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ABSTRACT

Context. The interactions between magnetic fields and differential rotation in stellar radiative interiors could play a major role in
achieving an understanding of the magnetism of intermediate-mass and massive stars and of the differential rotation profile observed
in red-giant stars.
Aims. The present study is aimed at studying the flow and field produced by a stellar radiative zone which is initially made to rotate
differentially in the presence of a large-scale poloidal magnetic field threading the whole domain. We focus both on the axisymmetric
configurations produced by the initial winding-up of the magnetic field lines and on the possible instabilities of those configurations.
We investigate in detail the effects of the stable stratification and thermal diffusion and we aim, in particular, to assess the role of the
stratification at stabilising the system.
Methods. We performed 2D and 3D global Boussinesq numerical simulations started from an initial radial or cylindrical differential
rotation and a large-scale poloidal magnetic field. Under the conditions of a large rotation frequency compared to the Alfvén frequency,
we built a magnetic configuration strongly dominated by its toroidal component. We then perturbed this configuration to observe the
development of non-axisymmetric instabilities.
Results. The parameters of the simulations were chosen to respect the ordering of time scales of a typical stellar radiative zone.
In this framework, the axisymmetric evolution is studied by varying the relative effects of the thermal diffusion, the Brunt-Väisälä
frequency, the rotation, and the initial poloidal field strength. After a transient time and using a suitable adimensionalisation, we find
that the axisymmetric state only depends on tes/tAp the ratio between the Eddington–Sweet circulation time scale and the Alfvén time
scale. A scale analysis of the Boussinesq magnetohydrodynamical equations allows us to recover this result. In the cylindrical case,
a magneto-rotational instability develops when the thermal diffusivity is sufficiently high to enable the favored wavenumbers to be
insensitive to the effects of the stable stratification. In the radial case, the magneto-rotational instability is driven by the latitudinal
shear created by the back-reaction of the Lorentz force on the flow. Increasing the level of stratification then leaves the growth rate of
the instability mainly unaffected while its horizontal length scale grows.
Conclusions. Non-axisymmetric instabilities are likely to exist in stellar radiative zones despite the stable stratification. They could
be at the origin of the magnetic dichotomy observed in intermediate-mass and massive stars. They are also unavoidable candidates
for the transport of angular momentum in red giant stars.

Key words. instabilities – magnetohydrodynamics (MHD) – methods: numerical – stars: magnetic field – stars: rotation –
stars: interiors

1. Introduction

Considerable progress has recently been made in the understand-
ing of magnetic fields at the surface of stars, mostly thanks to the
ground-based instruments NARVAL at the Pic du Midi observa-
tory in France and ESPaDOnS at the Mauna Kea Observatory
in Hawaï. It has been known for more than a century now that
the Sun harbors a strong magnetic field which manifests itself
as spots popping-up at the solar surface (Hale 1908). Currently,
there is also a general consensus on the fact that this magnetic
field is produced by dynamo action inside the convective enve-
lope of the Sun and that such a process should be quite general
for all solar-like stars (Parker 1955; Moffatt 1978). The mag-
netism of intermediate-mass and massive stars has also been
thoroughly investigated. It is however expected to differ strongly
from that of cool stars because of the presence of the outer radia-
tive zone. Indeed, if a convective dynamo is at play in the core
of hot stars, it might be more difficult for the magnetic field

created in the convective core to travel all the way to the surface
so that observers from Earth could see it. In intermediate-mass
and massive stars, the magnetism is indeed quite different from
what is observed on cool stars: 5–10% of these stars do exhibit
a strong surface magnetic field above 300 G and these stars are
also the ones which show chemical peculiarities in their spec-
tra (Ap/Bp stars). Thanks to recent spectropolarimetric obser-
vations, detections of a much smaller amplitude field (at the
sub-Gauss level) have been obtained on stars like Vega, Sirius A,
Alhena, β-Uma or θ-Leo (Lignières et al. 2009; Blazère et al.
2016a,b), leading to the idea that two classes of magnetism could
exist in intermediate-mass and massive stars: the strong dipolar
field of Ap/Bp stars and the ultra-weak Vega-like magnetic field.
A sound explanation for the existence of these two types of mag-
netism and the absence of stars possessing fields with ampli-
tudes between approximately 1 G and 300 G is still lacking. A
possible scenario was proposed by Aurière et al. (2007), relying
on the existence of a magnetic instability which could develop
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only for weak enough dipolar fields and which would lead to
the disruption of the axisymmetric magnetic configuration. In
that scenario, a crucial role is given to the differential rotation
which acts on the dipolar magnetic field to produce a configura-
tion dominated by the toroidal component. This toroidal field
is very likely to become unstable to a magnetohydrodynami-
cal (MHD) instability. If such an instability existed, not only
would it possibly explain the minimum field of Ap/Bp stars, but
it could also be at the origin of dynamo action in the radiative
zones of Vega-like stars. Various studies have indeed recently
focused on the appealing idea that dynamo action would not
require convective motions but, rather, non-axisymmetric hydro
or MHD instabilities which, in conjunction with the differential
rotation, would produce the electromotive force needed to close
the dynamo loop (Spruit 2002; Braithwaite 2006; Zahn et al.
2007; Guervilly & Cardin 2010; Marcotte & Gissinger 2016).
For now, it is still debated whether such a radiative zone dynamo
could exist in stars.

The interplay between differential rotation and magnetic
fields, which is at the heart of the Aurière et al. (2007) explanation
of the magnetism of hot stars, is also invoked to interpret the recent
asteroseismic observations of more than 300 red giants provided
by the Kepler satellite in the last decade. Indeed, in those stars, the
radiative zone contracts below the H-burning shell and expands
above, naturally leading to a spin-up of the innermost regions and
a braking of the layers above. This is indeed what is observed,
a differential rotation is established between the inner and outer
shells in these stars because of the contraction or expansion phe-
nomena (Deheuvels et al. 2012, 2014). However, simple models
assuming conservation of angular momentum considerably over-
estimate the level of differential rotation produced. More puzzling
is the fact that even sophisticated stellar evolution models includ-
ing the rotationally-induced transport of angular momentum
fail at reproducing the observations (Eggenberger et al. 2012a,b;
Ceillier et al. 2013; Marques et al. 2013). In this case, a more effi-
cient transport of angular momentum seems to be at play in those
stellar radiative zones and magnetic fields are seriously consid-
ered as possible candidates for this role. In particular, the trans-
port by traveling Alfvén waves could strongly modify the level
of differential rotation, through, for example, the phase-mixing
mechanism (Ionson 1978; Spruit 1999). Moreover, the develop-
ment of magnetohydrodynamical (MHD) instabilities could lead
to a turbulent transport which would efficiently redistribute the
angular momentum. This possibility has been studied recently
(Cantiello et al. 2014; Fuller et al. 2019; Eggenberger et al. 2019)
with the conclusions unclear so far.

Instabilities of a differentially rotating stellar radiative zone
with or without the presence of a magnetic field have also been
widely investigated theoretically, experimentally and numeri-
cally. In hydrodynamical situations, differential rotation can be
unstable to various types of instabilities, such as centrifugal or
shear instabilities. Centrifugal (or inertial) instabilities require
strong enough gradient while weak shear instabilities tend to be
stabilized by the Coriolis force (e.g., Knobloch & Spruit 1982).
In the MHD case, a shear flow which is hydrodynamically sta-
ble can become unstable because of the presence of a large-
scale magnetic field. This has been studied in various configu-
rations and in particular when the differential rotation is forced
through the boundaries. This is the case of the Taylor Couette
flow in cylindrical geometry (or the equivalent spherical Couette
flow in spherical geometry). A detailed review of the various
MHD instabilities which can arise in Taylor-Couette flows for
different rotation rates of the inner and outer cylinders was pub-
lished recently by Rüdiger et al. (2018). The main instabilities

described in that review are the current-driven Tayler insta-
bility (Tayler 1973; Markey & Tayler 1973), which is purely
magnetic, and the magnetorotational instability (Velikhov 1959;
Chandrasekhar 1960; Acheson 1978; Balbus & Hawley 1992)
which necessitates a gradient of rotation and is thus shear-driven.
As described in Rüdiger et al. (2018), the MRI exists for var-
ious large-scale magnetic field geometries: the standard MRI
is found for purely axial fields, the so-called azimuthal-MRI
for purely azimuthal fields and the so-called helical-MRI for a
mixed axial or azimuthal configuration. It could be argued that
the Tayler instability is the most relevant for stellar interiors
since it only requires a magnetic configuration sufficiently domi-
nated by its toroidal or its poloidal component and a rather weak
rotation or differential rotation (Spruit 1999). Detailed studies
have been conducted using linear stability analysis for purely
toroidal fields with various latitudinal dependences in rotating
or differentially rotating radiative zones (Kitchatinov & Rüdiger
2008; Rüdiger & Kitchatinov 2010; Rüdiger et al. 2016). These
analyses were local in radius but global in the horizontal direc-
tions and took into account the effects of stratification, focusing
particularly on a realistic stellar regime where the heat conduc-
tivity is high. The m = 1 Tayler instability was found to develop
even for a large rotation rate compared to the toroidal Alfvén
frequency but with very weak growth rates.

In this work, we do not focus on the instability of a purely
toroidal field but, rather, we wish to study the global 3D evolu-
tion of an initally poloidal field wound-up into a toroidal field
by an initial differential rotation. The system containing all the
physical ingredients of a stellar radiative zone (i.e., stratification,
axisymmetric meridional flow, shear, global rotation, a mixed
poloidal and toroidal magnetic field configuration, heat con-
ductivity, viscosity, and magnetic diffusivity) is then let free to
evolve into potentially unstable equilibria. Our recent numeri-
cal studies (Jouve et al. 2015; Meduri et al. 2019) show that it
is in fact the MRI which is favored in these specific conditions.
In these calculations, the initial poloidal field is wound-up by
the differential rotation imposed initially for Jouve et al. (2015)
and forced trough the boundaries in Meduri et al. (2019) until
the Maxwell stresses feed back on the flow. In these situations,
the toroidal Alfvén frequency always remains small compared
to the rotation frequency and the dynamics associated with the
rotation and the shear dominate. The growth rate of the Tayler
instability is thus probably strongly reduced by the rotation,
as shown by Pitts & Tayler (1985) or Kitchatinov & Rüdiger
(2008) but the conditions for the development of the MRI are
gathered so that the instability grows on a rotation time-scale.
However, the important effects of stable stratification are omit-
ted in the 3D numerical calculations cited above. Only a few
recent 3D global numerical studies have focused on the effect of
stable stratification on MHD instabilities in specific cases, like
for example Philidet et al. (2020) for spherical Couette flows,
Guerrero et al. (2019) for the Tayler instability in a non-rotating
spherical shell or Szklarski & Arlt (2013) for the Tayler instabil-
ity of a toroidal field produced by the winding-up of an initial
poloidal field. In this last study, very similarly to what is pre-
sented in this paper, the wound-up magnetic field is found to
be unstable only if the feedback on the differential rotation is
inhibited until the ratio of toroidal Alfvén frequency to rotation
frequency becomes sufficiently large that the Tayler instability
sets in. The MRI has thus probably been stabilized by the stable
stratification in these particular calculations. In this paper, we
investigate the possibility that high heat conductivities could let
the MRI develop again in the same type of numerical setup.
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In fact, in most studies dedicated to instabilities of MHD
flows with differential rotation, the effect of the stable stratifi-
cation is often neglected. For the application to stellar interiors,
this is a crucial ingredient which may suppress a large number
of instabilities, in particular the MRI (Spruit 1999). Indeed, in
order to avoid doing work against the stable stratification, the
unstable displacements must be nearly horizontal and thus the
vertical wavenumber must be high, at which point the diffusive
effects will act to make the perturbations decay away. However,
in the hydrodynamical case, it has been shown that the largest
growth rates of the instability of a horizonthal shear flow would
be mostly unaffected by the presence of a large Brunt-Väisälä
frequency N (Deloncle et al. (2007) for the inflectional instabil-
ity, Kloosterziel & Carnevale (2008) for the inertial instability).
Moreover, non-adiabatic effects should also be considered: if the
thermal diffusivity is large, which is the case for stellar radia-
tive zones, the effect of the stable stratification can be strongly
reduced and some instabilities may survive for higher values of
N (see Townsend (1958), Zahn (1992) for the case of a vertical
shear in a stably stratified atmosphere). The possible effects of a
high thermal diffusion on MHD instabilities have been discussed
theoretically for example by Acheson (1978) or Spruit (1999)
but very few global numerical simulations exist where MHD
states containing mixed poloidal/toroidal fields and meridional
flows and differential rotation subject to the Lorentz force feed-
back in a stably stratified environment with a varying thermal
diffusivity have been analysed in detail. This is what we present
in this article. This work is a follow-up on Jouve et al. (2015),
where the following intial value problem was considered: an
initially imposed large-scale poloidal field is wound-up by an
initially imposed differential rotation to produce an axisymmet-
ric toroidal field. After approximately an Alfvén time-scale, the
magnetic field back-reacts on the differential rotation and the
dynamics is dominated by Alfvén waves which progressively
damp the differential rotation. We focused in this last work on
the possible development of non-axisymmetric instabilities dur-
ing this whole process. We now study the effects of the stable
stratification with various values of the Brunt-Väisälä frequency,
when the thermal diffusivity is also allowed to vary. In particular,
we wish to determine the characteristics of the new axisymmet-
ric MHD states and whether the MRI found in Jouve et al. (2015)
can survive in a stably stratified environment.

The paper is organized as follows: in Sect. 2 we present the
model and the numerical code used to solve the MHD equations.
Section 3 then discusses the axisymmetric joint evolution of the
magnetic field and the flow. We then investigate the stability of
this axisymmetric configuration in Sect. 4 and we present our
conclusions in Sect. 5.

2. Numerical model

We wish to explore the interplay between magnetic fields and
differential rotation in a 3D spherical shell with stable stratifi-
cation to mimic the physical processes at play in a differentially
rotating stellar radiative zone. To do so, we choose to focus on an
initial value problem where a magnetic field and differential rota-
tion will be initially prescribed and then leave it free to evolve
with time, according to the MHD equations in the Boussinesq
approximation. Indeed, for now, we neglect the effects of a vary-
ing density. This will be considered in future works. The details
of the equations are given in Sect. 2.1, the initial and bound-
ary conditions are then discussed in Sects. 2.2 and 2.3, and the
numerical method is finally briefly described in Sect. 2.4.

2.1. Governing equations

Assuming uniform dynamic viscosity µ, magnetic diffusivity
η, thermal conductivity χ, and neglecting the local sources of
heat and the centrifugal force, the governing equations under the
Boussinesq approximation of a magnetized flow are

∇ · u = 0, (1)

Du
Dt

= −2Ω0 × u − αT1 g −
1
ρ
∇

(
p1 +

B2

8π

)
+

1
4πρ

(B · ∇) B + ν∆u, (2)

DT1

Dt
+ u · ∇T = κ∆T1, (3)

∂B
∂t

= ∇ × (u × B) + η∆B, (4)

where u is the velocity field, B is the magnetic field, Ω0 is the
rotation rate at the rotation axis, T (r, θ, t) = T (r)+T1(r, θ, t) is the
temperature field with T (r) the temperature of the reference state
and T1 its fluctuation, ρ is the uniform density of the reference
state, p1 is the pressure fluctuation, gravity is proportional to
1/r2, α is the coefficient of thermal expansion, ν = µ/ρ is the
kinematic viscosity and κ = χ/(ρ cp) is the thermal diffusivity
where cp is the heat capacity at constant pressure.

These equations are then non-dimensionalised using d =
ro − ri (where ri and ro are, respectively, the inner and outer radii
of the spherical shell) the thickness of the spherical domain, as
the length unit, the poloidal Alfvén time tAp = d

√
4πρ/B0 as

the time unit where the surface radial magnetic field at the poles
B0 is the poloidal magnetic field unit, dΩ0

√
4πρ as the toroidal

magnetic field unit, VAp = d/tAp as the meridional circulation
unit, dΩ0 as the azimuthal velocity flow unit, ∆T = To − Ti as
the temperature unit where To and Ti are respectively the temper-
ature at the outer and at the inner radius of the spherical shell and
d2Ω2

0ρ as the pressure unit. The full set of governing equations
of the problem is given in Appendix A, namely the equations for
the three components of the velocity field, for the three compo-
nents of the magnetic field, and for the temperature field.

Five dimensionless numbers appear in the set of equations:

Lo =
tΩ
tAp

=
B0

dΩ0
√

4πρ
, (5)

N
Ω0

=
1

Ω0

√
αg∆T

d
, (6)

Lu =
tη

tAp
=

dB0

η
√

4πρ
, (7)

Pr =
tκ
tν

=
ν

κ
, (8)

Pm =
tη
tν

=
ν

η
· (9)

The Lorentz number Lo measures the ratio between the
rotation time-scale tΩ and the Alfvén time-scale based on the
poloidal field tAp, N/Ω0 is the ratio between the Brunt-Väisälä
frequency and the rotation frequency, the Lundquist number Lu
measures the ratio between the poloidal Alfvén time-scale and
the magnetic diffusion time tη = d2/η and finally the Prandtl

A13, page 3 of 23



A&A 641, A13 (2020)

numbers quantify the ratio of diffusivities or the ratio of diffu-
sive time-scales where tν = d2/ν is the viscous time-scale and
tκ = d2/κ is the thermal diffusive time-scale.

We can add to these numbers, the definition of the Ekman
number, which will be mentioned in the text, and measures
the ratio of rotation to viscous time-scales: Ek = ν/Ωd2 =
Lo/(PmLu). We chose in this study to fix the values of two
dimensionless numbers, namely the Lundquist number Lu and
the magnetic Prandtl number Pm. We then focus on the effects
of the three other parameters: the Lorentz number Lo, the ratio
N/Ω0 and the Prandtl number Pr. We shall see that in the axisym-
metric case, the number of relevant dimensionless parameters
can in fact be, in some limit cases, reduced to only one.

2.2. Initial and boundary conditions

In this work, we focused on initial conditions which would pro-
duce a large-scale magnetic field, likely to be unstable to MHD
instabilities under certain circumstances. To do so, we started
from a poloidal field which was acted upon by an initial differ-
ential rotation. The winding-up of the initial poloidal field by
the differential rotation naturally produced a toroidal magnetic
field. We propose to focus on the conditions for stability of such
a magnetic configuration embedded in a stably stratified atmo-
sphere.

Initially, we thus choose the magnetic field to be axisymmet-
ric, purely poloidal with a constant current density. The detailed
expression of the initial magnetic field then reads:

B(r, θ, t = 0) = Bp(r, θ, t = 0)

=
3r cos θB0

ro

1 − 4ro/3r + r4
i /3r4

1 − (ri/ro)4 er

−
3r sin θB0

2ro

3 − 8ro/3r − r4
i /3r4

1 − (ri/ro)4 eθ. (10)

With this choice of normalization, B0 is the value of the radial
field on the axis of rotation at the outer shell r = ro. For the
boundary conditions, we impose that the magnetic field matches
continuously to a potential field at both inner and outer bound-
aries.

The velocity field is also initially axisymmetric but purely
azimuthal,

u(r, θ, t = 0) = vϕ(r, θ, t = 0) eϕ = r sin θΩ(r, θ, t = 0) eϕ, (11)

and two different initial rotation profiles will be used. They are
discussed in the following section. The boundary conditions for
the velocity field are chosen to be impenetrable and stress-free
at both inner and outer shells.

The initial temperature field is a purely radial solution sat-
isfying the thermal equilibrium ∇2T = 0. Fixed values are
imposed for the temperature at both boundaries:

T (r, t = 0) = T (r) = Ti + ∆T
1 − ri/r
1 − ri/ro

· (12)

Finally, to ensure that the flow is stable with respect to convec-
tion, the Brunt-Väisälä frequency N must be real which means
that ∆T > 0.

2.3. Radial vs. cylindrical differential rotation

The evolution of the toroidal field originating from the winding-
up of an initial poloidal field by the differential rotation is
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Fig. 1. Initial configurations for the cylindrical rotation profile (left) and
radial one (right). Ω is scaled with Ω0 and superimposed are the poloidal
magnetic field lines.

expected to be strongly dependent on the differential rotation
profile and magnetic configuration. Indeed, the term produc-
ing the toroidal field, known as the Ω-effect is proportional to
Bp · ∇Ω and the angle between the poloial field lines and the
isocontours of Ω will thus determine the amount of toroidal field
created. The efficiency of this Ω-effect is quite important for
our study since the ratio between toroidal and poloidal fields is
known to be crucial for the stability of the magnetic configura-
tions. That is why we chose to study two different profiles for the
initial differential rotation, namely one dependent on the cylin-
drical radius only and the other one dependent on the spherical
radius only. The expressions of both rotation profiles are given
below:

Ω(r sin θ, t = 0) = Ω0

√
2

1 + (r sin θ/ro)4 , (13)

Ω(r, t = 0) = Ω0
1 − c1 (r − ri)2 ro/r3 − c2 (r − ri)2/(r ro)

1 − (c1 + c2)(1 − ri/ro)2 , (14)

where Ω0 is the rotation rate at the equator at r = ro and where
c1 = 0.980 and c2 = 0.214 are chosen such that the contrast in
the rotation rate between the inner and outer shells is approxi-
mately the same for both profiles, namely (Ωi − Ω0)/Ω0 ≈ 1.
We thus choose to initially impose a strong differential rotation
which is then let free to evolve without any forcing. The trans-
port of angular momentum resulting from the system dynamics
will then naturally modify this initial profile.

Figure 1 illustrates these two different profiles of differential
rotation and enables us to envision the interaction with the ini-
tial poloidal field since it is overplotted in black dashed lines.
For example, we can tell that the radial differential rotation pro-
file is likely to produce a strong toroidal field in the bulk of our
domain since this is where the poloidal magnetic field lines are
almost perpendicular to the isocontours of Ω. On the contrary,
in the cylindrical case, the orthogonality is more confined to a
region close to the top boundary at mid-latitudes and the toroidal
field will thus be mostly produced in this region. Another con-
sequence of our initial setup is that the resulting toroidal field
will be antisymmetric with respect to the equator, positive in the
Northern hemisphere, negative in the Southern hemisphere, and
vanishing at the equator.
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2.4. Numerical method

The numerical simulations were computed with the numerical
code MagIC (Wicht 2002; Gastine & Wicht 2012). MagIC is
a fully documented, publicly available code1 which solves the
MHD equations in a spherical shell using a poloidal toroidal
decomposition for the mass flux and the magnetic fields:

ρu = ∇ × ∇× (W er) + ∇× (Z er), (15)
B = ∇ × ∇× (C er) + ∇× (D er), (16)

where W (C) and Z (D) are the poloidal and toroidal poten-
tials. The scalar potentials W,Z,C,D and the pressure p are
further expanded in spherical harmonic functions up to degree
lmax in colatitude θ and longitude ϕ and in Chebyshev poly-
nomials up to degree Nr in the radial direction. An exhaus-
tive description of the complete numerical technique can be
found in Gilman & Glatzmaier (1981). We also make use of the
spherical harmonic transforms contained in the SHTns library
(Schaeffer 2013) which greatly decreases the computational time
for our calculations. Typical numerical resolutions employed in
this study range from (Nr = 65, lmax = 170) for the more diffu-
sive cases to (Nr = 129, lmax = 341) for the less diffusive ones.
The considered spherical shell extends from longitude ϕ = 0
to ϕ = 2π, from colatitude θ = 0 to θ = π and from radius
r = ri = η/(1 − η) to r = ro = 1/(1 − η) where η = ri/ro is the
aspect ratio of the shell, equal to 0.3 in all our calculations.

3. Axisymmetric evolution

In this section, we consider the axisymmetric configurations
resulting from the evolution of a poloidal field in a differen-
tially rotating stably stratified spherical shell. We performed a
parametric study to get an overview of the different configura-
tions that can be reached. In analyzing the simulation results, we
shall benefit from previous studies by Gaurat et al. (2015) and
Jouve et al. (2015) where the same problem has been considered
although with simplifying assumptions. In Gaurat et al. (2015)
meridional motions were neglected altogether, while they were
taken into account in Jouve et al. (2015) but without the effects
of a stable stratification.

As shown on Fig. 1, the initial differential rotation is either
cylindrical or radial, but has the same maximum contrast ∆Ω/Ω.
We vary the non-dimensional numbers Lo = tΩ/tAp, N/Ω0 and
Pr, while the two others Lu and Pm are fixed to Lu = 50 and
Pm = 1. We also restrict ourselves to initial poloidal fields that
are weak enough (that is low Lo value) so that the Ω-effect pro-
duces magnetic configurations dominated by the toroidal com-
ponent of the magnetic field. Indeed, the toroidal field will grow
linearly with time until the magnetic field back-reacts on the dif-
ferential rotation. The winding time-scale for the toroidal field
to get to the same amplitude as the poloidal field is defined as
tw = 1/qΩ where q = r||∇Ω||/Ω is the shear parameter, of order 1
in our case, such that for our situation, tw ≈ tΩ. For the Maxwell
stresses to back-react on the flow, a time-scale equal to tAp is
needed. If tΩ � tAp and thus Lo � 1, the toroidal field will then
have time to grow significantly above the poloidal field value
before the differential rotation profile is affected by the magnetic
field.

In the following, we first discuss the range of parameters that
is relevant to stellar radiative zones and then specify the param-
eters of the present simulations (Sect. 3.1). The typical magnetic

1 https://github.com/magic-sph/magic

configurations obtained from radial vs cylindrical initial differ-
ential rotation are described in Sect. 3.2. The effects of the stable
stratification on these configurations are analyzed in Sect. 3.3.

3.1. Physical parameters in stellar radiative zones and the
parameter range of our numerical simulations

Parameters such as the Brunt-Väisälä frequency and the Prandtl
number come from stellar evolution models, whereas rotation
rates are obtained from observations. For main sequence mas-
sive and intermediate-mass stars, the ratio N/Ω0 is typically
much larger than 1, except for stars rotating near break-up
velocity for which N/Ω0 ∼ 1, meanwhile the Prandtl num-
ber Pr is always much smaller than 1. For example, stellar
structure models of a 3 M� star indicate that, during the main
sequence, N ∼ 1−2 × 10−3 s−1 away from the convective core
(Talon & Charbonnel 2008) while Pr ≤ 4 × 10−6 (Garaud et al.
2015). For rotation periods between 1 and 2.7 days, N/Ω0 is then
comprised between ∼10 and 75. For comparison, this ratio is
much higher, N/Ω0 ∼ 300, in the radiative zone of the Sun.
As we shall see below, the product Pr(N/Ω0)2 is also a rele-
vant parameter and its value is typically much smaller than one
in main sequence massive and intermediate-mass stars. Taking
a rotation period of 2.7 days, we find that Pr(N/Ω0)2 ≤ 0.02
for a 3 M� main sequence star. The situation is different in the
solar radiative zone where Pr(N/Ω0)2 is rather of the order of 1
(Garaud & Acevedo Arreguin 2009). Another important param-
eter is the Ekman number, that compares the rotation and viscous
time scales. Its very small value, Ek = ν/(R2Ω) ∼ 10−14, is out
of reach in direct numerical simulations. We nevertheless intend
to consider small enough Ekman numbers to respect the order
of the characteristic times involved, if not the actual time scale
ratio.

The typical conditions at large length scales d in radia-
tive zones of intermediate-mass and massive stars thus read
Ek � Pr < Pr(N/Ω0)2 � 1. It corresponds to the following
time scale order: tν � tes > tκ � tΩ > tB where tν = d2/ν,
tes = (d2/κ)(N/Ω0)2, tκ = d2/κ, tΩ = 1/Ω0 and tB = 1/N.
As shown in Table 1, the simulations performed respect that
ordering.

The timescale associated with the initial poloidal field is
tAp = d

√
4πρ/B0, the poloidal Alfvén time. We have no direct

constrain on the field intensity within stars, but we can use
spectropolarimetric observations to get surface values. In par-
ticular, the lower limit of the dipolar field of Ap/Bp magnetic
stars is close to 300 Gauss and, for a rotation period of 5 days,
this field corresponds to a Lorentz number Lo = tΩ/tAp close
to 1 (Aurière et al. 2007). This number is expected to decrease
strongly towards the stellar interior as the variation of the Alfvén
speed vAp = Bp/

√
4πρ is dominated by the density increase.

For example, at a radius r = R?/3, the Lorentz number would
be 2.7 × 10−3 assuming a density ratio of 108 and a dipolar-
like radial increase Bp ∝ 1/r3. Even lower Lorentz numbers
are expected in Vega-like magnetic stars with 1 Gauss sur-
face field and 1-day rotation period. In the radiative interior of
intermediate-mass and massive stars, the magnetic field could
also result from a convective core dynamo. Numerical simula-
tions of A and B-type star convective cores (Brun et al. 2005;
Augustson et al. 2016) indicate that, in the low Rossby number
regime characterizing these convective motions, the generated
fields have low Lorentz numbers. Indeed, in Brun et al. (2005)
simulation of a 7-days rotating A star, a ratio B2

rms/(4πρr2
cΩ2) ∼

2×10−4 is found at mid-depth of the convective core. Finally, the
Lundquist number measures the ratio of the magnetic diffusion
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Table 1. Parameters of the simulations.

Case Rotation N/Ω0 Pr Ek Lo PrN2/Ω2
0

C1 Cyl 5 10−2 5 × 10−5 2.5 × 10−3 2.5 × 10−1

C2 Cyl 5 10−2 10−4 5 × 10−3 2.5 × 10−1

C3 Cyl 5 10−1 10−4 5 × 10−3 2.5
C4 Cyl 5 1 10−4 5 × 10−3 25
C5 Cyl 15.8 10−3 10−4 5 × 10−3 2.5 × 10−1

C6 Cyl 50 10−4 10−4 5 × 10−3 2.5 × 10−1

C7 Cyl 5 1.6 × 10−3 10−4 5 × 10−3 4 × 10−2

C8 Cyl 50 1.6 × 10−5 10−4 5 × 10−3 4 × 10−2

C9 Cyl 5 10−2 2 × 10−4 10−2 2.5 × 10−1

R1 Rad 5 10−2 5 × 10−5 2.5 × 10−3 2.5 × 10−1

R2 Rad 5 10−2 2 × 10−5 10−3 2.5 × 10−1

R3 Rad 5 10−1 2 × 10−5 10−3 2.5
R4 Rad 5 1 2 × 10−5 10−3 25
R5 Rad 15.8 10−3 2 × 10−5 10−3 2.5 × 10−1

R6 Rad 50 10−4 2 × 10−5 10−3 2.5 × 10−1

R7 Rad 5 1.6 × 10−3 2 × 10−5 10−3 4 × 10−2

R8 Rad 50 1.6 × 10−5 2 × 10−5 10−3 4 × 10−2

R9 Rad 2 6.25 × 10−2 2 × 10−5 10−3 2.5 × 10−1

time scale to the poloidal Alfvén time and is expected to be
very large, much larger than the value attainable in numerical
simulations.

Table 1 lists the parameters used in our simulations. The
cylindrical and radial cases are respectively labelled C and R.
The effect of varying the profile of differential rotation is first
studied, keeping the other parameters fixed (cases C1 and R1).
Both for the cylindrical and radial cases, we vary Pr (cases 2–4),
then Pr and N/Ω0 while keeping PrN2/Ω2

0 fixed (cases 2, 5, 6 and
R9 for the radial case). We also decrease the value of PrN2/Ω2

0
(cases 7 and 8) and finally consider lower Lo (case C9 and R1, to
be compared with C2 and R2). In all cases the Lundquist number
is maintained equal to 50 and the magnetic Prandtl number to 1.

3.2. Influence of a radial vs cylindrical initial differential
rotation

Figure 2 displays the evolution of the ratio of the total (integrated
over the whole spherical shell) dimensioned azimuthal magnetic
energy Emϕ

to the total dimensioned poloidal magnetic energy
Emp in two axisymmetric simulations in which the cylindrical
differential rotation defined by Eq. (13) (top panel) and the radial
differential rotation defined by Eq. (14) (bottom panel) are used.
The other parameters of these simulations, denoted C1 and R1
in Table 1, are identical. In both simulations, the ratio Emϕ

/Emp

initially increases quadratically before reaching a maximal value
in a fraction of tAp, namely around 0.70tAp for the cylindrical
case and 0.35tAp in the radial case. The maximal value of the
quantity Emϕ

/Emp is equal to 1600 in the cylindrical case and to
620 in the radial case, showing that the magnetic configurations
are dominated by the toroidal component.

This evolution of the magnetic field, namely a near-linear
growth of Bϕ followed by a maximum reached at t ∼ tAp, is the
same as observed in simulations where only the coupled equa-
tions for the azimuthal magnetic and velocity fields were solved
(e.g. Charbonneau & MacGregor 1992 or Gaurat et al. 2015 for
exactly identical initial conditions). This means that the avdec-
tion by meridional flows and the diffusive decay of poloidal

0.0 0.5 1.0 1.5 2.0

Time (Alfven time units)

0

200

400

600

800

1000

1200

1400

1600

E
ϕ
/E

p

0.0 0.5 1.0 1.5 2.0

Time (Alfven time units)

0

100

200

300

400

500

600

700

E
ϕ
/E

p

Fig. 2. Evolution of the ratio between the toroidal and poloidal mag-
netic energies for cases C1 (top) and R1 (bottom ). Eϕ seems much
stronger in the cylindrical case but it’s because Bϕ is more extended
and located closer to the surface where Bp is much smaller. If we look
locally, we also find that Bϕ/Bp is stronger in the cylindrical case but
mostly because of the location of Bϕ (where Bp is small).
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Fig. 3. Contours of toroidal magnetic field (colors) for
cases C1 (left) and R1 (right). Time is taken in the
middle of the linear growth of Bϕ, that is at 0.125tap
for case R1 and 0.25tap for case C1. Superimposed are
the poloidal magnetic field lines. Units are in Loϕ =
ωAϕ/Ω. Here, the strength of Bϕ compared to the global
rotation is similar, we always have Loϕ < 1.

fields only have a weak effect in this case. The physical expla-
nation is rather simple and well-known in this context of purely
azimuthal dynamics: the toroidal magnetic field Bϕ, initially set
to zero, increases through the winding-up of the initial poloidal
magnetic field by the initial differential rotation. This growth is
linear as long as the differential rotation and the poloidal field
are not modified by the back-reaction of the Lorentz force on
the flow. When the Maxwell stress associated with the magnetic
field becomes sufficiently strong to change the differential rota-
tion, the Ω-effect is modified accordingly and the growth of the
toroidal field stops. This results in a maximum in the evolution of
Bϕ and of the ratio Bϕ/Bp, that occurs after a time of the order of
the poloidal Alfvén time tAp. Locally, the maximum ratio should
then be of the order of (Bϕ/Bp)max ∼ ∆ΩtAp where ∆Ω is the
initial differential rotation. The exact value depends on the shear
along the poloidal field line during the linear growth phase (see a
more detailed model in Gaurat et al. 2015) and this explains why
the maxima reached for the cylindrical and radial differential
rotation are different. On longer timescales after the maximum
(not shown in Fig. 2), damped oscillations of the global mag-
netic energy are observed and are due to torsional Alfvén waves
whose damping through the so-called phase-mixing mechanism
(see e.g. Ionson 1978; Spruit 1999) finally leads to uniform rota-
tion as nothing enforces differential rotation in our set-up. We
note that we are not interested in the final uniformly rotating
state of the axisymmetric evolution as we focus on MHD insta-
bilities that are likely to be triggered before it is reached. The
simplified problem considered in Gaurat et al. (2015) is still rel-
evant to describe the global evolution of the present simulations
even though we included meridional motions and stable strat-
ification. However the detailed distributions of the differential
rotation and the magnetic field, that are crucial for the occur-
rence and the nature of possible MHD instabilities, will depend
on these processes.

Figure 3 shows the distribution of the toroidal field (together
with the contours (in black) of the poloidal field) during the lin-
ear growth of magnetic field, that is, at 0.25tap for the cylindrical
case (left panel) and at 0.125tap for the radial case (right panel).
The value of Bϕ is normalized by dΩ0

√
4πρ. We clearly see

that the distribution of Bϕ is quite different in both cases, the
field being mostly confined close to the upper boundary in the

cylindrical case and to the bottom boundary in the radial case.
This is due to the Ω-effect which acts differently because the
angle between the isocontours of Ω and the poloidal field lines
is maximal at very different locations in the two cases.

Beside these spatial distributions, the ratio of the azimuthal
Alfvén frequency, ωAϕ = Bϕ/r

√
4πρ to the rotation rate Ω,

denoted Loϕ = ωAϕ/Ω, is another relevant quantity as it allows
to distinguish between the two types of instabilities likely
to be triggered: the Tayler instability (TI) or the azimuthal-
magnetorotational instability (A-MRI) (Jouve et al. 2015). For
sufficiently large values of Loϕ (i.e. when the toroidal field
dominates over rotation), the TI should be favoured because
the A-MRI is suppressed when the magnetic field becomes too
strong. On the contrary, the A-MRI is favoured for small values
of Loϕ (when the rotation is fast compared to the toroidal Alfvén
time) since the growth rate of the TI is strongly reduced by a fast
rotation (Pitts & Tayler 1985).

With the chosen normalization, the azimuthal field presented
in Fig. 3 thus provides the values of the Lorentz number Loϕ,
showing that it is everywhere lower than one. More generally, in
our simulations, the maximum value of Loϕ reached in the whole
computational domain is always of the order of 0.2−0.3. Indeed,
arbitrarily strong values of Loϕ cannot be reached because only
a certain amount of toroidal field can be built before the Lorentz
force back-reacts on the differential rotation. As a consequence,
we can already expect that the A-MRI will be the favored insta-
bility likely to develop in our simulations. This point will be
addressed in Sect. 4.

3.3. Influence of the stable stratification

In the previous subsection, the initial growth of the toroidal field
and the subsequent regime of damped oscillations have been
explained by the winding-up of poloidal field induced by the
initial differential rotation followed by the back-reaction of the
magnetic field through Alfvén waves. While stable stratification
does not seem to play a role in this process, we know from simu-
lations performed in uniform density background (Jouve et al.
2015) that its presence is in fact crucial when the initial dif-
ferential rotation is radial. Indeed, in the absence of stable
stratification, radial differential rotation drives a fast meridional
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10−8

10−7

10−6

10−5

10−4

10−3

10−2

Ek
in

p/E
ki
n φ
(t
=
0́

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (Alfvén time unitś
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Fig. 4. Temporal evolution of the kinetic energy (on a long timescale, left and zoomed in, mid-panel) and magnetic energy ratio (right) for five
different cases: three cases with PrN2/Ω2

0 = 0.25 (blue: R2, green: R5, red: R6 and black: R9) and two cases with PrN2/Ω2
0 = 0.04 (cyan: R7

and magenta: R8). For the magnetic energy plot, the cyan and magenta curves are almost superimposed, as well as the red and green curves. The
long term evolution is similar for the cases with the same PrN2/Ω2

0, as long as Pr is small enough, but different for different values of PrN2/Ω2
0. In

particular, the amount of toroidal field produced is much less in the case where PrN2/Ω2
0 = 0.04.

circulation (of time scale 1/∆Ω) that strongly redistributes the
initial poloidal field and angular momentum, before any coher-
ent and therefore efficient winding-up can happen. As a con-
sequence, the build-up of a magnetic configuration dominated
by a toroidal component does not happen. With stable stratifi-
cation, particularly in a N/Ω0 � 1 regime, such a fast adia-
biatic meridional circulation is efficiently suppressed. Instead,
on a larger thermal diffusion time scale, the latitudinal tempera-
ture perturbations generated by the differential rotation (through
the so-called thermal wind equation) drive an Eddington–Sweet
type circulation of time scale tes = (d2/κ)(N/Ω0)2 (see e.g.
Spiegel & Zahn 1992)2. As long as tAp is of the same order
or smaller than tes, the Eddington–Sweet circulation should
not prevent the winding-up process to occur. This is indeed
what occurs in our numerical simulations as the ratio tAp/tes =

Pm/(LuPrN2/Ω2
0) varies between 8 × 10−4 and 1 (according to

Table 1). In this regime, the detailed distribution of the angu-
lar momentum and of the azimuthal field can nevertheless be
affected by the meridional circulation, as we shall see below.

The effect of the stable stratification on the axisymmetric
evolution has been analyzed by varying the parameters Pr and
N/Ω0. A striking feature is that, after a transient phase, most
of our axisymmetric solutions are controlled by the product
PrN2/Ω2

0, rather than by the two parameters Pr and N/Ω0 inde-
pendently. Indeed, as seen in Fig. 4, the evolution of the kinetic
and magnetic energies is very similar after about t = 0.2tAp for
three simulations having the same PrN2/Ω2

0 = 0.25 but differ-
ent Pr and N/Ω0, namely Pr = 10−2,N/Ω0 = 5 (blue), Pr =
10−3,N/Ω0 = 15.8 (green) and Pr = 10−4,N/Ω0 = 50 (red).
The two cases Pr = 10−3 and Pr = 10−4 are even indistinguish-
able on this plot after about t = 10−3tAp. Figure 4 also displays
the energy evolution of two simulations at PrN2/Ω2

0 = 0.04, the
Pr = 10−3 (cyan) and Pr = 10−4 (magenta) cases, again show-
ing a very similar behaviour. All the runs of Fig. 4 (R2, R5, R6,
R7, R8) have been performed with the initial radial differential
rotation but using the initial cylindrical profile (runs C2, C5 and
C6) leads to the same conclusion regarding the dependence on
PrN2/Ω2

0.
On a short timescale however, flows having the same

PrN2/Ω2
0 can evolve differently. This is illustrated in the

2 Our boundary conditions do not enforce Ekman boundary layers,
thus a circulation driven by Ekman pumping is not expected in our
simulations.

mid-panel of Fig. 4 where a zoom is made between t = 0 and
t = 0.2tAp. Indeed, the initial conditions generate gravity waves
that propagate and oscillate until they are damped by thermal
diffusion. The oscillations are clearly visible in the Pr = 10−2

case (run R2). The thermal damping is so efficient in the case
Pr = 10−4 (for which thermal diffusivity is 100 times larger than
for the case Pr = 10−2) that the oscillations of the kinetic energy
are not even visible. The invariance of the solution with PrN2/Ω2

0
is thus relevant only after this initial transient phase. In addition,
we observe that run R9 deviates also at late time from the other
runs with PrN2/Ω2

0 = 0.25.
Then, not only the kinetic and magnetic energies evolution

are close for identical value of PrN2/Ω2
0 but in fact the whole

solutions are very similar. This is illustrated in Fig. 5 where the
spatial structures of the flow and the magnetic field are shown at
t = 0.1tAp at PrN2/Ω2

0 = 0.04 (two left panels) and PrN2/Ω2
0 =

0.25 (two right panels), in both cases for 2 different values of
Pr, namely 1.6 × 10−3 and 1.6 × 10−5 for the left panels (cases
R7 and R8) and 10−2 and 10−4 for the right panels (cases R2
and R6). The top panels show the rotation rate in color and the
meridional flow contours while the bottom panels present the
toroidal magnetic field in color and the poloidal field lines in
dashed lines.

In Appendix B, we perform a scale analysis of the Boussi-
nesq MHD equations in the parameter regime of the simulations.
It shows that for a time scale ordering, tν � tAp � tκ � tΩ � tB,
the evolution of the system only depends on PrN2/Ω2

0, Lu and
Pm if time is scaled by tAp and Bϕ by d∆Ω

√
4πρ. The Lorentz

number Lo only appears as a scaling factor of the ratio Bϕ/Bp =

Lo−1 f (t/tAp, r/d,PrN2/Ω2
0,Lu,Pm). The simulations that verify

the required time ordering do show this PrN2/Ω2
0 dependence.

The deviations at small time due to the initially excited gravity
waves are expected because gravity waves are filtered out by the
scale analysis. The strong deviation observed at late time for run
R9 is also expected since tκ

tAp
= LuPr

Pm = 3.125 is larger than 1
in this case (in Appendix B, the regime tκ � tAp � tΩ � tB
is shown to be dominated by waves with negligible effect of
the meridional circulation). Besides the PrN2/Ω2

0 dependence,
the expression of Bϕ/Bp is fully compatible with the maximum
toroidal to poloidal magnetic energy ratio found in simulations
performed for the same PrN2/Ω2

0 = 0.25 but two different
Lorentz numbers (runs R1 and R2). The ratio indeed increased
by a factor ≈2.52, as Lo was reduced from 2.5×10−3 (right panel
of Fig. 2) to Lo = 10−3 (right panel of Fig. 4). In addition to a
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Fig. 5. Structure of the flow (top panels: rotation rate in color, meridional flow contours in black lines) and of the magnetic field (bottom panels:
toroidal field in color and poloidal field lines in dashed lines) at time t = 0.1tap, for R7 and R8 (two left panels) and for R2 and R6 (two right
panels).

simplification in the physical interpretation, the scale analysis
allows us to conduct the parametric study of the flow by varying
only one non-dimensional number PrN2/Ω2

0 instead of the three
Lo, N/Ω0 and Pr.

We thus consider how the rotation and magnetic configura-
tions depend on the values of PrN2/Ω2

0. As shown on the right
panel of Fig. 4, the maximum ratio of toroidal to poloidal mag-
netic energy is 1500 for PrN2/Ω2

0 = 0.04 while it is close to 4000
for PrN2/Ω2

0 = 0.25 (and is reached at an earlier time). The sta-
ble stratification is thus favorable to the creation of a magnetic
field configuration more strongly dominated by its toroidal com-
ponent. According to Fig. 5, in the most stably stratified case
(right panels), the differential rotation remains close to its ini-
tial profile and then mostly dependent on radius, contrary to the
less stably stratified case (left panels), for which the differential
rotation is reduced and tends to become cylindrical. This ten-
dency is expected because when stable stratification is less effi-
cient the system can evolve more freely towards a flow satisfying
the Taylor–Proudman constraint, valid for unstratified systems:
∂Ω
∂z = 0, with the z-direction parallel to the rotation axis. The
reduced level of differential rotation can also be explained by an
efficient meridional transport of angular momentum in the less
stratified case. The ratio Ωi/Ωo indeed decreases from 2 at t = 0
to 1.6 at t = 0.1tAp in the less stratified case whereas it remains
close its initial value in the more stratified case.

This difference in the level of differential rotation then natu-
rally explains why a weaker toroidal magnetic field is produced
in the less stratified case. This is visible on the bottom left panels

of Fig. 5 where the maximum value of Loϕ only reaches 0.15
compared to the other cases where it is already close to 0.2.
In addition, we observe that the poloidal field configuration has
been significantly altered in the less stratified cases compared
to the initial condition. The poloidal field tends to align on the
cylindrical isocontours of Ω at mid-latitudes, again preventing
a strong Ω-effect to be at play. This significant change of the
poloidal field is due to its advection by the meridional circula-
tion which is more efficient in the less stratified case.

From the axisymmetric numerical simulations performed for
different stable stratifications, we conclude that in the regime
considered, the effect of the stable stratification is controlled by
the product PrN2/Ω2

0 and that stable stratification favors the cre-
ation of magnetic field configurations more strongly dominated
by their toroidal component.

4. Stability of the magnetic configurations

We now turn to investigate the stability of the axisymmetric mag-
netic configurations determined in the first part of this work.
We perturb the magnetic field by adding a random noise on the
axisymmetric poloidal field and then follow the temporal evo-
lution of the various non-axisymmetric modes m , 0, in the
same way as was done in Jouve et al. (2015). We first consider
the stability of the system with radial and cylindrical differen-
tial rotations and a fixed PrN2/Ω2

0 = 0.25 (cases R2 and C2)
and argue that the observed instability is of the MRI type, this
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Fig. 6. Instability in case C2 (top) and R2 (bottom). Shown are the temporal evolution of the poloidal magnetic energy in the first 11 azimuthal
wavenumbers (averaged in r and θ) (left), the fluctuations of the radial component of the magnetic field at a particular longitude (mid) and the
rotation profile (right) when the instability starts to develop, that is at t = 0.15tap for C2 and t = 0.35tap for R2. The color bar applies to the rotation
rate.

is presented in Sect. 4.1. In Sect. 4.2, the effect of varying the
thermal diffusivity on the instability is then studied (cases C3,
C4 and R3, R4). To help us understand the characteristics of the
instabilities, we compare our results with a local stability analy-
sis in Sect. 4.3. While the Lorentz number Lo has been fixed to
a small value (namely Lo = 5× 10−3 for the cylindrical case and
Lo = 10−3 for the radial case) to maximize the possibility for
a non-axisymmetric instability to fully develop (see Jouve et al.
2015), we investigate in Sect. 4.4 the effects of increasing Lo
(cases C9 and R1).

4.1. Radial vs. cylindrical differential rotation

We first investigate the typical evolution of an unstable situation
and compare the behaviour of the simulations initialized with
the cylindrical and radial differential rotation profiles. Figure 6
shows the evolution of the poloidal magnetic energy contained in
the first 11 azimuthal wavenumbers, including the axisymmetric
m = 0 mode, which is approximately steady during the time
considered. In both cases, a non-axisymmetric instability grows
exponentially in a fraction of Alfvén time to quickly reach the

level of the axisymmetric energy at about 0.6tap. The right panels
of Fig. 6 enable us to visualize the location and structure of the
unstable modes, by showing the amplitude of the fluctuations of
the radial component of the magnetic field. In both cases, the
instability develops preferentially where the azimuthal magnetic
field is maximum (see Fig. 3 for the axisymmetric configuration
which was perturbed) and where and when a significant amount
of differential rotation exists. In both cases, the growth rate of
the most unstable mode is a fraction of the rotation rate. It is
approximately equal to 5 × 10−2Ω for the m = 4 mode in the
cylindrical case and 2.5 × 10−2Ω for the m = 1 mode in the
radial case.

We now emphasize the differences between the two cases.
First, the time at which the instability starts to grow is quite dif-
ferent. Indeed, in the cylindrical case, the axisymmetric equi-
librium which is perturbed is already unstable as soon as the
perturbation is introduced, leading to the exponential growth of
the non-axisymmetric modes from approximately t = 0.1tap.
At this stage, the axisymmetric evolution is still in its linear
growth of azimuthal magnetic field, as shown in Fig. 2. On
the contrary, in the radial case, the instability develops only
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Fig. 7. 3D views of the instability in the two cases: Case C2 on top and case R2 below. The magnetic field lines of the background axisymmetric
magnetic field are plotted around the location of the instability and colored with the values of the toroidal magnetic field (in the Y-direction in the
Cartesian frame shown at the bottom left) and isosurfaces of the axial component of the fluctuating magnetic field are overplotted.

later, at about t = 0.3tap, approximately when the maximum
of axisymmetric Bϕ is reached and thus when a strong back-
reaction of the Lorentz force on the differential rotation profile
has acted. To illustrate this, the right panels of Fig. 6 show the
profiles of differential rotation at the time when the unstable non-
axisymmetric modes start to grow. It is clear that the cylindrical
differential rotation is still mostly identical to its initial condi-
tion whereas the radial case has been significantly modified by
the back-reaction of the Lorentz force. In particular, a latitudinal
differential rotation appears here, which was not present initially
since the rotation rate was dependent on radius only. It is exactly

at the location where the latitudinal shear is the strongest that the
unstable modes are confined.

Another major difference between cases R2 and C2 lies in
the structure of the unstable modes. From the middle panels of
Fig. 6, it is clear that the displacement of the perturbations is not
in the same direction in both cases. Let us express the perturba-
tion as proportional to:

exp
[
i(krr + kθθ + mϕ − σ t)

]
,

with kr, kθ and m the radial, latitudinal and azimutal wavenum-
bers, and σ the complex growth rate. Then in the cylindrical
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case, the latitudinal wavenumber kθ is large compared to kr and
the displacement is thus mainly in the radial direction, parallel to
gravity. We argue that the radial extent of the unstable mode is in
fact mostly due to the structure of the axisymmetric background
and not due to the effect of stable stratification. Indeed, in our
previous study where the effects of stable stratification were not
included (Jouve et al. 2015), the structure of the unstable modes
and the growth rates in the equivalent of case C2 where very
close to the ones found here.

On the other hand, in case R2, kr is now dominant compared
to kθ, so that the displacement is mainly in the latitudinal direc-
tion, perpendicular to gravity. We thus anticipate that in this sim-
ulation, the stable stratification, which is much less effective if
the displacement is horizontal, only affects the geometry of the
unstable mode and not its growth rate. This is investigated in
the next section, where the effect of the stable stratification is
increased for the two initial differential rotations.

In both cases, we argue that the instability found here is of
MRI type. First, we checked that the flow is hydrodynamically
stable by perturbing the flow when the magnetic field is set to
0 at the time where the instability develops in the MHD case.
The instability could nevertheless be a current-driven instabil-
ity of the Tayler type since the magnetic configuration contains
current and is strongly dominated by the toroidal component, as
we can clearly see on Fig. 7. This figure shows the magnetic
field lines of the background axisymmetric magnetic field traced
around the location of the instability. This 3D view enables to
clearly see the dominance of the toroidal component of the field
and also allows us to see that the maximum amplitude of the
unstable modes (shown on Fig. 7 by the isosurfaces of the fluc-
tuating axial component of the field) is mainly located where
the toroidal field is maximum. The location of the maximum Bϕ
naturally corresponds to the region where the shear is also maxi-
mum since the shear is responsible for the generation of toroidal
field through the Ω-effect. We thus find here that the instability
develops mainly where the shear is concentrated. This would be
different if the instability was of the Tayler type, because then the
location of the unstable modes would be correlated with the gra-
dients of toroidal field, where the currents are maximal. More-
over, the most unstable mode in the cylindrical case is not the
m = 1 as expected for the Tayler instability. It is however the
m = 1 mode which is the most unstable in the radial case as seen
on the figure but this is not incompatible with an MRI instability
in the fast thermal diffusion case. In Acheson (1978), a detailed
theoretical description is made of all the various MHD instabil-
ities which can arise in stellar radiative zones. In this seminal
paper, the MRI is not explicitly quoted but an instability associ-
ated with a shear and which necessitates the presence of a mag-
netic field is studied, when the thermal diffusivity is high and in
the limit where (ωAϕ/Ω)2E−1

k Pm is also high. In this situation,
he argues that the most favored unstable mode is precisely the
m = 1 mode. The values in our simulations of the parameter
(ωAϕ/Ω)2E−1

k Pm when the instability develops in the radial case
is of the order of 2 × 103 so that the limit studied by Acheson
(1978) does apply here. In both cases started with a cylindrical
or a radial differential rotation, we thus observe the presence of a
MRI which is driven mostly by the initial radial differential rota-
tion in the cylindrical case and driven by the latitudinal shear
that is produced by the back-reaction of the Lorentz force in the
radial case. The instability is allowed to exist in both cases with a
relatively high thermal diffusivity (Prandtl number of 10−2). We
now wish to investigate the effect of varying the thermal diffu-
sion on the instability.

4.2. Effect of the thermal diffusivity

The stable stratification has the tendency to strongly reduce
the development of non-axisymmetric instabilities, as shown for
example in Spruit (1999). In particular, as the stable stratifica-
tion limits radial displacements, it will strongly affect instabili-
ties that require them to develop. By damping temperature devia-
tions, thermal diffusion diminishes the amplitude of the restoring
buoyancy force and thus the effect of the stable stratification. In
order to study these effects, we therefore decrease the thermal
diffusivity, and thus increase the Prandtl number Pr, keeping the
same value for N/Ω0. These correspond to cases C3, C4 and R3,
R4. Figure 8 shows the temporal evolution of the poloidal mag-
netic energy decomposed into the first 11 azimuthal wavenum-
bers in cases where Pr = 0.1 and Pr = 1. The left panels corre-
spond to cases C3 and C4 and the right panels cases R3 and R4.
Compared to the magnetic energy evolution of Fig. 6 where we
had Pr = 10−2, it is clear that for the cylindrical case, the insta-
bility is largely suppressed by the increase of the stable stratifi-
cation effect. In particular, for Pr = 1, the axisymmetric solution
becomes completely stable to any non-axisymmetric perturba-
tion. In other words, the preferentially radial displacements that
were unstable at Pr = 10−2 are inhibited at Pr = 1. The transi-
tion between Pr = 10−2 and Pr = 1 can be linked to the value
of the critical lengthscale above which the effects of the stable
stratification are not diminished by thermal diffusion. This crit-
ical lengthscale lc is determined by equating the buoyancy and
the thermal diffusion time scales:

l2c
κ

=
1
N

and thus lc =

√
κ

N
·

With the dimensionless parameters used in our calculations,
the critical lengthscale reads:

lc
d

=

√
Ek

Pr
Ω

N
·

The computation of this quantity gives a value ranging from
4% to 0.4% when Pr goes from 10−2 to Pr = 1, for these cases
where PrN2/Ω2

0 = 0.25. The unstable radial lengthscale seen in
Fig. 6 being of the order of a few percent of the computational
domain, we argue that this case is only marginally affected by
the stratification. This is consistent with the fact that, as men-
tioned above, a very similar unstable mode was found in the
corresponding unstratified simulation by Jouve et al. (2015).
However, the reduction of the critical lengthscale causes the
instability to disappear in the Pr = 1 case. Such a behaviour
where increasing the stable stratification removes the instabil-
ity is reminiscent of the vertical shear instability in a vertically
stratified medium (Dudis 1974; Lignières et al. 1999).

The situation is quite different in the radial case (right panels
of Fig. 8). Now, the instability survives even with the increase
of the effects of stable stratification, and grows on time scales
similar as in the Pr = 10−2 case. As we show below, this comes
with the fact that the unstable displacements become more and
more horizontal. In Fig. 9, we show the structure of the unsta-
ble mode for cases R3 and R4 at two different longitudes and
we plot the profile of the magnetic field and the rotation rate,
averaged in longitude. In both cases, the background flow and
field are quite similar even if the value of PrN2/Ω2

0 differs. This
is also true for the cylindrical case (not shown here), which also
confirms that the absence of an instability in cases C3 and C4
is mostly due to the effect of stable stratification on the char-
acteristics of the instability (namely the lengthscale) and not on
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Fig. 8. Temporal evolution of the poloidal magnetic energy in the first 11 azimuthal wavenumbers for cases C3 (top left), C4 (bottom left), R3 (top
right), and R4 (bottom right).

the background flow and field. We recover the fact that the dis-
placement is indeed mostly horizontal, with a latitudinal length-
scale extremely dominant in comparison to the radial scale in
case R4 where PrN2/Ω2

0 = 25. The location of the instability is
still mostly where the latitudinal gradient of Ω lie, as seen on the
right panels. It is thus clear here that the effect of the strong strati-
fication is to force the unstable modes to become more horizontal
and since their origin is the latitudinal gradient of Ω, the instabil-
ity survives even when the degree of stratification is increased.
We note that the most unstable azimuthal wavenumber is still
m = 1 so that the strong stratification does not seem to signifi-
cantly affect the azimuthal scale.

It is quite striking here that the growth rates of the unsta-
ble modes do not seem to be strongly affected by the stratifi-
cation. Indeed, the growth rates of the cases R2, R3 and R4
are similar. Meanwhile, the ratio of the radial to the latitudi-
nal wavenumbers increases with the increased stratification. This
can be understood by the fact that the instability here is driven
by the latitudinal (or horizontal) gradient of Ω. Indeed, this
behaviour is reminiscent of previously studied hydrodynamical
instabilities driven by an horizontal shear in a vertically strati-
fied medium. In the case of the centrifugal (or inertial) instabil-
ity studied by Kloosterziel & Carnevale (2008), the dispersion
relation of the unstable modes clearly shows that the growth rate
of a mode with given latitudinal and azimuthal wavenumbers
can be made invariant to a stratification increase by adapting
(that is increasing) the vertical wavenumber accordingly. The

possibility to adapt the vertical lengthscale to get the same
growth rate also exists when the shear instability is of the
inflectional type (Deloncle et al. 2007). The effect of the sta-
ble stratification on a vertical shear instability is very different.
In an inviscid and adiabatic case there is simply no instability
when the Richardson number exceeds 1/4, while a high thermal
diffusivity can potentially destabilize predominantly horizontal
perturbations but then the growth rates are vanishingly small
(Lignières et al. 1999). A simple physical interpretation is that
the most unstable modes of a vertical shear necessarily involve
vertical motions, such as for example in Kelvin–Helmholtz bil-
lows. Thus, by opposing vertical motions, stable stratification
either kills the instability or reduces it strongly. On the contrary,
for an horizontal shear, the stable stratification may affect the
preferred vertical wavelength of the perturbation but this does
not prevent the unaffected horizontal motions to efficiently draw
energy from the horizontal shear.

While these purely hydrodynamical cases help interpret the
effect of the stratification, both the centrifugal and the inflec-
tional instabilities are absent from our simulations since the dif-
ferential rotation does not fulfill the inviscid and unstratified cri-
teria for these instabilities. We thus expect that the observed
instability is a magnetorotational instability due to the latitudinal
shear and supported by the magnetic field. In the next section, we
check the consistency of our interpretation using a local linear
stability analysis in the MHD case.
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Fig. 9. Fluctuations of the radial component of the magnetic field at a particular longitude, axisymmetric magnetic field (toroidal field in color and
poloidal field lines) and rotation rate at approximately time t = 0.5tap (during the linear phase of the instability) for cases R3 (Pr = 0.1, top) and
R4 (Pr = 1, bottom). We clearly see that the perturbation direction is orthogonal to gravity, especially for the most stratified case R4. We note that
the background flow and field are very similar in both cases.

4.3. Comparison to the Acheson dispersion relation

We now wish to analyze our numerical results at the light of
a local linear instability analysis, strongly inspired by the work
of Acheson (1978) where various types of MHD instabilities in
different regimes were investigated, as already quoted at the end
of Sect. 4.1. We are particularly interested in the impact of sta-
ble stratification on our instabilities and on the differences found
between the cylindrical and radial cases. We recall here the vari-
ous steps of the establishment of the Acheson dispersion relation
of interest in our case (Eq. (3.20) in Acheson 1978) without indi-
cating all the details, which can be found in Appendix C.

First, the MHD equations governing the system with ther-
mal, viscous and magnetic diffusion are linearised around the
background axisymmetric state in cylindrical geometry (which

is assumed to be purely toroidal both for the magnetic and the
velocity fields) and by considering small amplitude harmonic
perturbations in space and time of the form

exp
[
i(kss + kzz + mϕ − σ t)

]
. (17)

Here ks = 2π/λs (kz = 2π/λz) is the radial (axial) wavenum-
ber of the instability and m its azimuthal order which is an O(1)
integer. When the imaginary part ofσ is positive, the applied per-
turbation is unstable and grows exponentially at a rate γ = =(σ).
Then, we assume here that the thermal diffusivity κ is much
higher than the magnetic diffusivity η, which is the case in our
setup where Pm = 1 and Pr � 1. In this situation, the disper-
sion relation of Acheson is reduced to a simpler expression: a
polynomial equation of degree 4 in the dimensionless frequency
ω̃ = ω/Ω0.
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Fig. 10. Cases R2 (left) and R3 (right): contours of the growth rate σ/Ω0 of the m = 1 mode obtained through the Acheson dispersion relation
(colors) and superimposed in black lines are the contours of the fluctuating radial magnetic field coming from the 3D simulation. The agreement
for the location of the instability is quite satisfactory in both cases.

We solve numerically that polynomial Eq. (C.4) by choos-
ing as background axisymmetric profiles our numerical solutions
Ω(r, θ) and Bϕ(r, θ) at the time where the instability develops in
the simulations. The various parameters defined in Appendix B
and which play a role in the calculation of the instability growth
rate are the ratio of poloidal wavenumbers β, the azimuthal
wavenumber m, the shear parameter q, a parameter b quantifying
the gradient of Bϕ, the azimuthal Lorentz number Loϕ, the strat-
ification parameter PrN2/Ω2

0 and the Reynolds numbers Re, Rm
and Rt. For all these parameters, we take the values estimated or
calculated from the simulations. With this procedure, we obtain
a 2D map of the theoretical growth rate σ(r, θ) at the time where
the instability starts to grow in the simulation. The aim is then to
compare the location and the value of the maximum theoretical
growth rate in the 2D domain with the location of the unstable
mode and the growth rate estimated from the simulation.

An example of such a map is given in Fig. 10, where the
azimuthal wavenumber was chosen to be m = 1 and the ratio
of poloidal wavenumbers such that kθ � kr. This case corre-
sponds to case R2 where the instability was clearly present in
the numerical simulation and mostly on the m = 1. On this map
ofσ/Ω0, we superimpose the isocontours of the fluctuating com-
ponent of the radial magnetic field coming from the 3D simula-
tion. We find that the location of the unstable mode coincides
well with the theoretical location of the maximum growth rate.
The value of the maximum growth rate reaches σ/Ω0 ≈ 0.1,
compared to 2.5 × 10−2 in the simulation. We do not expect
to recover exactly the same growth rates because of the vari-
ous assumptions underlying the derivation of the dispersion rela-
tion, which might not be entirely fulfilled in our simulations. In
particular, the analysis of Acheson (1978) is local and we are
comparing it here with global numerical simulations, with pos-
sible effects of the boundary conditions, especially for the cylin-
drical case where the instability develops very close to the top
boundary of our computational domain. Then, as already pointed
out in a previous work (Meduri et al. 2019), the use of the short
wavelength approximation (meridional perturbation wavelength
much smaller than the typical scale of variation of the back-
ground) could also be questioned here, in particular for the radial
direction. Anyhow, we do not try here to understand in detail the
discrepancy in the values of the growth rate obtained in the local
analysis and in the numerical simulations, we just aim at gaining

some insight from the local analysis on the possible causes for
instability observed in the simulations.

In the radial cases, the local dispersion relation helps us to
determine that it is mostly the latitudinal gradient of Ω which
is responsible for the instability and that the presence of the
background magnetic field is needed. Indeed, the local analy-
sis predicts that the background flow is hydrodynamically stable
(the growth rate is negative when the magnetic field is set to
0). Moreover, when the latitudinal gradient of Ω is set to 0, the
growth rate drops dramatically while it stays around the same
maximum value of σ/Ω0 ≈ 0.1 when the radial gradient is set to
0. We thus confirm here the argument developed in the previous
section: the instability is here driven by the gradient of rotation
in the θ-direction, that is, orthogonal to the stable stratification.
As discussed above, this is also probably the reason for the per-
sistence of the instability when the stability of the stratification
is increased. The right panel of Fig. 10 shows the location of the
instability when the effect of the stable stratification is increased,
namely, with Pr = 10−1 instead of Pr = 10−2. The local analy-
sis still predicts a significant growth rate, again located around
the maximum latitudinal gradient of rotation. The value of the
growth rate itself is reduced by about 20% but the instability still
exists and indeed also observed in the 3D simulation at approx-
imately the same location for the m = 1 mode. In fact, in this
case where we chose the poloidal wavenumber β such that the
displacement is nearly horizontal (kθ � kr), it is expected that
the local dispersion relation predicts a small effect of the stable
stratification on the growth rate. Indeed, if we look at the coeffi-
cients of Eq. (C.4), we see that all the terms involving PrN2/Ω2

0
are multiplied by the quantity sin θ − β cos θ. In the limit case
where kθ is 0 and kr is large (but finite), β reduces to tan θ and
the term multiplying PrN2/Ω2

0 vanishes. Of course, we are not
really at this limit here but there can be a factor of at least ten
between the poloidal wavenumbers such that the effect of the sta-
ble stratification becomes very weak on the value of the growth
rates.

In Fig. 11, we illustrate the fact that the linear analysis also
predicts that the geometry of the unstable mode in the radial case
should change as the stable stratification increases. The figure
shows the maximum growth rate reached in the (r, θ) plane for
the background flow and field of case R2 as a function of the
poloidal wavenumber ratio when the value of N/Ω0 is varied
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Fig. 11. Spatial maximum of the instability growth rate for the m = 1
mode calculated from Eq. (C.4), as a function of the ratio of poloidal
wavenumbers, for different values of N/Ω0, keeping Pr = 10−2 and for
the background azimuthal velocity and magnetic fields of case R2.

from 5 to 100. We clearly see that when the level of stratifi-
cation is increased, the most unstable mode adapts its radial to
horizontal wavenumber ratio: the most unstable mode becomes
more and more horizontal when the stratification is increased, as
also seen in the 3D simulation and as observed in the hydrody-
namical studies discussed in the previous section. We also note
that the maximum growth rate always tends to the same value
as the level of stratification is increased, so that, theoretically, all
modes with a sufficiently large radial to horizontal wavenumber
ratio should be equally unstable. The unstable mode seen in the
3D simulation of course possesses a finite kr/kθ, probably cho-
sen to minimize the stable stratification effects while fitting in
the extension of the background field.

The situation is different in the cylindrical cases C2 and C3
where we chose, on the contrary, to calculate the growth rate as a
function of r and θ but using a ratio β such that kθ � kr, as seen
in the 3D simulation. And we now choose to focus on the mode
m = 4 which is one of the most unstable ones. The results would
be similar for the equally unstable m = 2 and m = 3 modes.
Figure 12 shows the map of the theoretical growth rate obtained
from the dispersion relation for the m = 4 mode, together with
the contours of the radial component of the magnetic fluctua-
tions coming from the 3D simulation. Again, the location of
the maximum growth rate coincides quite well with the posi-
tion where the instability is observed in the simulation but the
expected growth rate is larger (2.7 × 10−1 compared to 5 × 10−2

in the simulation). In this case, our procedure enables us to attest
that it is now the radial gradient of Ω which is responsible for
the instability found here, the growth rates (value and location)
being very similar when the ∂Ω

∂θ
is set to 0. When the Prandtl

number is now increased to Pr = 0.1, the instability completely
vanishes, showing the very strong effect of the stable stratifica-
tion on the instability in this cylindrical case, as observed in the
simulation.

4.4. Effect of Lo

In this last section, we investigate the effect of varying the
Lorentz number, which measures the ratio between the dynam-
ical timescales of interest in this study: the rotation time scale
to the poloidal Alfvén time scale. From our previous study
(Jouve et al. 2015), we know that this parameter is crucial to
the full development of the instability. Indeed, since we identify
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Fig. 12. Same as Fig. 10 but for Case C2 and for the m = 4 mode. Again,
the location of the instability in the simulation corresponds quite well
with the position of the expected maximum growth rate from the local
analysis. Case C3 is not shown since the local analysis does not predict
any instability in this case, in agreement with the 3D simulation.

our instability here of the magneto-rotational type with a typical
growth rate of the order of the rotation frequency, the Lorentz
number quantifies the time it takes for the instability to grow
compared to the typical lifetime of the background toroidal mag-
netic field on which it grows. The optimal case for the full devel-
opment of the instability is consequently when the Lorentz num-
ber is small. To test this argument with the simulations per-
formed in this work, we increased the Lorentz number both in
the radial and the cylindrical cases. The growth in time of the
magnetic energy contained in the first 11 azimuthal modes for
an increased Lorentz number is shown in Fig. 13, both for the
cylindrical (left panel) and the radial case (right panel).

As expected, the main effect of increasing Lo in both cases is
to suppress the instability in the cylindrical case and drastically
decrease its impact on the axisymmetric field in the radial case.
To be more precise, the Lorentz number was increased here by
decreasing the rotation rate and thus increasing the rotation time.
The evolution of the axisymmetric magnetic field is then simi-
lar to what is shown in Fig. 2 but with a smaller value for the
ratio between toroidal and poloidal magnetic energies. In partic-
ular, the maximum toroidal field will still peak at approximately
t = 0.7tAp for the cylindrical case and at t = 0.3tAp for the radial
case, but the growth rates are divided by approximately 2 since
the Lorentz number was doubled in case C9 and multiplied by
2.5 in case R1 compared to C2 and R2 respectively. As a conse-
quence, the instability does not have time to sufficiently develop
to reach the level of the axisymmetric field. The magnetic field
after a few Alfvén times will remain mostly unaffected by the
presence of non-axisymmetric components.

The conclusion here is similar to the unstratified case
(Jouve et al. 2015) and is still valid for the radial case. This is
not surprising since the instability is also of MRI type and thus
the ratio between the instability growth time and the background
magnetic field lifetime will still control the ability of the non-
axisymmetric unstable modes to reach the energy of the axisym-
metric field. We then anticipate that for the mean axisymmet-
ric field to be significantly modified by the development of the
instability, the system must be at low Lorentz number, that is,
a relatively weak poloidal magnetic field embedded in a fastly
rotating environment. To be more quantitative, in the cylindrical
case, Lo must be weaker than 5 × 10−3 while in the radial case,
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Fig. 13. Temporal evolution of the poloidal magnetic energy in the first 11 azimuthal wavenumbers for case C9 (left) and R1 (right): compared to
cases C2 and R2, the value of Lo was increased to Lo = 10−2 for the cylindrical case and Lo = 2.5 × 10−3 for the radial case.

it must be even weaker, of the order of 10−3. Both values are
compatible with the values expected to be found in stellar interi-
ors (see Sect. 3.1), especially for Vega-like stars which possess a
weak surface field and a rapid rotation. The difference between
the radial and cylindrical cases can be understood by the fact that
for the instability to be triggered in the radial case, we first need
to wait for the magnetic field to back-react on the flow to pro-
duce the latitudinal shear. The instability starts to develop when
the toroidal field has already reached its maximum value and
begins its decay. The instability thus needs to grow quite fast so
that the toroidal field keeps approximately its maximum value
during the whole development of the instability. The cylindrical
case is different since the instability is able to grow right away
on the existing radial shear and consequently while the toroidal
field is building up. In the cylindrical case, the instability is thus
allowed more time to grow and the range of Lorentz numbers
allowing the instability to fully develop is thus extended.

5. Conclusion

In this work, we studied the effects of the stable stratification in
the non-adiabatic case on instabilities which can develop when
an initial poloidal field is wound up by an initial differential rota-
tion. Two different profiles for the differential rotation were con-
sidered, both likely to exist in stellar radiative zones: one, cylin-
drical, which satisfies the Taylor–Proudman constrain and the
other, shellular, which corresponds to what could be expected in
a strongly stably stratified layer.

The axisymmetric solutions of this initial value problem
were first investigated. We showed that, for fixed Lu and Pm,
the axisymmetric evolution depends only on one dimension-
less parameter PrN2/Ω2

0 measuring the level of stratification,
instead of the three independent parameters Lo, Pr and N/Ω0.
This result is found to be consistent with a scale analysis of
the Boussinesq MHD equations performed for a time order-
ing tν � tAp � tκ � tΩ � tB. In this simplified form, the
gravity waves are filtered out, and the system evolves through
Alfvén waves and an Eddington Sweet circulation prescribed
by a magneto-thermal wind equilibrium and a thermal equilib-
rium. The parameter Lo = tΩ/tAp only controls the ratio between
toroidal and poloidal field. An interesting feature of the strongly
stably stratified cases (with relatively high values of PrN2/Ω2

0)
is that the toroidal to poloidal field ratio becomes higher since

the transport of angular momentum through meridional flows is
inhibited. Indeed, in this situation, the initial differential rotation
is not modified before the Lorentz force starts to back-react on
the flow and the Ω-effect is more efficient at producing a toroidal
field component.

In stars, the ordering in time-scales given above may not
apply since the Alfvén time-scale may be small compared to the
thermal diffusion time-scale. Then, the Eddington–Sweet circu-
lation becomes negligible and the system evolution is dominated
by Alfvén waves as in Gaurat et al. (2015) where only the cou-
pled evolution of vϕ and Bϕ was analysed. In our calculations,
we considered a situation where tAp ∼ tκ and found that the
gravity waves existing in the transient phase do persist during
the whole winding-up process and significantly perturb the flow
and field. However, this initial gravity wave transient is a direct
consequence of our initial condition which is far from an equi-
librium and such a transient is not likely to be present in stars.

When axisymmetric solutions strongly dominated by their
toroidal component exist, there are expected to be unstable. This
is indeed what was found in Jouve et al. (2015) in the non-
stratified case. We tested here the effects of the stable stratifi-
cation on the instability. It turns out that the situations involv-
ing two different initial differential rotation profiles respond
quite differently to perturbations. When non-adiabatic effects are
important, that is when a large thermal diffusivity is considered,
both cases are unstable to a magneto-rotational instability. How-
ever, when the thermal diffusivity is reduced and thus when the
effects of the stable stratification are increased, the instability
disappears in the cylindrical case while the unstable displace-
ments become more and more horizontal in the radial case, with
similar growth rates. We argue that this is due to the fact that
the radial shear is responsible for the instability in the cylindri-
cal case while it is driven by the latitudinal shear in the other.
This latitudinal shear does not exist initially, it is produced by
the back-reaction of the magnetic field on the flow. The situ-
ation may appear quite specific since it is here the magnetic
field itself which creates the conditions for its own instability.
However, such phenomena could occur in stellar radiative zones
where angular momentum is permanently redistributed by meri-
donal flows or Aflvén waves. In our case, the level of latitudinal
shear which produces the instability does not need to be very
high (∆Ω/Ω < 1) and can be localized in space. If such a gra-
dient appears in a stellar radiative zone and persists for a few
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hundreds of rotation periods, we predict that an instability could
develop and strongly modify the axisymmetric magnetic field
despite the stable stratification.

As far as Ap and Bp stars are concerned, we predict here that
the instability could appear in stars for which the Lorentz num-
ber is less than 10−3, meaning that the Alfvén frequency should
be 1000 times smaller than the rotation frequency. As argued
in Sect. 3.1, small Lo are indeed expected in stellar interiors
especially for Vega-like stars which rotate rapidly and exhibit
a small surface magnetic field. The Lorentz number is even
smaller when deep layers of the stars are considered, where lati-
tudinal shears could be locally generated and likely to be unsta-
ble. The existence of an instability for low Lo stars would then
possibly explain why strong fields are observed only for about
10% of intermediate-mass and massive stars, these stars hav-
ing potentially sufficiently high magnetic frequency compared
to their rotation frequency so that the instability does not reach
the level of the axisymmetric field. The present study also poten-
tially applies to the angular momentum transport in evolved
stars. Although the turbulent transport associated with the MRI
is not quantified here, various studies (Rüdiger et al. 2014, 2015;
Jouve et al. 2015) have shown that the MRI of a toroidal field
as seen here could produce a significant transport of angular
momentum, which could possibly help to reconcile models and
observations of the differential rotation of sub-giant and red giant
stars observed with Kepler.
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Deheuvels, S., Doğan, G., Goupil, M. J., et al. 2014, A&A, 564, A27
Deloncle, A., Chomaz, J.-M., & Billant, P. 2007, J. Fluid Mech., 570, 297
Dudis, J. J. 1974, J. Fluid Mech., 64, 65
Eggenberger, P., Haemmerlé, L., Meynet, G., & Maeder, A. 2012a, A&A, 539,

A70
Eggenberger, P., Montalbán, J., & Miglio, A. 2012b, A&A, 544, L4
Eggenberger, P., den Hartogh, J. W., Buldgen, G., et al. 2019, A&A, 631, L6
Fuller, J., Piro, A. L., & Jermyn, A. S. 2019, MNRAS, 485, 3661
Garaud, P., & Acevedo Arreguin, L. 2009, ApJ, 704, 1
Garaud, P., Medrano, M., Brown, J. M., Mankovich, C., & Moore, K. 2015, ApJ,

808, 89
Gastine, T., & Wicht, J. 2012, Icarus, 219, 428
Gaurat, M., Jouve, L., Lignières, F., & Gastine, T. 2015, A&A, 580, A103
Gilman, P. A., & Glatzmaier, G. A. 1981, ApJS, 45, 335
Guerrero, G., Del Sordo, F., Bonanno, A., & Smolarkiewicz, P. K. 2019,

MNRAS, 490, 4281
Guervilly, C., & Cardin, P. 2010, Geophys. Astrophys. Fluid Dyn., 104, 221
Hale, G. E. 1908, ApJ, 28, 315
Ionson, J.-A. 1978, ApJ, 226, 650
Jouve, L., Gastine, T., & Lignières, F. 2015, A&A, 575, A106
Kitchatinov, L., & Rüdiger, G. 2008, A&A, 478, 1
Kloosterziel, R. C., & Carnevale, G. F. 2008, J. Fluid Mech., 594, 249
Knobloch, E., & Spruit, H. C. 1982, A&A, 113, 261
Lignières, F., Califano, F., & Mangeney, A. 1999, A&A, 349, 1027
Lignières, F., Petit, P., Böhm, T., & Aurière, M. 2009, A&A, 500, L41
Marcotte, F., & Gissinger, C. 2016, Phys. Rev. Fluids, 1, 063602
Markey, P., & Tayler, R. J. 1973, MNRAS, 163, 77
Marques, J. P., Goupil, M. J., Lebreton, Y., et al. 2013, A&A, 549, A74
Meduri, D. G., Lignières, F., & Jouve, L. 2019, Phys. Rev. E, 100, 013110
Moffatt, H. K. 1978, Magnetic Field Generation in Electrically Conducting

Fluids (Cambridge: Cambridge University Press)
Parker, E. N. 1955, ApJ, 122, 293
Philidet, J., Gissinger, C., Lignières, F., & Petitdemange, L. 2020, Geophys.

Astrophys. Fluid Dyn., 114, 336
Pitts, E., & Tayler, R.-J. 1985, MNRAS, 216, 139
Rüdiger, G., & Kitchatinov, L. L. 2010, Geophys. Astrophys. Fluid Dyn., 104,

273
Rüdiger, G., Gellert, M., Schultz, M., Hollerbach, R., & Stefani, F. 2014,

MNRAS, 438, 271
Rüdiger, G., Gellert, M., Spada, F., & Tereshin, I. 2015, A&A, 573, A80
Rüdiger, G., Schultz, M., & Kitchatinov, L. L. 2016, MNRAS, 456, 3004
Rüdiger, G., Gellert, M., Hollerbach, R., Schultz, M., & Stefani, F. 2018, Phys.

Rep., 741, 1
Schaeffer, N. 2013, Geochem. Geophys. Geosyst., 14, 751
Spiegel, E. A., & Zahn, J. P. 1992, A&A, 265, 106
Spruit, H.-C. 1999, A&A, 349, 189
Spruit, H.-C. 2002, A&A, 381, 923
Szklarski, J., & Arlt, R. 2013, A&A, 550, A94
Talon, S., & Charbonnel, C. 2008, A&A, 482, 597
Tayler, R.-J. 1973, MNRAS, 161, 365
Townsend, A. A. 1958, J. Fluid Mech., 4, 361
Vallis, G. K. 2006, Atmospheric and Oceanic Fluid Dynamics (Cambridge:

Cambridge University Press)
Velikhov, E. P. 1959, Sov. Phys. JETP, 36, 1398
Wicht, J. 2002, Phys. Earth Planet. Inter., 132, 281
Zahn, J.-P. 1992, A&A, 265, 115
Zahn, J.-P., Brun, A. S., & Mathis, S. 2007, A&A, 474, 145

A13, page 18 of 23

http://linker.aanda.org/10.1051/0004-6361/202037828/1
http://linker.aanda.org/10.1051/0004-6361/202037828/2
http://linker.aanda.org/10.1051/0004-6361/202037828/3
http://linker.aanda.org/10.1051/0004-6361/202037828/3
http://linker.aanda.org/10.1051/0004-6361/202037828/4
http://linker.aanda.org/10.1051/0004-6361/202037828/5
http://linker.aanda.org/10.1051/0004-6361/202037828/6
http://linker.aanda.org/10.1051/0004-6361/202037828/7
http://linker.aanda.org/10.1051/0004-6361/202037828/8
http://linker.aanda.org/10.1051/0004-6361/202037828/9
http://linker.aanda.org/10.1051/0004-6361/202037828/10
http://linker.aanda.org/10.1051/0004-6361/202037828/11
http://linker.aanda.org/10.1051/0004-6361/202037828/12
http://linker.aanda.org/10.1051/0004-6361/202037828/13
http://linker.aanda.org/10.1051/0004-6361/202037828/14
http://linker.aanda.org/10.1051/0004-6361/202037828/15
http://linker.aanda.org/10.1051/0004-6361/202037828/16
http://linker.aanda.org/10.1051/0004-6361/202037828/17
http://linker.aanda.org/10.1051/0004-6361/202037828/17
http://linker.aanda.org/10.1051/0004-6361/202037828/18
http://linker.aanda.org/10.1051/0004-6361/202037828/19
http://linker.aanda.org/10.1051/0004-6361/202037828/20
http://linker.aanda.org/10.1051/0004-6361/202037828/21
http://linker.aanda.org/10.1051/0004-6361/202037828/22
http://linker.aanda.org/10.1051/0004-6361/202037828/22
http://linker.aanda.org/10.1051/0004-6361/202037828/23
http://linker.aanda.org/10.1051/0004-6361/202037828/24
http://linker.aanda.org/10.1051/0004-6361/202037828/25
http://linker.aanda.org/10.1051/0004-6361/202037828/26
http://linker.aanda.org/10.1051/0004-6361/202037828/27
http://linker.aanda.org/10.1051/0004-6361/202037828/28
http://linker.aanda.org/10.1051/0004-6361/202037828/29
http://linker.aanda.org/10.1051/0004-6361/202037828/30
http://linker.aanda.org/10.1051/0004-6361/202037828/31
http://linker.aanda.org/10.1051/0004-6361/202037828/32
http://linker.aanda.org/10.1051/0004-6361/202037828/33
http://linker.aanda.org/10.1051/0004-6361/202037828/34
http://linker.aanda.org/10.1051/0004-6361/202037828/35
http://linker.aanda.org/10.1051/0004-6361/202037828/36
http://linker.aanda.org/10.1051/0004-6361/202037828/37
http://linker.aanda.org/10.1051/0004-6361/202037828/38
http://linker.aanda.org/10.1051/0004-6361/202037828/39
http://linker.aanda.org/10.1051/0004-6361/202037828/40
http://linker.aanda.org/10.1051/0004-6361/202037828/40
http://linker.aanda.org/10.1051/0004-6361/202037828/41
http://linker.aanda.org/10.1051/0004-6361/202037828/42
http://linker.aanda.org/10.1051/0004-6361/202037828/42
http://linker.aanda.org/10.1051/0004-6361/202037828/43
http://linker.aanda.org/10.1051/0004-6361/202037828/44
http://linker.aanda.org/10.1051/0004-6361/202037828/44
http://linker.aanda.org/10.1051/0004-6361/202037828/45
http://linker.aanda.org/10.1051/0004-6361/202037828/46
http://linker.aanda.org/10.1051/0004-6361/202037828/47
http://linker.aanda.org/10.1051/0004-6361/202037828/48
http://linker.aanda.org/10.1051/0004-6361/202037828/48
http://linker.aanda.org/10.1051/0004-6361/202037828/49
http://linker.aanda.org/10.1051/0004-6361/202037828/50
http://linker.aanda.org/10.1051/0004-6361/202037828/51
http://linker.aanda.org/10.1051/0004-6361/202037828/52
http://linker.aanda.org/10.1051/0004-6361/202037828/53
http://linker.aanda.org/10.1051/0004-6361/202037828/54
http://linker.aanda.org/10.1051/0004-6361/202037828/55
http://linker.aanda.org/10.1051/0004-6361/202037828/56
http://linker.aanda.org/10.1051/0004-6361/202037828/57
http://linker.aanda.org/10.1051/0004-6361/202037828/58
http://linker.aanda.org/10.1051/0004-6361/202037828/59
http://linker.aanda.org/10.1051/0004-6361/202037828/60
http://linker.aanda.org/10.1051/0004-6361/202037828/61


L. Jouve et al.: Magnetic fields in stably stratified radiative zones

Appendix A: Full set of non-axisymmetric MHD Boussinesq equations

We give in this appendix the full set of non-axisymmetric Boussinesq equations solved in this work, using the adimensionalisation
detailed in the main text in Sect. 2.

For the three components of the velocity field, separating the toroidal and poloidal dynamics, the equations read:
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The equations for the 3 components of the magnetic field then read:
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And finally the temperature equation reads:
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where um = vrer + vθeθ is the meridional velocity field and Bp = Brer + Bθeθ is the poloidal magnetic field. The tildes indicate the
dimensionless quantities. We note that the choice of reference scales in this appendix is slightly different from the one chosen in the
next appendix where a scaling analysis of the axisymmetric version of the equations is performed. The variables with a tilde in this
appendix are thus different from the tilde-variables of Appendix B.

Appendix B: Scaling analysis of the axisymmetric MHD Boussinesq equations

In the following, we present a scale analysis of the axisymmetric MHD equations with the aim of finding a simplified form of these
equations that approximates the evolution of our system. We note that the choice of reference scales to make the axisymmetric
equations dimensionless will be slightly different in this appendix than the choice given in Sect. 2 which enabled to produce the full
non-axisymmetric set of equations of Appendix A.

The initial conditions provide the characteristic magnitude of some variables: the poloidal field B0, the rotation rate Ω0, the

stable stratification N =

√
αg0

∆T
d , the azimuthal velocity U∗ϕ = d∆Ω, the domain size and also the lengthscale of the initial
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gradients d = ro − ri. We restrict our analysis to the regime tAp =
d
√

4πρ
B0

� tΩ = 1
Ω0

. The toroidal field has no initially prescribed
amplitude and there is no physical reason to choose B0. We anticipate instead that a characteristic amplitude is B∗ϕ = d∆Ω

√
4πρ, the

magnetic field resulting from the winding-up of the initial poloidal field by the differential rotation ∆Ω over an Alfvén time tAp. We
also need to choose a typical amplitude for the meridional motions Um. Due to the strong stable stratification N ≥ Ω0, we argue that
Um should be small because radial motions are efficiently limited and the mass conservation ensures that latitudinal velocities are
of the same order as radial velocities, vθ ∼ vr. In practice assuming Um � d∆Ω . dΩ0 allows us to simplify the system of equation
and to obtain Um as a result of the scale analysis. The consistency of the assumption Um � d∆Ω . dΩ0 is verified afterwards. As
demonstrated below, such small meridional velocities lead to a thermal-wind balance which in turn determines a typical amplitude
for the temperature fluctuations, T ∗ =

Ω2
0

N2
∆Ω
Ω0

∆T , and the pressure fluctuations P∗ = ρd2Ω0∆Ω. Finally, as we are interested in the
evolution of the angular momentum, the characteristic time scale is chosen from the equation governing this evolution:

∂M
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1

4πρ
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) (
r sin θBϕ

)
+ r sin θν

(
∆ −

1
r2 sin2 θ

)
vϕ, (B.1)

where M = r2 sin2 θΩ0 + r sin θvϕ is the specific angular momentum. The meridional velocity, um = vrer + vθeθ, advects the angular
momentum on a time scale tc = (∆Ω/Ω)(d/Um), where the factor Ro = ∆Ω

Ω
accounts for the effect of the Coriolis force that speed-up

the transport when Ro < 1. In our simulations, the initial differential rotation is such that Ro ∼ 1 while in the following we consider
more generally Ro ≤ 1 regimes. The other time scale that controls the angular momentum evolution is the poloidal Alfvén time
tAp as the time over which the toroidal field produced by the Ω-effect back reacts onto the rotation. The third time scale is the
viscous time tν and it is supposed to be always larger than tAp. Consequently, the relevant time scale to study the angular momentum
evolution should be either tc or tAp. We don’t have to choose between these two times yet. But as we already assumed that tc � tΩ
(as a consequence of Um � dRoΩ0) and tAp � tΩ, we can safely assume that the characteristic time of the angular momentum
evolution, denoted t∗, verifies t∗ � tΩ.

With these choices, the scaled version of the radial and latitudinal components of the MHD Boussinesq equations read:
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∂̃r

+
t2
Ω

tνtc
∆̃̃u

∣∣∣∣
r
, (B.2)

t2
Ω

t∗tc

∂̃vθ

∂̃t
+ Ro

(
tΩ
tc

)2 (̃
um · ∇̃̃vθ +

ṽθ̃vr

r̃

)
−

2 cos θ ṽϕ + Ro cot θ
ṽ2
ϕ

r̃

 = −
1
r
∂p̃1

∂θ

+
1

Ro

(
tΩ
tAp

)2  B̃r

r̃

∂ (̃rB̃θ)
∂̃r

−
∂B̃r

∂θ

 − Ro
B̃ϕ

r̃ sin θ
∂ (sin θB̃ϕ)

∂θ
+

t2
Ω

tνtc
∆̃̃u

∣∣∣∣
θ
. (B.3)

From these expressions, the inertial terms that do not involve the azimuthal velocity can be neglected because tc � tΩ and
t∗ � tΩ. Moreover, the viscous terms is negligible if tν � tΩ, and, as long as Ro is finite and non-zero, the term of the Lorentz force
that contains the poloidal field is very small because tAp � tΩ. We thus simplify Eqs. (B.2), (B.3) into:

− 2 sin θ ṽϕ −
Ro
r̃

(̃
v2
ϕ − B̃2

ϕ

)
= T̃1 −

∂

∂̃r

(
p̃1 +

Ro
2

B̃2
ϕ

)
, (B.4)

− 2 cos θ ṽϕ − Ro
cot θ

r̃

(̃
v2
ϕ − B̃2

ϕ

)
= −

1
r̃
∂

∂θ

(
p̃1 +

Ro
2

B̃2
ϕ

)
. (B.5)

The pressure terms, including the magnetic pressure, can be eliminated to get a magneto-thermal wind equation that relates the
temperature fluctuations to the differential rotation and the azimuthal field. This relation has been anticipated to determine the
characteristic temperature fluctuation T ∗ =

Ω2
0

N2
∆Ω
Ω0

∆T associated with the differential rotation. We now turn to the thermal energy
equation that relates temperature fluctuations and meridional velocities:

tκ
t∗

∂T̃1

∂̃t
+ Ro

tκ
tc
ũm · ∇̃T̃1 +

N2

Ω2

tκ
tc
ṽr

dT
d̃r

= ∆̃T̃1. (B.6)

The advection of the temperature has been split into the advection of temperature fluctuations by meridional motions and the radial
advection against the background stratification. This last term is expected to dominate the advection if Ro Ω2

N2 � 1. Then, depending
on the ratio tκ/t∗, it can be balanced either by the time derivative of temperature fluctuations or by the thermal diffusion term. The
two cases are now considered separately
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B.1. Alfvén waves and Eddington–Sweet circulation

If t∗ � tκ the thermal diffusion term dominates over the temperature time variation in Eq. (B.6). Thus the balance between the
thermal diffusion transport and the radial advection against the background stratification determines the circulation time tc = tκ N2

Ω2

and the characteristic meridional velocity Um = κ
d

Ω2

N2
∆Ω
Ω

. The scaled thermal energy equation is then:

ṽr
dT
d̃r

= ∆̃T̃1, (B.7)

where the circulation appears driven by the thermal diffusion of the temperature deviations, that were produced by the differential
rotation. It is an Eddington–Sweet type circulation of time scale tc = tes = d2

κ
N2

Ω2 . We can now verify that the meridional circulation
satisfies the condition tc � tΩ necessary to simplify Eqs. (B.4), (B.5) if tes � tΩ. This is satisfied in stars because tκ = d2

κ
� tΩ and

N ≥ Ω. The system of equation is completed by three prognostic equations for vϕ, Bϕ and the potential A, defined by Bp = ∇× Aeϕ.
Their scaled form is:

∂̃vϕ

∂̃t
+ Ro

tAp

tes

1
r̃ sin θ

(̃
um · ∇̃

) (̃
r sin θ̃vϕ

)
+ 2

tAp

tes
(sin θ ṽr + cos θ ṽθ) =

1
r̃ sin θ

(
B̃p · ∇̃

) (̃
r sin θB̃ϕ

)
+

tAp

tν

(
∆̃ −

1
r̃2 sin2 θ

)
ṽϕ, (B.8)

∂B̃ϕ
∂̃t

+ Ro
tAp

tes
r̃ sin θ

(̃
um · ∇̃

)  B̃ϕ
r̃ sin θ

 = r̃ sin θ
(
B̃p · ∇̃

) ( ṽϕ

r̃ sin θ

)
+

tAp

tη

(
∆̃ −

1
r̃2 sin2 θ

)
B̃ϕ, (B.9)

∂Ã
∂̃t

+ Ro
tAp

tes

1
r̃ sin θ

(̃
um · ∇̃

) (̃
r sin θÃ

)
=

tAp

tη

(
∆̃ −

1
r̃2 sin2 θ

)
Ã, (B.10)

where we used t∗ = tAp (but could also have used t∗ = tes).
The scale analysis thus led to a simplified system formed by Eqs. (B.4), (B.5) and (B.7)–(B.10), plus the mass conservation

equation, ∇̃ · ũm = 0. To be consistent the approximations requires tAp � tκ � tΩ � Ro
1
2 tB together with tν � tΩ and Ro

1
2 tAp � tΩ.

It intends to describe axisymmetric motions for time scale of the order of t∗ = tAp. In particular, it should fail when solid body
rotation is reached because the Lorentz force term involving the poloidal field component in Eqs. (B.4) and (B.5) will no longer be
negligible. Also, short time dynamics like gravity waves have been filtered out by the approximation of the scaling analysis.

In this simplified form, the system is fully determined by the azimuthal velocity and the two components of the magnetic
field. The meridional velocity components and the temperature fluctuations are intermediate variables determined by the magneto-
thermal wind equilibrium and the thermal equilibrium. Flows, where such equilibrium equation reduces the number of independent
variables, are said to have balanced dynamics (e.g., Vallis 2006). Physically, the flow evolves through Alfvén wave dynamics and
an Eddington Sweet circulation prescribed by the instantaneous angular momentum and azimuthal field distributions.

As compared to the full MHD problem that depends on five non-dimensional numbers (plus Ro = ∆Ω/Ω0), this simplified
system has the advantage to depend only on three non-dimensional numbers tes

tAp
= Lu

Pm PrN2/Ω2
0, tη

tAp
= Lu and tν

tAp
= Lu

Pm , or
equivalently on PrN2/Ω2

0, Lu and Pm. Consequently, for given initial conditions and thus a given Ro, solutions can be expressed
in the general form ṽϕ =

vϕ
d∆Ω

= f0(t/tAp, r/d,PrN2/Ω2
0,Lu,Pm), B̃ϕ =

Bϕ
d∆Ω
√

4πρ
= f1(t/tAp, r/d,PrN2/Ω2

0,Lu,Pm), B̃p =
Bp

B0
=

f2(t/tAp, r/d,PrN2/Ω2
0,Lu,Pm) from which we deduce Bϕ/Bp = Lo−1 f (t/tAp, r/d,PrN2/Ω2

0,Lu,Pm), that is the expression given in
Sect. 3.3.

Most of the numerical simulations listed in Table 1 meet the requirement of the scaling analysis as they verify tν � tAp � tκ �
tΩ � tB together with Ro = (Ωi − Ω0)/Ω0 ≈ 1. Except for the transient period during which initially excited gravity waves are
dissipated, their dependence on PrN2/Ω2

0 and Lo indicate that they are indeed governed by the simplified equations derived from
the present scale analysis.

Below, we consider the case tAp ≤ tκ. It holds in particular for the run R9 of Table 1 for which tκ
tAp

= LuPr
Pm = 3.125.

B.2. Alfvén waves

If t∗ � tκ, the balanced thermal energy equation is:

∂T̃1

∂̃t
+ ṽr

dT
d̃r

= 0, (B.11)

with tc = t∗ N2

Ω2 or equivalently Um = Ω2

N2
∆Ω
Ω

d
t∗

. Then, the conditions t∗ � tΩ and tc � tΩ necessary to simplify Eqs. (B.4), (B.5), now

read t∗ �
t2
B

tΩ
. As N ≥ Ω, we have tc > t∗ which implies that t∗ = tAp is the more relevant choice for the time scale characterizing the

angular momentum evolution. The condition t∗ = tAp � tΩ is met because tAp � tΩ and tΩ ≥ tB. The amplitude of the meridional
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motion is now Um = Ω2

N2
∆Ω
Ω
vAp. The scaled version of the three prognostic equations for vϕ, Bϕ and Bp = ∇ × Aeϕ simplifies into:

∂̃vϕ

∂̃t
+ 2

Ω2

N2 (sin θ ṽr + cos θ ṽθ) =
1

r̃ sin θ

(
B̃p · ∇̃

) (̃
r sin θB̃ϕ

)
+

tAp

tν

(
∆̃ −

1
r̃2 sin2 θ

)
ṽϕ, (B.12)

∂B̃ϕ
∂̃t

= r̃ sin θ
(
B̃p · ∇̃

) ( ṽϕ

r̃ sin θ

)
+

tAp

tη

(
∆̃ −

1
r̃2 sin2 θ

)
B̃ϕ, (B.13)

∂Ã
∂̃t

+ Ro
Ω2

N2

1
r̃ sin θ

(̃
um · ∇̃

) (̃
r sin θÃ

)
=

tAp

tη

(
∆̃ −

1
r̃2 sin2 θ

)
Ã, (B.14)

because, as for the thermal energy equation, the advection terms proportional to Ro Ω2

N2 are neglected with respect to the Lorentz
force or the Ω-effect term in the vϕ and Bϕ equations, respectively. Although the advection of the poloidal field is also of the order
of Ro Ω2

N2 , we kept this term in Eq. (B.14) because it may dominate over the magnetic diffusion.
At this stage we can distinguish two sub-regimes depending on the ratio Ω/N. If Ω2

N2 � 1, the Coriolis force term in the angular
momentum Eq. (B.12) is negligible. As a consequence, the equations for vϕ and Bϕ are decoupled from the other ones. They
describe the evolution of the initial differential rotation through Alfvén wave propagation. This regime of the scale analysis requires
tκ � tAp � tΩ � tB with also tν � tΩ and Ro

1
2 tAp � tΩ. Under these conditions, the approach of Gaurat et al. (2015), where only

the equations for vϕ and Bϕ were solved, appears to be justified.
A second sub-regime corresponding to Ω2

N2 ∼ 1 exists. As Ro Ω2

N2 � 1, it implies Ro � 1 and the terms ∝ Ro in the thermal wind
balance should then be neglected for consistency. Gathering the time scale conditions, this regime holds when tκ � tAp � tΩ ∼ tB

together with Ro � 1, tν � tΩ and Ro
1
2 tAp � tΩ. As shown by a local analysis, this system supports Alfvén waves with frequencies

(slightly) modified by the stratification and the rotation.

Appendix C: Acheson dispersion relation in the limit of high thermal diffusivity

The procedure used by Acheson (1978) to derive his dispersion relation is the following: the MHD equations governing the system
with thermal, viscous and magnetic diffusion are linearized around the background axisymmetric state (which is assumed to be
purely toroidal both for the magnetic and the velocity fields). Small amplitude harmonic perturbations in space and time of the
following form are then considered:

exp
[
i(kss + kzz + mϕ − σ t)

]
. (C.1)

Here ks = 2π/λs (kz = 2π/λz) is the radial (axial) wavenumber of the instability and m its azimuthal order which is an O(1)
integer. When the imaginary part of σ is positive, the applied perturbation is unstable and grows exponentially at a rate γ = =(σ).

In this appendix, we recall the dispersion relation derived by Acheson (1978) in the case where all the diffusivities are taken
into account (thermal, viscous and magnetic) but when the thermal diffusivity is much higher than the magnetic diffusivity. In this
situation, the dispersion relation is reduced to a simpler expression, which corresponds to Eq. (3.20) in Acheson (1978):

u2
A

2Ωm
s

+
2
(
ω + iνk2

)
s

 [
m
∂Ω

∂h
+

(
ω + iηk2

) ∂F
∂h
− ω

η

κ

∂E
∂h

]

+

k2

k2
z

(ω + iνk2
) (
ω + iηk2

)
−

m2u2
A

s2

 −G
η

κ

∂E
∂h

 × (ω + iνk2
) (
ω + iηk2

)
−

m2u2
A

s2


−

(ω + iηk2
) ∂(Ωs2

)
∂h

+ m u2
A
∂Q
∂h

 × 2Ω

s

(
ω + iηk2

)
+

2mu2
A

s3

 = 0, (C.2)

where ω = σ−mΩ is the Doppler-shifted frequency, uA = Bϕ/
√
ρµ0 the Alfvén velocity, k2 = k2

s +k2
z , E = ln(P/ργ), F = ln(B/(sρ)),

G = gs − ks/kzgz and Q = ln(sBϕ). We also defined the meridional derivative

∂

∂h
=
∂

∂s
+

ks

kz

∂

∂z
· (C.3)

When written as a polynomial equation in the dimensionless frequency ω̃ = ω/Ω0, (C.2) reads

4∑
i=0

aiω̃
i = 0, (C.4)
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where

a4 = 1 + β2,

a3 = 2i
(
1 + β2

) (
R−1

m + R−1
e

)
,

a2 = 2q − 4 + 2Lo2
ϕ

[
b − 1 −

(
1 + β2

)
m2

]
−

(
1 + β2

) (
R−2

m + R−2
e + 4R−1

m R−1
e

)
− γ

Rt

Rm
(sin θ − β cos θ)2 N2

Ω2
0

,

a1 = −8mLo2
ϕ + 2iLo2

ϕ

[
b − 1 −

(
1 + β2

)
m2

] (
R−1

m + R−1
e

)
− 4i(2 − q)R−1

m − 2
(
1 + β2

) (
R−2

e R−1
m + R−2

m R−1
e

)
− iγ

Rt

Rm

(
R−1

m + R−1
e

)
(sin θ − β cos θ)2 N2

Ω2
0

,

a0 = m2Lo2
ϕ

{
−2q + Lo2

ϕ

[(
1 + β2

)
m2 − 2(b − 1)

]}
− 2imLo2

ϕ(4 − q)R−1
m + 2(2 − q)R−2

m

− 2imLo2
ϕqR−1

e + 2Lo2
ϕ

[
m2

(
1 + β2

)
− (b − 1)

]
R−1

e R−1
m +

(
1 + β2

)
R−2

e R−2
m

+
(
m2Lo2

ϕ + R−1
e R−1

m

)
γ

Rt

Rm
(sin θ − β cos θ)2 N2

Ω2
0

· (C.5a)

We note here that the terms involving the stable stratification are always proportional to Rt
Rm

N2

Ω2
0
, which for our cases where Pm = 1

reduces to our usual parameter Pr N2

Ω2
0
. So again, we clearly see already that the effect of stable stratification also on the instability

will be mainly controlled by this product and not by N/Ω0 alone.
The dispersion relation coefficients depend on six dimensionless parameters:
The ratio of poloidal wavenumbers (in cylindrical and spherical geometries):

β =
ks

kz
=

cos θkθ + sin θkr

cos θkr − sin θkθ
· (C.6)

We note that when kθ � kr (mostly horizonthal displacement), β = tan θ and the terms involving the stable stratification in the
dispersion relation, all proportional to (sin θ − β cos θ), vanish and the stratification has thus no effect.

The shear parameter

q = −
∂ln Ω

∂ln s
+ β

s
z
∂ln Ω

∂ln z
, (C.7)

a parameter associated to the field derivatives

b =
1
2

∂ln B2
ϕ

∂ln s
− β

s
z

∂ln B2
ϕ

∂ln z

 , (C.8)

the local azimuthal Lorentz number

Loϕ =
ωAϕ

Ω
, (C.9)

obtained defining the Alfvén frequency as ωAϕ = Bϕ/
√
µ0ρs, and finally the magnetic, kinetic and thermal Reynolds numbers

Rm =
Ω0

ηk2 , Re =
Ω0

νk2 , Rt =
Ω0

κk2 , (C.10)

respectively.
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