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Abstract

We report a methodology that allows the investigation of the consequences of the spin-orbit cou-

pling by means of the QTAIM and ELF topological analyses performed on top of relativistic and

multiconfigurational wave functions. In practice, it relies on the “state-specific” natural orbitals

(expressed in a Cartesian Gaussian-type orbital basis) and their occupation numbers for the quan-

tum state of interest, arising from a spin-orbit configuration interaction calculation. The ground

states of astatine diatomic molecules (AtX with X = At–F) and triatomic anions (IAtI−, BrAtBr−

and IAtBr−) are studied, at exact two-component relativistic coupled cluster geometries, revealing

unusual topological properties as well as a significant role of the spin-orbit coupling on these. In

essence, the presented methodology can also be applied to the ground and/or excited states of any

compound, with controlled validity up to including elements with active 5d, 6p and/or 5f shells,

and potential limitations starting with active 6d, 7p, and/or 6f shells bearing strong spin-orbit

couplings.
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I. INTRODUCTION

The description of chemical bonds in computational quantum chemistry typically requires

defining (i) a quantum chemistry level of theory for computing the wave function and/or

the electron density of the quantum state(s) of interest and (ii) a philosophy to map the

computed information into (simple) topological models, such as the Lewis structures or the

covalent-ionic paradigm of Pauling. Various approaches are available, each of them bearing

advantages and drawbacks due to their intrinsic degrees of arbitrariness. However, most of

them have demonstrated an indisputable utility for understanding molecular structures and

even for helping chemists in the rational design of systems with desired properties.

In this work, we focus on heavy element systems which exhibit ground state bonding

patterns that are greatly influenced by relativistic effects, and which are yet not fully under-

stood by chemists. Undoubtedly, especially for the 5d, 6p and 5 f elements, the relativistic

effects are usually essential to the description of chemical bonding [1]. It is well known that

the ‘scalar’ relativistic effects, i.e. the ones associated with a modification of the electron

kinetic and potential energies, may significantly perturb chemical bonds. In contrast, the

key role of the spin-orbit coupling (SOC) is difficult to assess, not only because of severely in-

creased computational costs, but also because of the difficulty to express it in terms of simple

chemist’s models. Consequently, it is too often neglected in published works [2–4]. Within a

molecular orbital (MO) picture, by mixing the σ, π, etc. bonding and/or antibonding char-

acters, the SOC can lead to a significant bond lengthening in heavy-element systems. For

instance, the SOC lengthens the bond distance in the hypothetical At2 diatomic molecule

by ∼0.1 Å, this result being apparently independent of the retained quantum chemistry

methodology [5–9].

Actually, astatine (At, Z = 85) is a good example for evidencing large SOC effects in

molecules since both its free atom and its At+ free ion display large spin-orbit splittings in

their 2P and 3P ground ‘spin-orbit-free’ (SOF) states, respectively [8]. In several molecular

systems, At adopts the neutral or the +I oxidation state, meaning that the molecular ground

states may be significantly influenced by SOC effects, unless these are largelly quenched.

To evidence the role of the SOC on the chemical bonds, several strategies have been

employed in the recent years: either (i) compute natural orbitals (spinors) in the Hilbert

space and then effective bond orders (EBOs) [10] in the presence or absence of the SOC (see
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[8, 9, 11–15]), or (ii) determine the electron density in the real space, its topology (QTAIM)

[16], as well as that of the electron localization function (ELF) [17, 18] at relativistic DFT

levels with or without the SOC (see [7, 19–28] for case studies).

Even though topological analyses on top of relativistic DFT calculations can be quite

insightful, these may suffer from several theoretical or practical issues: (i) in principle,

relativistic (four-component) DFT does not lead to uniqueness of the ground state density

even in the case of a non-degenerate ground state [29, 30], (ii) many excited states may not

be accessible (though some may be, in particular the ones that can be satisfactorily treated

with the ∆SCF approach [31], i.e. the ones that can be properly converged via an SCF

procedure), and (iii) some systems and/or quantum states may require a multiconfigurational

treatment. Therefore, a new approach that addresses all these points is desirable. After

presenting our proposal for doing so at the spin-orbit configuration level (SOCI), details of

the implementation will be given, prior to discussing two series of compounds, namely the

AtX (X = At–F) dihalogens as well as the IAtI−, BrAtBr− and IAtBr− trihalide anions.

Note that some of these systems exist in solution [32, 33] and have attracted a strong interest

in the field of halogen-bond interactions [34, 35].

II. THEORY AND METHODS

A. Proposal and implementation

In previous work [8, 36, 37], we have shown that two-step approaches, for which the SOC

is introduced a posteriori, are suitable for describing astatine bound systems in terms of

the bond distances and also, more importantly, of the wave functions. The astatine case is

key to generalize to all the heavy elements in the sense that it is the heavy element with

the stronger SOC: thus, the two-step approach is meant to be valid for the bound states of

systems with up to heavy elements, while the occurrence of active 6d, 7p and/or 6f shells

may lead to a too strong SOC for such a treatment.

In these approaches, the first step of the calculation is SOF, meaning that the SOC

operator is absent. In practice, it consists of performing a standard quantum chemistry

calculation, accounting for the scalar-relativistic effects via the use of an appropriate (said

‘transformed’) one-electron Hamiltonian [38–45] or of a scalar-relativistic pseudopotential
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[46]. Notably, we have shown on the challenging At2 case that the wave function that is

obtained with small-core energy-consistent pseudopotentials is of same quality as the one

arising from all-electron calculations [8, 9], meaning that both types of calculations can be

alternatively used in the present context for bonding analyses.

The multiconfigurational calculations typically start with a state-average complete ac-

tive space self-consistent field (SA-CASSCF) step, eventually supplemented by a more cor-

related post-CASSCF treatment [47–53]. The second step consists of diagonalizing the

Htot = Eel + HSOC matrix within the basis of the spin (i.e. MS) components of the previ-

ously obtained SOF states. By mixing the components of the SOF states, the SOC operator

leads to sizeable changes in the wave function [8, 9, 12, 54], which can be monitored in terms

of the occupation numbers (ONs) of the natural orbitals (NOs) [55, 56].

The role of the SOC on the NOs and their corresponding ONs for a given quantum state

of interest is quite clear [9]: (i) if symmetry prevents rotations between the active orbitals,

the NOs are maintained, meaning that only the ONs are susceptible to be updated and (ii) if

symmetry allows for rotations between the active orbitals, the NOs need to be revised (and

so do the ONs). In any case, we encounter a situation that is similar to any configuration

interaction (CI) case, meaning that the role of the SOC may be accounted for in exactly the

same way as the one of electron correlation can be.

The original ELF formulation of Becke and Edgecombe [17] was designed for single-

reference wavefunctions. Later, the ELF kernel χ(r) was extended in a functional form by

Savin and coworkers [57], who also proposed an interpretation of the ELF in terms of the

local kinetic energy excess due to the Pauli repulsion:

ELF(r) =
1

1 + χ(r)2
(1)

with:

χ(r) =
Ts(r)− 1

4
|∇ρ(r)|2
ρ(r)

2CFρ(r)5/3
(2)

In this latter formulation, Ts(r) is the positive definite local kinetic energy of non-interacting

electrons, ρ(r) is the total electron density and CF is a constant [ 3
10

(3π2)
2
3 ]. This formulation

was also restricted to single-determinant wave functions (e.g. a Kohn-Sham DFT one).

Fifteen years later, the role of electron correlation on the ELF was introduced in a fashion

5



that was based on the Laplacian of the conditional same-spin pair function πσσ [58]:

χ(r) =
∇2
sπ

σσ(r, r + s)|s→0

CF [2ρσ(r)]8/3
(3)

Although the pair function can be easily written in terms of molecular orbitals, eq. (3) has

only been used at the CISD level for some light atoms or small diatomic molecules, the

computational effort being several orders of magnitude larger than for a monodeterminantal

wave function. Even for triatomic molecules of the first-row elements, its application remains

rather difficult. Hence, Feixas et al. [59] have proposed to compute the ELF kernel by using

a Hartree-Fock like approximation of the pair function defined in terms of natural spin

orbitals. Even if the correlation effects are rather large (as it is the case for H2O2), this

orbital scheme yield values in very good agreement at CASSCF level of theory.

Actually, a two-fold approximation requiring only the updated NOs and their correspond-

ing ONs can be used [59], quantities which, as mentioned above, can be readily computed

after the introduction of the SOC operator. First, we use a single-determinant approxi-

mation for computing the two-particle density matrix and thus the ELF [60, 61]. Second,

Buijse and Baerends’ first approximation [62, 63] is considered for computing the (basin)

populations. This two-fold approximation which has been validated for CASSCF wavefunc-

tions, i.e. for multiconfigurational wave functions expanded in terms of Slater determinants

or of configuration state functions (CSFs). Since the SOCI wave functions are nothing but

a further expansion of the CASSCF ones in the basis of the MS components of the CASSCF

solutions, one could thus readily reexpand them in terms of Slater determinants or of CSFs,

meaning that these approximations must also be valid at the SOCI level. Therefore, we apply

these without further justification. Also, this makes clear that a non-relativistic expression

for the ELF also applies in the SOCI framework.

The delocalization index [64, 65], noted δ(ΩA,ΩB), measures the electron pair sharing

between two atomic basins ΩA and ΩB. Although it can be properly defined from the

covariance matrix (twice the covariance matrix element), its practical evaluation remains

difficult in the framework of correlated wave functions. Interestingly, Wang and Werstiuk

[66] have proposed an approximated expression to compute δ(ΩA,ΩB) from (molecular) NOs:

δ(ΩA,ΩB) = 2
∑
i

∑
j

n
1/2
i n

1/2
j 〈ϕi|ϕj〉ΩA

〈ϕi|ϕj〉ΩB
(4)
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where ni and nj are the occupation numbers of the ϕi and ϕj NOs, respectively. Naturally,

this expression simplifies with orthogonal MOs (only the i = j cases apply), as in the present

work, the total local density being:

ρ(r) =
∑
i

niϕ
∗
i (r)ϕi(r) (5)

The effect of Coulomb correlation is now included and δ(ΩA,ΩB) remains invariant with

respect to any unitary transformation of the orbitals. Thus, for defining all the targeted

topological descriptors at the SOCI level, we basically need to compute the NOs and their

corresponding ONs.

Actually, these quantitites can readily be obtained from a SOCI calculation according to

the methodology described in [9] (see also [12] and [67]). At this stage, only an interface with

a topological analysis program is thus needed. In this work, we have selected the TopMoD

program [68], that is capable of performing both QTAIM and ELF types of topological

analyses. Due to restrictions in TopMoD, the NOs retrieved from the SOCI calculations

must be expanded within an uncontracted Cartesian Gaussian-type basis. This has two

consequences: (i) the initial quantum chemistry calculations must be performed with a

Cartesian Gaussian-type basis and (ii) one must switch from the contracted set to the

primitive one, which may require attention in terms of the ordering and normalization.

In practice, we have used the MOLPRO program [69] for the SOCI calculations, since

it is capable of handling Cartesian Gaussian-type basis functions in conjunction with pseu-

dopotentials that include SOC operators. Furthermore, since Cartesian Gaussian-type basis

functions may be expressed as [70, 71]:

φA(r) = N(x− Ax)l(y − Ay)m(z − Az)n e−α(r−A)2 (6)

a normalization factor applies between the contracted set and the primitive one [70, 71]:

N =

(
2α

π

)3/4 [
(8α)l+m+nl!m!n!

(2l)!(2m)!(2n!)

]1/2

(7)

All the information required by TopMoD is extracted from the MOLPRO output using a

Python interface that handles both the ordering and normalization issues, and delivers the

information into a WFN-type file. The program code is freely available upon request.
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B. Computational details

1. Exact two-component coupled cluster calculations

The determination of reference molecular geometries for heavy-element systems requires

an appropriate and simultaneous treatment of relativistic effects and of electron correla-

tion. If one electronic configuration can be used as a reliable zeroth-order wave function,

the single-reference coupled cluster method including single, double and perturbative triple

excitations [CCSD(T)] [72] constitutes a “gold” standard for doing so. In the context of

astatine chemistry, this was confirmed for the non-trivial AtO+ ion for which a comparison

between single-reference and multireference relativistic coupled cluster calculations has been

previously reported [73]. Also, the relativistic Hamiltonian may be either a four-component

one or a two-component one [38–43, 45], with typically an exceptionally good agreement

between the results obtained with four-component and exact two-component (X2C) [44]

formalisms.

In previous work [9], we have determined molecular geometries for the AtX (X = At–F)

systems at the X2C level [44, 45] using the DIRAC15 code [74]: 2.967 Å for At2, 2.816 Å

for AtI, 2.614 Å for AtBr, 2.471 Å for AtCl and 2.045 Å for AtF. These geometries will

be retained for the further single-point calculations (vide infra). Note that in the At2 case,

the X2C CCSD(T) geometry is well reproduced at the SOCI level (e.g. 2.957 Å in [8] with

the “contracted” SOCI scheme). Also, we have shown that Dyall’s relativistic basis sets of

quadruple-zeta augmented with one set of diffuse functions per angular-momentum block

(AVQZ) [75, 76] lead to practically the same molecular geometries than the non-augmented

versions, i.e. VQZ, for the dihalogen molecules (AtX with X = At–F), which shows that this

property is reasonably converged with the VQZ basis set. Therefore, in this work, we have

used the DIRAC15 code to numerically determine the reference geometries for the IAtI−,

BrAtBr− and IAtBr− triahalide anions at the X2C [45] CCSD(T) [72] level, with Dyall’s

AVQZ (IAtI− and BrAtBr−) or VQZ (IAtBr−) basis sets [75, 76]. All the orbitals within

the −20 to 30 a.u. energy range have been correlated, as previously done for the dihalogen

molecules [9]. Note that the atomic nuclei have been described beyond the point charge

approximation via a Gaussian nuclear model [77]. Non-relativistic and scalar-relativistic

CCSD(T) calculations have also been performed in order to highlight the role of the scalar-
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relativistic and spin-dependent effects on the molecular geometries.

2. Spin-orbit configuration interaction calculations

All the SOCI calculations have been performed at the X2C CCSD(T) geometries with the

MOLPRO program. The SA-CASSCF calculations relied on active spaces that comprise the

valence np shells of the halogens, in particular consisting of 10 electrons correlated within

6 orbitals (dihalogen molecules) or 16 electrons within 9 orbitals (trihalide anions). For all

the computed SOF states, the “electronic” energies have been computed using the strongly-

contracted n-electron valence state second-order perturbation theory (NEVPT2) [51–53].

The latter were used to dress the diagonal of the Htot = Eel + HSOC matrix.

The number of SOF states retained for the SA-CASSCF calculations has been selected in

order to reproduce more than 99 % of the SOC wave function that is obtained with the full

space of SOF states. For instance, for any of the AtX (X = I–F) systems, a computation

with 1 spin-singlet state and the three MS components of 4 spin-triplet roots recovers more

than 99 % of the wave function that is obtained with 21 spin-singlet roots and the spin

components of 15 spin-triplet roots for the considered active space [9]. The ground state of

the At2 system, by symmetry, only requires the components of 2 spin-triplet roots. However,

for comparison purposes, it is wise to have the same spaces for the entire series. Therefore,

the present At2 calculations were also based on 1 spin-singlet state and the components of 4

spin-triplet roots. Test calculations have shown that the ground states of the three studied

trihalide anions, namely IAtI−, BrAtBr− and IAtBr−, can also be well described using 1

spin-singlet state and 4 spin-triplet roots. Therefore, this space was eventually selected for

describing all the reported systems.

Scalar-relativistic plus SOC pseudopotentials [78, 79] were used for describing the heaviest

atoms, namely At, I and Br. For avoiding linear dependencies in the calculations with the

Cartesian Gaussian-type bases, we have considered basis sets of triple-zeta quality, namely

aug-cc-pVTZ-PP [78, 79] for the heaviest atoms and aug-cc-pVTZ [80, 81] for the remaining

ones.
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3. Determination of the “state-specific” natural orbitals and topological analyses

The outcome of the SOCI calculations are multiconfigurational wave functions expressed

in terms of the MS components of the SOF states. Thus, in the MOLPRO calculations, the

one-electron density matrices were stored for all the SOF states (corresponding to 1 spin-

singlet and 4 spin-triplet roots). Then, the one-electron density matrix of the ground SOC

states were generated by applying the appropriate weighted sum of the density matrices of

the SOF states, exactly in the same way as in previous work dedicated to EBOs [9]. By

diagonalizing this weighted sum of density matrices, the “state-specific” NOs of the ground

SOC states are obtained [54], together with their ONs. Finally, WFN files containing these

NOs and the corresponding ONs are generated using the newly developed Python interface

(vide supra).

The WFN files serve as input files for the QTAIM and ELF topological analyses that are

performed with the TopMoD09 program. Note that all the calculations have been performed

in the C1 symmetry point group. 12x12x18 bohr grids have been considered for the dihalogen

molecules, and 12x12x24 bohr grids for the trihalide anions, all built with a step of 0.05 bohr.

In the QTAIM topological analyses, only atomic basins are expected, as well as one bond

critical point (BCP, denoted as ‘CP’ in the remainder of the text) for each independent

pair of adjacent atoms. We recall here that an atomic basin is a region of the 3D space

for which the maximum of the density (i.e. the density value at the atomic position, the

cusp) can be seen as an attractor of the gradient field. A CP is the intersection between

the bond segment and the zero-flux surface that separates the two atomic basins. In the

ELF topological analyses, more basins may be obtained, typically one core –C(X)– basin

and one valence monosynaptic –V(X)– basin for each X atom plus possibly one valence

disynaptic –V(X,Y)– basin for each independent pair of X and Y adjacent atoms. Note that

a valence monosynaptic basin is connected only to one core basin (one can thus think of a

“lone pair”), while a valence disynaptic one connects to two distinct core basins, i.e. they

have a boundary with the cores of two distinct atoms. In other words, one may refer to

these basins as “bonding basins”. Integration of the electron density over a basin volume

provides its population.
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III. RESULTS AND DISCUSSION

A. First set: the AtX (X = At–F) series

The AtX (X = At–F) series constitutes our first set of systems. The series is interesting

for two main reasons, (i) computational data related to chemical bonding is available, with

reported DFT topologies [7, 21] as well as SOCI EBOs [8, 9], and (ii) some of the systems

(AtI, AtBr and AtCl) are of experimental relevance [32, 33].

We start our discussion with the QTAIM bonding descriptors (see Table I). The At

atomic charges, q(At), have been determined by integrating the electron density over the At

atomic basin, giving rise to an electron number to be substracted from the electron count of

neutral At (here 25 electrons due to the use of the ‘small-core’ ECP60MDF pseudopotential

[78]). Three descriptors are determined at the CP, the value of the electron density (ρCP),

its Laplacian (∇2ρCP), and the ratio between the absolute potential energy density and the

positive-definite kinetic energy density (|VCP|/GCP). Finally, the delocalization index (δ) is

determined from the covariance matrix.

In the series, the At charge is regularly increasing, up to 0.58 in AtF, reflecting a quite

ionic character in this system, as expected. The ρCP values are smaller than 0.1 in the

AtX (X = At–Cl) cases and the Laplacians of the density are positive (excess of kinetic

energy density at the CP with respect to the local virial theorem), suggesting closed-shell

interactions according to the standard QTAIM classification [16]. However, the |VCP|/GCP

ratios larger than 1 suggest some covalency since the potential energy density tends to

stabilize electrons at the CP. The delocalization index, if taken as a measure of the bond

order [82], suggests that AtI is the most covalent system of the series (δ = 0.90). The

AtF system displays unique features in the series, e.g., a quite large Laplacian value in line

with an ionic bond, but also a |VCP|/GCP ratio larger than 1, suggesting that this bond is

not fully ionic but that it rather contains some covalent character as well. The calculated

delocalization index, 0.72, is furthermore much larger than those reported for model ionic

molecules (≈ 0.2 for NaCl and LiH [82]).

The ELF topological descriptors include populations, with the atomic basin populations

referred to as C+V(X) in Table I, and the bonding basin ones referred to as V(At,X). The

variances of the V(At,X) populations (σ2) as well as the relative population fluctuations
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TABLE I: Selected QTAIM and ELF topological descriptors (in a.u.) for the AtX series (X =

At–F), computed at X2C CCSD(T) geometries [9]. The spin-orbit coupling contribution to each

descriptor is given in parenthesis.

X
QTAIM ELF

q(At) ρCP ∇2ρCP |VCP|/GCP δ C+V(At) C+V(X) V(At,X) σ2 λ

At 0.01 0.050 0.032 1.58 0.78 24.73 24.74 0.51 0.43 0.84

(0.00) (0.000) (0.006) (−0.05) (−0.14) (0.03) (0.07) (−0.09) (−0.07) (0.01)

I 0.10 0.061 0.027 1.72 0.90 24.61 24.72 0.66 0.54 0.82

(0.00) (0.000) (0.005) (−0.04) (−0.10) (0.03) (0.06) (−0.07) (−0.05) (0.01)

Br 0.23 0.072 0.053 1.61 0.88 24.55 24.89 0.54 0.46 0.85

(0.00) (0.000) (0.006) (−0.03) (−0.10) (0.05) (0.08) (−0.13) (−0.08) (0.05)

Cl 0.34 0.081 0.084 1.56 0.84 24.51 17.06 0.42 0.36 0.86

(0.00) (0.000) (0.006) (−0.02) (−0.14) (0.06) (0.05) (−0.10) (−0.08) (0.01)

F 0.58 0.109 0.381 1.25 0.72 24.44 9.54 NAa NA NA

(0.01) (0.001) (−0.001) (0.01) (−0.10) (0.01) (−0.01) NA NA NA

aNA denotes not applicable.

[λ = σ2/V(At,X)] are also given. Three types of topologies have been obtained (see Figure

1): symmetric with a valence disynaptic basin (At2), asymmetric with such a basin (AtX

with X = I–Cl), and asymmetric with no disynaptic basin (AtF).

FIG. 1: Representative isosurfaces of the three typical ELF topologies obtained for the AtX series

(X = At–F): At2 (left, isosurface = 0.470), AtI (middle, isosurface = 0.557) and AtF (right,

isosurface = 0.450), computed at X2C CCSD(T) geometries [9]. Color code: blue stands for core

and red for valence monosynaptic basins, green for valence disynaptic basins.

We recall here that a population of ca. 2 electrons for a valence disynaptic basin is

characteristic of a single (covalent) bond. In the X = At–Cl cases, about half an electron is

found in the valence disynaptic basins. V(At,I) has actually the maximal population within

the series, which is in line with a maximum of the covalent character for X = I, in accord with

the previous remark on the delocalization index. For all the X = At–Cl systems, the relative

fluctuations λ are about 85 %, which may be indicative of a significant charge-shift (CS)
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character in these bonds [83–85]. In the At2 case, symmetry imposes both the At− At+ ↔

At—At and At—At ↔ At+ At− iono-covalent resonances to be equivalent. Consequently,

these two resonances contribute to the CS character of the bond (i.e. to the At− At+ ↔

At+ At− effective resonance). In the X 6= At cases, the two iono-covalent resonances are

not symmetry equivalent, meaning that the sum of the two may contribute both to a CS

character and to a simpler iono-covalent character. Therefore, we conclude that signatures

of CS bonding have been obtained in the X = At–Cl cases, while it is clear that the ELF

topology of the AtF system also points to an ionic bond since the C+V(At) and C+V(X)

populations largely differ from the ones that would be expected for the neutral situation,

i.e. 25 and 9, respectively. Note that signatures are not definitive proofs for CS bonding; a

valence bond (VB) study may be desired to fully elucidate the bonding in the X = At–Cl

cases, which is out of the scope of the present work.

In Table I, the contributions of the SOC to topological descriptors are given in paren-

theses. Concerning the QTAIM descriptors, though q(At), ρCP and ∇2ρCP seem almost

practically unaffected by the SOC, noticeable effects are seen for |VCP|/GCP and δ, two im-

portant bonding descriptors. Typically, it diminishes these two quantities, which may be

interpreted as a weakening of the covalent character. Such weakening is also seen from the

topology of the ELF, with significant drops of the populations of the valence disynaptic

V(At,X) basins. Moreover, it is also in line with the conclusions of our previous study on

EBOs [9]. The relative fluctuations λ are slightly increased by the SOC, which may indicate

a slight reinforcement of the CS character in these bonds. This may be explained in an

MO picture: here, from the ground σ2π4π*4 electronic configuration, the SOC essentially

triggers the π → σ* (all the series) and π* → σ* (only if X 6= At) single excitations [9],

meaning that it promotes the σ2σ*1 electronic subconfiguration in the SOC ground state

wave function, thus enhancing charge fluctuation [86].

A last point worth being commented concerns the comparison of the obtained topological

descriptors to the previous DFT ones [21]. Although the SOC contributions to the descrip-

tors should not be directly compared (here, single-point calculations at the X2C geometries

versus differences calculated between optimized scalar-relativistic and quasi-relativistic ge-

ometries in [21]), it may be interesting to compare trends. Overall, similar trends are

obtained, with a notable exception for the populations of the V(At,X) basins: at the SOCI

level, these populations regularly decrease from X = I to X = Cl, while an increase of this
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population was obtained for X = Cl at the DFT level. This difference may result from (i)

multiconfigurational characters of the ground state wave functions, better described in the

present work and/or (ii) differences in the treatment of “dynamic” correlation. Therefore,

our new multiconfigurational methodology may be crucial for revealing fine trends, especially

when the multiconfigurational characters of the quantum states vary within a series.

B. Second set: the IAtI−, BrAtBr− and IAtBr− trihalide anions

For the second set, we focus only on the IAtI−, BrAtBr− and IAtBr− trihalide anions.

These have been evidenced in solution [33] and are valence isoelectronic with the triiodide

I3
− system [87]. Their electronic structures potentially involve several important (Lewis)

structures in a VB framework: X1—At· · ·X2
− (a “partly-ionic” structure involving one co-

valent bond plus one halogen-bond interaction), X1
− At+ X2

− (the “fully-ionic” structure)

and X1
−· · ·At—X2 (the other “partly-ionic” structure), as in I3

− [88], and also perhaps the

X1
• At− X2

• diradical structure [89], which has lead for instance in F3
− to a significant CS

bonding character [88]. Therefore, because of symmetry, one may think of a given bond as

a kind of mixing between a covalent bond, an ionic bond and a halogen bond in IAtI− and

BrAtBr−, meaning that the QTAIM and ELF topologies must reveal significant differences

with the bonds in the studied trihalide anions versus the ones in the corresponding dihalogen

molecules (namely AtI and AtBr). However, since the IAtBr− trihalide anion does not pos-

sess an inversion center, it is possible in this system to end up with one dominant structure

(I—At· · ·Br− or more probably I−· · ·At—Br), i.e. with a halogen-bonded adduct. As for

the diatomics, we would like to recall that if a given wave function is multiconfigurational

within a VB framework, this does not mean that it is also the case within an MO one; here,

the single-reference CCSD(T) approach is well suited.

1. Exact two-component geometries

The IAtI−, BrAtBr− and IAtBr− trihalide anions are linear systems (see Figure 2), the

most polarizable At atom being placed in between the two other ones, as expected [90].

Previous scalar-relativistic [91] and quasi-relativistic [33] DFT geometries have been reported

in Table II for comparison purposes with the new reference non-relativistic, scalar-relativistic
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TABLE II: Non-relativistic, scalar-relativistic and X2C bond distances (Å) for the IAtI−, BrAtBr−

and IAtBr− trihalide anions obtained with coupled-cluster calculations including single, double

and perturbative triple excitations, CCSD(T). DFT results based on the B3LYP [92, 93] exchange-

correlation functional and small-core energy-consistent pseudopotentials [78, 79] are also given.

System Bond(s)
Non-relativistic Scalar-relativistic Quasi-relativistic X2C

CCSD(T) DFT [91] CCSD(T) DFT [33] CCSD(T)

IAtI− I–At (×2) 3.038 3.08 2.986 3.15 3.033

BrAtBr− Br–At (×2) 2.810 2.86 2.777 2.91 2.823

IAtBr−
I–At 3.027 3.07 2.974 3.14 3.029

At–Br 2.819 2.87 2.789 2.92 2.823

and X2C geometries.

FIG. 2: Ball and stick representations of the X2C CCSD(T) geometries of the IAtI− (top left),

BrAtBr− (top right) and IAtBr− (bottom) triahalide anions. Color code: grey stands for At,

purple for I and brown for Br.

As expected, the X2C bond distances are significantly larger than the ones of the di-

halogen molecules (2.816 Å for AtI and 2.614 Å for AtBr, respectively [9]), in line with a

significant contribution of halogen bonding to the bonds in the IAtI− and BrAtBr− sym-

metric systems. IAtBr− displays interesting bond distances practically identical to those

calculated in the parent IAtI− and BrAtBr− systems, meaning that none of the I—At and

At—Br bonds in IAtBr− can be a “pure” halogen bond. In other words, similarities can be

expected between these bonds and the ones of the parent IAtI− and BrAtBr− systems.

As can be seen in Table II, the summed relativistic effects leave in appearance the bond

distances almost intact (the scalar-relativistic bond contractions almost perfectly cancel

the SOC bond expansions of about 0.05 Å). The situation is quite distinct from that of the

parent dihalogen molecules. Indeed, in the dihalogen molecules, we have previously obtained

scalar-relativistic bond contractions of about 0.02 Å (i.e. half that obtained here) and SOC
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TABLE III: Selected QTAIM topological descriptors (in a.u.) for the studied X1AtX2
− trihalide

anions, computed at X2C CCSD(T) geometries. The spin-orbit coupling contribution to each

descriptor is given in parenthesis.

X1 X2
Atomic charges X1—At bond At—X2 bond

q(X1) q(At) q(X2) ρCP ∇2ρCP |VCP|/GCP δ ρCP ∇2ρCP |VCP|/GCP δ

I I −0.54 0.15 −0.54 0.042 0.043 1.41 0.64 0.042 0.043 1.41 0.64

(0.00) (0.00) (0.00) (0.000) (0.001) (0.00) (−0.06) (0.000) (0.001) (0.00) (−0.06)

Br Br −0.62 0.31 −0.62 0.049 0.065 1.37 0.62 0.049 0.065 1.37 0.62

(0.00) (0.00) (0.00) (0.000) (0.001) (0.00) (−0.06) (0.000) (0.001) (0.00) (−0.06)

I Br −0.57 0.23 −0.60 0.042 0.044 1.40 0.64 0.049 0.063 1.38 0.62

(0.00) (0.00) (0.00) (0.000) (0.001) (0.00) (−0.01) (0.000) (0.001) (0.00) (0.00)

bond expansions of about 0.06–0.07 Å (i.e. slightly larger than here), overall resulting in

bond expansions of about 0.04–0.05 Å (see [9] and references therein for a more detailed

discussion regarding the respective roles of the scalar-relativistic effects and of the SOC).

A last point on the bond distances concerns the comparison of the new CCSD(T) results

with the previous DFT ones [33, 91]. While the contributions of the SOC to the bond

distances are of the same order of magnitude (about 0.05–0.07 Å at the DFT level), the

X2C CCSD(T) geometries are about 0.1 Å shorter than the quasi-relativistic DFT ones. We

continue by discussing only the topologies obtained at the X2C CCSD(T) geometries.

2. QTAIM and ELF topologies

Selected QTAIM descriptors are reported in Table III. First, the reported atomic charges

highlight again that At is essentially in its zero oxidation state [33]. Naturally, the nega-

tive charge is equally distributed among the I and Br centers in the symmetric IAtI− and

BrAtBr− systems. Interestingly, it is also the case in the IAtBr− system, meaning that the

latter effectively behaves as if it would possess an inversion center. This is another argu-

ment in favor of a balanced resonance between covalent, ionic and halogen bondings for the

I—At and At—Br bonds in this system. Also, all the other QTAIM descriptors (the ρCP’s,

|VCP|/GCP’s and δ’s) for the I—At and At—Br bonds are pretty similar to those for the

parent symmetric anions, definitively ruling out the possibility of a dominant VB structure

such as X1
−· · ·At—X2 for the exotic IAtBr− system.

Two types of ELF topologies have been obtained (see Figure 3): symmetric (IAtI− and

BrAtBr−) or asymmetric (IAtBr−) with two tiny valence disynaptic basins. The corre-
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FIG. 3: Representative isosurfaces of the two typical ELF topologies obtained for the studied

trihalide anions: IAtI−(top, isosurface = 0.671) and IAtBr− (down, isosurface = 0.681), computed

at X2C CCSD(T) geometries (see Table II). Color code: blue stands for core and red for valence

monosynaptic basins, green for valence disynaptic basins.

TABLE IV: Selected ELF topological descriptors (in a.u.) for the studied X1AtX2
− trihalide

anions, computed at X2C CCSD(T) geometries. The spin-orbit coupling contribution to each

descriptor is given in parenthesis.

X1 X2

Monosynaptic basins X1—At bond At—X2 bond

C+V(X1) C+V(At) C+V(X2) V(X1,At) σ2 λ V(At,X2) σ2 λ

I I 25.41 24.66 25.41 0.23 0.21 0.91 0.23 0.21 0.91

(0.09) (0.03) (0.09) (−0.11) (−0.10) (0.00) (−0.11) (−0.10) (0.00)

Br Br 25.41 24.54 25.41 0.31 0.28 0.90 0.31 0.28 0.90

(0.09) (0.02) (0.09) (−0.10) (−0.08) (0.02) (−0.10) (−0.08) (0.02)

I Br 25.45 24.59 25.42 0.23 0.22 0.96 0.27 0.24 0.89

(0.14) (0.03) (0.08) (−0.16) (−0.12) (0.08) (−0.10) (−0.09) (0.00)

sponding topological descriptors are reported in Table IV. As with the QTAIM analysis,

the similarity between the descriptors for the IAtBr− system with the ones of the parent

IAtI− and BrAtBr− systems is striking, pointing to similar bond natures in the three studied

trihalide anions. The tiny valence disynaptic basins are characterized by small electron pop-

ulations (at most ∼0.3), affected by very large relative fluctuations (90% or more). Recalling
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TABLE V: Rescaled QTAIM atomic charges (q’s) and derived VB weights (ω’s, see text).

X1 X2 q’(X1) q’(At) q’(X2) ω1 ω2 ω3

I I −0.58 0.16 −0.58 0.42 0.16 0.42

Br Br −0.67 0.33 −0.67 0.33 0.33 0.33

I Br −0.61 0.24 −0.64 0.40 0.24 0.37

that we essentially expect three VB structures to play a significant role in the wave function

(X1—At· · ·X2
−, X1

− At+ X2
− and X1

−· · ·At—X2), the disclosed large fluctuations may be

the signature for a kind of CS bonding, associated with the effective resonance between the

two “partly-ionic” VB structures. VB calculations would be desired to fully reveal it, as

done in the case of the trifluoride anion F−3 [88].

To give a first flavor of the potential weights of the more important VB structures,

we propose to use the QTAIM charges, which is similar in this case to using the atomic

populations, as done by Silvi and others [94, 95]. Since we have only three atomic charges, we

can access to three different weights. Therefore, we consider the three following structures,

with their associated weights given in parenthesis: X1—At· · ·X2
− (ω1), X1

− At+ X2
− (ω2)

and X1
−· · ·At—X2 (ω3), leading in the general (i.e. the asymmetric) case to the following

system of equations:


q(X1) = −ω2 − ω3

q(At) = ω2

q(X2) = −ω1 − ω2

(8)

Naturally, if q(X1) = q(X2) (the symmetric case), the system of equations simplifies. As

can be seen in Table III, the (numerical) atomic charges do not perfectly sum to −1, which

would translate into weights that do not sum to 1. Consequently, we have “normalized” the

charges to −1 by multiplying them by a common factor (1/0.93 for IAtI− and BrAtBr−, and

1/0.94 for IAtBr−). The resulting charges and weights are given in Table V. Again, IAtBr−

behaves as an intermediate between IAtI− and BrAtBr−. The weights of the “fully-ionic”

structures, X1
− At+ X2

−, are in line with the trend observed for the diatomics (AtI is more

covalent than AtBr) and also the electronegativity difference between the outer atoms (I or

Br) and At. Finally, the small difference between ω1 and ω3 in IAtBr− is just another way

to highlight that this system effectively behaves as a symmetric trihalide anion.
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3. Discussion: bonding in the trihalide anions versus bonding in the dihalogen molecules

So far, we have compared the respective topologies of the studied trihalide anions, reveal-

ing similarities between the three compounds. To complete the discussion, these topologies

must also be compared with the ones obtained for the dihalogen molecules. The atomic

charges on the At centers are small and similar in AtI and AtBr and in the trihalide anions

(zero oxidation state). Of course, due to the anionic character of the trihalides, the charges

on the other centers are different.

The QTAIM |VCP|/GCP descriptor naturally reveals a less strong covalent character in

the trihalide anions than in the corresponding dihalogen molecules (see Tables I and III). It

is confirmed by the smaller values of the two-center delocalization indices, the δ’s, calculated

for the trihalides. This also translates into much smaller populations for the ELF valence

disynaptic basins (these are reduced by half from the dihalogen molecules to the trihalide

anions, see Tables I and IV). Nevertheless, a finer trend reveals that the populations of

the V(At,Br) basins are larger than the V(At,I) ones in the triahalide anions, unlike for the

dihalogen molecules, though this may not be very chemically significant.

Benefiting from the main advantage of the proposed methodology, we can readily de-

termine the contribution of SOC to the topological descriptors. As shown in Tables I, III

and IV, the QTAIM descriptors are much less affected by the SOC in the trihalide an-

ions, while the role of SOC on the ELF descriptors is of the same order of magnitude in

the trihalide anions and in the parent dihalogen molecules, demonstrating once more that

the bonding in heavy-element compounds must be analyzed after inclusion of the SOC [7–

9, 15, 21, 25, 96, 97]. Actually, the hybrid characters of the bonds in the trihalide anions

(covalent/ionic/halogen), which translate into larger bond distances as compared to the par-

ent diatomic molecules, are presumably responsible for this observed trend on the QTAIM

descriptors.

IV. CONCLUDING REMARKS

Following the work of Feixas et al. [59], we have applied for the first time the NO

formulation of the ELF to correlated and relativistic wave functions, determined after the

introduction of the SOC. In principle, this approach is valid as soon as the SOCI wave
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function of the quantum state of interest is accurate enough, presumably for the ground and

excited states of all the compounds that include elements with Z ≤ 103 (above, i.e. for the

superheavies, accounting for the SOC a posteriori may not be good enough). Furthermore, it

is complementary to the previously developed quasi-relativistic DFT implementation [7, 21],

in the sense that it does not suffer from the same issues (single-determinant approach, excited

states, etc.).

Two main practical limitations of the present methodology, (i) the computational cost

may become prohibitive if a too large active space is required at the SA-CASSCF step and

(ii) state-averaging artifacts may become too important if the spin components of a too

large number of SOF states are required for the SOCI step. Nevertheless, these two issues

are not that often critical in everyday applications and we expect this methodology to be

interesting for determining the QTAIM and ELF topologies of many main-group, transition-

metal, lanthanide and/or actinide chemical systems. Naturally, the application of bonding

analysis tools to At-containing systems is particularly relevant since chemical intuition is

terribly lacking on this extremely rare radioelement of potential interest for nuclear medicine

applications [98].

After the definition of EBOs at the SOCI level [8, 9, 12], we have now introduced the quan-

tum chemical topology at this exact same level, allowing the definition of complementary

bonding descriptors. A perspective of this work would thus be to revisit the bonding of the

diatomic molecules of presumably high bond multiplicities, in particular to check whether

W2 indeed represents a maximum of “covalency” after the introduction of the SOC, which

was neglected in the seminal work of Roos et al. on EBOs [10].
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[85] H. Zhang, D. Danovich, W. Wu, B. Bräıda, P. C. Hiberty, and S. Shaik, J. Chem. Theory

Comput. 10, 2410 (2014).

[86] P. C. Hiberty, S. Humbel, D. Danovich, and S. Shaik, J. Am. Chem. Soc. 117, 9003 (1995).

[87] K. R. Loos and A. C. Jones, J. Phys. Chem. 78, 2306 (1974).
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