinetic actions24 (the first term 𝑆kin in Eq. 13) that are functionals depending on the
trajectory of the particle as well as on the acceleration constant 𝑎0. By construction, the gravi-
tational potential is then still determined from the Newtonian Poisson equation, but the particle
equation of motion becomes, instead of Newton’s second law,

A[{x(𝑡)}, 𝑎0] = −∇Φ𝑁 , (14)

where A is a functional of the whole trajectory {x(𝑡)}, with the dimensions of acceleration. The
Newtonian and MOND limits correspond to [𝑎0 → 0,A → d2x/d𝑡2] and [𝑎0 → ∞,A[{x(𝑡)}, 𝑎0] →
𝑎−1
0 Q({x(𝑡)})] where Q has dimensions of acceleration squared.
Milgrom [300] investigated theories of this vein and rigorously showed that they always had to be

time-nonlocal (see also Section 7.10) to be Galilean invariant25. Interestingly, he also showed that
quantities such as energy and momentum had to be redefined but were then enjoying conservation
laws: this even leads to a generalized virial relation for bound trajectories, and in turn to an
important and robust prediction for circular orbits in an axisymmetric potential, shared by all
such theories. Eq. 14 becomes for such trajectories:

𝜇

(︂
𝑉 2
𝑐

𝑅𝑎0

)︂
𝑉 2
𝑐

𝑅
= −𝜕Φ𝑁

𝜕𝑅
, (15)

where, 𝑉𝑐 and 𝑅 are the orbital speed and radius, and 𝜇(𝑥) is universal for each theory, and is
derived from the expression of the action specialized to circular trajectories. Thus, for circular
trajectories, these theories recover exactly the heuristic Milgrom’s law. Interestingly, it is this law,
which is used to fit galaxy rotation curves, while in the modified gravity framework of MOND (see
hereafter), one should actually calculate the exact predictions of the modified Poisson formula-
tions, which can differ a little bit from Milgrom’s law. However, for orbits other than circular, it
becomes very difficult to make predictions in modified inertia, as the time non-locality can make
the anomalous acceleration at any location depend on properties of the whole orbit. For instance,

22 The Newtonian mass density also satisfies the continuity equation 𝜕𝜌/𝜕𝑡+∇.(𝜌v) = 0.
23 In general relativity, the first two terms

∫︀
𝜌(v2/2−Φ𝑁 )𝑑3𝑥 𝑑𝑡 are lumped together into the matter action (also

containing the rest mass contribution in GR), and the last term is generalized by the Einstein–Hilbert action.
24 Let us note in passing that it would not be the first time that the kinetic action would be modified as special

relativity does just this too, changing for a single particle 𝑚𝑣2/2 → −𝑚𝑐2𝛾−1 in 𝑆kin (where 𝛾(𝑣) = 1/
√︀

1− (𝑣/𝑐)2),
leading for a moving body to a redefinition of the effective mass as 𝑚eff = 𝑚𝛾(𝑣). With this analogy in mind, a
rather simplified view of the Lorentz-breaking modification of inertia needed in order to reproduce MOND would
be that 𝑚eff ≃ 𝑚𝜇(𝑎), where 𝑎 is the amplitude of the acceleration with respect to an absolute preferred inertial
frame.

25 Such non-local theories, which also have to be nonlinear (like any MOND theory) are not easy to construct,
and there is presently no real fully-fledged theory, which has been developed in this vein, although hints in this
direction are summarized in Section 7.10.
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if the accelerations are small on some segments of a trajectory, MOND effects can also be felt on
segments where the accelerations are high, and conversely [321]. This can give rise to different
effects on bound and unbound orbits, as well as on circular and highly elliptic orbits, meaning
that “predictions” of modified inertia in pressure-supported systems could differ significantly from
those derived from Milgrom’s law per se. Let us finally note that testing modified inertia on Earth
would require one to properly define an inertial reference frame, contrary to what has been done
in [5, 179] where the laboratory itself was not an inertial frame. Proper set-ups for testing modified
inertia on Earth have been described, e.g., in [201, 202]: under the circumstances described in these
papers, modified inertia would inevitably predict a departure from Newtonian dynamics, even if
the exact departure cannot be predicted at present, except for circular motion.

6.1.2 Bekenstein–Milgrom MOND

The idea of modified gravity is, on the one hand, to preserve the particle equation of motion by
preserving the kinetic action, but, on the other hand, to change the gravitational action, and thus
modify the Poisson equation. In that case, all the usual conservation laws will be preserved by
construction.

A very general way to do so is to write [38]:

𝑆grav BM ≡ −
∫︁

𝑎20𝐹 (|∇Φ|2/𝑎20)
8𝜋𝐺

𝑑3𝑥 𝑑𝑡, (16)

where 𝐹 can be any dimensionless function. The Lagrangian being non-quadratic in |∇Φ|, this
has been dubbed by Bekenstein & Milgrom [38] Aquadratic Lagrangian theory (AQUAL). Varying
the action with respect to Φ then leads to a non-linear generalization of the Newtonian Poisson
equation26:

∇.

[︂
𝜇

(︂
|∇Φ|
𝑎0

)︂
∇Φ

]︂
= 4𝜋𝐺𝜌 (17)

where 𝜇(𝑥) = 𝐹 ′(𝑧) and 𝑧 = 𝑥2. In order to recover the 𝜇-function behavior of Milgrom’s law
(Eq. 7), i.e., 𝜇(𝑥) → 1 for 𝑥 ≫ 1 and 𝜇(𝑥) → 𝑥 for 𝑥 ≪ 1, one needs to choose:

𝐹 (𝑧) → 𝑧 for 𝑧 ≫ 1 and 𝐹 (𝑧) → 2

3
𝑧3/2 for 𝑧 ≪ 1. (18)

The general solution of the boundary value problem for Eq. 17 leads to the following relation
between the acceleration g = −∇Φ and the Newtonian one, g𝑁 = −∇Φ𝑁

𝜇

(︂
𝑔

𝑎0

)︂
g = g𝑁 + S, (19)

where 𝑔 = |g|, and S is a solenoidal vector field with no net flow across any closed surface (i.e., a
curl field S = ∇×A such that ∇.S = 0). This, it is equivalent to Milgrom’s law (Eq. 7) up to a
curl field correction, and is precisely equal to Milgrom’s law in highly symmetric one-dimensional
systems, such as spherically-symmetric systems or flattened systems for which the isopotentials
are locally spherically symmetric. For instance, the Kuzmin disk [52] is an example of a flattened
axisymmetric configuration for which Milgrom’s law is precisely valid, as its Newtonian potential
Φ𝑁 = −𝐺𝑀/

√︀
𝑅2 + (𝑏+ |𝑧|)2 is equivalent on both sides of the disk to that of a point mass above

or below the disk respectively.

26 Following the dielectric analogy (Section 5.1), this is akin to Maxwell’s first equation, Gauss’ law, in terms of
free charge density 𝜌𝑓 , i.e., ∇.[𝜇𝜖0E] = 𝜌𝑓 , where E is the electric field and 𝜇𝜖0E = D is the electric displacement
field. See [56] for a thorough discussion of the analogy.
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In vacuum and at very large distances from a body of mass 𝑀 , the isopotentials always tend
to become spherical and the curl field tends to zero, while the gravitational acceleration falls well
below 𝑎0 (a regime known as the “deep-MOND” regime), so that:

Φ(𝑟) ∼
√︀

𝐺𝑀𝑎0 ln(𝑟). (20)

An important point, demonstrated by Bekenstein & Milgrom [38], is that a system with a
low center-of-mass acceleration, with respect to a larger (more massive) system, sees the motion
of its constituents combine to give a MOND motion for the center-of-mass even if it is made
up of constituents whose internal accelerations are above 𝑎0 (for instance a compact globular
cluster moving in an outer galaxy). The center-of-mass acceleration is independent of the internal
structure of the system (if the mass of the system is small), namely the Weak Equivalence Principle
is satisfied.

In a modified gravity theory, any time-independent system must still satisfy the virial theorem:

2𝐾 +𝑊 = 0. (21)

where 𝐾 = 𝑀⟨𝑣2⟩/2 is the total kinetic energy of the system, 𝑀 =
∑︀

𝑖 𝑚𝑖 being the total mass
of the system, ⟨𝑣2⟩ the second moment of the velocity distribution, and 𝑊 = −

∫︀
𝜌x .∇Φ𝑑3𝑥

is the “virial”, proportional to the total potential energy. Milgrom [301, 302] showed that, in
Bekenstein–Milgrom MOND, the virial is given by:

𝑊 = −2

3

√︀
𝐺𝑀3𝑎0 −

1

4𝜋𝐺

∫︁ [︂
3

2
𝑎20𝐹 (|∇Φ|2/𝑎20)− 𝜇(|∇Φ|/𝑎0)|∇Φ|2

]︂
𝑑3𝑥. (22)

For a system entirely in the extremely weak field limit (the “deep-MOND” limit 𝑥 = 𝑔/𝑎0 ≪ 1)
where 𝜇(𝑥) = 𝑥 and 𝐹 (𝑧) = (2/3)𝑧3/2, the second term vanishes and we get 𝑊 = (−2/3)

√
𝐺𝑀3𝑎0

(see [301] for the specific conditions for this to be valid). In this case, we can get an analytic
expression for the two-body force under the approximation that the two bodies are very far apart
compared to their internal sizes [301, 509, 511]. Since the kinetic energy 𝐾 = 𝐾orb +𝐾int can be
separated into the orbital energy 𝐾orb = 𝑚1𝑚2𝑣

2
rel/(2𝑀) and the internal energy of the bodies

𝐾int =
∑︀

(1/3)
√︀
𝐺𝑚3

𝑖 𝑎0 , we get from the scalar virial theorem of a stationary system:

𝑚1𝑚2𝑣
2
rel

𝑀
=

2

3

[︃√︀
𝐺𝑀3𝑎0 −

∑︁
𝑖

√︁
𝐺𝑚3

𝑖 𝑎0

]︃
. (23)

We can then assume an approximately circular velocity such that the two-body force (satisfying
the action and reaction principle) can be written analytically in the deep-MOND limit as :

𝐹2body =
𝑚1𝑚2

𝑚1 +𝑚2

𝑣2rel
𝑟

=
2

3

[︁
(𝑚1 +𝑚2)

3/2 −𝑚
3/2
1 −𝑚

3/2
2

]︁ √
𝐺𝑎0
𝑟

. (24)

The latter equation is not valid for N-body configurations, for which the Bekenstein–Milgrom
(BM) modified Poisson equation (Eq. 17) must be solved numerically (apart from highly-symmetric
N-body configurations). This equation is a non-linear elliptic partial differential equation. It can
be solved numerically using various methods [50, 77, 96, 147, 250, 457]. One of them [77, 457] is
to use a multigrid algorithm to solve the discrete form of Eq. 17 (see also Figure 17):

4𝜋𝐺𝜌𝑖,𝑗,𝑘 = (25)

[(Φ𝑖+1,𝑗,𝑘 − Φ𝑖,𝑗,𝑘)𝜇𝑀1 − (Φ𝑖,𝑗,𝑘 − Φ𝑖−1,𝑗,𝑘)𝜇𝐿1

+(Φ𝑖,𝑗+1,𝑘 − Φ𝑖,𝑗,𝑘)𝜇𝑀2 − (Φ𝑖,𝑗,𝑘 − Φ𝑖,𝑗−1,𝑘)𝜇𝐿2

+(Φ𝑖,𝑗,𝑘+1 − Φ𝑖,𝑗,𝑘)𝜇𝑀3 − (Φ𝑖,𝑗,𝑘 − Φ𝑖,𝑗,𝑘−1)𝜇𝐿3 ]/ℎ
2

where
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∙ 𝜌𝑖,𝑗,𝑘 is the density discretized on a grid of step ℎ,

∙ Φ𝑖,𝑗,𝑘 is the MOND potential discretized on the same grid of step ℎ,

∙ 𝜇𝑀1
, and 𝜇𝐿1

, are the values of 𝜇(𝑥) at points 𝑀1 and 𝐿1 corresponding to (𝑖+1/2, 𝑗, 𝑘) and
(𝑖− 1/2, 𝑗, 𝑘) respectively (Figure 17).

The gradient component (𝜕/𝜕𝑥, 𝜕/𝜕𝑦, 𝜕/𝜕𝑧), in 𝜇(𝑥), is approximated in the case of 𝜇𝑀𝑙
by

([Φ(𝐵) − Φ(𝐴)]/ℎ, [Φ(𝐼) + Φ(𝐻) − Φ(𝐾) − Φ(𝐽)]/(4ℎ), [Φ(𝐶) + Φ(𝐷) − Φ(𝐸) − Φ(𝐹 )]/(4ℎ)) (see
Figure 17).

In [457] the Gauss–Seidel relaxation with red and black ordering is used to solve this discretized
equation, with the boundary condition for the Dirichlet problem given by Eq. 20 at large radii. It is
obvious that subsequently devising an evolving N-body code for this theory can only be done using
particle-mesh techniques rather than the gridless multipole expansion treecode schemes widely
used in standard gravity.

Finally, let us note that it could be imagined that MOND, given some of its observational
problems (developed in Section 6.6), is incomplete and needs a new scale in addition to 𝑎0. There
are several ways to implement such an idea, but for instance, Bekenstein [36] proposed in this
vein a generalization of the AQUAL formalism by adding a velocity scale 𝑠0, in order to allow
for effective variations of the acceleration constant as a function of the deepness of the potential,
namely:

𝑆grav Bek ≡ − 1

8𝜋𝐺

∫︁
𝑎20𝑒

−2Φ/𝑠20𝐹 (|∇Φ|2𝑒2Φ/𝑠20/𝑎20)𝑑
3𝑥 𝑑𝑡, (26)

leading to

∇.

[︂
𝜇

(︂
|∇Φ|
𝑎0eff

)︂
∇Φ

]︂
− |∇Φ|2

𝑠20
𝜇

(︂
|∇Φ|
𝑎0eff

)︂
+

𝑎20eff
𝑠20

𝐹

(︂
|∇Φ|2

𝑎20eff

)︂
= 4𝜋𝐺𝜌, (27)

where 𝑎0eff = 𝑎0𝑒
−Φ/𝑠20 . Interestingly, with this “modified MOND”, Gauss’ theorem (or Newton’s

second theorem) would no longer be valid in spherical symmetry. A suitable choice of 𝑠0 (e.g.,
on the order of 103 km/s; see [36]) could affect the dynamics of galaxy clusters (by boosting the
modification with an effectively higher value of 𝑎0) compared to the previous MOND equation,
while keeping the less massive systems such as galaxies typically unaffected compared to usual
MOND, while other (lower) values of 𝑠0 could allow (modulo a renormalization of 𝑎0) for a stronger
modification in galaxy clusters as well as milder modification in subgalactic systems such as globular
clusters, which, as we shall soon see could be interesting from a phenomenological point of view (see
Section 6.6). However, the possibility of too strong a modification should be carefully investigated,
as well as, in a relativistic (see Section 7) version of the theory, the consequences on the dynamics
of a scalar-field with a similar action.

6.1.3 QUMOND

Another way [319] of modifying gravity in order to reproduce Milgrom’s law is to still keep the
“matter action” unchanged 𝑆kin + 𝑆in =

∫︀
𝜌(v2/2 − Φ)𝑑3𝑥 𝑑𝑡, thus ensuring that varying the

action of a test particle with respect to the particle degrees of freedom leads to d2x/d𝑡2 = −∇Φ,
but to invoke an auxiliary acceleration field g𝑁 = −∇Φ𝑁 in the gravitational action instead of
invoking an aquadratic Lagrangian in |∇Φ|. The addition of such an auxiliary field can of course
be done without modifying Newtonian gravity, by writing the Newtonian gravitational action in
the following way27:

𝑆grav N = − 1

8𝜋𝐺

∫︁
(2∇Φ.g𝑁 − g2

𝑁 ) 𝑑3𝑥 𝑑𝑡. (28)

27 This is similar to the Palatini formalism of GR, where the present auxiliary acceleration field is replaced by a
connection
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Figure 17: Discretisation scheme of the BM modified Poisson equation (Eq. 17) and of the phantom dark
matter derivation in QUMOND. The node (𝑖, 𝑗, 𝑘) corresponds to 𝐴 on the upper panel. The gradient
components in 𝜇(𝑥) (for Eq. 25) and 𝜈(𝑦) (for Eq. 35) are estimated at the 𝐿𝑖 and 𝑀𝑖 points. Image
courtesy of Tiret, reproduced by permission from [457], copyright by ESO.
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It gives, after variation over g𝑁 (or over Φ𝑁 ): g𝑁 = −∇Φ. And after variation of the full action
over Φ: −∇.g𝑁 = 4𝜋𝐺𝜌, i.e., Newtonian gravity. One can then introduce a MONDian modification
of gravity by modifying this action in the following way, replacing g2

𝑁 by a non-linear function of
it and assuming that it derives from an auxiliary potential g𝑁 = −∇Φ𝑁 , so that the new degree
of freedom is this new potential:

𝑆grav QUMOND ≡ − 1

8𝜋𝐺

∫︁
[2∇Φ.∇Φ𝑁 − 𝑎20𝑄(|∇Φ𝑁 |2/𝑎20)] 𝑑3𝑥 𝑑𝑡. (29)

Varying the total action with respect to Φ yields: ∇2Φ𝑁 = 4𝜋𝐺𝜌. And varying it with respect to
the auxiliary (Newtonian) potential Φ𝑁 yields:

∇2Φ = ∇.

[︂
𝜈

(︂
|∇Φ𝑁 |
𝑎0

)︂
∇Φ𝑁

]︂
(30)

where 𝜈(𝑦) = 𝑄′(𝑧) and 𝑧 = 𝑦2. Thus, the theory requires one only to solve the Newtonian linear
Poisson equation twice, with only one non-linear step in calculating the rhs term of Eq. 30. For
this reason, it is called the quasi-linear formulation of MOND (QUMOND). In order to recover
the 𝜈-function behavior of Milgrom’s law (Eq. 10), i.e., 𝜈(𝑦) → 1 for 𝑦 ≫ 1 and 𝜈(𝑦) → 𝑦−1/2 for
𝑦 ≪ 1, one needs to choose:

𝑄(𝑧) → 𝑧 for 𝑧 ≫ 1 and 𝑄(𝑧) → 4

3
𝑧3/4 for 𝑧 ≪ 1. (31)

The general solution of the system of partial differential equations is equivalent to Milgrom’s law
(Eq. 10) up to a curl field correction, and is precisely equal to Milgrom’s law in highly-symmetric
one-dimensional systems. However, this curl-field correction is different from the one of AQUAL.
This means that, outside of high symmetry, AQUAL and QUMOND cannot be precisely equivalent.
An illustration of this is given in [509]: for a system with all its mass in an elliptical shell (in the
sense of a squashed homogeneous spherical shell), the effective density of matter that would source
the MOND force field in Newtonian gravity is uniformly zero in the void inside the shell for
QUMOND, but nonzero for AQUAL.

The concept of the effective density of matter that would source the MOND force field in
Newtonian gravity is extremely useful for an intuitive comprehension of the MOND effect, and/or
for interpreting MOND in the dark matter language: indeed, subtracting from this effective density
the baryonic density yields what is called the “phantom dark matter” distribution. In AQUAL, it
requires deriving the Newtonian Poisson equation after having solved for the MOND one. On the
other hand, in QUMOND, knowing the Newtonian potential yields direct access to the phantom
dark matter distribution even before knowing the MOND potential. After choosing a 𝜈-function,
one defines

𝜈(𝑦) = 𝜈(𝑦)− 1, (32)

and one has, for the phantom dark matter density,

𝜌ph =
∇.(𝜈∇Φ𝑁 )

4𝜋𝐺
. (33)

This 𝜈-function appears naturally in an alternative formulation of QUMOND where one writes the
action as a function of an auxiliary potential Φph:

𝑆grav QUMOND = − 1

8𝜋𝐺

∫︁
[|∇Φ|2 − |∇Φph|2 − 𝑎20𝐻(|∇Φ−∇Φph|2/𝑎20)] 𝑑3𝑥 𝑑𝑡, (34)

leading to a potential Φph obeying a QUMOND equation with 𝜈(𝑦) = 𝐻 ′(𝑦2), and Φ = Φ𝑁 +Φph.
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Numerically, for a given Newtonian potential discretized on a grid of step ℎ, the discretized
phantom dark matter density is given on grid points (𝑖, 𝑗, 𝑘) by (see Figure 17 and cf. Eq. 25, see
also [11]):

𝜌ph (𝑖,𝑗,𝑘) = (35)

[(Φ𝑁 (𝑖+1,𝑗,𝑘) − Φ𝑁 (𝑖,𝑗,𝑘))𝜈𝑀1
− (Φ𝑁 (𝑖,𝑗,𝑘) − Φ𝑁 (𝑖−1,𝑗,𝑘))𝜈𝐿1

+(Φ𝑁 (𝑖,𝑗+1,𝑘) − Φ𝑁 (𝑖,𝑗,𝑘))𝜈𝑀2
− (Φ𝑁 (𝑖,𝑗,𝑘) − Φ𝑁 (𝑖,𝑗−1,𝑘))𝜈𝐿2

+(Φ𝑁 (𝑖,𝑗,𝑘+1) − Φ𝑁 (𝑖,𝑗,𝑘))𝜈𝑀3
− (Φ𝑁 (𝑖,𝑗,𝑘) − Φ𝑁 (𝑖,𝑗,𝑘−1))𝜈𝐿3

]/(4𝜋𝐺ℎ2).

This means that any N-body technique (e.g., treecodes or fast multipole methods) can be adapted
to QUMOND (a grid being necessary as an intermediate step). Once the Newtonian potential (or
force) is locally known, the phantom dark matter density can be computed and then represented by
weighted particles, whose gravitational attraction can then be computed in any traditional manner.
An example is given in Figure 18, where one considers a rather typical baryonic galaxy model with
a small bulge and a large disk. Applying Eq. 35 (with the 𝜈-function of Eq. 43) then yields the
phantom density [253]. Interestingly, this phantom density is composed of a round “dark halo”
and a flattish “dark disk” (see [305] for an extensive discussion of how such a dark disk component
comes about; see also [50] and Section 6.5.2 for observational considerations). Let us note that
this phantom dark matter density can be slightly separated from the baryonic density distribution
in non-spherical situations [226], and that it can be negative [297, 490], contrary to normal dark
matter. Finding the signature of such a local negative dark matter density could be a way of
exhibiting a clear signature of MOND.

(a) (b)

Figure 18: (a) Baryonic density of a model galaxy made of a small Plummer bulge with a mass of
2× 108 𝑀⊙ and Plummer radius of 185 pc, and of a Miyamoto–Nagai disk of 1.1× 1010 𝑀⊙, a scale-length
of 750 pc and a scale-height of 300 pc. (b) The derived phantom dark matter density distribution: it
is composed of a spheroidal component similar to a dark matter halo, and of a thin disk-like component
(Figure made by Fabian Lüghausen [253])

Finally, let us note that, as shown in [319, 509], (i) a system made of high-acceleration con-
stituents, but with a low-acceleration center-of-mass, moves according to a low-acceleration MOND
law, while (ii) the virial of a system is given by

𝑊 = −2

3

√︀
𝐺𝑀3𝑎0 −

1

4𝜋𝐺

∫︁ [︂
−3

2
𝑎20𝑄(|∇Φ𝑁 |2/𝑎20) + 2𝜈(|∇Φ𝑁 |/𝑎0)|∇Φ𝑁 |2

]︂
𝑑3𝑥, (36)
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meaning that for a system entirely in the extremely weak field limit where 𝜈(𝑦) = 𝑦−1/2 and
𝑄(𝑧) = (4/3)𝑧3/4, the second term vanishes and we get 𝑊 = (−2/3)

√
𝐺𝑀3𝑎0, precisely like

in Bekenstein–Milgrom MOND. This means that, although the curl-field correction is in general
different in AQUAL and QUMOND, the two-body force in the deep-MOND limit is the same [509].

6.2 The interpolating function

The basis of the MOND paradigm is to reproduce Milgrom’s law, Eq. 7, in highly symmetrical
systems, with an interpolating function asymptotically obeying the conditions of Eq. 8, i.e., 𝜇(𝑥) →
1 for 𝑥 ≫ 1 and 𝜇(𝑥) → 𝑥 for 𝑥 ≪ 1. Obviously, in order for the relation between 𝑔 and 𝑔𝑁 to
be univocally determined, another constraint is that 𝑥𝜇(𝑥) must be a monotonically increasing
function of 𝑥, or equivalently

𝜇(𝑥) + 𝑥𝜇′(𝑥) > 0, (37)

or equivalently
𝑑 ln𝜇

𝑑 ln𝑥
> −1. (38)

Even though this leaves some freedom for the exact shape of the interpolating function, leading to
the various families of functions hereafter, let us insist that it is already extremely surprising, from
the dark matter point of view, that the MOND prescriptions for the asymptotic behavior of the
interpolating function did predict all the aspects of the dynamics of galaxies listed in Section 5.

As we have seen in Section 6.1, an alternative formulation of the MOND paradigm relies on
Eq. 10, based on an interpolating function

𝜈(𝑦) = 1/𝜇(𝑥) where 𝑦 = 𝑥𝜇(𝑥). (39)

In that case, we also have that 𝑦𝜈(𝑦) must be a monotonically increasing function of 𝑦.
Finally, as we shall see in detail in Section 7, many MOND relativistic theories boil down to

multifield theories where the weak-field limit can be represented by a potential Φ =
∑︀

𝑖 𝜑𝑖, where
each 𝜑𝑖 obeys a generalized Poisson equation, the most common case being

Φ = Φ𝑁 + 𝜑, (40)

where Φ𝑁 obeys the Newtonian Poisson equation and the scalar field 𝜑 (with dimensions of a
potential) plays the role of the phantom dark matter potential and obeys an equation of either
the type of Eq. 17 or of Eq. 30. When it obeys a QUMOND type of equation (Eq. 30), the 𝜈-
function must be replaced by the 𝜈-function of Eq. 32. When it obeys a BM-like equation (Eq. 17),
the classical interpolating function 𝜇(𝑥) acting on 𝑥 = |∇Φ|/𝑎0 must be replaced by another
interpolating function �̃�(𝑠) acting on 𝑠 = |∇𝜑|/𝑎0, in order for the total potential Φ to conform
to Milgrom’s law28. In the absence of a renormalization of the gravitational constant, the two
functions are related through [145]

�̃�(𝑠) = (𝑥− 𝑠)𝑠−1 where 𝑠 = 𝑥[1− 𝜇(𝑥)]. (41)

For 𝑥 ≪ 1 (the deep-MOND regime), one has 𝑠 = 𝑥(1−𝑥) ≪ 1 and 𝑥 ∼ 𝑠(1+𝑠), yielding �̃�(𝑠) ∼ 𝑠,
i.e., although it is generally different, �̃� has the same low-gravity asymptotic behavior as 𝜇.

In spherical symmetry, all these different formulations can be made equivalent by choosing
equivalent interpolating functions, but the theories will typically differ slightly outside of spherical
symmetry (i.e., the curl field will be slightly different). As an example, let us consider a widely-
used interpolating function [141, 166, 402, 508] yielding excellent fits in the intermediate to weak

28 Confusing these two interpolating functions 𝜇(𝑥) and �̃�(𝑠) can lead to serious mistakes [489], as illustrated
by [41].
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gravity regime of galaxies (but not in the strong gravity regime of the Solar system), known as the
“simple” 𝜇-function (see Figure 19):

𝜇(𝑥) =
𝑥

1 + 𝑥
. (42)

This yields 𝑦 = 𝑥2/(1 + 𝑥), and thus 𝑥 = (𝑦 +
√︀
𝑦2 + 4𝑦)/2 and 𝜈 = (1 + 𝑥)/𝑥 yields the “simple”

𝜈-function:

𝜈(𝑦) =
1 + (1 + 4𝑦−1)1/2

2
. (43)

It also yields 𝑠 = 𝑥[1− 𝜇(𝑥)] = 𝑥/(1 + 𝑥) = 𝜇, and hence 𝑥 = 𝑠/(1− 𝑠), yielding for the “simple”
�̃�-function:

�̃�(𝑠) =
𝑠

1− 𝑠
. (44)

A more general family of �̃�-functions is known as the 𝛼-family [15], valid for 0 ≤ 𝛼 ≤ 1 and
including the simple function of the 𝛼 = 1 case 29:

�̃�𝛼(𝑠) =
𝑠

1− 𝛼𝑠
(45)

corresponding to the following family of 𝜇-functions:

𝜇𝛼(𝑥) =
2𝑥

1 + (2− 𝛼)𝑥+ [(1− 𝛼𝑥)2 + 4𝑥]1/2
. (46)

The 𝛼 = 0 case is sometimes referred to as “Bekenstein’s 𝜇-function” (see Figure 19) as it was used
in [33]. The problem here is that all these 𝜇-functions approach 1 quite slowly, with 𝜁 ≤ 1 in their
asymptotic expansion for 𝑥 → ∞, 𝜇(𝑥) ∼ 1−𝐴𝑥−𝜁 . Indeed, since 𝑠 = 𝑥[1− 𝜇(𝑥)], its asymptotic
behavior is 𝑠 ∼ 𝐴𝑥−𝜁+1. So, if 𝜁 > 1, 𝑠 → 0 for 𝑥 → ∞ as well as for 𝑥 → 0, which would imply
that 𝑥(𝑠) = 𝑠�̃�(𝑠) + 𝑠 would be a multivalued function, and that the gravity would be ill-defined.
This is problematic because even for the extreme case 𝜁 = 1, the anomalous acceleration does
not go to zero in the strong gravity regime: there is still a constant anomalous “Pioneer-like”
acceleration 𝑥[1 − 𝜇(𝑥)] → 𝐴, which is observationally excluded30 from very accurate planetary
ephemerides [154]. What is more, these �̃�-functions, defined only in the domain 0 < 𝑠 < 𝛼−1,
would need very-carefully–chosen boundary conditions to avoid covering values of 𝑠 outside of the
allowed domain when solving for the Poisson equation for the scalar field.

The way out to design �̃�-functions corresponding to acceptable 𝜇-functions in the strong gravity
regime is to proceed to a renormalization of the gravitational constant[145]: this means that
the bare value of 𝐺 in the Poisson and generalized Poisson equations ruling the bare Newtonian
potential 𝜑𝑁 and the scalar field 𝜑 in Eq. 40 is different from the gravitational constant measured
on Earth, 𝐺𝑁 (related to the true Newtonian potential Φ𝑁 ). One can assume that the bare
gravitational constant 𝐺 is related to the measured one through

𝐺𝑁 = 𝜉𝐺, (47)

meaning that 𝑥 = 𝑦 + 𝑠 where 𝑥 = ∇Φ/𝑎0, 𝑦 = ∇𝜑𝑁/𝑎0 = ∇Φ𝑁/(𝜉𝑎0), and 𝑠�̃�(𝑠) = 𝑦. We then
have for Milgrom’s law:

𝑥𝜇(𝑥) = 𝜉(𝑥− 𝑠) = 𝜉𝑠�̃�(𝑠). (48)

29 In principle, 𝛼 can be slightly larger, but if 𝛼 ≫ 1, then in the range of gravities of interest for galaxy dynamics
(between 0.1𝑎0 and a few times 𝑎0) the scalar field contribution 𝑠 is too small to account for the MOND effect, or
said in another way, the corresponding Milgrom 𝜇-function would deviate significantly from 𝜇(𝑥) = 𝑥 (i.e., 𝜇(𝑥) > 𝑥,
so that there would be less modification to the Newtonian prediction).

30 In principle, one could make 𝐴 = 𝛼−1 as small as desired in the 𝛼-family, by not limiting 𝛼 to the range
between 0 and 1, but passing solar system constraints would require 𝛼 > 20, which would cancel the MOND effect
in the range of interest for galaxy dynamics.
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In order to recover 𝜇(𝑥) → 1 for 𝑥 → ∞, it is straightforward to show [145] that it suffices that
�̃�(𝑠) → �̃�0 for 𝑠 → ∞, and that 𝜉 = 1 + �̃�−1

0 . Then, if 𝜁 > 1 in the asymptotic expansion
𝜇(𝑥) ∼ 1− 𝑥−𝜁 , one has 𝑠 ∼ (1 + �̃�−1

0 )−1𝑥−𝜁+1 + (1+ �̃�0)
−1𝑥. This second linear term allows 𝑠 to

go to infinity for large 𝑥 and thus 𝑥(𝑠) to be single-valued. On the other hand, for the deep-MOND
regime, the renormalization of 𝐺 implies that �̃�(𝑠) → 𝑠/𝜉 for 𝑠 ≪ 1.

We can then use, even in multifield theories, 𝜇-functions quickly asymptoting to 1. For each
of these functions, there is a one-parameter family of corresponding �̃�-functions (labelled by the
parameter �̃�(∞) = �̃�0), obtained by inserting 𝜇(𝑥) into 𝑠 = 𝑥[1− 𝜉−1𝜇(𝑥)] and making sure that
the function is increasing and thus invertible. A useful family of such 𝜇-functions asymptoting
more quickly towards 1 than the 𝛼-family is the 𝑛-family:

𝜇𝑛(𝑥) =
𝑥

(1 + 𝑥𝑛)1/𝑛
. (49)

The case 𝑛 = 1 is again the simple 𝜇-function, while the case 𝑛 = 2 has been extensively used
in rotation curve analysis from the very first analyses [28, 223], to this day [401], and is thus
known as the “standard” 𝜇-function (see Figure 19). The corresponding �̃�-function for 𝑛 ≥ 2 has a
very peculiar shape of the type shown in Figure 3 of [81] (which might be considered a fine-tuned
shape, necessary to account for solar system constraints). On the other hand, the corresponding
𝜈-function family is:

𝜈𝑛(𝑦) =

[︂
1 + (1 + 4𝑦−𝑛)1/2

2

]︂1/𝑛
. (50)

As the simple 𝜇-function (𝛼 = 1 or 𝑛 = 1) fits galaxy rotation curves well (see Section 6.5.1) but
is excluded in the solar system (see Section 6.4), it can be useful to define 𝜇-functions that have
a gradual transition similar to the simple function in the low to intermediate gravity regime of
galaxies, but a more rapid transition towards one than the simple function. Two such families are
described in [325] in terms of their 𝜈-function:

𝜈𝛽(𝑦) = (1− 𝑒−𝑦)−1/2 + 𝛽𝑒−𝑦 (51)

and
𝜈𝛾(𝑦) = (1− 𝑒−𝑦𝛾/2

)−1/𝛾 + (1− 𝛾−1)𝑒−𝑦𝛾/2

. (52)

Finally, yet another family was suggested in [274], obtained by deleting the second term of the
𝛾-family, and retaining the virtues of the 𝑛-family in galaxies, but approaching one more quickly
in the solar system:

𝜈𝛿(𝑦) = (1− 𝑒−𝑦𝛿/2

)−1/𝛿. (53)

To be complete, it should be noted that other 𝜇-functions considered in the literature include [304,
505] (see also Section 7.10):

𝜇(𝑥) =
(1 + 4𝑥2)1/2 − 1

2𝑥
, (54)

and
𝜇(𝑥) = 1− (1 + 𝑥/3)−3. (55)

This simply shows the variety of shapes that the interpolating function of MOND can in principle
take31. Very precise data for rotation curves, including negligible errors on the distance and on the
stellar mass-to-light ratios (or, in that case, purely gaseous galaxies) should allow one to pin down

31 Note that, among the freedom of choice of that function, one could additionally even imagine that the 𝜇-function
is not a scalar function but a “tensor” 𝜇𝑖𝑗 such that the modification becomes anisotropic and the modified Poisson
equation becomes something like 𝜕𝑖[𝜇𝑖𝑗𝑔𝑗 ] = 4𝜋𝐺𝜌.
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its precise form, at least in the intermediate gravity regime and for “modified inertia” theories
(Section 6.1.1) where Milgrom’s law is exact for circular orbits. Nowadays, galaxy data still allow
some, but not much, wiggle room: they tend to favor the 𝛼 = 𝑛 = 1 simple function [166] or some
interpolation between 𝑛 = 1 and 𝑛 = 2 [141], while combined data of galaxies and the solar system
(see Sections 6.4 and 6.5) rather tend to favor something like the 𝛾 = 𝛿 = 1 function of Eq. 52 and
Eq. 53 (which effectively interpolates between 𝑛 = 1 and 𝑛 = 2, see Figure 19), although slightly
higher exponents (i.e., 𝛾 > 1 or 𝛿 > 1) might still be needed in the weak gravity regime in order
to pass solar system tests involving the external field from the galaxy [62]. Again, it should be
stressed that the most salient aspect of MOND is not its precise interpolating function, but rather
its successful predictions on galactic scaling relations and Kepler-like laws of galactic dynamics
(Section 5.2), as well as its various beneficial effects on, e.g., disk stability (see Section 6.5), all
predicted from its asymptotic form. The very concept of a pre-defined interpolating function should
even in principle fully disappear once a more profound parent theory of MOND is discovered (see,
e.g., [22]).

0 10 20 30
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0.8

0.9

1

Figure 19: Various 𝜇-functions. Dotted green line: the 𝛼 = 0 “Bekenstein” function of Eq. 46. Dashed
red line: the 𝛼 = 𝑛 = 1 “simple” function of Eq. 46 and Eq. 49. Dot-dashed black line: the 𝑛 = 2
“standard” function of Eq. 49. Solid blue line: the 𝛾 = 𝛿 = 1 𝜇-function corresponding to the 𝜈-function
defined in Eq. 52 and Eq. 53. The latter function closely retains the virtues of the 𝑛 = 1 simple function in
galaxies ( 𝑥 <∼ 10 ), but approaches 1 much more quickly and connects with the 𝑛 = 2 standard function
as 𝑥 ≫ 10.

To end this section on the interpolating function, let us stress that if the 𝜇-function asymptotes
as 𝜇(𝑥) = 𝑥 for 𝑥 → 0, then the energy of the gravitational field surrounding a massive body
is infinite [38]. What is more, if the �̃� function of relativistic multifield theories asymptotes in
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the same way to zero before going to negative values for time-evolution dominated systems (see
Section 9.1), then a singular surface exists around each galaxy, on which the scalar degree of
freedom does not propagate, and can therefore not provide a consistent picture of collapsed matter
embedded into a cosmological background. A simple solution [145, 380] consists in assuming a
modified asymptotic behavior of the 𝜇-function, namely of the form

𝜇(𝑥) ∼ 𝜀0 + 𝑥 for 𝑥 ≪ 1. (56)

In that case there is a return to a Newtonian behavior (but with a very strong renormalized
gravitational constant 𝐺𝑁/𝜀0) at a very low acceleration scale 𝑥 ≪ 𝜀0, and rotation curves of
galaxies are only approximately flat until the galactocentric radius

𝑅 ∼ 1

𝜀0

√︂
𝐺𝑁𝑀

𝑎0
. (57)

Thus, one must have 𝜀0 ≪ 1 to not affect the observed phenomenology in galaxies. Note that the
𝜇-function will never go to zero, even at the center of a system. Conversely, in QUMOND and the
like, one can modify the 𝜈-function in the same way:

𝜈(𝑦) ∼ 1

𝜀0 + 𝑦1/2
for 𝑦 ≪ 1. (58)

6.3 The external field effect

The above return to a rescaled Newtonian behavior at very large radii and in the central parts
of isolated systems, in order to avoid theoretical problems with the interpolating function, would
happen anyway, even with the interpolating function going to zero, for any non-isolated system in
the universe (and this return to Newtonian behavior could actually happen at much lower radii)
because of a very peculiar aspect of MOND: the external field effect, which appeared in its full
significance already in the pristine formulation of MOND [293].

In practice, no objects are truly isolated in the Universe and this has wider and more subtle
implications in MOND than in Newton–Einstein gravity. In the linear Newtonian dynamics, the
internal dynamics of a subsystem (a cluster in a galaxy, or a galaxy in a galaxy cluster for instance)
in the field of its mother system decouples. Namely, the internal dynamics is always the same
independent of any external field (constant across the subsystem) in which the system is embedded
(of course, if the external field varies across the subsystem, it manifests itself as tides). This has
subsequently been built in as a fundamental principle of GR: the Strong Equivalence Principle
(see Section 7). But MOND has to break this fundamental principle of GR. This is because, as
it is an acceleration-based theory, what counts is the total gravitational acceleration with respect
to a pre-defined frame (e.g., the CMB frame32). Thus, the MOND effects are only observed in
systems where the absolute value of the gravity both internal, 𝑔, and external, 𝑔𝑒 (from a host
galaxy, or astrophysical system, or large scale structure), is less than 𝑎0 . If 𝑔𝑒 < 𝑔 < 𝑎0 then
we have standard MOND effects. However, if the hierarchy goes as 𝑔 < 𝑎0 < 𝑔𝑒, then the system
is purely Newtonian33, and if 𝑔 < 𝑔𝑒 < 𝑎0 then the system is Newtonian with a renormalized
gravitational constant. Ultimately, whenever 𝑔 falls below 𝑔𝑒 (which always happens at some

32 It is interesting to note that different MOND theories offer (very) different answers to the generic question
“acceleration with respect to what?”. For instance, in the MOND-from-vacuum idea (see [304] and Section 7.10), the
total acceleration is measured with respect to the quantum vacuum, which is well defined. In BIMOND (Section 7.8)
it is the relative acceleration between the two metrics, which is also well defined through the difference of Christoffel
symbols.

33 Thus, a Cavendish experiment in a freely falling satellite in Earth orbit would return a Newtonian result in
MOND.
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point) the gravitational attraction falls again as 1/𝑟2. This is most easily illustrated in a thought
experiment where one considers MOND effects in one dimension. In Eq. 17, one has ∇Φ = g+ ge

and 4𝜋𝐺𝜌 = ∇.(gN + gNe), which in one dimension leads to the following revised Milgrom’s law
(Eq. 7) including the external field:

𝑔 𝜇

(︂
𝑔 + 𝑔𝑒
𝑎0

)︂
+ 𝑔𝑒

[︂
𝜇

(︂
𝑔 + 𝑔𝑒

𝑎0

)︂
− 𝜇

(︂
𝑔𝑒
𝑎0

)︂]︂
= 𝑔𝑁 , (59)

such that, when 𝑔 → 0, we have Newtonian gravity with a renormalized gravitational constant
𝐺norm ≈ 𝐺/[𝜇𝑒(1+𝐿𝑒)] where 𝜇𝑒 = 𝜇(𝑔𝑒/𝑎0) and 𝐿𝑒 = (𝑑 ln𝜇/𝑑 ln𝑥)𝑥=𝑔𝑒/𝑎0

, assuming, as before,
that the external field only varies on a much larger scale than the internal system. Similarly, for
QUMOND (Eq. 30) in one dimension, one gets the equivalent of Eq. 10:

𝑔 = 𝑔𝑁 𝜈

(︂
𝑔𝑁 + 𝑔𝑁𝑒

𝑎0

)︂
+ 𝑔𝑁𝑒

[︂
𝜈

(︂
𝑔𝑁 + 𝑔𝑁𝑒

𝑎0

)︂
− 𝜈

(︂
𝑔𝑁𝑒

𝑎0

)︂]︂
. (60)

When dealing in the future with very extended rotation curves whose last observed point is in the
extreme weak-field limit, it could be interesting, as a first-order approximation, to use the latter
formulae34, adding the external field as an additional parameter of the MOND fit to the external
parts of the rotation curve. Of course, this would only be a first-order approximation because it
would neglect the three-dimensional nature of the problem and the direction of the external field.

Now, in three dimensions, the problem can be analytically solved only in the extreme case of
the completely–external-field–dominated part of the system (where 𝑔 ≪ 𝑔𝑒) by considering the
perturbation generated by a body of low mass 𝑚 inside a uniform external field, assumed along
the 𝑧-direction, ge = 𝑔𝑒1z. Eq. 17 can then be linearized and solved with the boundary condition
that the total field equals the external one at infinity [38] to yield:

Φ(𝑥, 𝑦, 𝑧) = −𝐺𝑚

𝜇𝑒𝑟
, (61)

with
𝑟 = 𝑟(1 + 𝐿𝑒(𝑥

2 + 𝑦2)/𝑟2)1/2, (62)

squashing the isopotentials along the external field direction. Thus, this is the asymptotic behav-
ior of the gravitational field in any system embedded in a constant external field. Similarly, in
QUMOND (Eq. 30), one gets

Φ(𝑥, 𝑦, 𝑧) = −𝐺𝑚𝜈𝑒
𝑟

, (63)

with
𝑟 = 𝑟/[1 + (𝐿𝑁𝑒/2)(𝑥

2 + 𝑦2)/𝑟2], (64)

where 𝐿𝑁𝑒 = (𝑑 ln 𝜈/𝑑 ln 𝑦)𝑦=𝑔𝑁𝑒/𝑎0
.

For the exact behavior of the MOND gravitational field in the regime where 𝑔 and 𝑔𝑒 are of
the same order of magnitude, one again resorts to a numerical solver, both for the BM equation
case and for the QUMOND case (see Eq. 25 and Eq. 35). For the BM case, one adds the three
components of the external field (no longer assumed to be in the 𝑧-direction only) in the argument
of 𝜇𝑀1 which becomes {[(Φ(𝐵)−Φ(𝐴))/ℎ− 𝑔𝑒𝑥 ]

2 + [(Φ(𝐼) +Φ(𝐻)−Φ(𝐾)−Φ(𝐽))/(4ℎ)− 𝑔𝑒𝑦 ]
2 +

[(Φ(𝐶) + Φ(𝐷)−Φ(𝐸)−Φ(𝐹 ))/(4ℎ)− 𝑔𝑒𝑧 ]
2}1/2, and similarly for the other 𝑀𝑖 and 𝐿𝑖 points on

the grid (Figure 17). One also adds the respective component of the external field to the term
estimating the force at the 𝑀𝑖 and 𝐿𝑖 points in Eq. 25. With 𝑀1, for instance, one changes

34 For instance, using the “simple” function 𝜇(𝑥) = 𝑥/(1+𝑥) in Eq. 59 would lead to 𝑔 = [(𝑔𝑁𝑎0+𝑔𝑁𝑔𝑒−2𝑔𝑒𝑎0−
𝑔2𝑒) +

√︀
(2𝑔𝑒𝑎0 + 𝑔2𝑒 − 𝑔𝑁𝑎0 − 𝑔𝑁𝑔𝑒) + 4𝑔𝑁 (𝑎0 + 𝑔𝑒)3]/[2(𝑎0 + 𝑔𝑒)].
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(Φ𝑖+1,𝑗,𝑘 − Φ𝑖,𝑗,𝑘) → (Φ𝑖+1,𝑗,𝑘 − Φ𝑖,𝑗,𝑘 − ℎ𝑔𝑒𝑥) in the first term of Eq. 25. One then solves this
discretized equation with the large radius boundary condition for the Dirichlet problem given by
Eq. 61 instead of Eq. 20. Exactly the same is applicable to calculating the phantom dark matter
component of QUMOND with Eq. 35, except that now the Newtonian external field is added to
the terms of the equation in exactly the same way.

This external field effect (EFE) is a remarkable property of MONDian theories, and because this
breaks the strong equivalence principle, it allows us to derive properties of the gravitational field
in which a system is embedded from its internal dynamics (and not only from tides). For instance,
the return to a Newtonian (Eq. 61 or Eq. 63) instead of a logarithmic (Eq. 20) potential at large
radii is what defines the escape speed in MOND. By observationally estimating the escape speed
from a system (e.g., the Milky Way escape speed from our local neighborhood; see discussion
in Section 6.5.2), one can estimate the amplitude of the external field in which the system is
embedded, and by measuring the shape of its isopotential contours at large radii, one can determine
the direction of that external field, without resorting to tidal effects. It is also noticeable that the
phantom dark matter has a tendency to become negative in “conoidal” regions perpendicular
to the external field direction (see Figure 3 of [490]): with accurate-enough weak-lensing data,
detecting these pockets of negative phantom densities could, in principle, be a smoking gun for
MOND [490], but such an effect would be extremely sensitive to the detailed distribution of the
baryonic matter. A final important remark about the EFE is that it prevents most possible
MOND effects in Galactic disk open clusters or in wide binaries, apart from a possible rescaling of
the gravitational constant. Indeed, for wide binaries located in the solar neighborhood, the galactic
EFE (coming from the distribution of mass in our galaxy) is about 1.5 × 𝑎0. The corresponding
rescaling of the gravitational constant then depends on the choice of the 𝜇-function, but could
typically account for up to a 50% increase of the effective gravitational constant. Although this is
not, properly speaking, a MOND effect, it could still perhaps imply a systematic offset of mass for
very-long–period binaries. However, any effect of the type claimed to be observed by [188] would
not be expected in MOND due to the external field effect.

6.4 MOND in the solar system

The primary place to test modified gravity theories is, of course, the solar system, where general
relativity has, until now, passed all the proposed tests. Detecting a deviation from Einsteinian
gravity in our backyard would actually be the holy grail of modified gravity theories, in the same
sense as direct detection in the lab is the holy grail of the CDM paradigm. However, MOND
anomalies typically manifest themselves only in the weak-gravity regime, several orders of magni-
tudes below the typical gravitational field exerted by the sun on, e.g., the inner planets. But in
the case of modified inertia (Section 6.1.1), the anomalous acceleration at any location depends
on properties of the whole orbit (non-locality), so that anomalies may appear in the motion of
Solar system bodies that are on highly-eccentric trajectories taking them to large distances (e.g.,
long period comets or the Pioneer spacecraft), where accelerations are low [314]. Such MOND
effects have been proposed as a possible mechanism for generating the Pioneer anomaly [314, 469],
without affecting the motions of planets, whose orbits are fully in the high acceleration regime. On
the other hand, in classical, non-relativistic modified gravity theories (Sections 6.1.2 and 6.1.3),
small effects could still be observable and would primarily probe two aspects of the theory: (i) the
shape of the interpolating function (Section 6.2) in the regime 𝑥 ≫ 1, and (ii) the external Galactic
gravitational field (Section 6.3) acting on the solar system, testing the interpolating function in
the regime 𝑥 ≪ 1.

If, as a first approximation, one considers the solar system as isolated, and the Sun as a point
mass, the MOND effect in the inner solar system appears as an anomalous acceleration field in
addition to the Newtonian one. In units of 𝑎0, the amplitude of the anomalous acceleration is
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given by 𝑥[1−𝜇(𝑥)], which can be constrained from the motion of the inner planets, typically their
perihelion precession and the (non)-variation of Kepler’s constant [293, 391, 417]. These constraints
typically exclude the whole 𝛼-family of interpolating functions (Eq. 46) that are natural for multi-
field theories such as TeVeS (see Section 6.2 and Section 7) because they yield 𝑥[1− 𝜇(𝑥)] > 1 for
𝑥 ≫ 1 while it must be smaller than 0.04 at the orbit of Mars [391]35. Of course, this does not
mean that the 𝜇-function cannot be represented by the 𝛼-family in the intermediate gravity regime
characterizing galaxies, but it must be modified in the strong gravity regime36. Another potential
effect of MOND is anomalously strong tidal stresses in the vicinity of saddle points of the Newtonian
potential, which might be tested with the LISA pathfinder [37, 49, 255, 464]. The MOND bubble
can be quite big and clearly detectable, or the effect could be small and undetectable, depending
on the interpolating function [255, 161].

The approximation of an isolated Solar system being incorrect, it is also important to add the
effect of the external field from the galaxy. Its amplitude is typically on the order of ∼ 1.5 × 𝑎0.
From there, Milgrom [314] has predicted (both analytically and numerically) a subtle anomaly
in the form of a quadrupole field that may be detected in planetary and spacecraft motions (as
subsequently confirmed by [62, 185]). This has been used to constrain the form of the interpolating
function in the weak acceleration regime characteristic of the external field itself. Constraints have
essentially been set on the 𝑛-family of 𝜇-functions from the perihelion precession of Saturn [63, 154],
namely that one must have 𝑛 > 8 in order to fit these data37.

However, it should be noted that it is slightly inconsistant to compare the classical predictions
of MOND with observational constraints obtained by a global fit of solar system orbits using a
fully-relativistic first-post-Newtonian model. Although the above constraints on classical MOND
models are useful guides, proper constraints can only truly be set on the various relativistic theories
presented in Section 7, the first-order constraints on these theories coming from their own post-
Newtonian parameters [65, 99, 173, 372, 391, 450]. What is more, and makes all these tests perhaps
unnecessary, it has recently been shown that it was possible to cancel any deviation from general
relativity at small distances in most of these relativistic theories, independently of the form of the
𝜇-function [22].

6.5 MOND in rotationally-supported stellar systems

6.5.1 Rotation curves of disk galaxies

The root and heart of MOND, as modified inertia or modified gravity, is Milgrom’s formula (Eq. 7).
Up to some small corrections outside of symmetrical situations, this formula yields (once 𝑎0 and
the form of the transition function 𝜇 are chosen) a unique prediction for the total effective gravity
as a function of the gravity produced by the visible baryons. It is absolutely remarkable that
this formula, devised 30 years ago, has been able to successfully predict an impressive number
of galactic scaling relations (the “Kepler-like” laws of Section 5.2, backed by the modern data
of Section 4.3) that were very unprecise and/or unobserved at the time, and which still are a
puzzle to understand in the ΛCDM framework. What is more, this formula not only predicts
global scaling relations successfully, we show in this section that it also predicts the shape and
amplitude of galactic rotation curves at all radii with uncanny precision, and this for all disk

35 See also [203] and constraints excluding such functions also from Lunar Laser Ranging [138], neglecting the
external field effect from the sun on the Earth-Moon system, since it is three orders of magnitude below the internal
gravity of the system.

36 This is why, although the “simple” 𝛼 = 1 function is known to represent very well the gravitational field of
spiral galaxies [141, 166, 402, 508], we use, in Section 6.5.1, the 𝛾 = 𝛿 = 1 function of Eq. 52 and Eq. 53 in order to
fit spiral galaxy rotation curves.

37 For the 𝛾-family of Eq. 52 and 𝛿-family of Eq. 53, it means that even slightly sharper transitions than 𝛾 = 1
and 𝛿 = 1 might still be needed.
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galaxy Hubble types [168, 402]. Of course, the absolute exact prediction of MOND depends on
the exact formulation of MOND (as modified inertia or some form or other of modified gravity),
but the differences are small compared to observational error bars, and even compared with the
differences between various 𝜇-functions.

Figure 20: Comparison of theoretical rotation curves for the inner parts (before the rotation curve
flattens) of an HSB exponential disk [145], computed with three different formulations of MOND. Green:
Milgrom’s formula; Blue: Bekenstein–Milgrom MOND (AQUAL); Red: TeVeS-like multi-field theory.
Image reproduced by permission from [145], copyright by APS.

In order to illustrate this, we plot in Figure 20 the theoretical rotation curve of an HSB exponen-
tial disk (see [145] for exact parameters) computed with three different formulations of MOND38:
Milgrom’s formula (Eq. 7), representative of circular orbits in modified inertia, AQUAL (Eq. 17),
and a multi-field theory (Eq. 40) representative of a whole class of relativistic theories (see Sec-
tions 7.1 to 7.4), all with the 𝛼 = 𝑛 = 1 “simple” 𝜇-function of Eq. 46 and Eq. 49. One can see
velocity differences of only a few percents in this case, while, in general, it has been shown that the
maximum difference between formulations is on the order of 10% for any type of disk [76]. This
justifies using Milgrom’s formula as a proxy for MOND predictions on rotation curves, keeping
in mind that, in order to constrain MOND within the modified gravity framework, one should
actually calculate predictions of the various modified Poisson formulations of Section 6.1 for each
galaxy model, and for each choice of galaxy parameters [18].

The procedure is then the following (see Section 4.3.4 for more detail). One usually assumes
that light traces stellar mass (constant mass-to-light ratio, but see the counter-example M33),
and one adds to this baryonic density the contribution of observed neutral hydrogen, scaled up to
account for the contribution of primordial helium. The Newtonian gravitational force of baryons
is then calculated via the Newtonian Poisson equation, and the MOND force is simply obtained
via Eq. 7 or Eq. 10. First of all, an interpolating function must be chosen, then one can determine

38 Note that the rotation curves of Figure 20 become flat only at larger radii than shown here; see [145].
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(a) (b)

Figure 21: Examples of detailed MOND rotation curve fits of the HSB and LSB galaxies of Figure 13
(NGC 6946 on the left and NGC 1560 on the right). The black line represents the Newtonian contribution
of stars and gas as determined by numerical solution of the Newtonian Poisson equation for the observed
light distribution, as per Figure 13. The blue line is the MOND fit with the 𝛾 = 𝛿 = 1 function of Eq. 52
and Eq. 53, the only free parameter being the stellar mass-to-light ratio. In the 𝐾-band, the best fit value
is 0.37𝑀⊙/𝐿⊙ for NGC 6946 and 0.18𝑀⊙/𝐿⊙ for NGC 1560. In practice, the best fit mass-to-light ratio
can co-vary with the distance to the galaxy and 𝑎0; here 𝑎0 is held fixed (1.2 × 10−10 m s−2) and the
distance has been held fixed to the best observed value (5.9 Mpc for NGC 6946 [220] and 3.45 Mpc for
NGC 1560 [219]). Milgrom’s formula provides an effective mapping between the rotation curve predicted
by the observed baryons and the observed rotation, including the bumps and wiggles.

the value of 𝑎0 by fitting, all at once, a sample of high-quality rotation curves with small distance
uncertainties and no obvious non-circular motions. Then, all individual rotation curve fits can be
performed with the mass-to-light ratio of the disk as the single free parameter of the fit39. It turns
out that using the simple interpolating function (𝛼 = 𝑛 = 1, see Eqs. 46 and 49) yields a value
of 𝑎0 = 1.2× 10−10 m s−2, and excellent fits to galaxy rotation curves [166]. However, as already
pointed out in Sections 6.3 and 6.4, this interpolating function yields too strong a modification in
the solar system, so hereafter we use the 𝛾 = 𝛿 = 1 interpolating function of Eqs. 52 and 53 (solid
blue line on Figure 19), very similar to the simple interpolating function in the intermediate to
weak gravity regime.

Figure 21 shows two examples of detailed MOND fits to rotation curves of Figure 13. The
black line represents the Newtonian contribution of stars and gas and the blue line is the MOND
fit, the only free parameter being the stellar mass-to-light ratio40. Not only does MOND predict
the general trend for LSB and HSB galaxies, it also predicts the observed rotation curves in great
detail. This procedure has been carried out for 78 nearby galaxies (all galaxy rotation curves to
which the authors have access), and the residuals between the observed and predicted velocities, at
every point in all these galaxies (thus about two thousand individual measurements), are plotted in
Figure 23. As an illustration of the variety and richness of rotation curves fitted by MOND, as well
as of the range of magnitude of the discrepancies covered, we display in Figure 24 fits to rotation
curves of extremely massive HSB early-type disk galaxies [402] with 𝑉𝑓 up to 400 km/s, and in
Figure 25 fits to very low mass LSB galaxies [324] with 𝑉𝑓 down to 15 km/s. In the latter, gas-
rich, small galaxies, the detailed fits are insensitive to the exact form of the interpolating function
(Section 6.2) and to the stellar mass-to-light ratio [168, 324]. We then display in Figure 26 eight

39 If one assumes that a lot of dark baryons are present in the form of molecular gas, one can add another free
parameter in the form of a factor multiplying the gas mass[460]. The, good MOND fits can still be obtained but
with a lower value of 𝑎0.

40 However, the mass-to-light ratio is not really a constant in galaxies. Thus, Figure 22 gives an example of a
rotation curve fit (to the Local Group galaxy M33), where the variation of the mass-to-light ratio according to the
color-gradient has been included, even improving the MOND fit.
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Figure 22: The rotation curve [124] and MOND fit [384] of the Local Group spiral M33 assuming a
constant stellar mass-to-light ratio (top panel). While the overall shape is a good match, there is a slight
mismatch at ∼ 3 kpc and above 7 kpc. The observed color gradient implies a slight variation in the
mass-to-light ratio, in the sense that the stars at small radii are slightly redder and heavier than those
at large radii. Applying stellar population models [42] to the observed color gradient produces a slight
adjustment of the Newtonian mass model. The dotted line in the lower panel reiterates the constant 𝑀/𝐿
model from the top panel, while the solid line has been corrected for the observed color gradient. This
slight adjustment to the baryonic mass distribution considerably improves the fit.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2012-10

http://www.livingreviews.org/lrr-2012-10


Modified Newtonian Dynamics (MOND) 61

Figure 23: Residuals of MOND fits to the rotation curves of 78 nearby galaxies (all data to which authors
have access) including about two thousand individual resolved measurements. Data for 21 galaxies are
either new or improved in terms of spatial resolution and velocity accuracy over those in [401]. More
accurate points are illustrated with larger symbols. The histogram of residuals is plotted on the right
panel, and is well fitted by a Gaussian of width Δ𝑣/𝑣 ∼ 0.04. The bulk of the more accurate data are in
good accord with MOND. There are a few deviant points, mostly at small radii where non-circular motions
are ubiquitous and observational resolution (beam smearing) can be a challenge. These are but a few trees
outlying from a very clear forest.
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Figure 24: Examples of MOND fits (blue lines, using Eq. 53 with 𝛿 = 1) to two massive galaxies [402].
With baryonic masses in excess of 1011 𝑀⊙, these are among the most massive, rapidly rotating disk
galaxies known. Stars dominate the mass, and Newtonian dynamics suffices to explain the innermost
regions because of the high acceleration, but the mass discrepancy becomes apparent as the Keplerian
decline (black lines) falls well below the data at the enormous radii spanned by these giant disks (the
diameter of UGC 2487 spans half a million lightyears).
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Figure 25: Examples of MOND fits (blue lines) to two dwarf galaxies [324]. The data for DDO 210 come
from [29], and those for UGC 11583 (also known as KK98 250) are from [30] augmented with high resolution
data from [281, 242]. The high gas content of these galaxies make them strong tests of MOND, as the one
fit-parameter – the mass-to-light ratio of the stars – has only a minor impact on the fit. What is more,
as they are deep in the MOND regime, the exact form of the interpolating function (Section 6.2) also has
little impact on the fits, making them the cleanest tests of MOND, with essentially no wiggle room. Note
that, with a mass of only a few million solar masses (comparable in mass to the largest globular clusters),
the Local Group dwarf DDO 210 is the smallest galaxy known to show clear rotation (𝑉𝑓 ∼ 15 km/s). It
is the lowest point in Figure 3.
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Figure 26: MOND rotation curve fits for representative galaxies from the THINGS survey [121, 166, 481].
Galaxies are chosen to illustrate a broad range of mass, from 𝑀𝑏 ∼ 3 × 108 𝑀⊙ to ∼ 3 × 1011 𝑀⊙. All
galaxies have high resolution interferometric 21 cm data for the gas and 3.6𝜇 photometry for mapping the
stars. The Newtonian baryonic mass model is shown as a black line and the MOND fit as a blue line (as
in Figure 21). The fits use the interpolating function of Eq. 53 with 𝛿 = 1.
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Figure 27: MOND rotation curve fits for LSB galaxies [120] updated with high resolution H𝛼 data [242,
241] and using Eq. 53 with 𝛿 = 1. LSB galaxies are important tests of MOND because their low surface
densities (Σ ≪ 𝑎0/𝐺) place them well into the MOND regime everywhere, and the exact form of the
interpolating function is rather unimportant. Their baryonic mass models fall well short of explaining the
observed rotation at any but the smallest radii in Newtonian dynamics, and MOND nevertheless provides
the necessary additional force everywhere (lines as per Figure 21).
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Figure 28: A comparison of the mass-to-light ratios obtained from MOND rotation curve fits (points)
with the independent expectations of stellar population synthesis models (lines) [42]. The mass-to-light
ratio in the optical (blue 𝐵-band, left) and near-infrared (2.2 𝜇m 𝐾-band, right) are shown as a function
of 𝐵 − 𝑉 color (the ratio of blue to green light). The one free parameter of MOND rotation curve fits
reproduces the normalization, slope, and scatter expected from what we know about stars. Not all galaxies
illustrated here have both 𝐵 and 𝐾-band data. Some have neither, instead having photometry in some
other bandpass (e.g., 𝑉 or 𝑅 or 𝐼).

fits for representative galaxies from the latest high-resolution THINGS survey [166, 481], and in
Figure 27 six fits of yet other LSB galaxies (as these provide strong tests of MOND and depend
less on the exact form of the interpolating function than HSB ones) from [120], updated with high
resolution H𝛼 data [242, 241]. The overall results for the whole 78 nearby galaxies (Figure 23) are
globally very impressive, although there are a few outliers among the 2000 measurements. These
are but a few trees outlying from a very clear forest. It is actually only as the quality of the
data decline [384] that one begins to notice small disparities. These are sometimes attributable to
external disturbances that invalidate the assumption of equilibrium [403], non-circular motions or
bad observational resolution. For targets that are intrinsically difficult to observe, minor problems
become more common [120, 448]. These typically have to do with the challenges inherent in
combining disparate astronomical data sets (e.g., rotation curves measured independently at optical
and radio wavelengths) and constraining the inclinations. A single individual galaxy that can be
considered as a bit problematic is NGC 3198 [68, 166], but this could simply be due to a problem
with the potentially too high Cepheids-based distance (reddening problem mentioned in [254]).
Indeed, the adopted distance plays an important role in the MOND fitting procedure, as the
value of the centripetal acceleration 𝑉 2

𝑐 /𝑅 depends on the distance through the conversion of the
observed angular radius in arcsec into the physical radius 𝑅 in kpc. Note that other galaxies such
as NGC 2841 had historically-posed problems to MOND but that these have largely gone away
with modern data (see [166] and Figure 26).

We finally note that what makes all these rotation curve fits really impressive is that either (i)
stellar mass-to-light ratios are unimportant (in the case of gas-rich galaxies) yielding excellent fits
with essentially zero free parameters (apart from some wiggle room on the distance), or (ii) stellar
mass-to-light ratios are important, and their best-fit value, obtained on purely dynamical grounds
assuming MOND, vary with galaxy color as one would expect on purely astrophysical grounds
from stellar population synthesis models [42]. There is absolutely nothing built into MOND that
would require that redder galaxies should have higher stellar mass-to-light ratios in the 𝐵-band,
but this is what the rotation curve fits require. This is shown on Figure 28, where the best-fit
mass-to-light ratio in the 𝐵-band is plotted against 𝐵 − 𝑉 color index (left panel), and the same
for the 𝐾-band (right panel).

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2012-10

http://www.livingreviews.org/lrr-2012-10


Modified Newtonian Dynamics (MOND) 67

6.5.2 The Milky Way

Our own Milky Way galaxy (an HSB galaxy) is a unique laboratory within which present and
future surveys will allow us to perform many precision tests of MOND (at a level of precision that
might even discriminate between the various versions of MOND described in Section 6.1) that
are not feasible with external galaxies. However, concerning the rotation curve, the test is, at
present, not the most conclusive, as the outer rotation curve of the Milky Way is paradoxically
much less precisely known than that of external galaxies (the forthcoming Gaia mission should
allow improvement to this situation, although the rotation curve will not be measured directly).
Nevertheless, past studies of the inner rotation curve of the Milky Way [141, 142, 274], measured
with the tangent point method, compared to the baryonic content of the inner Galaxy [53, 155],
have shown full agreement between the rotation curve and MOND, assuming, as usual, the simple
interpolating function (𝛼 = 𝑛 = 1 in Eqs. 46 and 49) or the 𝛾 = 𝛿 = 1 interpolating function
(Eqs. 52 and 53). The inverse problem was also tackled, i.e., deriving the surface density of the
inner Milky Way disk from its rotation curve (see Figure 29): this exercise [274] led to a derived
surface density fully consistent with star count data, and also even reproducing the details of bumps
and wiggles in the surface brightness (Renzo’s rule, Section 4.3.4), while being fully consistent with
the (somewhat imprecise) constraints on the outer rotation curve of the galaxy [494].

Figure 29: The mass distribution of the Milky Way disk (left) inferred from fitting in MOND the observed
bumps and wiggles in the rotation curve of the galaxy (right) [274]. The Newtonian contributions of the
stellar and gas disk are shown as dashed and dotted lines as per Figure 13. The resulting model is consistent
with independent star count data [155] and compares favorably to constraints on the rotation curve at radii
beyond those included in the fit [494]. The prominent feature at 𝑅 ≈ 6 kpc corresponds to the Centaurus
spiral arm.

However, especially with the advent of present and future astrometric and spectroscopic surveys,
the Milky Way offers a unique opportunity to test many other predictions of MOND. These include
the effect of the “phantom dark disk” (see Figure 18) on vertical velocity dispersions and on the tilt
of the stellar velocity ellipsoid, the precise shape of tidal streams around the galaxy, or the effects
of the external gravitational field in which the Milky Way is embedded on fundamental parameters
such as the local escape speed. However, all these predictions can vary slightly depending on
the exact formulation of MOND (mainly Bekenstein–Milgrom MOND, QUMOND, or multi-field
theories, the predictions being anyway difficult to make in modified inertia versions of MOND
when non-circular orbits are considered). Most of the predictions made until today and reviewed
hereafter have been using the Bekenstein–Milgrom version of MOND (Eq. 17).
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68 Benôıt Famaey and Stacy S. McGaugh

Based on the baryonic distribution from, e.g., the Besançon model of the Milky Way [366], one
can compute the MOND gravitational field of the Galaxy by solving the BM-equation (Eq. 17).
This has been done in [490]. Then one can apply the Newtonian Poisson equation to it, in order
to find back the density distribution that would have yielded this potential within Newtonian
dynamics [50, 140]. In this context, as already shown (Figure 18), MOND predicts a disk of
“phantom dark matter” allowing one to clearly differentiate it from a Newtonian model with a
dark halo:

(i) By measuring the force perpendicular to the galactic plane: at the solar radius, MOND
predicts a 60 percent enhancement of the dynamic surface density at 1.1 kpc above the plane
compared to the baryonic surface density, a value in agreement with current data (Table 1,
see also [339]). The enhancement would become more apparent at large galactocentric radii
where the stellar disk mass density becomes negligible.

(ii) By determining dynamically the scale length of the disk mass density distribution. This scale
length is a factor ∼ 1.25 larger than the scale length of the visible stellar disk if Bekenstein–
Milgrom MOND applies. Such a test could be applied with existing RAVE data [423], but
the accuracy of available proper motions still limits the possibility to explore the gravitational
forces too far from the solar neighborhood.

(iii) By measuring the velocity ellipsoid tilt angle within the meridional galactic plane. This tilt
is different within the MOND and Newton+dark halo cases in the inner part of the Galactic
disk. The tilt of about 6 degrees at z = 1 kpc at the solar radius is in agreement with the
recent determination of 7.3± 1.8 degrees obtained by [422]. The difference between MOND
and a Newtonian model with a spherical halo becomes significant at z =2 kpc. Interestingly,
recent data [328] on the tilt of the velocity ellipsoid at these heights clearly favor the MOND
prediction [50].

Such tests of MOND could be applied with the first release of future Gaia data. To fix the ideas
on the current local constraints, the predictions of the Besançon MOND model are compared with
the relevant observations in Table 1. However, let us note that these predictions are extremely
dependent on the baryonic content of the model [53, 155, 366], so that testing MOND at the
precision available in the Milky Way heavily relies on star counts, stellar population synthesis,
census of the gaseous content (including molecular gas), and inhomogeneities in the baryonic
distribution (clusters, gas clouds).

Another test of the predictions of MOND for the gravitational potential of the Milky Way
is the thickness of the HI layer as a function of position in the disk (see Section 6.5.3): it has
been found [378] that Bekenstein–Milgrom MOND and it phantom disk successfully accounts for
the most recent and accurate flaring of the HI layer beyond 17 kpc from the center, but that it
slightly underpredicts the scale-height in the region between 10 and 15 kpc. This could indicate
that the local stellar surface density in this region should be slightly smaller than usually assumed,
in order for MOND to predict a less massive phantom disk and hence a thicker HI layer. Another
explanation for this discrepancy would rely on non-gravitational phenomena, namely ordered and
small-scale magnetic fields and cosmic rays contributing to support the disk.

Yet another test would be the comparison of the observed Sagittarius stream [198, 248] with the
predictions made for a disrupting galaxy satellite in the MOND potential of the Milky Way. Basic
comparisons of the stream with the orbit of a point mass have shown accordance at the zeroth
order [358]. In reality, such an analysis is not straightforward because streams do not delineate
orbits, and because of the non-linearity of MOND. However, combining a MOND N-body code
with a Bayesian technique [474] in order to efficiently explore the parameter space, it should be
possible to rigorously test MOND with such data in the near future, including for external galaxies,
which will lead to an exciting battery of new observational tests of MOND.
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Finally, a last test of MOND in the Milky Way involves the external field effect of Section 6.3.
As explained there, the return to a Newtonian (Eq. 61 or Eq. 63) instead of a logarithmic (Eq. 20)
potential at large radii is defining the escape speed in MOND. By observationally estimating the
escape speed from a system (e.g., the Milky Way escape speed from our local neighborhood), one
can estimate the amplitude of the external field in which the system is embedded. With simple
analytical arguments, it was found [144] that with an external field of 0.01𝑎0, the local escape
speed at the Sun’s radius was about 550 km/s, exactly as observed (within the observational error
range [433]). This was later confirmed by rigorous modeling in the context of Bekenstein–Milgrom
MOND and with the Besançon baryonic model of the Milky Way [492]. This value of the external
field, 10−2 × 𝑎0, corresponds to the order of magnitude of the gravitational field exerted by Large
Scale Structure, estimated from the acceleration endured by the Local Group during a Hubble
time in order to attain a peculiar velocity of 600 km/s.

Table 1: Values predicted from the Besançon model of the Milky Way in MOND as seen by a Newtonist
(i.e., in terms of phantom dark matter contributions) compared to current observational constraints in
the Milky Way, for the local dynamical surface density and the tilt of the stellar velocity ellipsoid [50].
Predictions for a round dark halo without a dark disk are also compatible with the current constraints,
though [194, 422]. The tilt at z = 2 kpc should be more discriminating.

MOND predictions Observations

Surface density Σ⊙(𝑧 = 1.1 kpc) 78𝑀⊙/pc
2 74± 6𝑀⊙/pc

2 [194]

Velocity ellipsoid tilt at z = 1 kpc 6 degrees 7.3± 1.8 degrees [422]

6.5.3 Disk stability and interacting galaxies

A lot of questions in galaxy dynamics require using N-body codes. This is notably necessary
for studying stability of galaxy disks, the formation of bars and spirals, or highly time-varying
configurations such as galaxy mergers. As we have seen in Section 6.1.2, the BM modified Poisson
equation (Eq. 17) can be solved numerically using various methods [50, 77, 96, 147, 250, 457]. Such
a Poisson solver can then be used in particle-mesh N-body codes. More general codes based on
QUMOND (Section 6.1.3) are currently under development.

The main results obtained via these simulations are the following (the comparison with obser-
vations will be discussed below):

(i) LSB disks are more unstable regarding bar and spiral instabilities in MOND than in the
Newton+spherical halo equivalent case,

(ii) Bars always tend to appear more quickly in MOND than in the Newton+spherical halo
equivalent, and are not slowed down by dynamical friction, leading to fast bars,

(iii) LSB disks can be both very thin and extended in MOND thanks to the effect of the “phantom
disk”, and vertical velocity dispersions level off at 8 km/s, instead of 2 km/s for Newtonian
disks,

(iv) Warps can be created in apparently isolated galaxies from the external field effect of large
scale structure in MOND,

(v) Merging time-scales are longer in MOND for interacting galaxies,

(vi) Reproducing interacting systems such as the Antennae require relatively fine-tuned initial
conditions in MOND, but the resulting galaxy is more extended and thus closer to observa-
tions, thanks to the absence of angular momentum transfer to the dark halo.
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70 Benôıt Famaey and Stacy S. McGaugh

Concerning the first point (i), Brada & Milgrom [77] investigated the important problem of
stability of disk galaxies. They demonstrated that MOND, as anticipated [299], has an effect
similar to a dark halo in stabilizing a rotationally-supported disk, thereby explaining the upper
limit in surface density seen in the data (Section 4.3.2), and also showing how it damps the growth-
rate of bar-forming modes in the weak gravitational field regime. In a comparison of MOND disks
with the equivalent Newtonian+halo counterpart (with identical rotation curves), they found that,
as the surface density of the disk decreases, the growth-rate of the bar-forming mode decreases
similarly in both cases. However, in the limit of very low surface densities, typical of LSB galaxies,
the MOND growth rate stops decreasing, contrary to the Newton+dark halo case (Figure 30).
This could provide a solution to the stability challenge of Section 4.2, as observed LSBs do exhibit
bars and spirals, which would require an ad hoc dark component within the self-gravitating disk
of the Newtonian system. One can also see on this figure that if the surface density is typical of
intermediate HSB galaxies, the bar systematically forms quicker in MOND.

Figure 30: The scaled growth-rate of the 𝑚 = 2 instability in Newtonian disks with a dark halo (dotted
line) and MONDian disks (solid line) as a function of disk mass. In the MOND case, as the disk mass
decreases, the surface density decreases and the disk sinks deeper into the MOND regime. However,
at very low masses the growth-rate saturates. In the equivalent Newtonian case, the rotation curve is
maintained at the MOND level by supplementing the force with a round stabilizing dark halo, which
causes the growth-rate to crash [77, 401]. An ad-hoc dark disk could help maintain the growth rate in the
dark matter context. Image reproduced by permission from [401].

This was confirmed in recent simulations [104, 457], where it was additionally found that (ii)
the bar is sustained longer, and is not slowed down by dynamical friction against the dark halo,
which leads to fast bars, consistent with the observed fast bars in disk galaxies (measured through
the position of resonances). However, when gas inflow and external gas accretion are included,
a larger range of situations are met regarding pattern speeds in MOND, all compatible with
observations [458]. Since the bar pattern speed has a tendency to stay constant, the resonances
remain at the same positions, and particles are trapped on these orbits more easily than in the
Newtonian case, which leads to the formation of rings and pseudo-rings as observed (see Figure 31
and Figure 32). All these results have been shown to be independent of the exact choice of
interpolating 𝜇-function [458].
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What is more, (iii) LSB disks can be both very thin and extended in MOND thanks to the
stabilizing effect of the “phantom disk”, and vertical velocity dispersions level off at 8 km/s, as
typically observed [25, 241], instead of 2 km/s for Newtonian disks with Σ = 1𝑀⊙ pc−2 (depending
on the thickness of the disk). However, the observed value is usually attributed to non-gravitational
phenomena. Note that [279] utilized this fact to predict that conventional analyses of LSB disks
would infer abnormally high mass-to-light ratios for their stellar populations – a prediction that
was subsequently confirmed [159, 371]. But let us also note that this stabilizing effect of the
phantom disk, leading to very thin stellar and gaseous layers, could even be too strong in the
region between 10 and 15 kpc from the galactic center in the Milky Way (see Section 6.5.2),
and in external galaxies [497], even though, as said, non-gravitational effects such as ordered and
small-scale magnetic fields and cosmic rays could significantly contribute to the prediction in these
regions.

Via these simulations, it has also been shown (iv) that the external field effect of MOND
(Section 6.3) offers a mechanism other than the relatively weak effect of tides in inducing and
maintaining warps [79]. It was demonstrated that a satellite at the position and with the mass
of the Magellanic clouds can produce a warp in the plane of the galaxy with the right amplitude
and form [79], and even more importantly, that isolated galaxies could be affected by the external
field of large scale structure, inducing a differential precession over the disk, in turn causing a
warp [104]. This could provide a new explanation for the puzzle of isolated warped galaxies.

Interactions and mergers of galaxies are (v) very important in the cosmological context of galaxy
formation (see also Section 9.2). It has been found [95] from analytical arguments that dynamical
friction should be much more efficient in MOND, for instance for bar slowing down or mergers
occurring more quickly. But simulations display exactly the opposite effect, in the sense of bars
not slowing down and merger time-scales being much larger in MOND [338, 459]. Concerning bars,
Nipoti [335] found that they were indeed slowed down more in MOND, as predicted analytically [95],
but this is because their bars were unrealistically small compared to observed ones. In reality, the
bar takes up a significant fraction of the baryonic mass, and the reservoir of particles to interact
with, assumed infinite in the case of the analytic treatment [95], is in reality insufficient to affect
the bar pattern speed in MOND. Concerning long merging time-scales, an important constraint
from this would be that, in a MONDian cosmology, there should perhaps be fewer mergers, but
longer ones than in ΛCDM, in order to keep the total observed amount of interacting galaxies
unchanged. This is indeed what is expected (see Section 9.2). What is more, the long merging
time-scales would imply that compact galaxy groups do not evolve statistically over more than a
crossing time. In contrast, in the Newtonian+dark halo case, the merging time scale would be
about one crossing time because of dynamical friction, such that compact galaxy groups ought to
undergo significant merging over a crossing time, contrary to what is observed [239]. Let us also
note that, in MOND, many passages in binary galaxies will happen before the final merging, with a
starburst triggered at each passage, meaning that the number of observed starbursts as a function
of redshift cannot be used as an estimate of the number of mergers [104].

Finally, (vi) at a more detailed level, the Antennae system, the prototype of a major merger,
has been shown to be nicely reproducible in MOND [459]. This is illustrated in Figure 33. On the
contrary, while it is well established that CDM models can result in nice tidal tails, it turns out
to be difficult to simultaneously match the narrow morphology of many observed tidal tails with
rotation curves of the systems from which they come [130]. In MOND, reproducing the Antennae
requires relatively fine-tuned initial conditions, but the resulting tidal tails are narrow and the
galaxy is more extended and thus closer to observations than with CDM, thanks to the absence
of angular momentum transfer to the dark halo (solution to the angular momentum challenge of
Section 4.2).
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(a) (b)

Figure 31: (a) The galaxy ESO 509-98. (b) The galaxy NGC 1543. These are two examples of galaxies
that exhibit clear ring and pseudo-ring structures. Image courtesy of Tiret, reproduced by permission
from [458], copyright by ESO.

Figure 32: Simulations of ESO 509-98 and NGC 1543 in MOND, to be compared with Figure 31. Rings
and pseudo-ring structures are well reproduced with modified gravity. Image courtesy of Tiret, reproduced
by permission from [458], copyright by ESO.
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Figure 33: Simulation of the Antennae with MOND (right, [459]) compared to the observations
(left, [190]). In the observations, the gas is represented in blue and the stars in green. In the simula-
tion the gas is in blue and the stars are in yellow/red. Image courtesy of Tiret, reproduced by permission
from [459], copyright by ASP.

6.5.4 Tidal dwarf galaxies

As seen in, e.g., Figure 33, left panel, major mergers between spiral galaxies are frequently observed
with dwarf galaxies at the extremity of their tidal tails, called Tidal Dwarf Galaxies (TDG). These
young objects are formed through gravitational instabilities within the tidal tails, leading to local
collapse of gas and star formation. These objects are very common in interacting systems: in some
cases dozens of such condensations are seen in the tidal tails, with a few ones having a mass typical
of other dwarf galaxies in the Universe. However, in the ΛCDM model, these objects are difficult to
form, and require very extended dark matter distribution [71]. In MOND simulations [459, 104],
the exchange of angular momentum occurs within the disks, whose sizes are inflated. For this
reason, it is much easier with MOND to form TDGs in extended tidal tails.

What is more, in the ΛCDM context, these objects are not expected to drag CDM around
them, the reason being that these objects are formed out of the material in the tidal tails, itself
made of the dynamically cold, rotating, material in the progenitor disk galaxies. In these disks, the
local ratio of dark matter to baryons is close to zero. For this reason, the ΛCDM prediction is that
these objects should not exhibit a mass discrepancy problem. However, the first ever measurement
of the rotation curve of three TDGs in the NGC 5291 ring system (Figure 34) has revealed the
presence of dark matter in these three objects [72]. A solution to explain this in the standard
picture could then be to resort to dark baryons in the form of cold molecular gas in the disks of
the progenitor galaxies. However, it is very surprising that a very different kind of dark matter,
in this case baryonic dark matter, would conspire to assemble itself precisely in the right way
such as to put the three TDGs (see Section 4.3.1) on the baryonic Tully–Fisher relation (when
this baryonic dark matter is not taken into account in the baryonic budget of the BTF). Another
possibility, not resorting to baryonic dark matter, would be that, by chance, the three TDGs
have been observed precisely edge-on. However, if we simply consider the most natural inclination
coming from the geometry of the ring (𝑖 = 45∘, see [72]), and apply Milgrom’s formula to the
visible matter distribution with zero free parameters [165, 309], one gets very reasonable curves
(Figure 35). Playing around a little bit with the inclinations allows perfect fits to these rotation
curves [165], while the influence of the external field effect has been shown not to significantly
change the result. Therefore, we can conclude that ΛCDM has severe problems with these objects,
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Figure 34: The NGC 5291 system [72]. VLA atomic hydrogen 21-cm map (blue) superimposed on an op-
tical image (white). The UV emission observed by GALEX (red) traces dense star-forming concentrations.
The most massive of these objects are rotating with the projected spin axis as indicated by dashed arrows.
The three most massive ones are denoted as NGC5291N, NGC5291S, and NGC5291W. Image courtesy of
Bournaud, reproduced by permission from [72].

Figure 35: Rotation curves of the three TDGs in the NGC 5291 system. In red: ΛCDM prediction (with
no additional cold molecular gas), with the associated uncertainties. In black: MOND prediction with
the associated uncertainties (prediction with zero free parameter, “simple” 𝜇-function assumed). Image
reproduced by permission from [165], copyright by ESO.
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while MOND does exceedingly well in explaining their observed rotation curves.

However, the observations of only three TDGs are, of course, not enough, from a statistical
point of view, in order for this result to be as robust as needed. Many other TDGs should be
observed to randomize the uncertainties, and consolidate (or invalidate) this potentially extremely
important result, that could allow one to really discriminate between Milgrom’s law being either a
consequence of some fundamental aspect of gravity (or of the nature of dark matter), or simply a
mere recipe for how CDM organizes itself inside spiral galaxies. As a summary, since the internal
dynamics of tidal dwarfs should not be affected by CDM, they cannot obey Milgrom’s law for a
statistically-significant sample of TDGs if Milgrom’s law is only linked to the way CDM assembles
itself in galaxies. Thus, observations of the internal dynamics of TDGs should be one of the
observational priorities of the coming years in order to settle this debate.

Finally, let us note that it has been suggested [239], as a possible solution to the satellites
phase-space correlation problem of Section 4.2, that most dwarf satellites of the Milky Way could
have been formed tidally, thereby being old tidal dwarf galaxies. They would then naturally appear
in closely related planes, explaining the observed disk-of-satellites. While this scenario would lead
to a missing satellites catastrophe in ΛCDM (see Section 4.2), it could actually make sense in a
MONDian Universe (see Section 9.2).

6.6 MOND in pressure-supported stellar systems

We have already outlined (Section 5.2) how Milgrom’s formula accounts for general scaling rela-
tions of pressure-supported systems such as the Faber–Jackson relation (Figure 7 and see [395]),
and that isothermal systems have a finite mass in MOND with the density at large radii falling
approximately as 𝑟−4 [296]. Note also that, in order to match the observed fundamental plane,
MOND models must actually deviate somewhat from being strictly isothermal and isotropic: a ra-
dial orbit anisotropy in the outer regions is needed [388, 86]. Here we concentrate on slightly more
detailed predictions and scaling relations. In general, these detailed predictions are less obvious
to make than in rotationally-supported systems, precisely because of the new degree of freedom
introduced by the anisotropy of the velocity distribution, very difficult to constrain observationally
(as higher-order moments than the velocity dispersions would be needed to constrain it). As we
shall see, the successes of MOND are in general a bit less impressive in pressure-supported systems
than in rotationally-supported ones, and even in some cases really problematic (e.g., in the case of
galaxy clusters, see Section 6.6.4). Whether this is due to the fact that predictions are less obvious
to make, or whether this truly reflects a breakdown of Milgrom’s formula for these objects (or the
fact that certain theoretical versions of MOND would explicitly deviate from Milgrom’s formula
in pressure-supported systems, see Section 6.1.1) remains unclear.

6.6.1 Elliptical galaxies

Luminous elliptical galaxies are dense bodies of old stars with very little gas and typically large
internal accelerations. The age of the stellar populations suggest they formed early and all the
gas has been used to form stars. To form early, one might expect the presence of a massive dark-
matter halo, but the study of, e.g., [367] showed that actually, there is very little evidence for
dark matter within the effective radius, and even several effective radii, in ellipticals. On the other
hand, these are very-HSB objects and would thus not be expected to show a large mass discrepancy
within the bright optical object in MOND. And indeed, the results of [367] were shown to be in
perfect agreement with MOND predictions, assuming very reasonable anisotropy profiles [323].
On the theoretical side, it was also importantly shown that triaxial elliptical galaxies can be
reproduced using the Schwarzschild orbit superposition technique [482], and that these models are
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stable [493]41.
Interestingly, some observational studies circumvented the mass-anisotropy degeneracy by con-

structing non-parametric models of observed elliptical galaxies, from which equivalent circular
velocity curves, radial profiles of mass-to-light ratio, and anisotropy profiles, as well as high-order
moments, could be computed [171]. Thanks to these studies, it was, e.g., shown [171] that, al-
though not much dark matter is needed, the equivalent circular velocity curves (see also [484] where
the rotation curve could be measured directly) tend to become flat at much larger accelerations
than in thin exponential disk galaxies. This would seem to contradict the MOND prescription,
for which flat circular velocities typically occur well below the acceleration threshold 𝑎0, but not
at accelerations on the order of a few times 𝑎0 as in ellipticals. However, as shown in [363], if
one assumes the simple interpolating function (𝛼 = 𝑛 = 1 in Eq. 46 and Eq. 49), known to yield
excellent fits to spiral galaxy rotation curves (see Section 6.5.1), one finds that MONDian galaxies
exhibit a flattening of their circular velocity curve at high accelerations if they can be described
by a Jaffe profile [208] in the region where the circular velocity is constant. Since this flattening
at high accelerations is not possible for exponential profiles, it is remarkable that such flattenings
of circular velocity curves at high accelerations are only observed in elliptical galaxies. What is
more, [171], as well as [454], derived from their models scaling relations for the configuration space
and phase-space densities of dark matter in ellipticals, and these DM scaling relations have been
shown [363] to be in very good agreement with the MOND predictions on “phantom DM” (Eq. 33)
scaling relations. This is displayed on Figure 36. Of course, some of these galaxies are residing in
clusters, and the external field effect (see Section 6.3) could modify the predictions, but this was
shown to be negligible for most of the analyzed sample, because the galaxies are far away from the
cluster center [363]. Note that when closer to the center of galaxy clusters, interesting behaviors
such as lopsidedness caused by the external field effect could allow new tests of MOND in the near
future [491]. However, this would require modelling both the orbit of the galaxy in the cluster to
take into account time-variations of the external field, as well as a precise estimate of the external
field from the cluster itself, which can be tricky as the whole cluster should be modelled at once
due to the non-linearity of MOND [113, 259].

At a more detailed level, precise full line-of-sight velocity dispersion profiles of individual el-
lipticals, typically measured with tracers such as PNe or globular-cluster populations, have been
reproduced by solving Jeans equation in spherical symmetry:

𝑑𝜎2

𝑑𝑟
+ 𝜎2 (2𝛽 + 𝛼)

𝑟
= −𝑔(𝑟), (65)

where 𝜎 is the radial velocity dispersion, 𝛼 = 𝑑 ln 𝜌/𝑑 ln 𝑟 is the slope of the tracer density 𝜌, and
𝛽 = 1 − (𝜎2

𝜃 + 𝜎2
𝜑)/2𝜎

2 is the velocity anisotropy. Note that on the left-hand side, one uses the
density and the velocity dispersion of the tracers only, which can be different from the density
producing the gravity on the right-hand side, if a specific population of tracers such as globular
clusters is used. When the global kinematics of a galaxy is analyzed, we do expect in MOND that
the gravity on the right-hand side of Eq. 65 is generated by the observed mass distribution, so
both should be fit simultaneously: Figure 37 (provided by [399]) shows an example. In general,
it was found that field galaxies all fit very naturally with MOND [461, 410] (see also [484]). On
the other hand, the MOND modification has been found to slightly underpredict the velocity
dispersions in large elliptical galaxies at the very center of galaxy clusters [364], which is just the
small-scale equivalent of the problem of MOND in clusters, pointing towards missing baryons (see
Section 6.6.4).

On the other hand, [225] used satellite galaxies of ellipticals to test MOND at distances of
several 100 kpcs. They used the stacked SDSS satellites to generate a pair of mock galaxy groups

41 Separable models have also been investigated in [97].
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Figure 36: MOND phantom dark matter scaling relations in ellipticals. The circles display central density
𝜌0, and central phase space density 𝑓 of the phantom dark halos predicted by MOND for different masses
of baryonic Hernquist profiles (with scale-radius 𝑟𝐻 related to the effective radius by 𝑅eff = 1.815 𝑟𝐻).
The dotted lines are the scaling relations of [171], and the dashed lines those of [454], which exhibit a
very large observational scatter in good agreement with the MOND prediction [363]. Image reproduced
by permission from [363], copyright by ESO.

with reasonably precise line-of-sight velocity dispersions as a function of radius across the group.
When these systems were first analysed by [225] they claimed that MOND was excluded by 10𝜎,
but this was only for models that had constant velocity anisotropy. It was then found [14] that
with varying anisotropy profiles similar to those found in simulations of the formation of ellipticals
by dissipationless collapse in MOND [337], excellent fits to the line-of-sight velocity dispersions of
both mock galaxies could be found. This can be taken as strong evidence that MOND describes
the dynamics in the surroundings of relatively isolated ellipticals very well.

Finally, let us note an intriguing possibility in a MONDian universe (see also Section 9.2).
While massive ellipticals would form at 𝑧 ≈ 10 [393] from monolithic dissipationless collapse [337],
dwarf ellipticals could be more difficult to form. A possibility to form those would then be that
tidal dwarf galaxies would be formed and survive more easily (see Section 6.5.4) in major mergers,
and could then evolve to lead to the population of dwarf ellipticals seen today, thereby providing
a natural explanation for the observed density-morphology relation [239] (more dwarf ellipticals in
denser environments).
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(a) (b)

Figure 37: The surface brightness (a) and velocity dispersion (b) profiles of the elliptical galaxy
NGC 7507 [375] fitted by MOND (lines [399]). Elliptical galaxies can be approximated in MOND as
high-order polytropes with some radial orbit anisotropy [388]. This particular case has a polytropic in-
dex of 14 with anisotropy of the Osipkov–Merritt form with an anisotropy radius of 5 kpc and maximum
anisotropy 𝛽 = 0.75 at large radii [399]. The stellar mass-to-light ratio is ϒ𝐵

* = 3.03𝑀⊙/𝐿⊙. This simple
model captures the gross properties of both the surface brightness and velocity dispersion profiles. The
galaxy is well-fitted by MOND, contrary to the claim of [375].

6.6.2 Dwarf spheroidal galaxies

Dwarf spheroidal (dSph) satellites of the Milky Way [427, 477] exhibit some of the largest mass
discrepancies observed in the universe. In this sense, they are extremely interesting objects in
which to test MOND. Observationally, let us note that there are essentially two classes of objects
in the galactic stellar halo: globular clusters (see Section 6.6.3) and dSph galaxies. These overlap
in baryonic mass, but not in surface brightness, nor in age or uniformity of the stellar populations.
The globular clusters are generally composed of old stellar populations, they are HSB objects and
mostly exhibit no mass discrepancy problem, as expected for HSB objects in MOND. The dSphs,
on the contrary, generally contain slightly younger stellar populations covering a range of ages, they
are extreme LSB objects and exhibit, as said before, an extreme mass discrepancy, as generically
expected from MOND. So, contrary to the case of ΛCDM where different formation scenarios have
to be invoked (see Section 6.6.3), the different mass discrepancies in these objects find a natural
explanation in MOND.

At a more detailed level, MOND should also be able to fit the whole velocity dispersion profiles,
and not only give the right ballpark prediction. This analysis has recently been possible for the
eight “classical” dSph around the Milky Way [477]. Solving Jeans equation (Eq. 65), it was found [8]
that the four most massive and distant dwarf galaxies (Fornax, Sculptor, Leo I and Leo II) have
typical stellar mass-to-light ratios, exactly within the expected range. Assuming equilibrium, two
of the other four (smallest and most nearby) dSphs have mass-to-light ratios that are a bit higher
than expected (Carina and Ursa Minor), and two have very high ones (Sextans and Draco). For all
these dSphs, there is a remarkable correlation between the stellar 𝑀/𝐿 inferred from MOND and
the ages of their stellar populations [189]. Concerning the high inferred stellar 𝑀/𝐿, note that it
has been shown [78] that a dSph will begin to suffer tidal disruption at distances from the Milky
Way that are 4 – 7 times larger in MOND than in CDM, Sextans and Draco could thus actually
be partly tidally disrupted in MOND. And indeed, after subjecting the five dSphs with published
data to an interloper removal algorithm [418], it was found that Sextans was probably littered with
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unbound stars, which inflated the computed 𝑀/𝐿, while Draco’s projected distance-l.o.s. velocity
diagram actually looks as out-of-equilibrium as Sextans’ one. Ursa Minor, on the other hand, is
the typical example of an out-of-equilibrium system, elongated and showing evidence of tidal tails.
In the end, only Carina has a suspiciously high 𝑀/𝐿 (> 4; see [418]).

What is more, there is a possibility that, in a MONDian Universe, dSphs are not primordial
objects but have been tidally formed in a major merger (see Section 9.2 as a solution to the phase-
space correlation challenge of Section 4.2). In addition to the MOND effect, it would be possible
that these objects never really reach a stable equilibrium [237], and exhibit an artificially high
𝑀/𝐿 ratio. This is even more true for the recently discovered “ultra-faint” dwarf spheroidals, that
are also, due to to their extremely low-density, very much prone to tidal heating in MOND. Indeed,
at face value, if these ultrafaints are equilibrium objects, their velocity dispersions are much too
high compared to what MOND predicts, and rule out MOND straightforwardly. However, unless
this is due to systematic errors linked with the smallness of the velocity dispersion to measure
(one must distinguish between 𝜎 ≈ 2 km s−1 and 𝜎 ≈ 5 km s−1), and/or to high intrinsic stellar
𝑀/𝐿 ratios related to stochastic effects linked with the small number of stars [186], it was also
found [285] that these objects are all close to filling their MONDian tidal radii, and that their
stars can complete only a few orbits for every orbit of the satellite itself around the Milky Way
(see Figure 38). As Brada & Milgrom [78] have shown, it then comes as no surprise that they
are displaying out-of-equilibrium dynamics in MOND (and even more so in the case of a tidal
formation scenario [237]).

Figure 38: The characteristic acceleration, in units of 𝑎0, in the smallest galaxies known: the dwarf
satellites of the Milky Way (orange squares) and M31 (pink squares) [285]. The classical dwarfs, with
thousands of velocity measurements of individual stars [477], are largely consistent with MOND. The
more recently discovered “ultrafaint” dwarfs, tiny systems with only a handful of stars [427], typically
are not, in the sense that their measured velocity dispersions and accelerations are too high. This could
be due to systematic uncertainties in the data [230], as we must distinguish between 𝜎 ≈ 2 km s−1 and
𝜎 ≈ 5 km s−1. Nevertheless, there may be a good physical reason for the non-compliance of the ultrafaint
galaxies in the context of MOND. The deviation of these objects only occurs in systems where the stars
are close to filling their MONDian tidal radii: the left panel shows the half light radius relative to the tidal
radius. Such systems may not be in equilibrium. Brada & Milgrom [78] note that systems will no longer
respond adiabatically to the influence of their host galaxy when a star in a satellite galaxy can complete
only a few orbits for every orbit the satellite makes about its host. The deviant dwarfs are in this regime
(right panel).
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6.6.3 Star clusters

Star clusters come in two types: open clusters and globular clusters. Most observed open clusters
are in the inner parts of the Milky Way disk, and for that reason, the prediction of MOND is that
their internal dynamics is Newtonian [293] with, perhaps, a slightly renormalized gravitational
constant and slightly squashed isopotentials, due to the external field effect (Section 6.3). There-
fore, the possibility of distinguishing Newtonian dynamics from MOND in these objects would
require extreme precision. On the other hand, globular clusters are mostly HSB halo objects (see
Section 6.6.2), and are consequently predicted to be Newtonian, and most of those that are fluffy
enough to display MONDian behavior are close enough to the Galactic disk to be affected by the
external field effect (Section 6.3), and so are Newtonian, too. Interestingly, MOND thus provides a
natural explanation for the dichotomy between dwarf spheroidals and globular clusters. In ΛCDM,
this dichotomy is rather explained by the formation history [235, 397]: globular clusters are sup-
posedly formed in primordial disk-bound supermassive molecular clouds with high baryon-to-dark
matter ratio, and later become more spheroidal due to subsequent mergers. In MOND, it is, of
course, not implied that the two classes of objects have necessarily the same formation history, but
the different dynamics are qualitatively explained by MOND itself, not by the different formation
scenarios.

However, there exist a few globular clusters (roughly, less than ∼ 10 compared to the total
number of ∼ 150) both fluffy enough to display typical internal accelerations well below 𝑎0, and far
away enough from the galactic plane to be more or less immune from the external field effect [27,
182, 181, 436]. Thus, these should, in principle, display a MONDian mass discrepancy. They
include, e.g., Pal 14 and Pal 3, or the large fluffy globular cluster NGC 2419. Pal 3 is interesting,
because it indeed tends to display a larger-than-Newtonian global velocity dispersion, broadly in
agreement with the MOND prediction (Baumgardt & Kroupa, private communication). However,
it is difficult to draw too strong a conclusion from this (e.g., on excluding Newtonian dynamics),
since there are not many stars observed, and one or two outliers would be sufficient to make the
dispersion grow artificially, while a slightly-higher-than-usual mass-to-light ratio could reconcile
Newtonian dynamics with the data. Other clusters such as NGC 1851 and NGC 1904 apparently
display the same MONDian behavior [408] (see also [187]). On the other hand, Pal 14 displays
exactly the opposite behavior: the measured velocity dispersion is Newtonian [212], but again the
number of observed stars is too small to draw a statistically significant conclusion [164], and it
is still possible to reconcile the data with MOND assuming a slightly low stellar mass-to-light
ratio [437]. Note that if the cluster is on a highly eccentric orbit, the external gravitational field
could vary very rapidly both in amplitude and direction, and it is possible that the cluster could
take some time to accomodate this by still displaying a Newtonian signature in its kinematics after
a sudden decrease of the external field.

NGC 2419 is an interesting case, because it allows not only for a measure of the global velocity
dispersion, but also of the detailed velocity dispersion profile [199]. And, again, like in the case of
Pal 14 (but contrary to Pal 3), it displays Newtonian behavior. More precisely, it was found, solving
Jeans equations (Eq. 65), that the best MOND fit, although not extremely bad in itself, was 350
times less likely than the best Newtonian fit without DM [199, 200]. However, the stability [336] of
this best MOND fit has not been checked in detail. These results are heavily debated as they rely
on the small quoted measurement errors on the surface density, and even a slight rotation of only
the outer parts of this system near the plane of the sky (which would not show up in th velocity
data) would make a considerable difference in the right direction for MOND [398]. However, these
observations, together with the results on Pal 14, although not ruling out any theory, are not
a resounding success for MOND. However, it could perhaps indicate that globular clusters are
generically on highly eccentric orbits, and out of equilibrium due to this (however, the effect would
have to be opposite to that prevailing in ultra-faint dwarfs, where the departure from equilibrium
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would boost the velocity dispersion instead of decreasing it). A stronger view on these results
could indicate that MOND as formulated today is an incomplete paradigm (see, e.g., Eq. 27), or
that MOND is an effect due to the fundamental nature of the DM fluid in galaxies (see Sections 7.6
and 7.9), which is absent from globular clusters. Concerning NGC 2419, it is perhaps useful to
remind oneself that it is very plausibly not a globular cluster. It is part of the Virgo stream and is
thus most probably the remaining nucleus of a disrupting satellite galaxy in the halo of the Milky
Way, on a generically-highly-eccentric orbit. Detailed N-body simulations of such an event, and of
the internal dynamics of the remaining nucleus, would thus be the key to confront MOND with
observations in this object. All in all, the situation regarding MOND and the internal dynamics
of globular clusters remains unclear.

On the other hand, it has been noted that MOND seems to overpredict the Roche lobe volume
of globular clusters [499, 500, 512]. Again, the fact that globular clusters could generically be
on highly eccentric orbits could come to the rescue here. What is more, it was shown that, in
MOND, globular clusters can have a cutoff radius, which is unrelated to the tidal radius when non-
isothermal [397]. In general, the cutoff radii of dwarf spheroidals, which have comparable baryonic
masses, are larger than those of the globular clusters, meaning that those may well extend to their
tidal radii because of a possibly different formation history than globular clusters.

Finally, a last issue for MOND related to globular clusters [335, 377] is the existence of five
such objects surrounding the Fornax dwarf spheroidal galaxy. Indeed, under similar environmental
conditions, dynamical friction occurs on significantly shorter timescales in MOND than standard
dynamics [95], which could cause the globular clusters to spiral in and merge within at most
2 Gyrs [377]. However, this strongly depends on the orbits of the globular clusters, and, in par-
ticular, on their initial radius [10], which can allow for a Hubble time survival of the orbits in
MOND.

6.6.4 Galaxy groups and clusters

As pointed out earlier (3rd Kepler-like law of Section 5.2), it is a natural consequence of Milgrom’s
law that, at the effective baryonic radius of the system, the typical acceleration 𝜎2/𝑅 is always
observed to be on the order of 𝑎0, thereby naturally explaining the linear relation between size
and temperature for galaxy clusters [327, 392]. However, one of the main predictions of Milgrom’s
formula is the baryonic Tully–Fisher relation (circular velocity vs. baryonic mass, Figure 3), and
its equivalent for isotropic pressure-supported systems, the Faber–Jackson relation (stellar velocity
dispersion vs. baryonic mass, Figure 7), both for their slope and normalization. For systems such
as galaxy clusters, where the hot intra-cluster gas is the major baryonic component, this relation
can also be translated into a “gas temperature vs. baryonic mass” relation, 𝑀𝑏 ∝ 𝑇 2, plotted on
Figure 39, as the line log(𝑀𝑏/𝑀⊙) = 2 log(𝑇/keV)+ 12.9 (note that this differs slightly from [389]
where solar metallicity gas is assumed). Note on this figure that observations are closer to the
MOND predicted slope than to the conventional prediction of 𝑀 ∝ 𝑇 3/2 in ΛCDM, without the
need to invoke preheating (a need that may arise as an artifact of the mismatch in slopes).

So, interestingly, the data are still reasonably consistent with the slope predicted by MOND [383],
but not with the normalization. There is roughly a factor of two of residual missing mass in these
objects [170, 354, 387, 389, 392, 453]. This conclusion, reached from applying the hydrostatic
equilibrium equation to the temperature profile of the X-ray emitting gas of these objects, has
also been reached for low mass X-ray emitting groups [12]. This is essentially because, contrary to
the case of galaxies, there is observationally a need for “Newtonian” missing mass in the central
parts42 of clusters, where the observed acceleration is usually slightly larger than 𝑎0, meaning that

42 The conventional baryon fraction of clusters increases monotonically with radius [426], only obtaining the
cosmic value of 0.17 at or beyond the virial radius. Therefore, one might infer the presence of dark baryons in
cluster cores in ΛCDM as well as in MOND.
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Figure 39: The baryonic mass–X-ray temperature relation for rich clusters (gray triangles [359, 389])
and groups of galaxies (green triangles [12]). The solid line indicates the prediction of MOND: the data
are reasonably consistent with the slope (𝑀 ∝ 𝑇 2), but not with the normalization. This is the residual
missing baryon problem in MOND: there should be roughly twice as much mass (on average) as observed.
Also shown is the scaling relation expected in ΛCDM (dashed line [137]). This is in better (if not perfect)
agreement with the normalization of the data for rich clusters, but not the slope. The difference is
sometimes attributed to preheating of the gas [496], which might also occur in MOND.

the MOND prescription is not enough to explain the observed discrepancy between visible and
dynamical mass there. For this reason, the residual missing mass in MOND is essentially con-
centrated in the central parts of clusters, where the ratio of MOND dynamical mass to observed
baryonic mass reaches a value of 10, to then only decrease to a value of roughly ∼ 2 in the very
outer parts, where almost no residual mass is present. Thus, the profile of this residual mass would
thus consist of a large constant density core of about 100 – 200 kpc in size (depending on the size
of the group/cluster in question), followed by a sharp cutoff.

The need for this residual missing mass in MOND might be taken in one of the five following
ways:

(i) Practical falsification of MOND,

(ii) Evidence for missing baryons in the central parts of clusters,

(iii) Evidence for non-baryonic dark matter (existing or exotic),

(iv) Evidence that MOND is an incomplete paradigm,

(v) Evidence for the effect of additional fields in the parent relativistic theories of MOND, not
included in Milgrom’s formula.

If (i) is correct, one still needs to explain the success of MOND on galaxy scales with ΛCDM.
Such an explanation has yet to be offered. Thus, tempting as case (i) is, it is worth giving a closer
inspection to the four other possibilities.

The second case (ii) would be most in line with the elegant absence of need for any non-baryonic
mass in MOND (however, see the “dark fields” invoked in Section 7). It has happened before that
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Figure 40: The baryon budget in the low redshift universe adopted from [421]. The census of baryons
includes the detected Warm-Hot Intergalactic Medium (WHIM), the Lyman𝛼 forest, stars in galaxies,
detected cold gas in galaxies (atomic HI and molecular H2), other gas associated with galaxies (the Cir-
cumgalactic Medium, CGM), and the Intracluster Medium (ICM) of groups and clusters of galaxies. The
sum of known baryons falls short of the density of baryons expected from BBN: ∼ 30% are missing. These
missing baryons presumably exist in some as yet undetected (i.e., dark) form. If a fraction of these dark
baryons reside in clusters (an amount roughly comparable to that in the ICM) it would suffice to explain
the residual mass discrepancy problem MOND suffers in galaxy clusters.

most of the baryonic mass was in an unobserved component. From the 1930s when Zwicky first
discovered the missing mass problem in clusters till the 1980s, it was widely presumed that the
stars in the observed galaxies represented the bulk of baryonic mass in clusters. Only after the
introduction of MOND (in 1983) did it become widely appreciated that the diffuse X-ray emitting
intracluster gas (the ICM) greatly outweighed the stars. That is to say, some of the missing mass
problem in clusters was due to optically dark baryons — instead of the enormous mass discrepancies
implied by cluster dynamical mass to optical light ratios in excess of 100 [24], the ratio of dark to
baryonic mass is only ∼ 8 conventionally [175, 278]. So we should not be too hasty in presuming
we now have a complete census of baryons in clusters. Indeed, in the global baryon inventory of
the universe, ∼ 30% of the baryons produced during BBN are missing (Figure 40), and presumably
reside in some, as yet undetected, (dark) form. It is estimated [160, 421] that the observed baryons
in clusters only account for about 4% of those produced during BBN (Figure 40). This is much
less than the 30% of baryons that are still missing. Consequently, only a modest fraction of the
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dark baryons need to reside in clusters to solve the problem of missing mass in the central regions
of clusters in MOND. It should be highlighted that this missing mass only appears in MOND
for systems with a high abundance of ionised gas and X-ray emission. Indeed, for even smaller
galaxy groups, devoid of gas, the MOND predictions for the velocity dispersions of individual
galaxies are again perfectly in line with the observations [303, 307]. It is then no stretch of the
imagination to surmise that these gas rich systems, where the residual–missing-baryons problem
have equal quantities of molecular hydrogen or other molecules. Milgrom [310] has, e.g., proposed
that the missing mass in MOND could entirely be in the form of cold, dense gas clouds. There
is an extensive literature discussing searches for cold gas in the cores of galaxy clusters, but what
is usually meant there is quite different from what is meant here, since those searches consisted
in trying to find the signature of diffuse cold molecular gas at a temperature of ∼ 30 K. The
proposition of Milgrom [310] rather relies on the work of Pfenniger & Combes [352], where dense
gas clouds with a temperature of only a few Kelvin (∼ 3 K), solar-system size, and of a Jupiter
mass, were considered to be possible candidates for both galactic and extragalactic dark matter.
These clouds would behave in a collisionless way, just like stars. However, since the dark mass
considered in the context of MOND cannot be present in galaxies, it is not subject to the galactic
constraints on such gas clouds. Note that the total sky covering factor of such clouds in the core
of the clusters would be on the order of only 10−4, so that they would only occult a minor fraction
of the X-rays emitted by the hot gas (and it would be a rather constant fraction). For the same
reason, the chances of a given quasar having light absorbed by them is very small. Still, [310]
notes that these clouds could be probed through X-ray flashes coming out of individual collisions
between them. Of course, this speculative idea also raises a number of questions, the most serious
one being how these clumps form and stabilize, and why they form only in clusters, X-ray emitting
groups and some ellipticals at the center of these groups and clusters, but not in individual spiral
galaxies. As noted above, the fact that missing mass in MOND is necessarily associated with an
abundance of ionised gas could be a hint at a formation and stabilization process somehow linked
with the presence of hot gas and X-ray emission themselves. Then, there is the issue of knowing
whether the cloud formation would be prior to or posterior to the cluster formation. We note that
a rather late formation mechanism could help increase the metal abundance, solving the problem of
small-scale variations of metallicity in clusters when the clouds are destroyed [330]. Milgrom [310]
also noted that these clouds could alleviate the cooling flow conundrum, because whatever destroys
them (e.g., cloud-cloud collisions and dynamical friction between the clouds and the hot gas) is
conducive to heating the core gas, and thus preventing it from cooling too quickly. Such a heating
source would not be transient and would be quite isotropic, contrary to AGN heating.

Another possibility (iii) would be that this residual missing mass in clusters is in the form of
non-baryonic matter. There is one obviously existing form of such matter: neutrinos. If 𝑚𝜈 ≈√
Δ𝑚2 [434], then the neutrino mass is too small to be of interest in this context. But there is

nothing that prevents it from being larger (note that the “cosmological” constraints from structure
formation in the ΛCDM context obviously do not apply in MOND). Actual model-independent
experimental limits on the electron neutrino mass from the Mainz/Troitsk experiments, counting
the highest energy electrons in the 𝛽-decay of Tritium [234] are 𝑚𝜈 < 2.2 eV. Interestingly, the
KATRIN experiment (the KArlsruhe TRItium Neutrino experiment, under construction) will be
able to falsify these 2 eV electron neutrinos at 95% confidence. If the neutrino mass is substantially
larger than the mass differences, then all types have about the same mass, and the cosmological
density of three left-handed neutrinos and their antiparticles [392] would be

Ω𝜈 = 0.062𝑚𝜈 , (66)

where 𝑚𝜈 is the mass of a single neutrino type in eV. If one assumes that clusters of galaxies
respect the baryon-neutrino cosmological ratio, and that the MOND missing mass is mostly made
of neutrinos as suggested by [389, 392], then the mass of neutrinos must indeed be around 2 eV.
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Combined with the effect of additional degrees of freedom in relativistic MOND theories (Section 7),
it has been shown that the CMB anisotropies could also be reproduced (see Section 9.2 and [430]),
while this hot dark matter would obviously free-stream out of spiral galaxies and would thus not
perturb the MOND fits of Section 6.5.1. The main limit on the neutrino ability to condense in
clusters comes from the Tremaine–Gunn limit [463], stating that the phase space density must be
preserved during collapse. This is a density level half the quantum mechanical degeneracy level in
phase-space:

𝑓max =
1

2

𝑖=6∑︁
𝑖=1

𝑚4
𝜈𝑖

ℎ3
. (67)

Converting this into configuration space, the maximum density for a cluster of a given temperature,
𝑇 , is defined for a given mass of one neutrino type as [463]:

𝜌max
𝜈

7× 10−5 𝑀⊙ pc−3
=

(︂
𝑇

1𝑘𝑒𝑉

)︂1.5 (︁ 𝑚𝜈

2𝑒𝑉

)︁4

. (68)

Assuming the temperature of the neutrino fluid as being equal (due to violent relaxation) to the
mean emission weighted temperature of the gas, Sanders [389] showed that such 2 eV neutrinos at
the limit of experimental detection could indeed account for the bulk of the dynamical mass in his
sample of galaxy clusters of 𝑇 > 4 keV (see also Section 8.3 for gravitational lensing constraints).
This has the great advantage of naturally reproducing the proportionality of the electron density
in the cores of clusters to 𝑇 3/2, as observed in [392]. However, looking at the central region of
low-temperature X-ray emitting galaxy groups, it was found [12] that the needed central density of
missing mass far exceeded this limit by a factor of several hundred. One would need one neutrino
species with 𝑚 ∼ 10 eV to reach the required densities. One exotic possibility is then the idea of
right-handed eV-scale sterile neutrinos [13]: as strange as this sounds, this mass for sterile neutrinos
could also provide a good fit to the CMB acoustic peaks (see Section 9.2). This could indeed sound
like the strangest and most complicated universe possible, combining true non-baryonic (hot) dark
matter with a modification of gravity, but if this is what it takes to simultaneously explain the
Kepler-like laws of galactic dynamics and the extragalactic evidence for dark matter, it is useful
to remember that there are both good reasons for there being more particles than those of the
standard model of particle physics and that there is no reason that general relativity should be
valid over a wide range of scales where it has never been tested. In any case, experiments that can
address the existence of such a ∼ 10 eV-scale sterile neutrino would thus be very interesting, as
this kind of particle could provide the dark matter candidate only in a modified gravity framework,
since such a hot dark matter particle would be unable to form small structures and to provide the
dark matter that would be needed in galaxies.

Yet another possibility (iv) would be that MOND is incomplete, and that a new scale should
be introduced, in order to effectively enhance the value of 𝑎0 in galaxy clusters, while lowering it
to its preferred value in galaxies. There are several ways to implement such an idea. For instance,
Bekenstein [36] proposed adding a second scale in order to allow for effective variations of the
acceleration constant as a function of the deepness of the potential (Eq. 27). This idea should be
investigated more in the future, but it is not clear that such a simple rescaling of 𝑎0 would account
for the exact spatial distribution of the residual missing mass in MOND clusters, especially in
cases where it is displaced from the baryonic distribution (see Section 8.3). However, as even
Gauss’ theorem would not be valid anymore in spherical symmetry, the high non-linearity might
provide non-intuitive results, and it would thus clearly be worth investigating this suggestion in
more detail, as well as developing similar ideas with other additional scales in the future (such as,
for instance, the baryonic matter density; see [82, 143] and Section 7.6).

Finally, as we shall see in Section 7, parent relativistic theories of MOND often require additional
degrees of freedom in the form of “dark fields”, which can nevertheless be globally subdominant
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to the baryon density, and thus do not necessarily act precisely as true “dark matter”. Thus, the
last possibility (v) is that these fields, which are obviously not included in Milgrom’s formula, are
responsible for the cluster missing mass in MOND. An example of such fields are the vector fields
of TeVeS (Section 7.4) and Generalized Einstein-Aether theories (Section 7.7). It has been shown
(see Section 9.2) that the growth of the spatial part of the vector perturbation in the course of
cosmological evolution can successfully seed the growth of baryonic structures, just as dark matter
does. If these seeds persist, it was shown [112] that they could behave in very much the same
way as a dark matter halo in relatively unrelaxed galaxy clusters. However, it remains to be
seen whether the spatially-concentrated distribution of missing mass in MOND would be naturally
reproduced in all clusters. In other relativistic versions of MOND (see, e.g., Sections 7.6 and 7.9),
the “dark fields” are truly massive and can be thought of as true dark matter (although more
complex than simple collisionless dark matter), whose energy density outweighs the baryonic one,
and could provide the missing mass in clusters. However, again, it is not obvious that the centrally-
concentrated distribution of residual missing mass in clusters would be naturally reproduced. All
in all, there is no obviously satisfactory explanation for the problem of residual missing mass in
the center of galaxy clusters, which remains one of the most serious problems facing MOND.
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7 Relativistic MOND Theories

In Section 6, we have considered the classical theories of MOND and their predictions in a vast
number of astrophysical systems. However, as already stated at the beginning of Section 6, these
classical theories are only toy-models until they become the weak-field limit of a relativistic theory
(with invariant physical laws under differentiable coordinate transformations), i.e., an extension
of general relativity (GR) rather than an extension of Newtonian dynamics. Here, we list the
various existing relativistic theories boiling down to MOND in the quasi-static weak-field limit. It
is useful to restate here that the motivation for developing such theories is not to get rid of dark
matter but to explain the Kepler-like laws of galactic dynamics predicted by Milgrom’s law (see
Section 5). As we shall see, many of these theories include new fields, so that dark matter is often
effectively replaced by “dark fields” (although, contrary to dark matter, their energy density can be
subdominant to the baryonic one; note that, even more importantly, in a static configuration these
dark fields are fully determined by the baryons, contrary to the traditional dark matter particles,
which may, in principle, be present independent of baryons).

These theories are great advances because they enable us to calculate the effects of gravitational
lensing and the cosmological evolution of the universe in MOND, which are beyond the capabilities
of classical theories. However, as we shall see, many of these relativistic theories still have their
limitations, ranging from true theoretical or observational problems to more aesthetic problems,
such as the arbitrary introduction of an interpolating function (Section 6.2) or the absence of an
understanding of the Λ ∼ 𝑎20 coincidence. What is more, the new fields introduced in these theories
have no counterpart yet in microphysics, meaning that these theories are, at best, only effective.
So, despite the existing effective relativistic theories presented here, the quest for a more profound
relativistic formulation of MOND continues. Excellent reviews of existing theories can also be
found in, e.g., [34, 35, 81, 100, 136, 183, 318, 429, 431].

The heart of GR is the equivalence principle(s), in its weak (WEP), Einstein (EEP) and strong
(SEP) form. The WEP states the universality of free fall, while the EEP states that one recovers
special relativity in the freely falling frame of the WEP. These equivalence principles are obtained
by assuming that all known matter fields are universally and minimally coupled to one single metric
tensor, the physical metric. It is perfectly fine to keep these principles in MOND, although certain
versions can involve another type of (dark) matter not following the same geodesics as the known
matter, and thus effectively violating the WEP. Additionally, note that the local Lorentz invariance
of special relativity could be spontaneously violated in MOND theories. The SEP, on the other
hand, states that all laws of physics, including gravitation itself, are fully independent of velocity
and location in spacetime. This is obtained in GR by making the physical metric itself obey the
Einstein–Hilbert action. This principle has to be broken in MOND (see also Section 6.3). We now
recall how GR connects with Newtonian dynamics in the weak-field limit, which is actually the
regime in which the modification must be set in order to account for the MOND phenomenology
of the ultra–weak-field limit. The action of GR written as the sum of the matter action and the
Einstein–Hilbert (gravitational) action43:

𝑆GR ≡ 𝑆matter[matter, 𝑔𝜇𝜈 ] +
𝑐4

16𝜋𝐺

∫︁
𝑑4𝑥

√
−𝑔 𝑅, (69)

where 𝑔 denotes the determinant of the metric tensor 𝑔𝜇𝜈 with (−,+,+,+) signature44, and 𝑅 =
𝑅𝜇𝜈𝑔

𝜇𝜈 is its scalar curvature, 𝑅𝜇𝜈 being the Ricci tensor (involving second derivatives of the
metric). The matter action is a functional of the matter fields, depending on them and their first

43 If the action has the units of ℎ̄, the factor in front of the gravitational action is then 𝑐3/16𝜋𝐺. And if one
wishes to include a cosmological constant Λ, the integral then rather reads

∫︀
𝑑4𝑥

√
−𝑔 (𝑅− 2Λ).

44 With this signature, the proper-time is defined by 𝑑𝜏2 = −𝑔𝜇𝜈 𝑑𝑥𝜇𝑑𝑥𝜈 .
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derivatives. For instance, the matter action of a free point particle 𝑆pp writes:

𝑆pp ≡ −
∫︁

𝑚𝑐𝑑𝑠 = −
∫︁

𝑚𝑐
√︁

−𝑔𝜇𝜈(𝑥) 𝑣𝜇𝑣𝜈 𝑑𝑡, (70)

depending on the positions 𝑥 and on their time-derivatives 𝑣𝜇. Varying the matter action with
respect to (w.r.t.) matter fields degrees of freedom yields the equations of motion, i.e., the geodesic
equation in the case of a point particle:

𝑑2𝑥𝜇

𝑑𝜏2
= −Γ𝜇

𝛼𝛽

𝑑𝑥𝛼

𝑑𝜏

𝑑𝑥𝛽

𝑑𝜏
, (71)

where the proper time 𝜏 = 𝑠 is approximately equal to 𝑐𝑡 for slowly moving non-relativistic particles,
and Γ𝜇

𝛼𝛽 is the Christoffel symbol involving first derivatives of the metric. On the other hand,
varying the total action w.r.t. the metric yields Einstein’s field equations:

𝑅𝜇𝜈 − 1

2
𝑅𝑔𝜇𝜈 =

8𝜋𝐺

𝑐4
𝑇𝜇𝜈 , (72)

where 𝑇𝜇𝜈 is the stress-energy tensor defined as the variation of the Lagrangian density of the
matter fields over the metric.

In the static weak-field limit, the metric is written as (up to third-order corrections in 1/𝑐3)45:

𝑔0𝑖 = 𝑔𝑖0 = 0 , 𝑔00 =⏟ ⏞ 
Taylor

−1− 2Φ

𝑐2
, 𝑔𝑖𝑗 =⏟ ⏞ 

Taylor

(︂
1 +

2Ψ

𝑐2

)︂
𝛿𝑖𝑗 , (73)

where, in GR,
Φ = Φ𝑁 and Ψ = −Φ𝑁 , (74)

and Φ𝑁 is the Newtonian gravitational potential. From the (0, 0) components of the weak-field
metric, one gets back Newton’s second law for massive particles 𝑑2𝑥𝑖/𝑑𝑡2 = −Γ𝑖

00 = −𝜕Φ𝑁/𝑑𝑥𝑖

from the geodesic equation (Eq. 71). On the other hand, Einstein’s equations (Eq. 72) give back the
Newtonian Poisson equation ∇2Φ𝑁 = 4𝜋𝐺𝜌. Thus, the metric plays the role of the gravitational
potential, and the Christoffel symbol plays the role of acceleration. Note, however, that if time-
like geodesics are determined by the (0, 0) component of the metric, this is not the case for null
geodesics. While the gravitational redshift for light-rays is solely governed by the 𝑔00 component
of the metric too, the deflection of light is, on the other hand, also governed by the 𝑔𝑖𝑗 components
(more specifically by Φ−Ψ in the weak-field limit). This means that, in order for the anomalous
effects of any modified gravity theory on lensing and dynamics to correspond to a similar46 amount
of “missing mass” in GR, it is crucial that Ψ ≃ −Φ in Eq. 73.

7.1 Scalar-tensor k-essence

MOND is an acceleration-based modification of gravity in the ultra-weak-field limit, but since the
Christoffel symbol, playing the role of acceleration in GR, is not a tensor, it is, in principle, not
possible to make a general relativistic theory depend on it. Another natural way to account for
the departure from Newtonian gravity in the weak-field limit and to account for the violation of
the SEP inherent to the external field effect is to resort to a scalar-tensor theory, as first proposed

45 Note that, at 1PN, this weak-field metric can also be written as 𝑔00 = −𝑒2Φ/𝑐2 , 𝑔𝑖𝑗 = 𝑒2Ψ/𝑐2𝛿𝑖𝑗 . Note also
that Taylor expanding Eq. 70 yields 𝑆pp =

∫︀
𝑚(v2/2 − Φ𝑁 − 𝑐2) 𝑑𝑡, so that the sum of the classical kinetic and

internal actions for a point particle (see Eq. 13) are now lumped together into the matter action.
46 The derived lensing and dynamical masses are typically very close to each other but the data are not yet precise

enough to ascertain that they are exactly identical.
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by [38]. The added scalar field can play the role of an auxiliary potential, and its gradient then
has the dimensions of acceleration and can be used to enforce the acceleration-based modification
of MOND.

The relativistic theory of [38] depends on two fields, an “Einstein metric” 𝑔𝜇𝜈 and a scalar field
𝜑. The physical metric 𝑔𝜇𝜈 entering the matter action is then given by a conformal transformation
of the Einstein metric47 through an exponential coupling function:

𝑔𝜇𝜈 ≡ 𝑒2𝜑𝑔𝜇𝜈 . (75)

In order to recover the MOND dynamics, the Einstein–Hilbert action (involving the Einstein
metric) remains unchanged (

∫︀
𝑑4𝑥

√
−𝑔 �̃�), and the dimensionless scalar field is given a k-essence

action, with no potential and a non-linear, aquadratic, kinetic term48 inspired by the AQUAL
action of Eq. 16:

𝑆𝜑 ≡ − 𝑐4

2𝑘2𝑙2𝐺

∫︁
𝑑4𝑥

√︀
−𝑔 𝑓(𝑋), (76)

where 𝑘 is a dimensionless constant, 𝑙 is a length-scale, 𝑋 = 𝑘𝑙2𝑔𝜇𝜈𝜑,𝜇 𝜑,𝜈 , and 𝑓(𝑋) is the “MOND
function”. Since the action of the scalar field is similar to that of the potential in the Bekenstein–
Milgrom version of classical MOND, this relativistic version is known as the Relativistic Aquadratic
Lagrangian theory, RAQUAL.

Varying the action w.r.t. , the scalar field yields, in a static configuration, the following modified
Poisson’s equation for the scalar field:

𝑐2∇.
[︀
∇𝜑𝑓 ′(𝑘𝑙2|∇𝜑|2)

]︀
= 𝑘𝐺𝜌, (77)

and the (0, 0) component of the physical metric is given by 𝑔00 = −𝑒2(Φ𝑁+𝑐2𝜑)/𝑐2 , leading us
precisely to the situation of Eq. 40 in the weak-field, with Φ = Φ𝑁 + 𝑐2𝜑, with

𝑠 = (𝑐2/𝑎0)|∇𝜑| = (𝑋𝑐4/𝑘𝑙2𝑎20)
1/2 (78)

and
�̃�(𝑠) = (4𝜋𝑐2/𝑘)𝑓 ′(𝑋), (79)

whose finely tuned relation with the 𝜇-function of Milgrom’s law is extensively described in Sec-
tion 6.2. We note that the standard choice for 𝑋 ≪ 1 is 𝑓 ′(𝑋) ∼ (𝑋/3)1/2, meaning that in
order to recover �̃�(𝑠) = 𝑠/𝜉 for small 𝑠, where 𝜉 = 𝐺𝑁/𝐺 (see Section 6.2), one must define the
length-scale as

𝑙 ≡ (𝑐2
√
3𝑘)/(4𝜋𝜉𝑎0). (80)

It was immediately realized [38] that a k-essence theory such as RAQUAL can exhibit super-
luminal propagations whenever 𝑓 ′′(𝑋) > 0 [80]. Although it does not threaten causality [80],
one has to check that the Cauchy problem is still well-posed for the field equations. It has been
shown [80, 360] that it requires the otherwise free function 𝑓 to satisfy the following properties,
∀𝑋:

𝑓 ′(𝑋) > 0 (81)

𝑓 ′(𝑋) + 2𝑋𝑓 ′′(𝑋) > 0, (82)

47 The frame associated to the Einstein metric is called the “Einstein frame” as opposed to the “matter frame”
or “Jordan frame”, associated to the physical metric.

48 k-essence fields have also recently been reintroduced as possible dark energy fluids, that could also drive
inflation [20, 21, 92]. This name comes from the fact that their dynamics are dominated by their kinetic term 𝑓(𝑋)
(in the case of RAQUAL, there is no potential at all), contrary to other dark energy models such as quintessence,
in which the scalar field potential plays the crucial role.
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which is the equivalent of the constraints of Eq. 37 on Milgrom’s 𝜇-function.
However, another problem was immediately realized at an observational level [38, 40]. Because

of the conformal transformation of Eq. 75, one has that Ψ ̸= −Φ in the RAQUAL equivalent of
Eq. 73. In other words, as it is well-known that gravitational lensing is insensitive to conformal
rescalings of the metric, apart from the contribution of the stress-energy of the scalar field to the
source of the Einstein metric [40, 81], the “non-Newtonian” effects of the theory respectively on
lensing and dynamics do not at all correspond to similar amounts of “missing mass”. This is also
considered a generic problem with any local pure metric formulation of MOND [441].

7.2 Stratified theory

A solution to the above gravitational lensing problem due to the conformal rescaling of the met-
ric in RAQUAL has been presented in [385]. Inspired by “stratified” theories of gravity [334],
Sanders [385] suggested, in addition to the scalar field 𝜑 of RAQUAL, the use of a non-dynamical
timelike vector field 𝑈𝜇 = (−1, 0, 0, 0) with unit-norm 𝑈2 = −1 (in terms of the Einstein metric),
in order to enforce a disformal relation between the Einstein and physical metrics:

𝑔𝜇𝜈 ≡ 𝑒−2𝜑𝑔𝜇𝜈 − 2 sinh(2𝜑)𝑈𝜇𝑈𝜈 . (83)

The second term only affects the 𝑔00 component, and it then appears immediately that Ψ = −Φ
in the weak-field limit (rhs terms of Eq. 73), and the problem of lensing is cured. However, the
prescription that a 4-vector points in the time direction is not a covariant one, and the theory
should involve strong preferred frame effects, although these can now be fully suppressed, as well
as any deviation from GR at small distances, with an appropriate additional “Galileon” term in
addition to the asymptotic deep-MOND k-essence term in the action of the scalar field [22] (the
other advantage being that the interpolating function then does not have to be inserted by hand).
In any case, endowing the vector field with covariant dynamics of its own has been the next logical
step in developing relativistic MOND theories.

7.3 Original Tensor-Vector-Scalar theory

The idea of the Tensor-Vector-Scalar theory of Bekenstein [33], dubbed TeVeS, is to keep the
disformal relation of Eq. 83 between the Einstein metric 𝑔𝜇𝜈 and the physical metric 𝑔𝜇𝜈 to which
matter fields couple, but to replace the above non-dynamical vector field by a dynamical vector
field 𝑈𝜇 with an action (𝐾 being a dimensionless constant):

𝑆𝑈 ≡ − 𝑐4

16𝜋𝐺

∫︁
𝑑4𝑥

√︀
−𝑔

[︂
𝐾

2
𝑔𝛼𝛽𝑔𝜇𝜈𝑈[𝛼,𝜇]𝑈[𝛽,𝜈] − 𝜆(𝑔𝜇𝜈𝑈𝜇𝑈𝜈 + 1)

]︂
, (84)

akin to that of the electromagnetic 4-potential vector field (𝑈[𝜇,𝜈] playing the role of the Faraday
tensor), but without the coupling term to the 4-current, and with a constraint term forcing the
unit norm 𝑈𝜇𝑈𝜈 = 𝑔𝜇𝜈𝑈𝜇𝑈𝜈 = −1 (𝜆 being a Lagrange multiplier function, to be determined as
the equations are solved). The first term in the integrand takes care of approximately aligning
𝑈𝜇 with the 4-velocity of matter (when simultaneously solving for (i) the Einstein-like equation of
the Einstein metric 𝑔𝜇𝜈 and for (ii) the vector equation obtained by varying the total action with
respect to 𝑈𝜇).

Finally, the k-essence action for the scalar field is kept as in RAQUAL (Eq. 76), but with

𝑋TeVeS = 𝑘𝑙2(𝑔𝜇𝜈 − 𝑈𝜇𝑈𝜈)𝜑,𝜇 𝜑,𝜈 . (85)

Contrary to RAQUAL, this scalar field exhibits no superluminal propagation modes. However, [81]
noted that such superluminal propagation might have to be re-introduced in order to avoid excessive
Cherenkov radiation and suppression of high-energy cosmic rays (see also [320]).
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The static weak-field limit equation for the scalar field is precisely the same as Eq. 77, and the
scalar field enters the static weak field metric Eq. 73 as Φ = −Ψ = ΞΦ𝑁 +𝑐2𝜑 meaning that lensing
and dynamics are compatible, with Ξ being a factor depending on 𝐾 and on the cosmological value
of the scalar field (see Eq. 58 of [33]). This can be normalized to yield Ξ = 1 at redshift zero.
Again, all the relations between the free function 𝑓 and Milgrom’s 𝜇-function can be found in
Section 6.2 (see also [145, 431]).

This theory has played a true historical role as a proof of concept that it was possible to construct
a fully relativistic theory both enhancing dynamics and lensing in a coherent way and reproduc-
ing the MOND phenomenology for static configurations with the dynamical 4-vector pointing in
the time direction. However, the question remained whether these static configurations would be
stable. What is more, although a classical Hamiltonian49 unbounded from below in flat space-
time would not necessarily be a concern at the classical level (and even less if the model is only
“phenomenological”), it would inevitably become a worry for the existence of a stable quantum
vacuum (see however [196]). And indeed, it was shown in [98] that models with such “Maxwellian”
vector fields having a TeVeS-like Lagrange multiplier constraint in their action have a correspond-
ing Hamiltonian density that can be made arbitrarily large and negative (see also Section IV.A
of [81]). What is more, even at the classical level, it has been shown that spherically-symmetric
solutions of TeVeS are heavily unstable [412, 413], and that this type of vector field causes caustic
singularities [105], in the sense that the integral curves of the vector are timelike geodesics meeting
each other when falling into gravity potential wells. Thus, another form was needed for the action
of the TeVeS vector field.

7.4 Generalized Tensor-Vector-Scalar theory

The generalization of TeVeS was proposed by Skordis [428]. Inspired by the fact that Einstein-
Aether theories [206, 207] also present instabilities when the unit-norm vector field is “Maxwellian”
as above, it was simply proposed to use a more general Lagrangian density for the vector field,
akin to that of Einstein-Aether theories:

𝑆𝑈 ≡ − 𝑐4

16𝜋𝐺

∫︁
𝑑4𝑥

√︀
−𝑔

[︀
𝐾𝛼𝛽𝜇𝜈𝑈𝛽,𝛼𝑈𝜈,𝜇 − 𝜆(𝑔𝜇𝜈𝑈𝜇𝑈𝜈 + 1)

]︀
, (86)

where
𝐾𝛼𝛽𝜇𝜈 = 𝑐1𝑔

𝛼𝜇𝑔𝛽𝜈 + 𝑐2𝑔
𝛼𝛽𝑔𝜇𝜈 + 𝑐3𝑔

𝛼𝜈𝑔𝛽𝜇 + 𝑐4𝑈
𝛼𝑈𝜇𝑔𝛽𝜈 (87)

for a set of constants 𝑐1, 𝑐2, 𝑐3, 𝑐4. Interestingly, spherically-symmetric solutions depend only on the
combination 𝑐1−𝑐4, not on 𝑐2 and 𝑐3 that can, in principle be chosen to avoid the instabilities of the
original TeVeS theory. Of course, the original unstable theory is also included in this generalization
through a specific combination of the four 𝑐𝑖 (see, e.g., [431]).

Thus, this generalized version is the current “working version” of what is now called TeVeS: a
tensor-vector-scalar theory with an Einstein-like metric, an Einstein-Aether-like unit-norm vector
field, and a k-essence-like scalar field, all related to the physical metric through Eq. 83. It has been
extensively studied, both in its original and generalized form. It has for instance been shown that,
contrary to many gravity theories with a scalar sector, the theory evidences no cosmological evo-
lution of the Newtonian gravitational constant 𝐺 and only minor evolution of Milgrom’s constant
𝑎0 [145, 39]. However, the fact that the latter is still put in by hand through the length-scale of
the theory 𝑙 ∼ 𝑐2/𝑎0, and has no dynamical connection with the Hubble or cosmological constant
is perhaps a serious conceptual shortcoming, together with the free function put by hand in the
action of the scalar field (but see [22] for a possible solution to the latter shortcoming). The rela-
tions between this free function and Milgrom’s 𝜇 can be found in [145, 431] (see also Section 6.2),

49 Expressed in terms of 𝑈𝜇 and its congugate momenta 𝑃𝜇 = 𝜕𝐿/𝜕�̇�𝜇.
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the detailed structure of null and timelike geodesics of the theory in [431], the analysis of the
parametrized post-Newtonian coefficients (including the preferred-frame parameters quantifying
the local breaking of Lorentz invariance) in [173, 372, 391, 450], solutions for black holes and neu-
tron stars in [244, 245, 247, 246, 374, 438, 439], and gravitational waves in [216, 214, 215, 373]. It
is important to remember that TeVeS is not equivalent to GR in the strong regime, which is why
it can be tested there, e.g., with binary pulsars or with the atomic spectral lines from the surface
of stars [122], or other very strong field effects50. However, these effects can always generically be
suppressed (at the price of introducing a Galileon type term in the action [22]), and such tests
would never test MOND as a paradigm. It is by testing gravity in the weak field regime that
MOND can really be put to the test.

Finally, let us note that TeVeS (and its generalization) has been shown to be expressible (in
the “matter frame”) only in terms of the physical metric 𝑔𝜇𝜈 , and the vector field 𝑈𝜇 [513], the
scalar field being eliminated from the equations through the “unit-norm” constraint in terms of the
Einstein metric 𝑔𝜇𝜈𝑈𝜇𝑈𝜈 = −1, leading to 𝑔𝜇𝜈𝑈𝜇𝑈𝜈 = −𝑒−2𝜑. In this form, TeVeS is sometimes
thought of as GR with an additional “dark fluid” described by a vector field [503].

7.5 Bi-Scalar-Tensor-Vector theory

In TeVeS [33], the “MOND function” 𝑓(𝑋TeVeS) of Eq. 76, where 𝑋TeVeS ∼ (𝑔𝜇𝜈 − 𝑈𝜇𝑈𝜈)𝜑,𝜇 𝜑,𝜈 ,
could also be expressed as a potential 𝑉 of a non-dynamical scalar field 𝑞, i.e., a scalar action for
TeVeS of the form:

𝑆𝜑 ∝ −
∫︁

𝑑4𝑥
√︀

−𝑔

[︂
1

2
𝑞2𝑋TeVeS + 𝑉 (𝑞)

]︂
. (88)

After variation of the action w.r.t. this non-dynamical field, one gets 𝑞𝑋 = −𝑉 ′(𝑞), and variation
w.r.t. 𝜑 yields the usual BM Poisson equation for 𝜑 (Eq. 17), with 𝑞2 ∝ �̃�(

√
𝑋). Inspired by an older

theory (Phase Coupling Gravity [32, 381]) devised in a partially successful attempt to eliminate
superluminal propagation from RAQUAL (but plagued with the same gravitational lensing problem
as RAQUAL, and with additional instabilities), Sanders [390] proposed to make this field dynamical
by adding a kinetic term 𝑔𝜇𝜈𝑞,𝜇 𝑞,𝜈 in the action, leading to the following very general action for
the scalar fields 𝜑 and 𝑞:

𝑆(𝜑 𝑞) ∝ −
∫︁

𝑑4𝑥
√︀
−𝑔

[︂
1

2
(𝑔𝜇𝜈𝑞,𝜇 𝑞,𝜈 +𝐻(𝑞)(𝑔𝜇𝜈 + 𝑈𝜇𝑈𝜈)𝜑,𝜇 𝜑,𝜈 )− 𝐹 (𝑞)𝑈𝜇𝑈𝜈𝜑,𝜇 𝜑,𝜈 +𝑉 (𝑞)

]︂
.

(89)
In this theory (dubbed BSTV for bi-scalar-tensor-vector theory), the physical metric has the same
form as in TeVeS, meaning that 𝜑 is the matter-coupling scalar field, while 𝑞 only influences the
strength of that coupling. A remarkable achievement of the theory is that the quasi-static field
equation for 𝜑 can be obtained only in a cosmological context, and thereby naturally explains the
connection between 𝑎0 and 𝐻0 [390]. What is more, oscillations of the 𝑞 field around its expectation
value can be considered as massive dark matter, and is allowing an explanation of the peaks of
the angular power spectrum of the Cosmic Microwave Background [390]. Unfortunately, various
instabilities and a Hamiltonian unbounded by below have been evidenced in Section IV.A of [81],
thus most likely ruling out this theory, at least in its present form.

7.6 Non-minimal scalar-tensor formalism

As a consequence of the inability of RAQUAL (the scalar-tensor k-essence of Section 7.1) to enhance
gravitational lensing, all other attempts reviewed so far (Sections 7.2 to 7.5) have been plagued with

50 It is also important to remember that some interpolation functions (Section 6.2) are already excluded by solar
system tests, and thus, it is useless to exclude these over and over again.
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an aesthetically unpleasant growth of additional fields and free parameters. This has led Bruneton
& Esposito-Farèse [81] to consider models with fewer additional fields. They first considered pure
metric theories in which matter is not only coupled to the metric but also non-minimally to its
curvature (Eqs. 5.1 and 5.2 of [81]). While they showed that such models can indeed reproduce
the MOND dynamics, they also concluded that they are generically unstable if locality is to be
preserved (but see Section 7.10). They then considered models in which at most one scalar field
is added, without any additional vector field, but where this field is coupled non-minimally to
matter, in the sense that the matter-coupling depends on the scalar field itself but also on its first
derivatives. In other words, the gradient of the scalar field is replacing the dynamical vector field
of TeVeS. The simple scalar field action is just the normal action of a massive scalar field:

𝑆𝜑 = − 𝑐4

8𝜋𝐺𝑙2

∫︁
𝑑4𝑥

√︀
−𝑔 [𝑋 + 2𝑉 (𝜑)], (90)

with 𝑋 = 𝑙2𝑔𝜇𝜈𝜑,𝜇 𝜑,𝜈 and 𝑉 (𝜑) = 𝑙2𝑚2𝜑2/2. The physical metric 𝑔𝜇𝜈 is then disformally related
to the Einstein metric through (see Eq. 5.11 of [81]):

𝑔𝜇𝜈 ≡ 𝐴2𝑔𝜇𝜈 +𝐵𝜑,𝜇 𝜑,𝜈 , (91)

with the functionals

𝐴(𝜑,𝑋) = 𝑒𝜂𝜑 − 𝜑ℎ(𝑌 )𝑌/𝜂 , 𝐵(𝜑,𝑋) = −4𝜑𝜂−1𝑌/𝑋, (92)

where 𝑌 = (𝜂𝑎0)
1/2𝑐−1𝑋−1/4. The free function ℎ(𝑌 ) is the “MOND function” playing the role

of Milgrom’s 𝜇. An alternative formulation of the model is obtained by separating the matter
action into a normal matter action and an “interaction term” between the scalar field, the metric
and the matter fields [82]. Considering the massive scalar field as a dark matter fluid, this model
can thus be interpreted as a non-standard baryon–dark-matter interaction leading to the MOND
behavior. If the scalar mass 𝑚 is small enough, it is a pure MOND theory, but if it is higher, it
can lead to a “DM+ MOND” behavior, especially noteworthy in regions of high gravity such as
the center of galaxy clusters (see Section 6.6.4 and discussions in [82]). Let us note that, while this
theory exhibits superluminal propagations outside of matter, it is, in principle, not a problem for
causality [80]. It has also been possible to study the behavior of the theory within matter, e.g.,
within the dilute HI gas inside galaxy disks (an analysis, which is mostly too difficult to perform
in other models reviewed so far): this led to a deadly problem, i.e., that the Cauchy problem
becomes ill-posed and the solutions to field equations ill-defined. A possible solution was proposed
in [82], namely to make the matter coupling (or, equivalently, the baryon-scalar DM interaction)
depend on the local density of matter51: this can also lead to an interesting phenomenology, where
only gas-rich systems behave according to Milgrom’s law, while others would behave in a CDM
way [143]. A lot remains to be studied within this framework.

7.7 Generalized Einstein-Aether theories

All theories reviewed so far are best expressed in the “Einstein frame”, and involve a form for the
physical metric to which matter couples (an form expressed as a function of the Einstein metric
and of the other additional fields). However, the work of [513] has shown that, for instance, TeVeS
(Sections 7.3 and 7.4) is expressible as a pure Tensor-Vector theory in the matter frame, and that
the physical metric then both satisfies the Einstein–Hilbert action and couples minimally to the
matter fields, just like in GR. In fact, the modification of gravity in TeVeS thus only comes from

51 A characteristic matter density 𝜌0 thus becomes an additional order parameter, in the spirit of the velocity
scale 𝑠0 of [36], see Eq. 3.1 of [82].
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the coupling of the physical metric to the vector field. The idea of Zlosnik et al. [514] was then that
a similar, but simpler, modification of gravity could be obtained by devising a simple tensor-vector
theory in the matter frame, with no a priori on the geometry of the physical metric. Starting
from the extensively studied Einstein-Aether theories [206, 207], with a vector action of the type
of Eq. 86, the idea is to make the k-essence free function 𝑓(𝑋) (the “MOND function” of Eq. 76)
act directly on the vector field rather than on an additional scalar field. This leads to vector k-
essence, or Generalized Einstein-Aether (GEA) theories (also called non-canonical Einstein-Aether
theories), in which the Einstein–Hilbert and matter actions remain as in GR, but with an additional
unit-norm vector field with the following action [431, 514]:

𝑆𝑈 ≡ − 𝑐4

16𝜋𝐺𝑙2

∫︁
𝑑4𝑥

√
−𝑔

[︀
𝑓(𝑋gea)− 𝑙2𝜆(𝑔𝜇𝜈𝑈𝜇𝑈𝜈 + 1)

]︀
, (93)

where (see Eq. 87 and replacing 𝑔𝜇𝜈 by 𝑔𝜇𝜈)

𝑋gea = 𝑙2𝐾𝛼𝛽𝜇𝜈𝑈𝛽,𝛼𝑈𝜈,𝜇. (94)

The unit-norm constraint fixes the vector field in terms of the metric, and from there we have that,
in the weak-field limit, 𝑋gea ∝ −|∇Φ|2, with Φ defined as in Eq. 73. The Einstein equation in
the weak-field limit then yields a BM type of Poisson equation (Eq. 17) for the full gravitational
potential Φ, with 𝜇 = 𝑓 ′ + (1 − 𝑓 ′)/(1 − 𝐶/2) and 𝐶 = 𝑐1 − 𝑐4 [431]. In the deep-MOND limit,
the usual choice for 𝑓 is of the type 𝑓(𝑋gea) ∝ (−𝑋gea)

3/2 + 2𝑋gea/𝐶, and the length-scale must
be fixed as:

𝑙 ≡ (2− 𝐶)𝑐2

3/2𝐶3/2𝑎0
. (95)

Let us note that this weak-field limit of GEA theories is different from that of RAQUAL or TeVeS,
where only the scalar field 𝜑 obeys a BM-like equation governed by an interpolating function �̃�(𝑠),
and where the total potential is given by Eq. 40.

The remarkable feature of GEA theories allowing for the desired enhancing of gravitational
lensing without any on the form of the physical metric is that, writing the metric as in Eq. 73, it
can be shown [431] that in the limit 𝑋gea → 0 the action of Eq. 93 is only a function of ϒ = Φ+Ψ
and is thus invariant under disformal transformations [Φ → Φ+ 𝛽(𝑟) ; Ψ → Ψ− 𝛽(𝑟)], of the type
of Eq. 83. These GEA theories are currently extensively studied, mostly in a cosmological context
(see Section 9), but also for their parametrized post-Newtonian coefficients in the solar system [65]
or for black hole solutions [451].

Interestingly, it has been shown that all these vector field theories (TeVeS, BSTV, GEA) are all
part of a broad class of theories studied in [183]. Yet other phenomenologically-interesting theories
exist among this class, such as, for instance, the 𝑉 Λ models considered by Zhao & Li [502, 506, 510]
with a dynamical norm vector field, whose norm obeys a potential (giving it a mass) and has a non-
quadratic kinetic term à-la-RAQUAL, in order to try reproducing both the MOND phenomenology
and the accelerated expansion of the universe, while interpreting the vector field as a fluid of
neutrinos with varying mass [504, 505]. This has the advantage of giving a microphysics meaning
to the vector field. Such vector fields have also been argued to arise naturally from dimensional
reduction of higher-dimensional gravity theories [34, 261], or, more generally, to be necessary from
the fact that quantum gravity could need a preferred rest frame [206] in order to protect the theory
against instabilities when allowing for higher derivatives to make the theory renormalizable (e.g.,
in Hořava gravity [64, 195]). Inspired by this possible need of a preferred rest frame in quantum
gravity, relativistic MOND theories boiling down to particular cases of GEA theories in which the
vector field is hypersurface-orthogonal have, for instance, been proposed in [61, 396].
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7.8 Bimetric theories

In the previous theories, the acceleration-dependence of MOND enters the equations through a
free “MOND function” 𝑓(𝑋) acting either on the contracted gradient of an added scalar field, with
dimensions of acceleration (Eq. 85), or on a scalar formed with the first derivatives of a vector field
(Eq. 94) with a unit-norm constraint relating it to the gradient of the potential in the physical
metric. The “MOND function” could not act directly on the Christoffel symbol because this is
not a tensor, and such a theory would thus violate general covariance. However, if there is more
than one metric entering gravitation, the difference between the associated Christoffel symbols is
a tensor, and one can construct from it a scalar with dimensions of acceleration, on which the
“MOND function” can act. Such theories in which there are two dynamical rank-2 symmetric
tensor fields are called bimetric theories [204, 205, 369]. Milgrom [312, 317] proposed to construct
a whole parametrized class of bimetric MOND theories (dubbed BIMOND), involving an auxiliary
metric, with various phenomenological behaviors in the weak-field limit, ranging from Bekenstein–
Milgrom MOND to QUMOND as well as a mix of both (see [318]). As one example (parameters
𝛼 = −𝛽 = −1 in the general class of BIMOND theories, for which we refer the reader to the
review [318]), the auxiliary metric 𝑔𝜇𝜈 can, e.g., be introduced precisely in the same way as the
auxiliary potential Φph in the QUMOND classical action of Eq. 34 :

𝑆 ≡ 𝑆m[matter, 𝑔𝜇𝜈 ]+𝑆m[twin matter, 𝑔𝜇𝜈 ]+
𝑐4

16𝜋𝐺

∫︁
𝑑4𝑥

√
−𝑔 [𝑅− �̂�− 2𝑙−2𝑓(𝑋BIMOND)], (96)

where 𝑙 ≡ 𝑐2/𝑎0, and

𝑋BIMOND = 𝑙2𝑔𝜇𝜈(𝐶𝛼
𝜇𝛽𝐶

𝛽
𝜈𝛼 − 𝐶𝛼

𝜇𝜈𝐶
𝛽
𝛽𝛼), (97)

where 𝐶𝛼
𝜇𝜈 = Γ𝛼

𝜇𝜈 − Γ̂𝛼
𝜇𝜈 . The MONDian modification of gravity is thus introduced through the

interaction between the spacetime on which matter lives and the auxiliary spacetime (on which
some “twin matter” might live). This modification is acceleration-based since the interaction
involves the difference of Christoffel symbols, playing the role of acceleration. By varying the
action w.r.t. both metrics, we obtain two sets of Einstein-like equations, which boil down in the
static weak-field limit to Φ̂ = −Ψ̂ and Φ = −Ψ in Eq. 73 (so this yields the correct amount of
gravitational lensing for normal photons w.r.t. the “matter metric” 𝑔𝜇𝜈), as well as the following
generalized Poisson equations:

∇2Φ = 4𝜋𝐺𝜌+∇.[𝑓 ′(|∇(Φ−Φ̂)|2/𝑎20)∇(Φ−Φ̂)] and ∇2Φ̂ = 4𝜋𝐺𝜌+∇.[𝑓 ′(|∇(Φ−Φ̂)|2/𝑎20)∇(Φ−Φ̂)]
(98)

or, equivalently,

∇2(Φ− Φ̂) = 4𝜋𝐺(𝜌− 𝜌) and ∇2Φ = 4𝜋𝐺𝜌+∇.[𝑓 ′(|∇(Φ− Φ̂)|2/𝑎20)∇(Φ− Φ̂)]. (99)

This is equivalent to QUMOND (Eq. 30) if the matter and twin matter are well separated
(which is natural if they repel each other), the function 𝑓 playing the role of 𝐻 in Eq. 34, with

𝑓 ′(𝑋BIMOND) → 0 for 𝑋BIMOND ≫ 1 and 𝑓 ′(𝑋BIMOND) → 𝑋
−1/4
BIMOND for 𝑋BIMOND ≪ 1. Note that

the existence of this putative twin matter is far from being necessary (putting 𝜌 = 0 everywhere
yields exactly QUMOND), but it might be suggested by the existence of the auxiliary metric within
the theory. Again, it is mandatory to stress that the formulation of BIMOND sketched above is
actually far from unique and can be suitably parametrized to yield a whole class of BIMOND the-
ories with various phenomenological behaviors [312, 317, 318]. For instance, in matter-twin matter
symmetric versions of BIMOND (𝛼 = 𝛽 = 1, see [318]), and within a fully symmetric matter-twin
matter system, a cosmological constant is given by the zero-point of the MOND function, naturally
on the order of one, thereby naturally leading to Λ ∼ 𝑎20 for the large-scale universe. Matter and
twin matter would not interact at all in the high-acceleration regime, and would repel each other
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in the MOND regime (i.e., when the acceleration difference of the two sectors is small compared to
𝑎0), thereby possibly playing a crucial role in the universe expansion and structure formation [316].

This promising broad class of theories should be carefully theoretically investigated in the
future, notably against the existence of ghost modes [69]. At a more speculative level, this class of
theories can be interpreted as a modification of gravity arising from the interaction between a pair
of membranes: matter lives on one membrane, twin matter on the other, each membrane having
its own standard elasticity but coupled to the other one. The way the shape of the membrane is
affected by matter then depends on the combined elasticity properties of the double membrane, but
matter response depends only on the shape of its home membrane. Interestingly, bimetric theories
have also been advocated [256] to be a useful ingredient for the renormalizability of quantum
gravity (although they currently considered theories with only metric interactions, not derivatives
like in BIMOND).

7.9 Dipolar dark matter

As we have seen, many relativistic MOND theories do invoke the existence of new “dark fields”
(scalar or vector fields), which, if massive, can even sometimes truly be thought of as “dark matter”
enjoying non-standard interactions with baryons52 (Section 7.6 and [82]). The bimetric version of
MOND (Section 7.8) also invokes the existence of a new type of matter, the “twin matter”. This
clearly shows that, contrary to common misconceptions, MOND is not necessarily about “getting
rid of dark matter” but rather about reproducing the success of Milgrom’s law in galaxies. It might
require adding new fields, but the key point is that these fields, very massive or not, would not
behave simply as collisionless particles.

In a series of papers, Blanchet & Le Tiec [55, 56, 57, 58, 59, 60] have pushed further the idea that
the MOND phenomenology could arise from the fundamental properties of a form of dark matter
itself, by suggesting that dark matter could carry a space-like53 four-vector gravitational dipole
moment 𝜉𝜇, following the analogy between Milgrom’s law and Coulomb’s law in a dieletric medium
proposed by [56] (see Eq. 9) or between the Bekenstein–Milgrom modified Poisson equation and
Gauss’ law in terms of free charge density (see Eq. 17). The dark matter medium is described as
a fluid with mass current 𝐽𝜇 = 𝜌𝑢𝜇 (where 𝜌 is the equivalent of the mass density of the atoms in
a dielectric medium, i.e., it is the ordinary mass density of a pressureless perfect fluid, and 𝑢𝜇 is
the four-velocity of the fluid54.) endowed with the dipole moment vector 𝜉𝜇 (which will affect the
total density in addition to the above mass density 𝜌), with the following action [60]:

𝑆DM ≡
∫︁

𝑑4𝑥
√
−𝑔 [𝑐2(𝐽𝜇𝜉

𝜇 − 𝜌)−𝑊 (𝑃 )], (100)

where 𝑃 is the norm of the projection perpendicular to the four-velocity (not the norm of the
polarization field55) of the polarization field 𝑃𝜇 = 𝜌𝜉𝜇, and where the dot denotes the covariant
proper time derivative. The specific dynamics of this dark matter fluid will thus arise from the
coupling between the current and the dipolar field (analogue to the coupling to an external polar-
ization field in electromagnetism), as well as from the internal non-gravitational force acting on
the dipolar dark particles and characterized by the potential 𝑊 (𝑃 ). Let us note that the normal
matter action and the gravitational Einstein–Hilbert action are just the same as in GR.

52 In the case of TeVeS and GEA theories, the dark fields do not really count as dark matter because their energy
density is subdominant to the baryonic one.

53 This is to be contrasted with the time-like nature of TeVeS and GEA vector fields in the static weak-field limit.
54 And the current 𝐽𝜇 is conserved, i.e., ∇𝜇𝐽𝜇 = 0
55 It can be shown that only the projection perpendicular to the four-velocity enters the field equations deduced

from the action of Eq. 100. Thus, the dipole moment is always fully space-like.
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The equations of motion of the dark matter fluid are then gotten by varying the action w.r.t.
the dipole moment variable 𝜉𝜇 and w.r.t. to the current 𝐽𝜇, boiling down in the non-relativistic
limit to:

𝑑v

𝑑𝑡
= g − f , (101)

𝑑2𝜉

𝑑𝑡2
= f +

1

𝜌
∇[𝑊 (𝑃 )− 𝑃𝑊 ′(𝑃 )] + (P∇)g, (102)

where v is the ordinary velocity of the fluid, g = −∇Φ is the gravitational field, and f =
−(P/𝑃 )𝑊 ′/𝜌 is the internal non-gravitational force field making the dark particles motion non-
geodesic. What is more, the Poisson equation in the weak-field limit is recovered as:

−∇.(g − 4𝜋P) = 4𝜋𝐺(𝜌𝑏 + 𝜌). (103)

In order to then reproduce the MOND phenomenology in galaxies, the next step is the “weak-
clustering hypothesis”, namely the fact that, in galaxies, the dark matter fluid does not cluster
much (𝜌 ≪ 𝜌𝑏) and is essentially at rest (v = 0) because the internal force of the fluid precisely
balances the gravitational force in such a way that the polarization field P is precisely aligned
with the gravitational one g, and 𝑔 ∝ −𝑊 ′(𝑃 ). The potential thus plays the role of the “MOND
function”, and, e.g., choosing to determine it up to third order in expansion as

𝑊 (𝑃 ) ∝ Λ/(8𝜋) + 2𝜋𝑃 2 + 16𝜋2𝑃 3/(3𝑎0) +𝒪(𝑃 4) (104)

then yields the desired MOND behavior in Eq. 103, with the 𝑛 = 1 “simple” 𝜇-function (see Eqs. 42
and 49).

This model has many advantages. The monopolar density of the dipolar atoms 𝜌 will play the
role of CDM in the early universe, while the minimum of the potential 𝑊 (𝑃 ) naturally adds a
cosmological constant term, thus making the theory precisely equivalent to the ΛCDM model for
expansion and large scale structure formation. The dark matter fluid behaves like a perfect fluid
with zero pressure at first-order cosmological perturbation around a FLRW background and thus
reproduces CMB anisotropies. Let us also note that, if the potential 𝑊 (𝑃 ) defining the internal
force of the dipolar medium is to come from a fundamental theory at the microscopic level, one
expects that the dimensionless coefficients in the expansion all be of order unity after rescaling by
𝑎20, thus naturally leading to the coincidence Λ ∼ 𝑎20.

However, while the weak clustering hypothesis and stationarity of the dark matter fluid in
galaxies are suppported by an exact and stable solution in spherical symmetry [58], it remains to
be seen whether such a configuration would be a natural outcome of structure formation within
this model. The presence of this stationary DM fluid being necessary to reproduce Milgrom’s law
in stellar systems, this theory loses a bit of the initial predictability of MOND, and inherits a bit of
the flexibility of CDM, inherent to invoking the presence of a DM fluid. This DM fluid could, e.g.,
be absent from some systems such as the globular clusters Pal 14 or NGC 2419 (see Section 6.6.3),
thereby naturally explaining their apparent Newtonian behavior. However, the weak clustering
hypothesis in itself might be problematic for explaining the missing mass in galaxy clusters, due
to the fact that the MOND missing mass is essentially concentrated in the central parts of these
objects (see Section 6.6.4).

7.10 Non-local theories and other ideas

All the models so far somehow invoke the existence of new “dark fields”, notably because for local
pure metric theories, the Hamiltonian is generically unbounded from below if the action depends
on a finite number of derivatives [81, 136, 441]. A somewhat provocative solution would thus be to
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consider non-local theories. A non-local action could, e.g., arise as an effective action due to quan-
tum corrections from super-horizon gravitons [440]. Deffayet, Esposito-Farèse & Woodard [123]
have notably exhibited the form that a pure metric theory of MOND could take in order to yield
MONDian dynamics and MONDian lensing for a static, spherically-symmetric baryonic source.

In such a static spherically-symmetric geometry, the Einstein–Hilbert action of Eq. 69 can be
rewritten in the weak-field expansion as [123]:

𝑆EH = surfaceterm +
𝑐4

16𝜋𝐺

∫︁
𝑑4𝑥[−𝑟𝑎𝑏′ + 𝑎2/2 +𝒪(𝑎3, 𝑏3)], (105)

where (1+𝑎) and −(1+𝑏) are the weak-field 𝑔𝑟𝑟 and 𝑔00 components of the static weak-field metric,
respectively. The MOND modification to this action implies to obtain 𝑎 = 𝑟𝑏′ = 2(𝐺𝑀𝑎0)

1/2/𝑐2

as a solution in the deep-MOND limit, where the first equality ensures that lensing and dynamics
are consistent, leading to the following tentative action in the ultra-weak-field limit [123]:

𝑆MOND ∼ 𝑐4

16𝜋𝐺

∫︁
𝑑4𝑥

[︂
𝑙𝑟2

(︂
𝛼

3

(︁
𝑏′ − 𝑎

𝑟

)︁
− 𝑏′3

6
+𝒪(𝑎4, 𝑏4)

)︂]︂
, (106)

where 𝑙 ≡ 𝑐2/𝑎0 and 𝛼 is an arbitrary constant. While it is impossible to express this form of the
action as a local functional of a general metric, Deffayet et al. [123] showed that it was entirely
possible to do so in a non-local model, making use of the non-local inverse d’Alembertian and of a
TeVeS-like vector field, introduced not as an additional “dark field”, but as a non-local functional
of the metric itself (by, e.g., normalizing the gradient of the volume of the past light-cone). A whole
class of such models is constructible, and a few examples are given in [123], for which stability
analyses are still needed, though.

As already mentioned in Section 6.1.1, this non-locality was also inherent to classical toy models
of “modified inertia”. In GR, this would mean making the matter action of a point particle (Eq. 70)
depend on all derivatives of its position, but such models are very difficult to construct [300] and no
fully-fledged theory exists along these lines. However, a few interesting heuristic ideas have been
proposed in this context. For instance, Milgrom [304] proposed that the inertial force in Newton’s
second law could be defined to be proportional to the difference between the Unruh temperature and
the Gibbons–Hawking one. It is indeed well known that, in Minkowski spacetime, an accelerated
observer sees the vacuum as a thermal bath with a temperature proportional to the observer’s
acceleration 𝑇𝑈 = 𝑎ℎ/(4𝜋2𝑘𝑐) [110, 470], where ℎ is the Planck constant and 𝑘 the Boltzmann
constant. On the other hand, a constant-accelerated observer in de Sitter spacetime (curved
with a positive cosmological constant Λ) sees a non-linear combination of that vacuum radiation
and of the Gibbons–Hawking radiation (with temperature 𝑇GH = (Λ/3)1/2ℎ/(4𝜋2𝑘) [174]) due
to the cosmological horizon in the presence of a positive Λ. Namely, the Unruh temperature of
the radiation seen by such an accelerated observer in de Sitter spacetime is [174] 𝑇𝑈 = (𝑎2 +
𝑐2Λ/3)1/2ℎ/(4𝜋2𝑘𝑐). The idea of Milgrom [304] is to then define the right-hand side of the norm
of Newton’s second law as being proportional to the difference between the two temperatures:

|F| = 4𝜋2𝑚𝑘𝑐

ℎ
(𝑇𝑈 − 𝑇GH), (107)

which trivially leads to 𝐹 = 𝑚𝜇(𝑎/𝑎0)𝑎 with 𝑎0 ≡ 𝑐(Λ/3)1/2 (which is, however, observationally
too large by a factor 2𝜋) and the interpolating function 𝜇(𝑥) having the exact form of Eq. 54. In
short, observers experiencing a very small acceleration would see an Unruh radiation with a small
temperature close to the Gibbons–Hawking one, meaning that the inertial resistance defined by the
difference between the two radiation temperatures would be smaller than in Newtonian dynamics,
and thus the corresponding acceleration would be larger. However, no relativistic version (if at
all possible) of this approach has been developed yet: a few difficulties arise due to the direction
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of the acceleration, or by the fact that stars in galaxies are free-falling objects along geodesics,
and not accelerated by a non-gravitational force, as in the case of basic Unruh radiation. It was
interestingly noted [308] that the de Sitter spacetime could be seen as a 4-dimensional pseudo-
sphere embedded in a 5-dimensional flat Minkowski space, and that the acceleration of a constant-
accelerated observer in this flat space would be exactly 𝑎5 = (𝑎2 + 𝑐2Λ/3)1/2. Then, MOND could
arise from symmetry arguments in this 5-dimensional space similar to those leading to special
relativity in Minkowski space [308]. Interestingly, arguments very similar to this whole vacuum
radiation approach have also recently been made in the context of entropic gravity [191, 192, 224,
476]. Finally, another interesting idea to get MOND dynamics has been the tentative modification
of special relativity, making the Planck length and the length 𝑙 = Λ−1/2 ∼ 𝑐2/𝑎0 two new invariants,
in addition to the speed of light, an attempt known as Triply Special Relativity [233]. In any case,
despite all these attempts, there is still no fully-fledged theory of MOND at hand, which would
derive from first principles, and the quest for such a formulation of MOND continues.
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8 Gravitational Lensing in Relativistic MOND

The viable MOND theories from Section 7, although still mostly effective, have the great advantage
of proving that constructing relativistic MOND theories is possible, and that it is thus possible
to calculate from them the effects of gravitational lensing. But the non-uniqueness of the theories
means that there is not really a unique prediction for gravitational lensing, especially in heavily–
time-dependent configurations, or when the predictions of the theories for the expansion history
of the universe deviate from the concordance model. As we have seen, some theories also deviate
slightly from classical MOND predictions for dynamics of quasi-static systems, due to the presence
of massive dark fields, and the same would of course happen for gravitational lensing. However, at
the zeroth order, and in static weak-field configurations, we can make predictions for all theories
whose expansion history would be similar to that of ΛCDM (see Section 9.1) and whose static
weak-field limit is represented by a physical metric56 with Ψ = −Φ in Eq. 73 (Φ obeying Eq. 17).
In this case, the way the light propagates on the null geodesics of this metric is exactly the same
in all these theories once Φ is known. What differs from GR is only the relation between Φ and
the underlying mass distribution of the lens.

8.1 Strong lensing by galaxies

When multiple images of a background source are produced by a gravitational lens, one talks about
strong lensing. In that case, most of the light bending occurs within a small range around the lens
compared to the lens-source distance 𝐷𝑙𝑠 and the observer-source distance 𝐷𝑠 (where the distances
are the usual luminosity distances in cosmology). In this thin-lens approximation57, the resulting
deflection angle can be written as:

𝛼 =
2

𝑐2

∫︁ ∞

−∞
∇⊥Φ𝑑𝑧, (108)

where Φ = −Ψ is the non-relativistic gravitational potential of Eq. 73 (obeying a MONDian
Poisson equation), and ∇⊥ denotes the two-dimensional gradient operator perpendicular to light
propagation. The lens equation then relates the observed two-dimensional angular position of the
source in the lens plane 𝜃 to its original angular position in the source plane 𝛽 through:

𝜃 = 𝛽 +
𝐷𝑙𝑠

𝐷𝑠
𝛼, (109)

where it appears clearly that the expansion history will play an important role in converting
redshifts to distances. It is also convenient to make the deflection angle 𝛼 derive from a deflection
potential ϒ in the lens-plane:

ϒ(𝜃) =
2𝐷𝑙𝑠

𝑐2𝐷𝑠𝐷𝑙

∫︁ ∞

−∞
Φ(𝐷𝑙𝜃, 𝑧)𝑑𝑧. (110)

If a source is much smaller than the angular scale on which the lens properties change, the lens
equation 109 can locally be linearized as:

𝛽(𝜃) = 𝛽0 +𝒜(𝜃)(𝜃 − 𝜃0), (111)

56 This equality Ψ = −Φ in the weak-field metric is put in by hand in all TeVeS-like theories (Sections 7.2 to
7.6) through a disformal relation between the Einstein and physical metrics, and is a generic prediction of GEA
(Section 7.7), BIMOND (Section 7.8) and DDM (Section 7.9) theories.

57 However, by this we do not mean that the MOND lensing can be computed from the projected surface density
on the lens-plane as in GR, because the convergence parameter (Eq. 113 below) is not a measure of the projected
surface density anymore. This is also sometimes referred to as the “thin-lens approximation” in GR, and is not valid
in MOND: two lenses with the same projected surface density can have different convergence parameters, because
lensing also depends strongly on the distribution of the source mass along the line-of-sight in MOND.
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where the inverse magnification matrix is

𝒜(𝜃) =
𝜕𝛽

𝜕𝜃
, where 𝒜11 = 1− 𝜅− 𝛾1, 𝒜12 = 𝒜21 = −𝛾2, 𝒜22 = 1− 𝜅+ 𝛾1 (112)

The convergence 𝜅 is directly given by the Laplacian of the deflection potential ϒ:

𝜅 =
1

2
∇2ϒ. (113)

The Einstein radius is the radius within the lens-plane within which the mean convergence is
⟨𝜅⟩ = 1. The existence of a region where 𝜅 is of that order is sufficient to produce multiple images
and is the definition of strong lensing. On the other hand, the shear components 𝛾1, 𝛾2 are given
by

𝛾1 =
1

2

(︂
𝜕2ϒ

𝜕𝜃21
− 𝜕2ϒ

𝜕𝜃22

)︂
, 𝛾2 =

𝜕2ϒ

𝜕𝜃1𝜕𝜃2
. (114)

Due to Liouville’s theorem, gravitational lensing preserves the surface brightness, but it changes
the apparent solid angle of a source. The resulting flux ratio between image and source can be
expressed in terms of the magnification 𝑀 ,

𝑀−1 = (1− 𝜅)2 − 𝛾2
1 − 𝛾2

2 . (115)

The flux ratio between two images A and B is 𝑓𝐴𝐵 = 𝐴𝐴/𝐴𝐵 . Let us finally note that (i) the time-
delay between the different images can be deduced directly from the lensing potential and depends
on the Hubble constant and convergence at the Einstein radius, and that (ii) points in the lens
plane where 𝑀−1 = 0 (infinite magnification) form closed curves called the critical curves. Their
corresponding curves located in the source plane are called caustics. The location of the source
with respect to caustics determines the number of images, a source outside of the outermost caustic
producing only one image, while each caustic crossing changes the number of images by a factor of
two. Spherically-symmetric models of galaxy lenses can never produce observed quadruple-imaged
systems because the innermost caustic of spherical models degenerates into a point.

As outlined above, what differs from GR in all the relativistic MOND theories is the relation
between the non-relativistic potential Φ and the underlying mass distribution of the lens 𝜌. How-
ever, different theories yield slightly different relations between Φ and 𝜌 in the weak-field limit
(see especially Sections 6.1 and 6.2). For instance, while GEA theories (Section 7.7) boil down
to Eq. 17 in the static weak-field limit, TeVeS (Section 7.4) leads to the situation of Eq. 40, and
BIMOND (Section 7.8) to Eq. 30. However, like in the case of rotation curves (see Figure 20), the
differences are only minor outside of spherical symmetry (and null in spherical symmetry), and the
global picture can be obtained by assuming a relation given by the BM equation (Eq. 17).

The first studies of strong lensing by galaxies in relativistic MOND theories [93, 501, 507] made
use of the CfA-Arizona Space Telescope Lens Survey (CASTLES) and made a one-parameter–fit
of the lens mass to the observed size of the Einstein radius, both for point-mass models and for
Hernquist spheres (with observed core radius). Zhao et al. [507] also compared the predicted and
observed flux ratios 𝑓𝐴𝐵 . They used the 𝛼 = 0 𝜇-function of Eq. 46, and concluded that reasonably
good fits could be obtained with a lens mass corresponding to the expected baryonic mass of the
lens. Shan et al. [419] then improved the modelling method by considering analytic non-spherical
models with locally–spherically-symmetric isopotentials on both sides of the symmetry plane 𝑧 = 0,
implying no curl field correction (S = 0) in Eq. 19. The MOND non-relativistic potential Φ can
then analytically be written, and using Eq. 108, one can analytically compute the two components
𝛼1 and 𝛼2 of the deflection angle vector 𝛼 as a function of the three parameters of the model,
namely the lens-mass and two scale-lengths controlling the extent and flattening of the lens (see
Eq. 18 of [419]). Using the lens equation (Eq. 109), one can then trace back light-rays for each
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(a) (b)

Figure 41: (a) The four images of the quasar Q2237+030 (known as the Einstein cross), gravitationally
lensed by an isolated bulge-disk galaxy known as Huchra’s lens [197]. c○ ESA’s faint object camera on
HST. (b) The empty squares denote the four observed positions of the images, and the filled square denotes
the MOND-fit unique position of the source [419]. The critical curves for which 𝑀−1 = 0 in the lens plane
are displayed in black, and their corresponding caustics in the source plane in red. Image reproduced by
permission from [419].

observed image to the source plane and fit the lens parameters as well as its inclination, in order
for the source position to be the same for each image. The quality of the fit is thus quantified
by the squared sum of the source position differences. This notably allowed [419] to fit in MOND
the famous quadruple-imaged system Q2237+030 known as the Einstein cross (see Figure 41),
a quasar gravitationally lensed by an isolated bulge-disk galaxy [197]. However, for three other
quadruple-imaged systems of the CASTLES survey, the fits were less successful mostly because of
the intrinsic limitations of the analytic model of Shan et al.[419] at reproducing at the same time
both a large Einstein radius and a large shear. What is more it does not take into account the
effects of the environment in the form of an external shear, which is also often needed in GR to fit
quadruple-imaged systems. For 10 isolated double-imaged systems in the CASTLES survey, the
fits were much more successful58. However, for non-isolated systems, especially for those lenses
residing in groups or clusters, the need for an external shear might be coupled to a need for dark
mass on galaxy group scales (see Section 6.6.4 and Section 8.3).

Due to the fact that all the above models were using the Bekenstein 𝜇-function (𝛼 = 0 in
Eq. 46), and that this function has a tendency of slightly underpredicting stellar mass-to-light
ratios in galaxy rotation curve fits [145], it was claimed that this was a sign for a MOND missing
mass problem in galaxy lenses [152, 153, 262]. While such a missing mass is indeed possible,
and even corroborated by some dynamical studies [364] of galaxies residing inside clusters (i.e.,
the small-scale equivalent of the problem of MOND in clusters), for isolated systems with well-
constrained stellar mass-to-light ratio, the use of the simple 𝜇-function (𝛼 = 1 in Eq. 46) has,
on the contrary, been shown to yield perfectly acceptable fits [94] in accordance with the lensing
fundamental plane [400].

Finally, the probability distribution of the angular separation of the two images in a sample
of lensed quasars has been investigated by Chen [90, 91]. This important question has proven

58 Note that, in order for the problem to be well constrained, a regularization method was used in order to penalize
solutions deviating from the fundamental plane as well as face-on solutions and solutions with an anomalous flux
ratio or M/L ratio (see Eq. 21 of [419].)
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somewhat troublesome for the ΛCDM paradigm, but is well explained by relativistic MOND the-
ories [90].

8.2 Weak lensing by galaxies

A gravitational lens not only produces multiple images close to caustics, but also weakly distorted
images (arclets) of other background sources. The weak and noisy signals from several individual
arclets (not necessarily detected by eye, but rather numerically exploited with the help of image
analysis) can be averaged by statistical techniques to get the shear components 𝛾1 and 𝛾2 in Eq. 114
from the mean ellipticity of the images. One can then get the convergence 𝜅 from the azimuthal
average of the tangential component of the shear. This is what is known as weak lensing. In the
case of galaxy-galaxy weak lensing, since the gravitational distortions induced by an individual
lens are too small to be detected, one has to resort to the study of the ensemble averaged signal
around a large number of lenses. This has been investigated in the context of MOND for a sample
of relatively-isolated galaxy-lenses, stacked by luminosity ranges [456]. The derived MOND masses
were obtained by fitting a point mass model to the lensing data within a distance of 200 kpc from
the lens. While the MOND masses are perfectly compatible with the baryonic masses in all galaxies
less luminous than 1011 𝐿⊙, it was found that the required MOND mass-to-light ratios tended to
be slightly too high (𝑀/𝐿 ≃ 10) for the most massive and luminous galaxies (𝐿 > 1011 𝐿⊙).
However, this whole result is dictated by only one data point, which “pulls up” the result and
make all the data points lie below the “best fit”, and the curve is “pulled up” strongly by only the
first point. Thus, the mass-to-light ratios could easily be scaled down by a factor of two, making
these galaxies in perfect agreement with MOND. But it is also worth noting that due to the very
large distances probed, the presence of some weakly-clustering residual mass (hot dark matter, or
some sort of “dark field” in the relativistic MOND theories) could start playing a role at these
distances. While ordinary neutrinos are still too weakly clustering, a slightly more massive fermion
such as a 10 eV-scale sterile neutrino could cluster on these scales, and, of course, the presence of
baryonic dark matter in the form of dense molecular gas clouds could also be present around these
very massive objects (see Section 6.6.4).

Also related to weak lensing, it is important to recall that the “phantom dark matter” of
MOND (Eq. 33) can sometimes become negative in cones perpendicular to the direction of the
external gravitational field in which a system is embedded: with accurate enough weak-lensing data,
detecting these pockets of negative phantom densities around a sample of non-isolated galaxies
could, in principle, be a smoking gun for MOND [490], but such an effect would be extremely
sensitive to the detailed distribution of the baryonic matter, and finding a sample of galaxies with
similar gravitational environments would also be extremely difficult.

8.3 Strong and weak lensing by galaxy clusters

Gravitational lensing is a complementary technique to the hydrostatic equilibrium of the X-ray
emitting gas (Section 6.6.4) to probe the mass distribution of galaxy clusters. Since clusters
are the most recently formed structures, they could be slightly out of equilibrium, which makes
gravitational lensing extremely interesting as this technique is fully independent from the relaxed
or unrelaxed nature of the lens. A famous example of such a clearly unrelaxed object is the cluster
1E0657-56, known as the Bullet Cluster (Figure 42). It is actually a pair of clusters which collided
at high speed (> 3100 km/s) at 𝑧 = 0.3. In the collision, the dissipational hot X-ray emitting gas
which dominates the baryonic matter was separated from the negligible and collisionless galaxies
and any presumed collisionless dark matter. Using background galaxies to map the shear field, the
convergence map of the cluster was provided by [102], a convergence very conspicuously centered
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where the collisionless dark matter should be 59. It would appear difficult to reconstruct such
a configuration merely by modifying gravity, but the non-linearity of MOND does not guarantee
that the convergence from a two-center baryonic distribution would indeed be centered on the two
centers. Indeed, while the linear relation between the matter density and the gravitational potential
implies that the convergence parameter is a direct measurement of the projected surface density
in the weak-field limit of GR, this is not the case anymore in MOND due to the non-linearity of
the modified Poisson equation. Actually, it has been shown that, in MOND, it is possible to have
a non-zero convergence along a line of sight where there is zero projected matter [15]. What is
more, the gravitational environment might play an important role on the internal gravitational
field too [113, 259], and the additional degrees of freedom of the various relativistic theories might
play a non-negligible role, especially in non-static situations [112]. Neglecting possible effects of
the gravitational environment and non-trivial features of the additional fields of the relativistic
theories out of equilibrium, i.e., simply assuming that the physical metric is given by Ψ = −Φ in
Eq. 73, and that Φ obeys Eq. 17, a MOND model of the bullet cluster was produced [17], in which
a parametrized potential was fitted to the convergence map to then determine the underlying mass
distribution from Eq. 17. The result is displayed in Figure 43, and exactly the same conclusion was
reached by going from the baryonic density to the convergence map [147]. The main conclusions
are that (i) the amount of residual missing mass needed to account for the convergence map of the
bullet cluster is the same as in all other clusters (Section 6.6.4 and [449]), but that (ii) if it is made
of dark baryons, they must be in a collisionless form, since the residual missing mass is centered
on the collisionless galaxies and not on the dissipational hot gas. The dense molecular gas clouds
proposed by Milgrom [310] (see discussion in Section 6.6.4) satisfy this criterion, and would mostly
behave like individual stars. Like in most clusters with 𝑇 > 4 keV, ordinary neutrinos with a 2 eV
mass would be broadly sufficient to account for the missing mass deduced from weak lensing (and,
obviously, heavier exotic hot dark matter particles such as 10 eV sterile neutrinos would do the
job too).

For TeVeS (Section 7.4) and GEA (Section 7.7), the growth of the spatial part of the vector
perturbation in the course of cosmological evolution can successfully seed the growth of baryonic
structures, just as dark matter does, and it is possible to reconstruct the gravitational field of the
bullet cluster without any extra matter but with a substantial contribution from the vector field.
However, why the dynamical evolution of the vector field perturbations would lead to precisely such
a configuration remains unclear. Similarly, the massive scalar field of Section 7.6 or the monopolar
part of the dipolar DM of Section 7.9 could, in principle, provide the off-centered missing mass
too, but again, why they would appear distributed as they do remains unclear, especially in the
case of dipolar DM, which is supposed to cluster only very weakly, and, in principle, not to appear
as densely clustered. Whether the twin matter of BIMOND (Section 7.8) could help providing the
right convergence map also remains to be seen, while for non-local models (Section 7.10), there
is a strong dependence on the past light-cone, meaning that recently-disturbed systems, such as
the Bullet, may be far from the static MOND limit (but in that case, it would not be clear why
all the other clusters from Section 6.6.4 exhibit the same amount of residual missing mass). So,
while the bullet cluster clearly does not represent the MOND-killer that it was supposed to be,
explaining its convergence map remains an outstanding challenge for all MOND theories. However,
the bullet cluster also represents an outstanding challenge to ΛCDM (see Section 4.2), due to its
high collision speed [249]. In that respect, MOND is much more promising [16].

On the other hand, a comprehensive weak lensing mass reconstruction of the rich galaxy cluster
Cl0024+17 at 𝑧 = 0.4 [211] has been argued to have revealed the first dark matter structure that
is offset from both the gas and galaxies in a cluster. This structure is ringlike, located between

59 Note, however, that this is not always the case in colliding clusters: Abell 520 actually provides a counter-
example to the bullet cluster in which the mass peaks indicated by weak lensing do not behave as collisionless matter
should [210].
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𝑟 ∼ 60′′ and 𝑟 ∼ 85′′. It was, again, argued to be the result of a collision of two massive clusters
1 – 2 Gyr in the past, but this time along the line-of-sight. It has also been argued [211] that this
offset was hard to explain in MOND. Assuming that this ringlike structure is real and not caused
by instrumental bias or spurious effects in the weak lensing analysis (due, e.g., to the unification
of strong and weak-lensing or to the use of spherical/circular priors), and that cluster stars and
galaxies do not make up a high fraction of the mass in the ring (which would be too faint to observe
anyway), it has been shown that, for certain interpolating functions with a sharp transition, this
is actually natural in MOND [325]. A peak in the phantom dark matter distribution generically
appears close to the transition radius of MOND 𝑟𝑡 = (𝐺𝑀/𝑎0)

1/2, especially when most of the mass
of the system is well-contained inside this radius (which is the case for the cluster Cl0024+17). This
means that the ring in Cl0024+17 could be the first manifestation of this pure MOND phenomenon,
and thus be a resounding success for MOND in galaxy clusters. However, the sharpness of this
phantom dark matter peak strongly depends on the choice of the 𝜇-function, and for some popular
ones (such as the “simple” 𝜇-function) the ring cannot be adequately reproduced by this pure
MOND phenomenon. In this case, a collisional scenario would be needed in MOND too, in order
to explain the feature as a peak of cluster dark matter. Indeed, we already know that there is a
mass discrepancy in MOND clusters, and we know that this dark matter must be in collisionless
form (e.g., neutrinos or dense clumps of cold gas). So the results of the simulation with purely
collisionless dark particles [211] would surely be very similar in MOND gravity. Again, it was
shown that the density of missing mass was compatible with 2 eV ordinary neutrinos, like in most
clusters with 𝑇 > 4 keV [139]. Finally, let us note that strong lensing was also recently used as a
robust probe of the matter distribution on scales of 100 kpc in galaxy clusters, especially in the
cluster Abell 2390 [149]. A residual missing mass was again found, compatible with the densities
provided by fermionic hot dark matter candidates only for masses of ∼ 10 eV and heavier. All
in all, the problem posed by gravitational lensing from galaxy clusters is thus very similar to the
one posed by the temperature profiles of their X-ray emitting gas (Section 6.6.4), and remains one
of the two main current problems of MOND, together with its problem at reproducing the CMB
anisotropies (see Section 9.2).

Finally, let us note in passing that another (non-lensing) test of relativistic MOND theories
in galaxy clusters has been performed by analysing the gravitational redshifts of galaxies in 7800
galaxy clusters [489], which were originally found to be difficult to reconcile with MOND: however,
this original analysis assumed a distribution of residual missing mass in MOND by simply scaling
down the Newtonian dynamical mass represented by a NFW halo by a factor 0.8, and the analysis
confused the interpolating functions 𝜇(𝑥) and �̃�(𝑠) (see Section 6.2). A subsequent analysis [41]
showed that these gravitational redshifts were in accordance with relativistic MOND when the
correct residual mass and acceptable 𝜇-functions were used.
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Figure 42: The bullet cluster 1E0657-56. The hot gas stripped from both subclusters after the collision
is colored red-yellow. The green and white curves are the isocontours of the lensing convergence parameter
𝜅 (Eq. 113). The two peaks of 𝜅 do not coincide with those of the gas, which makes up most of the
baryonic mass, but are skewed in the direction of the galaxies. The white bar corresponds to 200 kpc.
Image courtesy of Clowe, reproduced by permission from [102], copyright by AAS.

Figure 43: A MOND model of the bullet cluster [17]. The fitted 𝜅-map (solid black lines) is overplotted
on the convergence map of [102] (dotted red lines). The four centers of the parametrized potential used
are the red stars. Also overplotted (blue dashed line) are two contours of surface density. Note slight
distortions compared to the contours of 𝜅. The green shaded region corresponds to the clustering of 2 eV
neutrinos. Inset: The surface density of the gas in the model of the bullet cluster. Image reproduced by
permission from [17], copyright by AAS.
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8.4 Weak lensing by large-scale structure

The weak-lensing method can also be applied on larger scales, i.e., mapping the shear-field induced
by large-scale structures. On these scales, the metric of the expanding-universe-forming-structure
is well represented by a Newtonianly perturbed FLRW metric:

𝑔0𝑖 = 𝑔𝑖0 = 0 , 𝑔00 = − (1 + 2Φ) , 𝑔𝑖𝑗 = 𝑎(𝑡)2 (1 + 2Ψ) 𝛿𝑖𝑗 , (116)

where 𝑎(𝑡) is the scale factor. Like in the static weak-field case (Eq. 73), Φ is the non-relativistic
potential in units of 𝑐2, but the equality Ψ = −Φ in Eq. 73 does not necessarily imply the equality
in Eq. 116. In GR, this equality is actually respected for both cases (apart from perturbations
around a FLRW background sourced by anisotropic stress), but the relativistic MOND theories,
which have been constructed in order to yield the equality for the static weak-field limit in Eq. 73,
do not harbor this equality in the perturbed FLRW case, and the quantity Φ + Ψ is referred to
as the gravitational slip. For instance, in the TeVeS (Sections 7.3 and 7.4) and GEA (Section 7.7)
theories, based on unit-norm vector fields, the equality is broken due to the growth of vector
perturbations in the course of cosmological evolution (see, e.g., [128] and Section 9.2).

Like in the static case, weak gravitational lensing from large-scale structure will actually depend
on Φ − Ψ, whereas galaxy clustering will arise only from the non-relativistic potential Φ. By
combining information on the matter overdensity at a given redshift (obtained by measuring the
peculiar velocity field) and on the weak lensing maps, Zhang et al. [498] proposed a clever method
to observationally estimate Φ−Ψ. This allowed Reyes et al. [362] to use luminous red galaxies in
the SDSS survey in to exclude one model from the original TeVeS theory (Section 7.3) with the
original 𝑓(𝑋) function of [33], thus explicitly showing how such measurements could be a possible
future smoking-gun for all theories based on dynamical vector fields. But note that other MOND
theories such as BIMOND would not be affected by such measurements.

However, let us finally note a caveat in the interpretation of the weak lensing shear map in the
context of relativistic MOND. While intercluster filaments negligibly contribute to the weak lensing
signal in GR, a single filament inclined by 𝜋/4 from the line of sight can cause substantial distortion
of background sources pointing toward the filament’s axis in relativistic MOND theories [148]. Since
galaxies are generally embedded in filaments or are projected on such structures, this contribution
should be taken into account when interpreting weak lensing data. This additional difficulty for
interpreting weak-lensing data in MOND is not only true for filaments, but more generally for all
low-density structure such as sheets and voids.
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9 MOND and Cosmology

9.1 Expansion history

A viable theory of modified gravity, including dark fields or not, should not only be able to
reproduce observations in quasi-stationary galactic and extragalactic systems, but also to reproduce
all of the major probes of observational cosmology, including (i) the Hubble diagram out to large
𝑧, (ii) the anisotropies in the cosmic microwave background (CMB), and (iii) the matter power
spectrum on large scales. The first requires a detailed knowledge of FLRW cosmology, and the last
two a knowledge of cosmological perturbations on a FLRW background.

Concerning the first point, the FLRW solutions have been extensively studied for TeVeS (Sec-
tions 7.3 and 7.4, see, e.g., [70]) and GEA (Section 7.7, see, e.g., [515]) theories, for BIMOND
(Section 7.8, see, e.g., [101]), and for theories based on dipolar dark matter (Section 7.9, see,
e.g., [60]). In the latter case, the theory [58, 60] has been shown to be strictly equivalent to ΛCDM
out to first-order cosmological perturbations (but very different in the galaxy formation regime),
together with a natural explanation for Λ ∼ 𝑎20. For the other theories, it has been shown that the
contribution of the extra fields to the overall expansion is subdominant to the baryonic mass and
does not affect the overall expansion [151]. Such theories can predict an extremely wide range of
cosmological behavior, ranging from accelerated expansion to contraction on a finite time scale [70].
The key point is that the expansion history mainly depends on the form of the “MOND function”
𝑓(𝑋) for the unconstrained domain 𝑋 < 0 in any of these theories.
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Figure 44: In solid blue, the Zhao–Famaey [508] �̃�(𝑠)-function (Eq. 79) of TeVeS (Section 7.3 and 7.4),
compared to the original Bekenstein one (dashed green) with a discontinuity at 𝑠 = 0 [33]. The ZF function
provides a more natural transition from static systems (the positive side) to cosmology (the negative side).
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For instance, in TeVeS, 𝑋 ∝ (∇𝜑)2 > 0 in static configurations (see Eq. 85), and 𝑋 ∝
−2(𝜕𝜑/𝜕𝑡)2 in evolving homogeneous and isotropic configurations such as the expanding uni-
verse. The form of 𝑓(𝑋) is clearly constrained from the MOND phenomenology only for 𝑋 > 0,
meaning that a lot of freedom exists for 𝑋 < 0. Exactly the same is true in GEA and BIMOND
theories [101]. For instance, Bekenstein [33] originally proposed for TeVeS an 𝑓 ′-function (cor-
responding to �̃�, see Eq. 79) with a discontinuity at 𝑋 = 0 (the B04 function on Figure 44)
not enabling galaxies to collapse continuously out of the Hubble expansion. Afterwards, Zhao &
Famaey proposed an improved “mirror-function” 𝑓 ′(𝑋) such that the corresponding �̃�-function
reproduces the simple 𝜇-function (𝛼 = 1 in Eq. 46) for 𝑋 > 0, and 𝑓(𝑋) = 𝑓(−𝑋) for the cos-
mological regime 𝑋 < 0 (see Figure 44, leading to an acceptable expansion history. However,
when connecting a static galaxy to the expanding universe, the limit �̃�(0) = 0 would predict the
existence of a singular surface around each galaxies on which the scalar degree of freedom does
not propagate, meaning that it is better to reconnect the two sides at �̃�(0) = 𝜀 (see Section 6.2).
In addition, the integration constant 𝑓(0) can play the role of the cosmological constant [184] to
drive accelerated expansion, but even some 𝑓(0) = 0 models can drive late-time acceleration [125],
which is not surprising since k-essence scalar fields were also introduced to address the dark energy
problem. In the case of BIMOND (see Section 7.8), a symmetric matter-twin matter early universe
yields a cosmological constant through the zero-point of the MOND function, thereby naturally
leading to Λ ∼ 𝑎20.

All in all, with the additional freedom of a hypothetical dark component in the matter sector,
in the form of, e.g., ordinary or sterile neutrinos, playing with the form of 𝑓(𝑋) for 𝑋 < 0 in
TeVeS, GEA and BIMOND always allows one to reproduce an expansion history and a Hubble
diagram almost precisely identical to ΛCDM, justifying the assumption made in Section 8 of an
expansion history for gravitational lensing in relativistic MOND. However, it is important to note
that MOND theories are not providing a unique prediction on this.

9.2 Large-scale structure and Cosmic Microwave Background

Modified gravity theories should, of course, not only produce a reasonable Hubble expansion but
also reproduce the observed anisotropies in the CMB, and the matter power spectrum. Taken
at face value, these require not only dark matter, but non-baryonic cold dark matter. Any al-
ternative theory must account for these, just as dark matter models need to explain galaxy scale
phenomenology.

Using the hypothesis that the universe is filled with some form of cold dark matter, it is possible
to simultaneously fit observations of the CMB [229] and provide an elegant picture for the growth
of large scale structure [444]. Thus, an obvious question is how MOND fares with these subjects.
Of course, as we have seen, there is no unique existing MOND theory (Section 7), and the basic
theory underlying MOND as a paradigm is probably yet to be found. Nevertheless, we can make
a few general considerations about how any MOND theory should behave, and then look in more
details at specific predictions from existing relativistic theories. The general picture is that, in
some ways MOND does surprisingly well, in others it clearly gives no real unique prediction by
now, and in still others it appears to fail outright.

If one alters the force law as envisioned by MOND, the effective long-range force becomes
stronger. Though details will, of course, depend on the specific relativistic theory, we can speculate
about the consequences of a MOND-like force in cosmology. Note, however, that most of what
follows cannot be rigorously justified at the moment for lack of a compelling unique underlying
theory. But, obviously, because of the stronger force, dynamical measures of the cosmic mass
density will be overestimated, just as in galaxies. Applying MOND to the peculiar motions of
galaxies yields Ω𝑚 ≈ Ω𝑏 [279]. There are large uncertainties in estimating the extragalactic peculiar
acceleration field, so this merely shows that MOND might alleviate the need for non-baryonic dark
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matter inferred conventionally from Ω𝑚 > Ω𝑏.

The stronger effective gravitational attraction of MOND would change the growth rate of
perturbations. Instead of adding dark mass to speed the growth of structure, we now rely on the
modified force law to do the work. While it is obvious that MOND will form structures more rapidly
than conventional gravity with the same source perturbation, we immediately encounter a challenge
posed by the non-linear nature of the theory, precluding an easy linear perturbation analysis. One
can nevertheless sketch a naive overview of how structure might form under the influence of MOND.
The following picture emerges from numerical calculations of particles interacting under MOND
in an assumed background [386, 341, 226, 250], and is thus obviously slightly (or very) different
from the various relativistic MOND theories of Section 7 and from those yet to be found, especially
from those MONDian theories involving the existence of some form of dark matter (twin matter,
dipolar dark matter, etc.). In the early universe, perturbations cannot grow because the baryons
are coupled to the photon fluid. The mass density is lower, so matter domination occurs later than
in ΛCDM. Consequently, MOND structure formation initially has to lag behind ΛCDM at very
high redshift (𝑧 > 200). However, as the influence of the photon field declines and perturbations
begin to enter the MOND regime, structure formation rapidly speeds up. Large galaxies may
form by 𝑧 ≈ 10 and clusters by 𝑧 ≈ 2 [11, 386], considerably earlier than in ΛCDM. By 𝑧 = 0,
the voids have become more empty than in ΛCDM, but otherwise simulations (of collisionless
particles, which is, of course, not the best representation of the baryon fluid) show the same
qualitative features of the cosmic web [226, 250]. This similarity is not surprising since MOND
is a subtle alteration of the force law. The chief difference is in the timing of when structures
of a given mass appear, it being easier to assemble a large mass early in MOND. This means
that MOND is promising in addressing many of the challenges of Section 4.2, namely the high-
z clusters challenge [11] and Local Void challenge, as well as the bulk flow challenge and high
collisional velocity of the bullet cluster [16, 251], again due to the much-larger-than-Newtonian
MOND force in the structure formation context. What is more, it could allow large massive
galaxies to form early (𝑧 ≈ 10) from monolithic dissipationless collapse [393], with well-defined
relationships between the mass, radius and velocity dispersion. Consequently, there would be less
mergers than in ΛCDM at intermediate redshifts, in accordance with constraints from interacting
galaxies (see Section 6.5.3), which could explain the observed abundance of large thin bulgeless
disks unaffected by major mergers (see Section 4.2), and in those rare mergers between large spirals,
tidal dwarf galaxies would be formed and survive more easily (see Section 6.5.4). This could lead
to the intriguing possibility that most dwarf galaxies are not primordial but have been formed
tidally in these encounters [239]. These populations of satellite galaxies, associated with globular
clusters that formed along with them, would naturally appear in (more than one) closely related
planes (because a gas-rich galaxy pair undergoes many close encounters in MOND before merging,
see Section 6.5.3), thereby perhaps providing a natural solution to the Milky Way satellites phase-
space correlation problem of Section 4.2. What is more, the density-morphology relation for dwarf
ellipticals (more dE galaxies in denser environments [239]), observed in the field, in galaxy groups
and in galaxy clusters could also find a natural explanation.

Actually, the chief problem seems not to be forming structure in MOND, but the danger of
over-producing it [341, 401]. The amplitude of the power spectrum is well measured at 𝑧 = 1091
in the CMB and at 𝑧 ≈ 0 by surveys like the Sloan Digital Sky Survey. Simulations normalized
to the CMB overproduce the structure at 𝑧 = 0 by a factor of ∼ 2. Given the uncertainty in
the parent relativistic theory and hence the appropriate form of the expansion history, this seems
remarkably close. Given the non-linear nature of the theory, MOND could easily have been wrong
by many orders of magnitude in this context. Nevertheless, it may be necessary to somehow
damp the growth of structure at late times [401]. In this regard, a laboratory measurement of
the ordinary neutrino mass might be relevant. Conventional structure cannot form in ΛCDM if
𝑚𝜈 > 0.2 eV [229]. In contrast, some modest damping from a non-trivial neutrino mass might be
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desirable in MOND, and is also relevant to the CMB and clusters of galaxies (see Section 6.6.4).
In addition to mapping the growth factor as a function of redshift, one would also like to

predict the power spectrum of mass fluctuations as a function of scale at a given epoch. It is
certainly possible to match the power spectrum of galaxies at 𝑧 = 0 [401], but because of MOND’s
non-linearity and the uncertainty in the background cosmology, it is rather harder to know if such
a match faithfully represents a viable theory. Indeed, a natural prediction of baryon-dominated
cosmologies is the presence of strong baryon acoustic oscillations in the matter power spectrum at
𝑧 = 0 [267, 127]. Dodelson [127] portrays this as a problem, but as already pointed out in [267],
the non-linearity of MOND can lead to mode mixing that washes out the initially strong signal by
𝑧 = 0. A more interesting test would be provided by the galaxy power spectrum at high redshift
(𝑧 ∼ 5). This is a challenging observation, as one needs both a large survey volume and high
resolution in 𝑘-space. The latter requirement arises because the predicted features in the power
spectrum are very sharp. The window functions necessarily employed in the analysis of large scale
structure data are typically wider than the predicted features. Convolution of the predicted power
spectrum with the SDSS analysis procedure [326] shows that essentially all the predicted features
wash out, with the possible exception of the strongest feature on the largest scale. This means that
the BAO signal detected by SDSS and consistent with ΛCDM [135] could also be interpreted as a
confirmation of the prediction [267] of such features60 in MOND. However, there is no definitive
requirement that the BAO appears at the same scale as observed, or that it survives at all. In
relativistic theories such as TeVeS (Section 7.3 and 7.4), damping of the baryonic oscillations can
be taken care of by parameters of the theory such as 𝐾 in original TeVeS (Eq. 84, see Figure 3
of [430]) or the 𝑐𝑖 coefficients in generalized TeVeS (Eq. 87). In any case, as in standard cosmology,
the angular power spectrum of the CMB should be a cleaner probe.

A first attempt to address the CMB was made before the existence of relativistic theories with
a simple ansatz [265]: just as MOND returns precisely Newton in high accelerations, so any parent
theory should contain GR (almost exactly, although this is not precisely the case for, e.g., TeVeS)
in the appropriate strong-field limit. An obvious first assumption is that MOND effects do not
yet appear in the very early universe, so that pure GR suffices for calculations concerning the
CMB. The chief difference between ΛCDM and a MONDian cosmology is then just the presence or
absence of non-baryonic cold dark matter. With this ansatz, we can make one robust prediction:
the shape of the acoustic power spectrum should follow pure baryonic diffusion damping. There is
no net forcing term, as provided by the extra degree of freedom of non-baryonic cold dark matter.
Thus, with nothing but baryons, each acoustic peak should be lower than the previous one [425] as
part of a simple damping tail (Figure 45). In contrast, there must be evidence of forcing present
in a power spectrum where CDM outweighs the baryons.

The density of both the baryons and the non-baryonic cold dark matter are critical to the shape
of the acoustic power spectrum. For a given baryon density, models with CDM will have a larger
second peak than models without it. Similarly, the third peak is always lower than the second in
purely baryonic models, while it can be either higher or lower in CDM models, depending on the
mix of each type of mass. Moreover, both parameters were well constrained prior to observation
of the CMB [468]: Ω𝑏 from BBN [480] and Ω𝑚 from a variety of methods [116]. Therefore, it
seemed like a straightforward exercise to predict the difference one should observe. The most
robust prediction that could be made was the ratio of the amplitude of the first to second acoustic
peak [265]. For the range of baryon and dark matter densities allowed at the time, ΛCDM predicted
a range in this ratio anywhere from 1.5 to 1.9. That is, the first peak should be almost but not
quite twice as large as the second, with the precise value containing the information necessary to
much better constrain both density parameters. For the same baryon densities allowed by BBN

60 Even if BAO features are present at high redshift in MOND, it is not clear that low redshift structures will
correlate with the ISW in the CMB as they should in conventional cosmology because of the late time non-linearity
of MOND.
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Figure 45: The acoustic power spectrum of the cosmic microwave background as observed byWMAP [229]
together with the a priori predictions of ΛCDM (red line) and no-CDM (blue line) as they existed in
1999 [265] prior to observation of the acoustic peaks. ΛCDM correctly predicted the position of the first
peak (the geometry is very nearly flat) but over-predicted the amplitude of both the second and third
peak. The most favorable a priori case is shown; other plausible ΛCDM parameters [468] predicted an
even larger second peak. The most important parameter adjustment necessary to obtain an a posteriori fit
is an increase in the baryon density Ω𝑏 above what had previously been expected from BBN. In contrast,
the no-CDM model ansatz made as a proxy for MOND successfully predicted the correct amplitude ratio
of the first to second peak with no parameter adjustment [268, 269]. The no-CDM model was subsequently
shown to under-predict the amplitude of the third peak [442].

but no dark matter, the models fell in a distinct and much narrower range: 2.2 to 2.6, with the
most plausible value being 2.4. The second peak is smaller (so the ratio of first to second higher)
because there is no driving term to counteract baryonic damping. In this limit, the small range of
relative peak heights follows directly from the narrow range in Ω𝑏 from BBN.

The BOOMERanG experiment [117] provided the first data capable of testing this prediction,
and was in good agreement with the no-CDM prediction [268]. This result was subsequently
confirmed by WMAP, which measured a ratio 2.34 ± 0.09 [345]. This is in good quantitative
agreement with the prediction of the no-CDM ansatz, and outside the range first expected in
ΛCDM. ΛCDM can nevertheless provide a good fit to the CMB power spectrum. The chief
parameter adjustment required to obtain a fit is the baryon density, which must be increased: this
is the reason for the near doubling of the long-standing value Ω𝑏ℎ

2 = 0.0125 [480] to the more
recent Ω𝑏ℎ

2 = 0.02249 [229].

A critical question is whether the baryon density required by ΛCDM is consistent with the
independently-measured abundances of the light isotopes. This question is explored in Figure 46.
Historically, no isotope suggested a value Ω𝑏ℎ

2 > 0.02 prior to fits to the CMB requiring such a high
value. This is an important fact to bear in mind, since historically cosmology has a long tradition
of confirmation bias61. More recent measurements of deuterium and helium are consistent with
the high baryon density required by ΛCDM fits to the CMB. Lithium persistently suggests a lower

61 Perhaps the most famous modern example of confirmation bias is in measurements of the Hubble constant [466],
where over many years de Vaucouleurs persistently found 𝐻0 ≈ 100 km s−1 Mpc−1 while Sandage persistently found
𝐻0 ≈ 50 km s−1 Mpc−1. Then, as now, there was a conflation of data with theory: the lower value of 𝐻0 was more
widely accepted because it was required for cosmology to be consistent with the ages of the oldest stars.
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Figure 46: Estimates of the baryon density Ω𝑏ℎ
2 [where ℎ = 𝐻0/(100 km s−1 Mpc−1)] over time

(updated [273] from [269]). BBN was already a well-established field prior to 1995; earlier contribu-
tions are summarized by compilations (green ovals [480, 107]) that gave the long-lived standard value
Ω𝑏ℎ

2 = 0.0125 [480]. More recent estimates from individual isotopes are shown as triangles (2H), squares
(4He), diamonds (3He), and stars (7Li). Estimates of the baryon density based on analyses of the cosmic
microwave background are shown by circles (dark blue for ΛCDM; light blue for no-CDM). No measure-
ment of any isotope suggested a value greater than Ω𝑏ℎ

2 = 0.02 prior to observation of the acoustic peaks
in the microwave background (dotted lines), which might be seen as a possible illustration of confirmation
bias. Fitting the acoustic peaks in ΛCDM requires Ω𝑏ℎ

2 > 0.02. More recent measurements of 2H and
4He have migrated towards the ΛCDM CMB value, while 7Li remains persistently problematic [111]. It
has been suggested that turbulent mixing might result in the depletion of primordial lithium necessary to
reconcile lithium with the CMB (upward pointing arrow [287]), while others [405] argue that this would
merely reconcile some discrepant stars with the bulk of the data defining the Spite plateau, which persists
in giving a 7Li abundance discrepant from the ΛCDM CMB value. In contrast, the amplitude of the second
peak of the microwave background is consistent with no-CDM and Ω𝑏ℎ

2 = 0.014 ± 0.005 [269]. Conse-
quently, from the perspective of MOND, the CMB, lithium, deuterium, and helium all give a consistent
baryon density given the uncertainties.

baryon density, consistent with pre-CMB values. If we are convinced of the correctness of ΛCDM,
then it is easy to dismiss this as some peculiarity of stars – if exposed to the high temperatures
in the cores of stars by turbulent mixing, lithium might be depleted from it primordial value. If
we are skeptical of ΛCDM, then it is no surprise that measurements of the primordial lithium
abundance return the same value now as they did before. From the perspective of the no-dark
matter MOND view, the CMB, lithium, deuterium, and helium all give a consistent baryon density
given the uncertainties.

However, the no-CDM ansatz must fail at some point. It could fail outright if the parent MOND
theory deviates substantially from GR in the early universe. However, the more obvious [265]
points of failure are rather due to the anticipated early structure formation in MOND discussed
above. This should lead, in a true MOND theory, to early re-ionization of the universe and an
enhancement of the integrated Sachs–Wolfe effect. Evidence for both these effects are present in
the WMAP data [269]. Indeed, it turns out to be rather easy, and perhaps too easy, to enhance
the integrated Sachs–Wolfe (ISW) effect in theories like TeVeS or GEA [430, 516]. Nevertheless,
early re-inioniaztion is an especially natural consequence of MOND structure formation that was
predicted a priori [265]. In contrast, structure is expected to build up more slowly in ΛCDM such
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that obtaining the observed early re-ionization implies that the earliest objects to collapse were
∼ 50 times as efficient at converting mass to ionizing photons as are collapsed objects at the present
time [435].

One prediction of the no-CDM anzatz that should not obviously fail is that the third peak
should be smaller than the second peak of the acoustic power spectrum of the CMB. In a universe
governed by MOND rather than cold dark matter, there is no obvious non-baryonic mass that is
decoupled from the photon-baryon fluid. Therefore, it is a strong expectation that we observe only
baryonic damping in the power spectrum, and each peak should be smaller in amplitude than the
previous one. Contrary to this expectation, WMAP observes the third peak to be nearly equal
in amplitude to the second [442, 229]. This approximate equality of the second and third peaks
falsifies the simple no-CDM anzatz.

Figure 47: CMB data as measured by the WMAP satellite year five data release (filled circles) and the
ACBAR 2008 data release (triangles). Dashed line: ΛCDM fit. Solid line: HDM fit with a sterile neutrino
of mass 11 eV. Image courtesy of Angus, reproduced by permission from [9].

The PLANCK mission should soon report a new and much higher resolution measurement of
the CMB acoustic power spectrum. It is conceivable62 that improved data will reveal a different
power spectrum. A third peak as low as that expected in the no-CDM anzatz would be one of
the few observations capable of clearly falsifying the existence of cosmic non-baryonic dark matter.
A more likely result is basic confirmation of existing observations with only minor tweaks to the
exact power spectrum. Such a result would have little impact on the discussion here as it would

62 At ℓ ≈ 800, the third peak is only marginally resolved by WMAP. This scale is comparable to a single
(frequency-dependent) beam size, and, as such, is extraordinarily sensitive to corrections for the instrumental point
spread function [404].
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simply confirm the need for some degrees of freedom in relativistic MOND theories that can play
a role analogous to CDM. However, the uncertainties on the best fit cosmological parameters may
become negligibly small. Precise as current data are, cosmology (with the exception of BBN) is
still far from being over-constrained. Hopefully, PLANCK data will be sufficiently accurate that
they either agree or clearly do not agree63 with a host of other observations.

Presuming nothing substantial changes in the CMB data, we must understand the net forcing
term in the acoustic oscillations leading to a high third peak. This might be taken in one of three
ways:

(i) Practical falsification of MOND,

(ii) Proof of the existence of some form of non-baryonic matter particles,

(iii) An indication of some necessary additional freedom in relativistic parent theories of MOND,
playing the role of the non-baryonic mass in the CMB64.

Tempting as the first case (i) is [432], we cannot know whether the CMB falsifies MOND until
we have exhaustively explored the predictions of relativistic parent theories (Section 7). The
possibility of true non-baryonic mass (ii) seems unelegant, although a modification of gravity and
the existence of non-baryonic dark matter are not mutually exclusive concepts. What is more,
there is one obviously existing form of non-baryonic mass that may be relevant on cosmic scales:
neutrinos. If 𝑚𝜈 ≈

√
Δ𝑚2 [434], then the neutrino mass is too small to be of interest in this

context. However, as discussed above, a modest neutrino mass may help to prevent MOND from
over-predicting the growth of structure. Independently, a mass 𝑚𝜈 ≈ 1 eV to 2 eV for the three
neutrino species provides a good match to the width of the acoustic peaks of the CMB [269], which
are otherwise too wide in a purely baryonic universe. Note that it also provides a match to the
missing mass in galaxy clusters of 𝑇 > 4 keV (see Section 6.6.4). However, this neutrino mass is
inadequate to explain the relatively high third peak in the no-DM ansatz. Obtaining a match to
that instead requires a neutrino mass (for only one species) of ∼ 10 eV [9]. Such a large mass
violates experimental constraints on the ordinary neutrino mass [234], but it may be possible to
have a sterile neutrino with a mass in that ballpark [26]. As strange as this sounds, it provides a
good fit to the CMB (Figure 47), and it may provide the unseen mass in all clusters and groups
(see Section 6.6.4 [13, 11]). Experiments that can address the existence of such a particle would
thus be very interesting [288], although in between it is perhaps best to view it merely as the
encapsulation of our ignorance about cosmology in modified gravity theories, much as dark energy
currently plays the same role in conventional cosmology. The fit of Figure 47 [9] is at least a proof
of concept that cold DM is definitely not required by the CMB alone.

Perhaps the most intriguing possibility is (iii), that the height of the third peak is providing a
glimpse of some new aspect of modified gravity theories. As we have seen, generalizations of GR
seeking to incorporate MONDian phenomenology must, per force, introduce either non-locality
(Section 7.10), or new degrees of freedom in local theories. It is at least conceivable that these

63 Determining agreement between independent observations requires that we believe not just the result (e.g., the
value of 𝐻0 from direct distance measurements) but also its uncertainty. The latter has always been challenging
in astronomy, and the history of cosmology is replete with examples of results that were simply wrong. While we
may have entered the era of precision cosmology, we have yet to reach an era when data are so accurate that we
can hope to challenge cosmology with falsification if, for example, PLANCK data require 𝐻0 < 60 km s−1 Mpc−1,
while galaxy distances require 𝐻0 > 70 km s−1 Mpc−1.

64 The third possibility actually means either non-local effects in non-local theories (Section 7.10), or the effect of
additional fields in local modified gravity theories. The important difference with CDM is that these fields are not
simply representative of collisionless massive particles, that their behavior is determined by the baryons in static
configurations, and that they can be subdominant to the baryonic density. In theories where their energy density
dominates that of baryons, these new fields then really act as dark matter in the early universe, which is also a
possibility (see Section 7.6 and 7.9)
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116 Benôıt Famaey and Stacy S. McGaugh

new degrees of freedom result in the net driving of the acoustic oscillations that is implied by the
departure from pure baryonic damping. For instance, Dodelson & Liguori [128] have shown that
in TeVeS (Sections 7.3 and 7.4) or GEA (Section 7.7) theories, based on unit-norm vector fields,
the growth of the spatial part of the vector perturbation in the course of cosmological evolution is
acting as an additional seed akin to non-baryonic dark matter65 (but unlike dark matter, its energy
density is subdominant to the baryonic mass). Actually, it has been shown that, with the help of
this effect prior to baryon-photon decoupling, it is actually possible66 to produce as high a third
peak as the second one in TeVeS and GEA theories without non-baryonic dark matter, but at the
cost of leading to unacceptably high temperature anisotropies in the CMB on large angular scales,
due to an over-enhanced ISW effect [430, 516]. Indeed, when making the effect of the growth of
the perturbed vector modes large, one also generates [151, 409, 498] a large gravitational slip (see
Section 8.4) in the perturbed FLRW metric (Eq. 116), which in turn leads to enhanced ISW67.
For this reason, acceptable fits to the CMB in TeVeS or GEA still need to appeal to non-baryonic
mass [430]. In this case, ordinary neutrinos within their model-independent mass-limit [234] are
sufficient, though68. However, the gravitational slip could be able to soon exclude at least some of
these models from combined information on the matter overdensity and weak lensing [362, 498].
However, an important caveat is that all of the above arguments are based on adiabatic initial
conditions69. While initial isocurvature perturbations are basically ruled out in the GR context,
this is not necessarily true for modified gravity theories, so that correlated mixtures of adiabatic
and isocurvature modes could perhaps lower the ISW effect and/or raise the third peak [429].

Of course, when the additional “dark fields” of relativistic MOND theories are truly massive
(as is the case in some theories), they can be thought of as true “dark matter”, whose energy
density outweighs the baryonic one in the early universe: this is the case for the second scalar
field of BSTV (Section 7.5), the scalar field of Section 7.6, and of course the dipolar dark matter
of Section 7.9. In all these cases, reproducing the acoustic peaks of the CMB is, by construction,
not a problem at all (nor erasing the baryon acoustic oscillations in the matter power spectrum
contrary to [127]), while the MOND phenomenology is still nicely recovered in galaxies. In the
case of BIMOND (Section 7.8), the possible appeal to twin matter could also have important
consequences on the growth of structure [316] and, of course, on the CMB acoustic peaks too,
although the latter analysis is still lacking. In an initially matter-twin matter symmetric universe,
if the initial quantum fluctuations are not identical in the two sectors, matter and twin matter
would still segregate efficiently, since density differences grow much faster that the sum [316]. The
inhomogeneities of the two matter types would then develop, eventually, into mutually avoiding
cosmic webs, and the tensors coming from the variation of the interaction term between the two
metrics with respect to the matter metric can then act precisely as the energy-momentum ten-
sor of cosmological dark matter [316], besides its contribution to the cosmological constant (see
Section 9.1). Finally, the most thought-provoking and interesting possibility would perhaps be to
explain all these cosmological observations through non-local effects (Section 7.10). In any case, it
is likely that MOND will not be making truly clear predictions regarding cosmology until a more
profound theory, based on first principles and underlying the MOND paradigm, is found.

65 In TeVeS, the perturbations of the scalar field also play an important role in generating enhanced growth [146].
66 Ferreira’s talk, Alternative Gravities and Dark Matter Workshop, Edinburgh, April 2006.
67 The ISW effect can be cast as the integral of −(Φ + Ψ)′ + 2Φ′, thus involving both a gravitational slip part

and a growth rate part.
68 Note that the presence of non-baryonic matter in the form of massive neutrinos also helps damping the baryonic

acoustic oscillations [127] at 𝑧 = 0, as can be seen in Figure 4 of [430].
69 This means that, on surfaces of constant temperature, the densities of the various components (e.g. baryons,

neutrinos, additional dark fields) are uniform, and that these components share a common velocity field.
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10 Summary and Discussion

In this review, after briefly presenting the currently favored ΛCDM model of cosmology (which
clearly works overwhelmingly well on large scales despite its slightly unelegant mixture of currently
unknown elements, Sections 2 and 3), we reviewed the few most outstanding challenges that this
model is still facing (Section 4), which will have to be addressed one way or the other in the coming
years. These include coincidences at 𝑧 = 0 between the scale of the energy density in dark energy,
dark matter, and baryonic matter, as well as a common natural scale for the behavior of the dark
matter and dark energy sectors. What is more, as far as galaxy formation is concerned, many pre-
dictions made by the model (keeping in mind that baryon physics could modify these predictions)
were ruled out by observations: these include many observations indicating that structure forma-
tion should take place earlier than predicted, the low number of observed satellites around the
Milky Way (especially the missing satellites at the low and high mass ends of the mass function),
the phase-space correlation of satellite galaxies of the Milky Way as opposed to their predicted
isotropic distribution, the apparent presence of constant DM density cores in the central parts of
galaxies instead of the predicted cuspy dark halos, the over-abundance of large bulgeless thin disk
galaxies that are extremely difficult to produce in simulations, or the presence of spiral arms in
disks that should be immune to such instabilities. But even more challenging is the appearance
(Figure 48) of an acceleration constant 𝑎0 ≃ 10−10 m s−2 (i.e., the common scale of the dark
matter and dark energy sectors as 𝑎0 ∼ Λ1/2 in natural units) in many unrelated scaling relations
for DM and baryons in galaxies. These scaling relations involve a possibly devastating amount of
fine-tuning for all collisionless dark matter models (Section 4.3), and can all be summarized by
Milgrom’s empirical formula (Section 5), meaning that the observed gravitational field in galaxies
is mimicking a universal force law generated by the baryons alone.

Figure 48: The acceleration parameter ∼ 𝑉 4
𝑓 /(𝐺𝑀𝑏) of extragalactic systems, spanning ten decades in

baryonic mass 𝑀𝑏. X-ray emitting galaxy groups and clusters are visibly offset from smaller systems, but
by a remarkably modest amount over such a long baseline. The characteristic acceleration scale 𝑎0 ∼

√
Λ

is in the data, irrespective of the interpretation. And it actually plays various other independent roles
in observed galaxy phenomenology. This is natural in MOND (see Section 5.2), but not in ΛCDM (see
Section 4.3).

With inert, collisionless and dissipationless DM, making Milgrom’s law emerge requires a huge,
and perhaps even unreasonable, amount of fine-tuning in the expected feedback from the baryons.
Indeed, the relation between the distribution of baryons and DM should depend on the various
different histories of formation, intrinsic evolution, and interaction with the environment of the var-
ious different galaxies, whereas Milgrom’s law provides a sucessful unique and history-independent
relation. Given this puzzle, the central idea of Modified Newtonian Dynamics (MOND) is rather
to explore the possibility that the force law is indeed effectively modified (Section 6). The main
motivation for studying MOND is thus a fully empiricist one, as it is driven by the observed phe-
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nomenology on galaxy scales, and not by an aesthetic wish of getting rid of DM. The corollary is
that it is not a problem for a theory designed to reproduce the uncanny successes of the MOND
phenomenology to replace CDM by “dark fields” (see Section 7) or more exotic forms of DM,
different from simple collisionless DM particles, contrary to the common belief that this would be
against the spirit of the MOND paradigm (although it is true that it would be more elegant to
avoid too many additional degrees of freedom). It is perhaps more important that, if MOND is
correct in the sense of the acceleration 𝑎0 being a truly fundamental quantity, the strong equiva-
lence principle cannot hold anymore, and local Lorentz invariance could perhaps be spontaneously
violated too.

At this juncture, it is worthwhile to summarize the general predictions of MOND, as a paradigm,
and their observational tests (Table 2). As a mathematical description of the effective force law,
MOND works remarkably well in individual galaxies. As a modified gravity theory (at the classical
level), it makes some predictions that are both unique and challenging to reproduce in the context
of the ΛCDM paradigm. However, MOND faces sharp challenges, particularly with cosmology and
in rich clusters of galaxies, which will not be conclusively addressed without a viable parent theory
(Section 7), based on first principles and underlying the MOND paradigm (if such a theory exists
at all). In any case, in his series of papers introducing the idea in 1983, Milgrom [294] made a few
very explicit predictions, which we quote hereafter, and compare with modern observational data
(see also the Kepler-like laws of galactic dynamics in Section 5.2):

∙ “Velocity curves calculated with the modified dynamics on the basis of the observed mass in
galaxies should agree with the observed curves.”

It is now well established that MOND provides good fits to the rotation curves of galaxies
(Figure 23 [401, 166]), including bumps and wiggles associated with a baryonic counterpart
(Figure 21, Kepler-like law no. 10 in Section 5.2). These fits are obtained with a single free
parameter per galaxy, the mass-to-light ratio of the stars. What makes them most impressive
is that the best-fit mass-to-light ratios, obtained on purely dynamical grounds assuming
MOND, vary with galaxy color exactly as one would expect from stellar population synthesis
models [42], that are based on astronomers’ detailed understanding of stars. Note that the
rotation curves of galaxies are predicted to be asymptotically flat, even though this flatness
is not always attained at the last observed point (see Kepler-like law no. 1 in Section 5.2,
and last explicit prediction hereafter).

∙ “The relation between the asymptotic velocity and the mass of the galaxy is an absolute one.”

This is the Baryonic Tully–Fisher relation with 𝑀𝑏 = 𝑎0𝐺𝑉 4
𝑓 (see Kepler-like laws no. 2

in Section 5.2). It appears to hold quite generally [272], even for galaxies that we would
conventionally expect to deviate from it [165, 279, 276].

∙ “Analysis of the 𝑧-dynamics in disk galaxies using the modified dynamics should yield surface
densities, which agree with the observed ones.”

This states that, in addition to the radial force giving the rotation curve, the motions of stars
perpendicular to the disk must also follow from the source baryons (see Section 6.5.3). This
proves to be a remarkably challenging observation, and such data for external galaxies are
difficult to obtain [44]. To make matters still more difficult, the radial acceleration usually
dominates the vertical (𝑉 2/𝑟 ≫ 𝜎2

𝑧/𝑧). This has the consequence that the distinction between
MOND and conventional dynamics is not pronounced in regions that are well observed,
becoming pronounced only at rather low baryonic surface densities [279]. The vertical velocity
dispersions in low surface density regions (see Section 6.5.3) is typically ∼ 8 km/s [25, 241].
This exceeds the nominal Newtonian expectation (typically ∼ 2 km/s for Σ = 1𝑀⊙ pc−2,
depending on the thickness of the disk), and is more in accordance with MOND. However,
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it would require a considerably more detailed analysis to consider this a test, let alone a
success, of MOND. The Milky Way (Section 6.5.2) may provide an excellent test for this
prediction [50, 378] as more precision data become available.

∙ “Effects of the modification are predicted to be particularly strong in (LSB) dwarf galaxies.”

The dwarf spheroidal satellite galaxies of the Milky Way have very low surface densities of
stars, so (see Kepler-like law no. 8 in Section 5.2) are far into the MOND regime. As expected,
these systems exhibit large mass discrepancies [477, 427]. Detailed fits to the better observed
“classical” dwarfs [8] are satisfactory in most cases (see Section 6.6.2). The “ultrafaint”
dwarfs appear more problematic [285], in the sense that their velocity dispersions are higher
than expected. This might be an indication of the MOND-specific external field effect (see
Section 6.3 and [78]), as the field of the Milky Way dominates the internal fields of the
ultrafaint dwarfs. If so, these objects are not in dynamical equilibrium, which considerably
complicates their analysis.

∙ Locally-measured mass-to-light ratios should show no indication of hidden mass when 𝑉 2
𝑐 /𝑅 ≫

𝑎0, but rise beyond the radius where 𝑉 2
𝑐 /𝑅 ≈ 𝑎0.

We have paraphrased this prediction for brevity (see also Kepler-like law no. 7 in Section 5.2).
The test of this prediction is shown in Figures 10, 11, and 14. The predicted effect is obvious in
the data with populations synthesis mass-to-light ratios for the stars [42], or with dynamical
mass-to-light ratios [279] that make no assumption about stellar mass. In HSB spirals, there
is no obvious need for dark matter in the inner regions, with the mass discrepancy only
appearing at large radii as the acceleration drops below 𝑎0 (Figure 10).

∙ “Disk galaxies with low surface brightness provide particularly strong tests.”

Low surface brightness means low stellar surface density, which in turns means low accelera-
tion. LSB galaxies are thus predicted to be well into the modified regime (see also Kepler-like
law no. 8 in Section 5.2). This was a strong prediction, because few bona-fide examples of
such objects were known at the time. Indeed, in 1983, when these predictions were published,
it was widely thought that nearly all disk galaxies shared a common high surface brightness.
One specific consequence of MOND for LSB galaxies is that they should lie on the same
BTFR, with the same normalization, as HSB spirals. This was subsequently observed to be
the case [517, 443]. There is no systematic deviation from the BTFR with surface brightness
(Figure 5), thus contrary to what is naturally expected in conventional dynamics [279, 109].
Another consequence of low surface density is that the acceleration is low (< 𝑎0) everywhere.
As a result, the mass discrepancy appears at a smaller radius in LSB galaxies, and is larger
in amplitude than in HSB galaxies. This effect was subsequently observed (Figure 14 [279]).

∙ “We predict a correlation between the value of the average surface density of a galaxy and
the steepness with which the rotational velocity rises to its asymptotic value.”

MOND does not simply make rotation curves flat. It predicts that HSB galaxies have rotation
curves that rise rapidly before becoming flat, and may even fall towards asymptotic flatness.
In contrast, LSB galaxies should have slowly rising rotation curves that only gradually ap-
proach asymptotic flatness (see also Kepler-like law no. 8 in Section 5.2). Both morphologies
are observed (Figure 15). The expected connection between dynamical acceleration and the
surface density of the source baryons is illustrated in Figures 9 and 16.

The original predictions listed above cover many situations, but not all. Indeed, once one
writes a specific force law, its application must be completely general. Such a hypothesis is readily
subject to falsification, provided sufficiently accurate data to test it – a perpetual challenge for
astronomy. Table 2 summarizes the tests discussed here. By and large, tests of MOND involving
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rotationally-supported disk galaxies are quite positive, as largely detailed above (see Section 6.5).
By construction, there is no cusp problem (solution to challenge no. 6 of Section 4.2), and no missing
baryons problem (solution to challenge no. 10 of Section 4.2), as the way the dynamical mass-to-
light ratio systematically varies with the circular velocity is a direct consequence of Milgrom’s law
(Kepler-like law no. 4 of Section 5.2). There does appear to be a relation between the quality of
the data and the ease with which a MOND fit to the rotation curve is obtained, in the sense that
fits are most readily obtained with the best data [28]. As the quality of the data decline [384],
one begins to notice small disparities. These are sometimes attributable to external disturbances
that invalidate the assumption of equilibrium [403]. For targets that are intrinsically difficult to
observe, minor problems become more common [120, 448]. These typically have to do with the
challenges inherent in combining disparate astronomical data sets (e.g., rotation curves measured
independently at optical and radio wavelengths) and constraining the inclinations of LSB galaxies
(bear in mind that all velocities require a sin(𝑖) correction to project the observed velocity into the
plane of the disk, and mass in MOND scales as the fourth power of velocity). Given the intrinsic
difficulties of astronomical observations, it is remarkable that the success rate of MOND fits is as
high as it is: of the 78 galaxies that have been studied in detail (see Section 6.5.1), only a few
cases (most notably NGC 3198 [68, 166]) appear to pose challenges. Given the predictive and
quantitative success of the majority of the fits, it would seem unwise to ignore the forest and focus
only on the outlying trees.

One rotationally-supported system that is very familiar to us is the solar system (see Sec-
tion 6.4). The solar system is many orders of magnitude removed from the MOND regime (Fig-
ure 11), so no strong effects are predicted. However, it is, of course, possible to obtain exquisitely
precise data in the solar system, so it is conceivable that some subtle effect may be observable [391].
Indeed, the lack of such effects on the inner planets already appears to exclude some slowly-varying
interpolation functions [62]. Other tests may yet prove possible [37, 314], but, as they are strong-
field gravity tests by nature, they all depend strongly on the parent relativistic theory (Section 7)
and how it converges towards GR [22]. So, in Table 2, we list the status of solar-system tests as
unclear, depending on the parent relativistic theory.

An important aspect of galactic disks is their stability (see Section 6.5.3). Indeed, the need to
stabilize disks was one of the early motivations for invoking dark matter [343]. MOND appears able
to provide the requisite stability [77]. Indeed, it gives good reason [299] for the observed maximum
in the distribution of disk galaxy surface densities at ∼ Σ† = 𝑎0/𝐺 (Freeman’s limit: Figure 8
and Kepler-like law no. 6 in Section 5.2). Disks with surface densities below this threshold are in
the low acceleration limit and can be stabilized by MOND. Higher-surface-density disks would be
purely in the Newtonian regime and subject to the usual instabilities. Going beyond the amount of
stability required for existence, another positive aspect of MOND is that it does not over-stabilize
disks. Features like bars and spiral arms are a natural result of disk self-gravity. Conventionally,
large halo-to-disk mass ratios suppress the growth of such features, especially in LSB galaxies [291].
Yet such features are present70. The suppression is not as great in MOND [77], and numerical
simulations appear to do a good job of reproducing the range of observed morphologies of spiral
galaxies (solution to challenge no. 9 of Section 4.2, see [458]). Bars tend to appear more quickly and
are fast, while warps can also be naturally produced (Section 6.5.3). There appears to be no reason
why this should not extend to thin and bulgeless disks, whose ubiquity poses a challenge to galaxy
formation models in ΛCDM. This particular point of creating large bulgeless disks (challenge no. 8
of Section 4.2) can actually be solved thanks to early structure formation followed by a low galaxy-
interaction rate in MONDian cosmology (see Section 9.2), but this definitely warrants further
investigation, so we mark this case as merely promising in Table 2.

Interacting galaxies are, by definition, non-stationary systems in which the customary assump-

70 [279] utilized this fact to predict that conventional analyses of LSB disks would infer abnormally high mass-to-
light ratios for their stellar populations – a prediction that was subsequently confirmed [159, 371].
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tion of equilibrium does not generally hold. This renders direct tests of MOND difficult. However,
it is worth investigating whether commonly observed morphologies (e.g., tidal tails) are even pos-
sible in MOND. Initially, this seemed to pose a fundamental difficulty [279], as dark matter halos
play a critical role in absorbing the orbital energy and angular momentum that it is necessary to
shed if passing galaxies are to not only collide, but stick and merge. Nevertheless, recent numerical
simulations appear to do a nice job of reproducing observed morphologies [459]. This is no trivial
feat. While it is well established that dark matter models can result in nice tidal tails, it turns out
to be difficult to simultaneously match the narrow morphology of many observed tidal tails with
rotation curves of the systems from which they come [130]. Narrow tidal tails appear to be natural
in MOND, as well as more extended resulting galaxies, thanks to the absence of angular momentum
transfer to the dark halo (solution to challenge no. 7 of Section 4.2). Additionally, tidal dwarfs
that form in these tails clearly have characteristics closer to those observed (see Section 6.5.4) than
those from dark matter simulations [165, 309].

Spheroidal systems also provide tests of MOND (Section 6.6). Unlike the case of disk galaxies,
where orbits are coplanar and nearly circular so that the centripetal acceleration can be equated
with the gravitational force, the orbits in spheroidal systems are generally eccentric and randomly
oriented. This introduces an unknown geometrical factor usually subsumed into a parameter that
characterizes the anisotropy of the orbits. Accepting this, MOND appears to perform well in the
classical dwarf spheroidal galaxies, but implies that the ultrafaint dwarfs are out of equilibrium
(see Section 6.6.2). For small systems like the ultrafaint dwarfs and star clusters (Section 6.6.3)
within the Milky Way, the external field effect (Section 6.3) can be quite important. This means
that star clusters generally exhibit Newtonian behavior by virtue of being embedded in the larger
galaxy. Deviations from purely Newtonian behavior are predicted to be subtle and are fodder for
considerable debate [199, 397], rendering the present status unclear (Table 2). At the opposite
extreme of giant elliptical galaxies (Section 6.6.1), the data accord well with MOND [323]. Indeed,
bright elliptical galaxies are sufficiently dense that their inner regions are well into the Newtonian
regime. In the MONDian context, this is the reason that it has historically been difficult to find
clear evidence for mass discrepancies in these systems. The apparent need for dark matter does
not occur until radii where the accelerations become low. That only spheroidal stellar systems
appear to exist at surface densities in excess of Σ† is the corollary of Freeman’s limit: such dense
systems could not exist as stable disks, so must perforce become elliptical galaxies, regardless of
the formation mechanism that made them so dense. That populations of elliptical galaxies should
obey the Faber–Jackson relation (Kepler-like law no. 3 in Section 5.2, Figure 7) is also very natural
to MOND [383, 395].

The largest gravitationally-bound systems are also spheroidal systems: rich clusters of galaxies.
The situation here is quite problematic for MOND (Section 6.6.4). Applying MOND to ascertain
the dynamical mass routinely exceeds the observed baryonic mass by a factor of 2 to 3. In effect,
MOND requires additional dark matter in galaxy clusters. The need to invoke unseen mass is
most unpleasant for a theory that otherwise appears to be a viable alternative to the existence of
unseen mass. However, one should remember that the present-day motivation for studying MOND
is driven by the observed phenomenology on galaxy scales, summarized above, and not by an
aesthetic wish of getting rid of DM. What is more, parent relativistic theories of MOND might
well involve additional degrees of freedom in the form of “dark fields”. But in any case, one must
be careful not to conflate the rather limited missing mass problem that MOND suffers in clusters
with the non-baryonic collisionless cold dark matter required by cosmology. There is really nothing
about the cluster data that requires the excess mass to be non-baryonic, as long as it behaves in a
collisionless way. There could for instance be baryonic mass in some compact non-luminous form
(see Section 6.6.4 for an extensive discussion). This might seem to us unlikely, but it does have
historical precedent. When Zwicky [518] first identified the dark matter problem in clusters, the
mass discrepancy was of order ∼ 100. That is, unseen mass outweighed the visible stars by two
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orders of magnitude. It was only decades later that it was recognized that baryons residing in a
hot intracluster gas greatly outweighed those in stars. In effect, there were [at least] two missing
mass problems in clusters. One was the hot gas, which reduces the conventional discrepancy
from a factor of ∼ 100 to a factor of ∼ 8 [175] in Newtonian gravity. From this perspective, the
remaining factor of two in MOND seems modest. Rich clusters of galaxies are rare objects, so
the total required mass density can readily be accommodated within the baryon budget of BBN.
Indeed, according to BBN, there must still be a lot of unidentified baryons lurking somewhere in
the universe. But the excess dark mass in clusters need not be baryonic, even in MOND. Massive
ordinary neutrinos [389, 392] and light sterile neutrinos [9, 13] have been suggested as possible
forms of dark matter that might provide an explanation for the missing mass in clusters. Both are
non-baryonic, but as they are hot DM particle candidates, neither can constitute the cosmological
non-baryonic cold dark matter. At this juncture, all we can say for certain is that we do not
know what the composition of the unseen mass is. It could even just be evidence for the effect
of additional “dark fields” in the parent relativistic formulation of MOND, such as massive scalar
fields, vector fields, dipolar dark matter, or even subtle non-local effects (see Section 7).

There are other aspects of cluster observations that are more in line with MOND’s predictions.
Clusters obey a mass–temperature relation that parallels the 𝑀 ∝ 𝑇 2 ∝ 𝑉 4 prediction of MOND
(Figures 39 and 48) more closely than the conventional prediction of 𝑀 ∝ 𝑇 3/2 expectation in
ΛCDM, without the need to invoke preheating (a need that may arise as an artifact of the mismatch
in slopes). Indeed, Figure 48 shows clearly both the failing of MOND in the offset in characteristic
acceleration between clusters and lower mass systems, and its successful prediction of the slope
(a horizontal line in this figure). A further test, which may be important is the peculiar and
bulk velocity of clusters. For example, the collision velocity of the bullet cluster is so large71 as
to be highly improbable in ΛCDM (occurring with a probability of ∼ 10−10 [249]). In contrast,
large collision velocities are natural to MOND [16]. Similarly, the large scale peculiar velocity of
clusters is observed to be ∼ 1000 km/s [221], well in excess of the expected ∼ 200 km s−2. Ongoing
simulations with MOND [11] show some promise to produce large peculiar velocities for clusters.
In general, one would expect high speed collisions to be more ubiquitous in MOND than ΛCDM.

An important line of evidence for mass discrepancies in the universe is gravitational lensing
in excess of that expected from the observed mass of lens systems. Lensing is an intrinsically
relativistic effect that requires a generally covariant theory to properly address. This necessarily
goes beyond MOND itself into specific hypotheses for its parent theory (Section 7), so is somewhat
different than the tests discussed above. Broadly speaking, tests involving strong gravitational
lensing fare tolerably well (Section 8.1), whereas weak lensing tests, that are sensitive to larger-
scale mass distributions, are more problematic (Sections 8.2, 8.3, and 8.4) or simply crash into the
usual missing mass problem of MOND in clusters. Note that weak lensing in relativistic MOND
theories produces the same amount of lensing as required from dynamics, so this is not the problem.
The problematic fact is just that some tests seem to require more dark matter than the effect of
MOND provides.

On larger (cosmological) scales, MOND, as a modification of classical (non-covariant) dynamics,
is simply unsatisfactory or mute. MOND itself has no cosmology, providing analogs for neither
the Friedmann equation for the dynamics of the universe, nor the Robertson–Walker metric for
its geometry. For these, one must appeal to specific hypotheses for the relativistic parent theory
of MOND (Section 7), which is far from unique, and theoretically not really satisfactory, as none
of the present candidates emerges from first principles. At this juncture, it is not clear whether a
compelling candidate cosmology will ever emerge. But on the other hand, there is nothing about
MOND as a paradigm that contradicts per se the empirical pillars of the hot big bang: Hubble
expansion, BBN, and the relic radiation field (Section 9). The formation of large scale structure

71 The observed shock velocity of ∼ 4700 km/s is thought to be enhanced by hydrodynamical effects. The collision
velocity is improbable after a substantial (∼ 1700 km/s) correction for this [258].
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is one of the strengths of conventional theory, which can be approached with linear perturbation
theory. This leads to good fits of the power spectrum, both at early times (𝑧 ≈ 1000 in the cosmic
microwave background) and at late times (the 𝑧 = 0 galaxy power spectrum [452]). In contrast,
the formation of structure in MOND is intrinsically non-linear. Therefore, it is unclear whether
MOND-motivated relativistic theories will inevitably match the observed galaxy power spectrum,
a possible problem being how to damp the baryon acoustic oscillations [127, 430]. At this stage,
a unique prediction does not exist. Nevertheless, there are two aspects of structure formation
in MOND that appear to be fairly generic and distinct from ΛCDM. The stronger effective long
range force in MOND speeds the growth rate, but has less mass to operate with as a source.
Consequently, radiation domination persists longer and structure formation is initially inhibited
(at redshifts of hundreds). Once structure begins to form, the non-linearity of MOND causes
it to proceed more rapidly than in GR with CDM. Three observable consequences would be (i)
the earlier emergence of large objects like galaxies and clusters in the cosmic web (as well as the
associated low interaction rate at smaller redshifts) providing a possible solution to challenge no. 2
of Section 4.2 [11], (ii) the more efficient evacuation of large voids (possible solution to challenge
no. 3 of Section 4.2), and (iii) larger peculiar (and collisional [16]) velocities of galaxy clusters
(solution to challenge no. 1 of Section 4.2). However, the potential downside to rapid structure
formation in MOND is that it may overproduce structure by redshift zero [341, 250].

The final entries in Table 2 regard the cosmic microwave background, discussed in more detail
in Section 9.2. The third peak of the acoustic power spectrum of the CMB poses perhaps the most
severe challenge to a MONDian interpretation of cosmology. The amplitude of the third peak
measured by WMAP is larger than expected in a universe composed solely of baryons [442]. This
implies some substance that does not oscillate with the baryons. Cold dark matter fits this bill
nicely. In the context of MOND, we must invoke some other massive substance (i.e., non-baryonic
dark matter such as, e.g., light sterile neutrinos [9]) that plays the role of CDM, or rely on additional
degrees of freedom in the relativistic parent theory of MOND (see Section 7) that would have the
same net result (see the extensive discussion in Section 9.2), or even combine non-baryonic dark
matter with these additional degrees of freedom [430]. While these are real possibilities, neither
are particularly appealing, any more than it is to invoke CDM with complex fine-tuned feedback
to explain rotation curves that apparently require only baryons as a source.

The missing baryon problem that MOND suffers in rich clusters of galaxies and the third peak
of the acoustic power spectrum of the CMB are thus the most serious challenges presently facing
MOND. But even so, the interpretation of the acoustic power spectrum is not entirely clear cut.
Though there is no detailed fit to the power spectrum in MOND (unless we invoke 10 eV-scale
sterile neutrinos [9]), MOND did motivate the prediction [265] of two aspects of the CMB that
were surprising in ΛCDM (see Section 9.2). The amplitude ratio of the first-to-second peak in
the acoustic power spectrum was outside the bounds expected ahead of time by ΛCDM for Ω𝑏

from BBN as it was then known (see Section 9.2). In contrast, the first:second acoustic peak ratio
that is now well measured agrees well with the quantitative value predicted in advance for the
case of the absence of cold dark matter [268, 269]. Similarly, the rapid formation of structure
expected in MOND leads naturally to an earlier epoch of re-ionization than had been anticipated
in ΛCDM [265, 269]. Thus, while the amplitude of the third peak is clearly problematic and
poses a severe challenge to any MOND-inspired theories, the overall interpretation of the CMB is
debatable. While the existence of non-baryonic cold dark matter is the most obvious explanation
of the third peak indeed, it is not at all obvious that straightforward CDM – in the form of rather
simple massive inert collisionless particles – is uniquely required.

Science is, in principle, about theories or models that are falsifiable, and thus that are presently
either falsified or not. But in practice it does not (and cannot) really work that way: if a model that
was making good predictions up to a certain point suddenly does not work anymore (i.e., does not
fit some new data), one obviously first tries to adjust it to make it fit the observations rather than
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throwing it away immediately. This is what one calls the requisite “compensatory adjustments”
of the theory (or of the model): Popper himself drew attention to these limitations of falsification
in The Logic of Scientific Discovery [355]. In the case of the ΛCDM model of cosmology, which
is mostly valid on large scales, the current main trend is to find the “compensatory adjustments”
to the model to make it fit in galaxies, mainly by changing (or mixing) the mass(es) of the dark
matter particles, and/or through artificially fine-tuned baryonic feedback in order to reproduce the
success of MOND. Incidentally, exactly the same is true for MOND, but for the opposite scales:
MOND works remarkably well in galaxies but apparently needs compensatory adjustments on
larger scales to effectively replace CDM. Now does that mean that falsification is impossible? That
all models are equal? Surely not. In the end, a theory or a model is really falsified once there are
too many compensatory adjustments (needed in order to fit too many discrepant data), or once
these become too twisted (like Tycho Brahe’s geocentric model for the solar system). But there is
obviously no truly quantitative way of ascertaining such global falsification. How one chooses to
weigh the evidence presented in this review necessarily informs one’s opinion of the relative merits
of ΛCDM and MOND. If one is most familiar with cosmology and large scale structure, ΛCDM
is the obvious choice, and it must seem rather odd that anyone would consider an alternative
as peculiar as MOND, needing rather bizarre adjustments to match observations on large scales.
But if one is more concerned with precision dynamics and the observed phenomenology in a wide
swath of galaxy data, it seems just as strange to invoke non-baryonic cold dark matter together
with fine-tuned feedback to explain the appearance of a single effective force law that appears to
act with only the observed baryons as a source. Perhaps the most important aspect before one
throws away any model is to have a “simpler” model at hand, that still reproduces the successes
of the earlier favored model but also naturally explains the discrepant data. In that sense, right
now, it is absolutely fair to say that there is no alternative, which really does better overall than
ΛCDM, and in favor of which Ockham’s razor would be. However, it would probably be a mistake
to persistently ignore the fine-tuning problems for dark matter and the related uncanny successes of
the MOND paradigm on galaxy scales, as they could very plausibly point at a hypothetical better
new theory. It is also important to bear in mind that MOND, as a paradigm or as a modification of
Newtonian dynamics, is not itself generally covariant. Attempts to construct relativistic theories
that contain MOND in the appropriate limit (Section 7) are correlated but distinct efforts, and
one must be careful not to conflate the two. For example, some theories, like TeVeS (Section 7.4),
might make predictions that are distinct from GR in the strong-field regime. Should future tests
falsify these distinctive predictions of TeVeS while confirming those of GR, this would perhaps
falsify TeVeS as a viable parent theory for MOND, but would have no bearing on the MONDian
phenomenology observed in the weak-field regime, nor indeed on the viability of MOND itself. It
would perhaps simply indicate the need to continue to search for a deeper theory. It would, for
instance, be extremely alluring if one could manage to find a physical connection between the dark
energy sector and the possible breakdown of standard dynamics in the weak-field limit, since both
phenomena would then simply reflect discrepancies with the predictions of GR when Λ ∼ 𝑎20 is set
to zero (see, e.g., Section 7.10). Of course, it is perfectly conceivable that such a deep theory does
not exist, and that the apparent MONDian behavior of galaxies will be explained through small
compensatory adjustments of the current ΛCDM paradigm, but one has yet to demonstrate how
this will occur, and it will inevitably involve a substantial amount of fine-tuning that will have to be
explained naturally. In any case, the existence of a characteristic acceleration 𝑎0 (Figure 48) playing
various different roles in many seemingly-independent galactic scaling relations (see Sections 4.3
and 5.2) is by now an empirically established fact, and it is thus mandatory for any successful
model of galaxy formation and evolution to explain it. The future of this field of research might
thus still be full of exciting surprises for astronomers, cosmologists, and theoretical physicists.
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Table 2: Observational tests of MOND.

Observational Test Successful Promising Unclear Problematic

Rotating Systems
solar system X
galaxy rotation curve shapes X
surface brightness ∝ Σ ∝ 𝑎2 X
galaxy rotation curve fits X
fitted M*/L X

Tully–Fisher Relation
baryon based X
slope X
normalization X
no size nor Σ dependence X
no intrinsic scatter X

Galaxy Disk Stability
maximum surface density X
spiral structure in LSBGs X
thin & bulgeless disks X

Interacting Galaxies
tidal tail morphology X
dynamical friction X
tidal dwarfs X

Spheroidal Systems
star clusters X
ultrafaint dwarfs X
dwarf Spheroidals X
ellipticals X
Faber–Jackson relation X

Clusters of Galaxies
dynamical mass X
mass–temperature slope X
velocity (bulk & collisional) X

Gravitational Lensing
strong lensing X
weak lensing (clusters & LSS) X

Cosmology
expansion history X
geometry X
Big-Bang nucleosynthesis X

Structure Formation
galaxy power spectrum X
empty voids X
early structure X

Background Radiation
first:second acoustic peak X
second:third acoustic peak X
detailed fit X
early re-ionization X

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2012-10

http://www.livingreviews.org/lrr-2012-10
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[188] Hernandez, X., Jiménez, M.A. and Allen, C., “Wide binaries as a critical test of Classical Gravity”,
Eur. Phys. J. C, 72, 1884, (2012). [DOI], [ADS], [arXiv:1105.1873 [astro-ph.GA]]. (Cited on page 56.)

[189] Hernandez, X., Mendoza, S., Suarez, T. and Bernal, T., “Understanding local dwarf spheroidals and
their scaling relations under Modified Newtonian Dynamics”, Astron. Astrophys., 514, A101, (2010).
[DOI], [ADS], [arXiv:0904.1434 [astro-ph.GA]]. (Cited on page 78.)

[190] Hibbard, J.E., van der Hulst, J.M., Barnes, J.E. and Rich, R.M., “High-Resolution H I Mapping of
NGC 4038/39 (‘The Antennae’) and Its Tidal Dwarf Galaxy Candidates”, Astron. J., 122, 2969–
2992, (2001). [DOI], [ADS], [arXiv:astro-ph/0110581]. (Cited on page 73.)

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2012-10

http://dx.doi.org/10.1088/0004-637X/703/1/982
http://adsabs.harvard.edu/abs/2009ApJ...703..982G
http://arxiv.org/abs/0904.0448
http://arxiv.org/abs/0904.0448
http://dx.doi.org/10.1038/nature08640
http://adsabs.harvard.edu/abs/2010Natur.463..203G
http://dx.doi.org/10.1086/508990
http://adsabs.harvard.edu/abs/2006AJ....132.2701G
http://arxiv.org/abs/astro-ph/0608613
http://dx.doi.org/10.1111/j.1365-2966.2008.13506.x
http://adsabs.harvard.edu/abs/2008MNRAS.388.1708G
http://arxiv.org/abs/0805.3565
http://dx.doi.org/10.1103/PhysRevLett.98.150801
http://adsabs.harvard.edu/abs/2007PhRvL..98o0801G
http://dx.doi.org/10.1088/0004-6256/140/3/663
http://adsabs.harvard.edu/abs/2010AJ....140..663G
http://arxiv.org/abs/1004.4365
http://arxiv.org/abs/1004.4365
http://dx.doi.org/10.1051/0004-6361/201015573
http://adsabs.harvard.edu/abs/2011A&A...527A..33H
http://arxiv.org/abs/1101.1952
http://dx.doi.org/10.1111/j.1365-2966.2009.14656.x
http://adsabs.harvard.edu/abs/2009MNRAS.395.1549H
http://arxiv.org/abs/0902.1846
http://dx.doi.org/10.1086/587744
http://adsabs.harvard.edu/abs/2008ApJS..177....1H
http://dx.doi.org/10.1142/S021827180901490X
http://adsabs.harvard.edu/abs/2009IJMPD..18.1039H
http://arxiv.org/abs/astro-ph/0504130
http://arxiv.org/abs/astro-ph/0504130
http://adsabs.harvard.edu/abs/2011arXiv1105.5927H
http://arxiv.org/abs/1105.5927
http://dx.doi.org/10.1111/j.1365-2966.2011.20099.x
http://adsabs.harvard.edu/abs/2012MNRAS.420.1183H
http://arxiv.org/abs/1111.0592
http://dx.doi.org/10.1088/0004-637X/750/1/9
http://adsabs.harvard.edu/abs/2012ApJ...750....9H
http://arxiv.org/abs/1108.4021
http://dx.doi.org/10.1140/epjc/s10052-012-1884-6
http://adsabs.harvard.edu/abs/2012EPJC...72.1884H
http://arxiv.org/abs/1105.1873
http://dx.doi.org/10.1051/0004-6361/200913301
http://adsabs.harvard.edu/abs/2010A&A...514A.101H
http://arxiv.org/abs/0904.1434
http://dx.doi.org/10.1086/324102
http://adsabs.harvard.edu/abs/2001AJ....122.2969H
http://arxiv.org/abs/astro-ph/0110581
http://www.livingreviews.org/lrr-2012-10


Modified Newtonian Dynamics (MOND) 139

[191] Ho, C.M., Minic, D. and Ng, Y.J., “Cold dark matter with MOND scaling”, Phys. Lett. B, 693,
567–570, (2010). [DOI], [ADS], [arXiv:1005.3537 [hep-th]]. (Cited on page 99.)

[192] Ho, C.M., Minic, D. and Ng, Y.J., “Quantum Gravity and Dark Matter”, Int. J. Mod. Phys. D, 20,
2887–2893, (2011). [DOI], [ADS], [arXiv:1105.2916 [gr-qc]]. (Cited on page 99.)

[193] Hoekstra, H., van Albada, T.S. and Sancisi, R., “On the apparent coupling of neutral hydrogen and
dark matter in spiral galaxies”, Mon. Not. R. Astron. Soc., 323, 453–459, (2001). [DOI], [ADS],
[arXiv:astro-ph/0010569]. (Cited on page 34.)

[194] Holmberg, J. and Flynn, C., “The local surface density of disc matter mapped by Hipparcos”, Mon.
Not. R. Astron. Soc., 352, 440–446, (2004). [DOI], [ADS], [arXiv:astro-ph/0405155]. (Cited on
pages 7 and 69.)
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