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The Unruh state for massless fermions on Kerr spacetime
and its Hadamard property

Christian Gérard, Dietrich Häfner & Michał Wrochna

Abstract. We give a rigorous definition of the Unruh state in the setting of massless
Dirac fields on slowly rotating Kerr spacetimes. In the black hole exterior region,
we show that it is asymptotically thermal at Hawking temperature on the past
event horizon. Furthermore, we demonstrate that in the union of the exterior and
interior regions, the Unruh state is pure and Hadamard. The main ingredients are
the Häfner–Nicolas scattering theory, new microlocal estimates for characteristic
Cauchy problems and criteria on the level of square-integrable solutions.

1. Introduction and summary

1.1. Introduction. One of the major open problems in mathematical Quantum Field
Theory on curved spacetimes is to determine the final quantum state arising from the
collapse into a black hole and to describe its thermodynamical properties.

In the last decade, valuable insight has been gained especially from simplified models
in which the black hole is eternal and non-rotating.

Most notably, years after Unruh’s proposal for a distinguished state on Schwarzschild
spacetime [59] and subsequent developments, including e.g. works by Candelas [4] and
Dimock–Kay [17, 18], a rigorous definition was eventually provided by Dappiaggi–
Moretti–Pinamonti [12]. The same authors gave also more clue to the physical relevance
of the Unruh state by proving that it satisfies the Hadamard condition on the union
of the exterior and the interior region, thus ruling out infinite accumulation of energy
at the event horizon. The remarkable fact is that imposing the Hadamard condition
singles out a state at the Hawking temperature at the event horizon.

The Hadamard condition was also shown recently for the Unruh state on Reissner–
Nordström–de Sitter spacetime by Hollands–Wald–Zahn [40], who used it as a reference
state to demonstrate the quantum instability of the Cauchy horizon in that setting.

The essential feature of e.g. Schwarzschild spacetime that makes it more tractable
than the case of rotating black holes is the existence of a Killing vector field which
is time-like in the whole exterior region. Schwarzschild spacetime has also the special
structure of a static bifurcate Killing horizon, which makes it also possible to consider
a different distinguished state, the Hartle–Hawking–Israel state [32, 41], conjectured
in the ’70s to be well-defined on the whole Kruskal–Szekeres extension. While its
uniqueness is known since the work of Kay–Wald [42], its rigorous construction and
the proof of its Hadamard property was established relatively recently by Sanders [55],
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followed by a generalization to the stationary case by Gérard [26]. Although believed
to be too idealized to describe the final black hole collapse state accurately, the Hartle–
Hawking–Israel state is an important theoretical model nevertheless in view of its high
level of symmetry and its connection to black hole thermodynamics [62].

In the physically more realistic rotating case, however, there is no rigorous result
so far that gives the existence of a distinguished Hadamard state. The absence of a
global time-like Killing vector field causes severe difficulties both on the conceptual and
technical level, which are expressed in the following non-existence theorems:

(1) The Kay–Wald theorem asserts the non-existence of a state which is invariant
under the flow of the Killing field vH that generates the horizon, under the
assumption that a certain superradiance property holds true [42]. The latter is
conjectured to be verified in the case of bosonic fields. (Note that on the other
hand, there is no superradiance for fermions in this sense.)

(2) A theorem due to Pinamonti–Sanders–Verch asserts that a thermal state asso-
ciated with a complete Killing vector field v cannot be Hadamard if there is
a point at which v is space-like [50]. This result holds true in a broad setting
including bosonic and fermionic non-interacting fields.

Focusing our attention on the exterior Kerr spacetime (MI, g) for the moment, the
closest analogues of the time-like Killing vector field ∂t on Schwarzschild are the two
Killing vector fields vH = ∂t + ΩH ∂ϕ (the generator of the past horizon H−; the
constant ΩH is the angular velocity of H−) and vI = ∂t (the generator of past null
infinity I−), each of which is time-like only in a subregion of the exterior. While the
result (2) (and in all likelihood (1) as well in the bosonic case) implies bad properties
of any state in the exterior region that is thermal with respect to either vH or vI ,
we propose instead to split the solution space into two parts, and use vH for solutions
coming from H− and vI for those coming from I− in the sense of scattering theory.

This is consistent with a formal definition in terms of mode expansions, proposed by
Ottewill–Winstanley in the case of scalar fields [49] and Casals–Dolan–Nolan–Ottewill–
Winstanley for fermions [6], cf. [7] for electromagnetic fields. The approach via mode
expansions is advantageous for practical computations. However, making the definition
of the state rigorous and proving the Hadamard condition requires a sufficiently precise
scattering theory (which distinguishes between solutions coming from H− and solutions
coming from I−), combined with high frequency estimates for solutions in terms of
their asymptotic data. On top of that, the fact that none of the Killing vector fields
is everywhere time-like makes it impossible to use the arguments employed in [12] to
show the Hadamard condition.

1.2. Main result. In the present paper, we provide the first rigorous result of existence
of a distinguished Hadamard state on a rotating black hole spacetime. More precisely,
we give a precise definition and prove the Hadamard property of the Unruh state (or
more pedantically, of the past Unruh state) in the case of massless Dirac fields on Kerr
spacetime.

We consider the four-dimensional spacetime (MI∪II, g) which is the union of the Kerr
black hole exterior and interior spacetimes with rotation parameter a > 0 and view it
as a subregion of the Kerr–Kruskal extension (M, g) (see Figure 1).
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Figure 1. The Carter–Penrose diagram of the spacetime MI∪II (rep-
resented by the shaded region) embedded in the larger spacetime M.
Scattering in the exterior region MI refers to data at the past horizon
H− ⊂ HL and at past null infinity I−. Scattering in MI∪II refers to
data at the long horizon HL and at I−. Scattering in M requires an
extra piece of data at I ′−.

The Dirac operator /D acting on smooth sections of the canonical spinor bundle S
over M is the differential operator defined as

/D = gµνγ(eµ)∇Seν ,

see Sections 2 and 5 for details. In the massless case considered here, it is well known
that the whole analysis can be reduced to the Weyl equation Dφ = 0, which accounts
for half of the degrees of freedom, see Section 2.

The main reason for us to consider massless fermions is that in this case the scattering
theory in the exterior region MI is sufficiently well developed thanks to results by
Häfner–Nicolas [34], and in contrast to bosons, there are no extra difficulties due to
superradiance. In particular there is a notion of scattering data at H− and I− of
square-integrable solutions. Furthermore, for sufficiently regular solutions these data
agree with traces at H− and I−.

The traces at H− and I− extend to solutions in the Kerr-Kruskal spacetime M as
traces at the left long horizon HL (see Figure 1) and at the two conformal infinities
I− and I ′−. Using these traces it is possible to define a pure state ωM in the whole of
M, which we call the Unruh state.

As explained in Subsect. 4.1, to construct a state it suffices to specify a pair of positive
semidefinite operators C+ and C− acting on square-integrable solutions of Dφ = 0 and
satisfying C+ +C− = 1 (these are the so-called covariances). We demonstrate that the
Hadamard condition can be then formulated as the requirement that for each solution
φ, the wavefront set of (C±)

1
2φ is confined to only one component of the characteristic

set of D, namely

WF((C±)
1
2φ) ⊂ N±, (1.1)

where the two components N+ and N− are defined in (3.8) and the definition of
the wavefront set is recalled in Appendix E. The main difficulty is how to control a
high-frequency condition such as (1.1) when (C±)

1
2φ is defined through its asymptotic

data.



The Unruh state for massless fermions on Kerr spacetime and its Hadamard property 4

Our main result is the following theorem. Below, 1R± is the characteristic function
of the positive, resp. negative half-line, (U, V, θ, ϕ#) are the Kruskal–Boyer–Lindquist
coordinates, and (t∗, r, θ, ϕ∗) are the Kerr-star coordinates in the exterior region, see
Section 5.

Theorem 1.1 (cf. Theorems 8.2 and 8.3). Let (M, g) be the Kerr–Kruskal spacetime,
and let D be the Weyl operator on (M, g). Then there exists 0 < a0 ≤ 1 such that if
|a|M−1 < a0 then the following holds:
(1) there exists a unique state ωM for D, called the Unruh state, with data 1R±(−i−1∂U )

at the horizon HL and 1R±(i−1∂t∗), resp. 1R∓(i−1∂t∗) at null infinity I−, resp. I ′−;
(2) ωM and its restriction ωMI∪II

to MI∪II are pure states;
(3) the restriction ωMI

of ωM to MI is thermal with respect to vH at the past horizon
H− with temperature equal to the Hawking temperature (2π)−1κ+;

(4) ωMI∪II
is a Hadamard state.

The property that the state ωM is pure is equivalent to its covariances C±M being
projections, and since 1R±(i−1∂U ) and 1R±(i−1∂t∗) are projections, this is a direct
consequence of the fact that the scattering data maps that we construct are unitary.
The same arguments apply to ωMI∪II

.
The Hawking temperature at H− arises exactly as anticipated. Namely, the re-

striction of 1R∓(i−1∂U ) to H− = HL ∩ {U > 0} is a function of vH (using that vH

equals −κ+U∂U on H−), and this function is precisely the fermionic thermal distri-
bution χ±H−(s) = (1 + e∓2πs/κ+)−1. This can be understood through an elementary
computation presented in Appendix D.

The difficult part is unquestionably the Hadamard property of ωMI∪II
. Part of the

proof relies on wavefront set estimates for solutions in terms of their characteristic data.
This is a refinement of the strategy used in works including [45, 11, 12, 2, 28], and it
applies to points lying on bicharacteristics that intersect H or I− (with some extra
care if the intersection lies on the crossing sphere). In contrast to the Schwarzschild
case, however, it is essential to deal with bicharacteristics that do not have this property
and that cannot be dealt with by similar arguments.

As a way around that difficulty, we first show that in the exterior region MI, the
Unruh state has covariances of the form:

C±MI
= PH− ◦ χ

±
H−

(i−1LH ) + PI− ◦ χ
±
I−

(i−1LI ), (1.2)

where PH− and PI− are projections defined using scattering theory, and χ±I−(s) =

1R±(s). The operator LH /I is the spinorial Lie derivative of vH /I , and in (1.2)
we interpret i−1LH /I as a self-adjoint operator acting on the Hilbert space of square
integrable solutions of Dφ = 0.

The form (1.2) allows us to prove wave front set estimates for (C±MI
)

1
2φ in the region

where vH /I is time-like. The use of the projections PH−/I− is also needed to separate
solutions coming from H− and from I− when using arguments based on wavefront sets
of traces. All this requires a careful examination of the relationship between scattering
theory and characteristic Cauchy problems.

Next, we show that in the slowly rotating case, i.e. for sufficiently small a, all bichar-
acteristics in MI that do not meet H− nor I− necessarily cross a region where vH and
vI are time-like. Therefore, the estimates in this good region can be propagated to
the problematic points.
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Finally, in the remaining part of the larger spacetime MI∪II, we propagate estimates
from MI and from the analogous time-reflected block MI′ . Then, an extra argument
near the crossing sphere allows us to conclude the proof of Theorem 1.1.

We emphasize that while the results in Theorem 1.1 are formulated for the Weyl
equation, they can be immediately translated to massless Dirac fields, see for example
the discussion in [27, Sect. 17.15].

1.3. Physical interpretation and Hawking effect. The Unruh state is conjectured
to be the final state emerging from the collapse of a star into a black hole. This is the
physical context of the celebrated Hawking effect [36]. Mathematically rigorous works
on this process exist in simplified models where the boundary of the star is a perfect
mirror, see Bachelot [1] for the Klein–Gordon equation in the spherically symmetric
setting and Häfner [33] for the Dirac equation on rotating black holes, including also the
charged and massive case (cf. Drouot [22] for Klein–Gordon fields on Schwarzschild-
de Sitter spacetime). The final state arising in this process can be interpreted as
a state on the Kerr exterior spacetime, and its asymptotic data was shown in [33,
Thm. 1.1] to be exactly that of the Unruh state ωMI

considered in the present work.
Therefore, the Unruh state is the conjectured final state arising from the collapse in
this model. Furthermore, since we now know that the final state is Hadamard, it would
be interesting to see if the arguments of Fredenhagen–Haag [23] about the derivation
of the Hawking radiation could be generalized for fermions to the rotating case.

1.4. Bibliographical remarks and related settings. The problem of constructing
Hadamard states from asymptotic data was considered in various settings by Hollands
[38], Moretti [44, 45], Dappiaggi–Pinamonti–Moretti [11, 12], Dappiaggi–Siemssen [13],
Benini–Dappiaggi–Murro [2], Gérard–Wrochna [28] using characteristic data methods,
by Gérard–Wrochna [29] using scattering theory and time-dependent pseudo-differential
calculus, and by Vasy–Wrochna [60] using radial propagation estimates. This includes
the already mentioned result [11] on the Unruh state on Schwarzschild spacetime, which
uses decay bounds for scalar waves due to Dafermos–Rodnianski [9] (cf. [3] for a variant
of [11] for the Schwarzschild-de Sitter metric), and [40] on Reissner–Nordström–de
Sitter, which uses estimates by Hintz–Vasy [37].

The results of the present paper strongly rely on the scattering theory for massless
Dirac fields in the Kerr exterior region MI due to Häfner–Nicolas [34], see also [35] for
a concise presentation. The fact that asymptotic data in the sense of scattering theory
coincides with traces at H− and conformal traces at I− is what allows us to combine
the formalism with wavefront set estimates from characteristic data.

For massive Dirac fields, the scattering theory [34] was extended by Daudé, see [14,
Ch. IV]. In that setting, the scattering data on H− can still be interpreted as traces,
but this is no longer true for the scattering data at spatial infinity, since the massive
Dirac equation is no more conformally invariant. In this situation it is possible to define
the Unruh state in MI, MI∪II or even M as in the present paper, but its Hadamard
property in MI∪II or MI is unknown.

The rigorous definition and Hadamard property of the Unruh state on rotating black
holes for bosonic, e.g. scalar fields is still a major open problem. Useful insight is pro-
vided by the work of Ottewill–Winstanley [49], which uses mode analysis. In the case of
the wave equation on the Kerr metric, a scattering theory was developed by Dafermos–
Rodnianski–Shlapentokh-Rothman [10], and similar results at fixed angular momentum
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were obtained for the Klein-Gordon equation on the Kerr–De Sitter metric by Gérard–
Georgescu–Häfner [25]. What makes however the case of bosons more difficult than
fermions is that there is no obvious Hilbert space that is equally convenient from the
point of view of energy estimates and quantization. It is also not fully understood
whether superradiance is an obstruction for the existence of the Unruh state.

1.5. Structure of the paper. In Sections 2–5 we introduce the setup in detail and
prove several preliminary results. This includes a Green’s formula for square-integrable
solutions and partially null hypersurfaces, see Proposition 3.4, and a proof of the crite-
rion (1.1) for the Hadamard condition, see Theorem 4.3. The purpose of Sections 6–7
is to summarize the scattering results from [34], translate them in a more covariant way
to the setting of Weyl fields in MI and then extend them to a scattering theory on M.
An important role is played by different choice of tetrads, specially adapted either to
scattering or to formulas involving traces at H− and I−. The main results are proved
in Section 8.

Many auxiliary results are collected in the appendices. This includes the proof of
global hyperbolicity and the construction of Cauchy hypersurfaces for the Kerr–Kruskal
spacetime M and the MI and MI∪II regions in Appendix C.

2. Dirac and Weyl equations on Lorentzian manifolds

2.1. Notation. Let (M, g) be an oriented and time oriented Lorentzian manifold of
dimension 4. We denote by Ωg ∈ ∧4M the volume form associated to g and by
dvolg = |Ωg| the volume density.

If S π−→ M is a vector bundle, we denote by C∞(M ;S) the space of its smooth
sections. In the case when S is a complex vector bundle, we denote its anti-dual
bundle by S∗. The complex conjugate bundle (obtained by considering the fibers as
complex vector spaces with the opposite complex structure) is denoted by S .

If X is a complex vector space, we denote by Lh(X ,X ∗), resp. La(X ,X ∗), the space
of Hermitian, resp. anti-Hermitian forms on X . Generally, if β ∈ L(X ,X ∗), i.e. if β
is a sesquilinear form, we denote by ψ1 · βψ2 its evaluation on ψ1, ψ2 ∈ X . If instead
β ∈ C∞(M ;End(S ,S∗)), the same notation is used for the fiberwise evaluation of
ψ1, ψ2 ∈ C∞(M ;S).

2.2. Spinor bundles. In what follows we give a brief introduction to spinors and
Weyl equations on four-dimensional spacetimes. We closely follow the exposition in
[27, Sect. 17], which is based mainly on works by Trautman (i.e., [56] and references
therein), and which uses the formalism of spinor bundles. This formalism is closely
related to the broadly used approach via spin structures (see [57] for a comparison)
and it has the advantage of being somewhat more direct from the analyst’s point of
view.

We follow the presentation in [56]. A spinor bundle is a vector bundle S π−→M with
the following objects:

(1) a linear map γ : C∞(M ;TM)→ C∞(M ;End(S)) such that

γ(X)γ(Y ) + γ(Y )γ(X) = 2X ·gY 1, X, Y ∈ C∞(M ;TM), (2.1)

and for each x ∈M , γx induces a faithful irreducible representation of the Clifford
algebra Cl(TxM, gx) in Sx;
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(2) a section β ∈ C∞(M ;End(S ,S∗)) such that βx is Hermitian non-degenerate for
each x ∈M and

i) γ(X)∗β = −βγ(X), ∀X ∈ C∞(M ;TM),

ii) iβγ(e) > 0, for e a time-like, future directed vector field on M ;
(2.2)

(3) a section κ ∈ C∞(M ;End(S ,S)) such that

κγ(X) = γ(X)κ, κ2 = 1; (2.3)

(4) a connection ∇S on S , called a spin connection, such that:

i) ∇SX(γ(Y )ψ) = γ(∇XY )ψ + γ(Y )∇SXψ,

ii) X(ψ ·βψ) = ∇SXψ ·βψ + ψ ·β∇SXψ,

iii) κ∇SXψ = ∇SXκψ,

(2.4)

for all X,Y ∈ C∞(M ;TM) and ψ ∈ C∞(M ;S), where ∇ is the Levi-Civita
connection on (M, g).

It is well known that the rank of S is necessarily equal to 4 and that if (2.2) holds
for some time-like future directed vector field e, then it holds for all such vector fields.

Remark 2.1. A linear map γ as in (1) is called a Clifford representation. A section β
as in (2) is called a positive energy Hermitian form (for the Clifford representation γ),
while a section κ as in (3) is called a charge conjugation (for the Clifford representation
γ).

It is well-known, see e.g. [56], that given a Clifford representation γ, the space of
positive energy Hermitian forms is a principal bundle overM with structure group R+×,
while the space of charge conjugations is a principal bundle overM with structure group
S1.

The properties listed in (2.4) are usually summarized by saying that γ, β, κ are
covariantly constant w.r.t. the connection ∇S .

2.2.1. Spinor bundles from global frames. Suppose that (M, g) has a global oriented
and time oriented orthonormal frame (e0, . . . , e3). This will be in particular the case
for all the Kerr spacetimes considered in later sections.

Let (R1,3, η) be the Minkowski space with canonical basis (u0, . . . , u3) and Cliff(1, 3)
the associated Clifford algebra. We fix a faithful and irreducible representation ρ0 :
Cliff(1, 3) → M4(C). We denote by γi ∈ M4(C) the gamma matrices associated to
ui for 0 ≤ i ≤ 3, and fix a Hermitian sesquilinear form β0 on C4, and a complex
conjugation κ0 such that

γ∗i β0 = −β0γi, iβγ0 > 0, γiκ0 = κ0γi.

Then we can construct a spinor bundle S π−→M by setting:

i) S = M × C4,

ii) γ(ei) = γi, β(x) = β0, κ(x) = κ0,

iii) ∇Seiψ = ei ·∇ψ + σiψ where

σi = 1
4Γkijγkγ

j , γk = ηklγl, ∇eiej =·· Γkijek.
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2.3. Dirac operators. If S π−→ M is a spinor bundle and m ∈ C∞(M ;R), the Dirac
operator /D acting on C∞(M ;S) is the differential operator defined as:

/D = gµνγ(eµ)∇Seν +m.

where (e0, . . . , e3) is a local frame of TM . We assume throughout the paper thatm ≡ 0,
in which case /D is called the massless Dirac operator.

2.4. Weyl spinors. If (e0, . . . , e3) is an oriented orthonormal local frame of TM one
defines the volume element η = γ(e0) · · · γ(e3), which is independent on the choice of
such a local frame. The section η ∈ C∞(M ;End(S)) satisfies:

η2 = −1, ηγ(X) = −γ(X)η. (2.5)

Using (2.5) and (2.4) together with the Clifford relations (2.1) we get:

η∗β = βη, ∇SX(ηψ) = η∇SXψ. (2.6)

It follows that Sx =We,x⊕Wo,x, whereWe,x = Ker(iη(x)−1),Wo,x = Ker(iη(x)+1),
and the bundle S splits asWe⊕Wo, whereWe/o is the bundle of even/odd Weyl spinors.
One can check that

ψ1 ·βκψ2 = −ψ2 ·βψ1, ψi ∈ C∞(M ;S), (2.7)

see e.g. [27, Sect. 17.5]. If W is a vector bundle, we denote by W# its dual bundle, so
that W∗ = W# in the complex case. Note that κ maps sections of Wo to sections of
We. Setting

S ··=W∗e ,

one identifies S with S∗ ⊕ S# by the map

C∞(M ;S) 3 ψ 7→ ψe ⊕ κψo =·· χ⊕ φ ∈ C∞(M ;S∗)⊕ C∞(M ;S#).

From (2.7) one sees that S is equipped with the symplectic form

ε ··=
1√
2

(βκ)−1 ∈ C∞(M ;End(S,S#)).

One can also identify TxM with La(S∗, S), as real vector spaces by the map:

TxM 3 v 7→ βx ◦ γx(v) ∈ La(We,x,W∗e,x).

This map is injective since the representation in (2.1) is faithful and bijective since
both spaces have dimension 4. By complexification we obtain an isomorphism

τx : CTxM 3 z 7→ βxγx(z) ∈ La(We,x,W∗e,x) ∼ Sx ⊗ Sx,

and hence an isomorphism

τ : C∞(M ;CTM) 3 v 7→ βγ(v) ∈ C∞(M ;S⊗ S) (2.8)

If we extend g to CTM as a bilinear (not sesquilinear) form, one can show that

τ# ◦ (ε⊗ ε) ◦ τ = g.
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2.5. Null tetrads and associated frames. A normalized null tetrad is a global frame
(l, n,m,m) of CTM such that:

l, n are real, l·gl = n·gn = 0, l·gn = −1
m·gm = l·gm = n·gm = 0, m·gm = 1.

(2.9)

It follows that if

u0 =
1√
2

(l + n), u1 =
1√
2

(l − n), u2 =
√

2 Rem, u3 =
√

2 Imm,

then (u0, . . . , u3) is a global orthonormal frame for (M, g) and we associate to a spinor
bundle as in 2.2.1.

2.5.1. Time orientation. A normalized null tetrad induces a time orientation of (M, g)
by declaring that the time-like vector 1√

2
(l + n) is future directed. Note that for any

smooth functions α, β with α, β ≥ 0, α + β > 0, αl + βn is also future directed, in
particular l, n are future directed null vectors.

2.5.2. Spin frames. Using the isomorphism τ in (2.8) one associates to a normalized
null tetrad a global frame (o, ı) of S such that:

iτ(l) = o ⊗ o, iτ(n) = ı⊗ ı,

iτ(m) = o ⊗ ı, iτ(m) = ı⊗ o,

o ·εı = 1.

(2.10)

If s1, s2 ∈ S we denote by |s1)(s2| ∈ L(S∗,S) the map w 7→ (s2|w)s1. Using this
notation we have:

iΓ(l) = |o)(o|, iΓ(n) = |ı)(ı|, iΓ(m) = |o)(ı|, iΓ(m) = |ı)(o|, (2.11)

where we have set:

Γ(X) = βγ(X) ∈ C∞(M,End(S∗, S)), X ∈ C∞(M ;TM). (2.12)

2.6. Dirac and Weyl equations. Let /D be the massless Dirac operator acting on
C∞(M ;S). From (2.5), (2.6) we obtain that η ◦ /D = − /D ◦ η, hence after identifying S
with We ⊕Wo we can write /D as:

/D =

(
0 /Do

/De 0

)
,

for /De/o = /D|C∞(M ;We/o). Using Subsect. 2.4 we define the Weyl operator:

D ··= (β /D)|C∞(M ;We) : C∞(M ;S∗)→ C∞(M ;S).

We can write
D = gµνΓ(eµ)∇Seν . (2.13)

The Weyl equation is
Dφ = 0. (2.14)

Remark 2.2. In the physics literature, it is customary to study the Weyl anti-neutrino
equation. Here we rather stick to the Weyl neutrino equation (2.14) and we use the
notation φ (usually reserved for anti-neutrinos) for its solutions.
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2.7. Conformal transformations. Let ĝ = c2g be a metric conformal to g. Denoting
with hats the objects attached to ĝ we have in particular γ̂(X) = cγ(X) for X ∈
C∞(M ;TM). To fix the spin connection ∇̂S one has to fix the Hermitian form β̂ and
the charge conjugation κ̂. It is natural to choose κ̂ = κ, but several choices of β̂ are
possible. A choice which is natural when one considers Weyl spinors is to set

β̂ = c−1β,

so that the isomorphism τ in (2.8) is unchanged, i.e. τ̂ = τ . A straightforward compu-
tation shows then that

∇̂SX = ∇SX +
1

2
c−1γ(X)γ(∇c)− c−1X ·dc1.

Consequently, if /̂D, D̂ are the associated Dirac and Weyl operators, they are related by:

/̂D = c−2 /Dc, D̂ = c−3Dc. (2.15)

2.8. Lie derivative of spinors. The notion of Lie derivative of spinors was introduced
by Kosman [43]. We recall its definition below.

For any X ∈ C∞(M ;TM), one sets:

LXψ = ∇SXψ +
1

8
((∇aX)b − (∇bX)a)γ

aγbψ, ψ ∈ C∞(M,S). (2.16)

Note the sign change w.r.t. [43, (I.16)], coming from the convention for the Clifford
algebra in [43, (I.1)].

One also defines the Lie derivative of γ by:

LX(γ(v)ψ) =·· (LXγ)(v)ψ + γ(LXv)ψ + γ(v)LXψ, ψ ∈ C∞(M ;S),

for all v ∈ C∞(M ;TM). Properties of LX which are relevant for us are discussed in
Appendix A.

3. Weyl equation on globally hyperbolic spacetimes

If v ∈ C∞c (M ;S) and φ ∈ C∞(M ; S∗) we set

(φ|v)M = (v|φ)M ··=
ˆ
M
φ(x)·v(x) dvolg, (3.1)

and extend this notation to other natural cases, like for example v ∈ E ′(M ;S) and
φ ∈ C∞(M ; S∗), etc.

3.1. Space-compact solutions. From now on we assume that (M, g) is a globally
hyperbolic spacetime (of dimension 4) with a spin structure and denote by D the
associated Weyl operator.

3.1.1. Space-compact solutions. Let Solsc(M) be the space of smooth space-compact
solutions of Dφ = 0, φ ∈ C∞(M ;S∗) (φ space-compact means that the intersection
of suppφ with a space-like Cauchy surface is compact). The current J(φ1, φ2) ∈
C∞(M ;T ∗M) defined by

J(φ1, φ2)·X ··= φ1 ·Γ(X)φ2, X ∈ C∞(M ;TM), φi ∈ Solsc(M), (3.2)

satisfies
∇aJa(φ1, φ2) = 0, φi ∈ Solsc(M). (3.3)
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Since ∇aJaΩg = d(g−1JyΩg), we deduce from Stokes’ formula thatˆ
∂U
i∗(g−1J(φ1, φ2)yΩg) = 0, φi ∈ Solsc(M), (3.4)

if U is any open set whose boundary ∂U is a union of smooth hypersurfaces, such that
supp J(φ1, φ2) ∩ ∂U is compact.

Let S ⊂M be a smooth hypersurface and let i : S →M be the canonical injection.
To express ˆ

S
i∗(g−1JyΩg)

for J a 1-form on M , we choose a vector field l = la transverse to S, future pointing
and a 1-form ν = νadx

a on M such that TS = Ker ν, normalized so that ν · l = 1.
Splitting g−1J as

g−1J = (ν ·g−1J)l +R, where R is tangent to S,

we obtain:
i∗(g−1JyΩg) = (ν ·g−1J)i∗(lyΩg). (3.5)

3.1.2. Characteristic manifold. The principal symbol of D is the section σD ∈ C∞(T ∗M\
o;End(S∗,S)) given by

σD(x, ξ) = Γ(g−1(x)ξ), (x, ξ) ∈ T ∗M \o. (3.6)

Lemma 3.1. The Weyl operator D is pre-normally hyperbolic, i.e., there exists a dif-
ferential operator D′ such that (σD ◦ σD′)(x, ξ) = (ξ · g−1(x)ξ)1.

Proof. The Dirac operator /D is pre-normally hyperbolic because

σ2
/D = (ξ · g−1(x)ξ)1, (3.7)

as can be checked using σ/D = γ(g−1(x)ξ) and the Clifford relations. After identification
of S with We ⊕Wo, σ/D is anti-diagonal, therefore we can conclude from (3.7) that /Do

and /De are pre-normally hyperbolic. It follows that D is pre-normally hyperbolic. �

The characteristic manifold of D is defined as

Char(M) = {(x, ξ) ∈ T ∗M \o : σD(x, ξ) is not invertible}.
By Lemma 3.1,

Char(M) = {(x, ξ) ∈ T ∗M \o : ξ · g−1(x)ξ = 0} =·· N .
Its two connected components are

N± ··= N ∩ {(x, ξ) ∈ T ∗M \o : ±v·ξ > 0 ∀v ∈ TxM future directed time-like}. (3.8)

3.1.3. Propagators and Cauchy problem. An adaptation of an argument due to Dimock
[19] to the case of general pre-normally hyperbolic operators (see [46, Thm. 1]) gives the
existence and uniqueness of retarded and advanced propagators, Gret and Gadv. Recall
that Gret/adv is by definition a two-sided inverse of D (on test sections) such that

suppGret/advv ⊂ J±(supp v), v ∈ C∞c (M ;S),

where J±(K) stands for the causal future/past of K ⊂M . The Pauli-Jordan or causal
propagator is the difference

G = Gret −Gadv.

We have
(v1|Gv2)M = −(Gv1|v2)M , vi ∈ C∞c (M ; S), (3.9)
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i.e. G∗ = −G for the pairing (·|·)M defined in (3.1).
If S is a space-like Cauchy surface, the Cauchy problem{

Dφ = 0,

rSφ = ϕ ∈ C∞c (S; S∗S),
(3.10)

where S∗S is the restriction of S∗ to S and rSφ = φ|S , has a unique solution φ =·· USϕ ∈
Solsc(M) (see e.g. [46, Thm. 2]).

For all φ ∈ Solsc(M) one has:

φ(x) = −
ˆ
S
G(x, y)Γ(g−1ν)(y)φ(y)i∗l (dvolg)(y), (3.11)

where l and ν are as in (3.5). Choosing l = n, ν = −gn, where n the future directed
vector field normal to S, this can be rewritten as

φ(x) = −
ˆ
S
G(x, y)Γ(n(y))φ(y) dvolh(y), (3.12)

where h is the induced Riemannian metric on S.
If S is given by {f = 0} for some function f with df 6= 0 on S and if we can complete

f near S with coordinates y1, . . . , yn−1 such that df ∧dy1 · · ·∧dyn−1 is direct, ∂f future
pointing, we take l = ∂f , ν = df in (3.5) and obtain:

φ(x) = −
ˆ
S
G(x, y)Γ(∇f)(y)φ(y)|g|

1
2 dy1 . . . dyn−1. (3.13)

3.2. L2 solutions.

3.2.1. Hilbertian scalar product. Let now S ⊂M be any smooth Cauchy surface (with
the convention that a Cauchy surface does not need to be space-like). We set

(φ1|φ2)D ··= i

ˆ
S
i∗(g−1J(φ1, φ2)yΩg)

= i

ˆ
S
φ1 ·Γ(g−1ν)φ2 i∗l dvolg,

(3.14)

where i∗l dvolg = |i∗(lyΩg)|.
From (3.4) we see that the r.h.s. in (3.14) is independent on the choice of the Cauchy

surface S.
If S is space-like, we obtain as in (3.12):

(φ1|φ2)D = i

ˆ
S
φ1 ·Γ(n)φ2 dvolh. (3.15)

By (2.2) iΓ(n) is positive definite, which shows that (·|·)D is a Hilbertian scalar product
on Solsc(M).

If S is given by {f = 0} for some function f as in (3.13) we obtain:

(φ1|φ2)D = i

ˆ
S
φ1 ·Γ(∇f)φ2|g|

1
2 dy1 . . . dyn−1.

Definition 3.2. The Hilbert space SolL2(M), called the space of L2 solutions, is the
completion of Solsc(M) for the scalar product (·|·)D.

Note that SolL2(M) ⊂ L2
loc(M ;S) continuously, so elements of SolL2(M) are distri-

butional solutions of Dφ = 0.
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3.2.2. Conformal transformations. Let us denote by M̂ the spacetimeM equipped with
the metric ĝ = c2g. From Subsect. 2.7 and (3.15) we obtain that

SolL2(M) 3 φ 7→ φ̂ = c−1φ ∈ SolL2(M̂) (3.16)

is unitary.

3.2.3. Equivalent Hilbert spaces. We now recall other Hilbert spaces unitarily equivalent
to SolL2(M), see e.g. [27, Sect. 17.14]. Let Σ be a smooth space-like Cauchy surface
and SΣ, rΣ defined in 3.1.3.

Proposition 3.3. The following maps are unitary( C∞c (M ;S)
DC∞c (M ;S∗) , iG

) G−−−−→
(
Solsc(M), (·|·)D

) rΣ−−−−→
(
C∞c (Σ; S∗Σ), νΣ

)
, (3.17)

where
ϕ1 ·νΣϕ2 = i

ˆ
Σ
ϕ1 ·Γ(n)ϕ2 dvolh, ϕi ∈ C∞c (Σ; S∗Σ).

As a consequence of Proposition 3.3 we have the identity

(φ1|φ2)D = (v1|iGv2)M = (iGv1|v2)M , for φi = Gvi, vi ∈ C∞c (M ; S), (3.18)

which extends to

(v|φ)M = (iGv|φ)D, v ∈ C∞c (M ; S), φ ∈ SolL2(M). (3.19)

3.3. Traces of L2 solutions on hypersurfaces. Let S ⊂ M be a piecewise smooth
hypersurface, equipped with a piecewise smooth density dm. If u ∈ E ′(S;SS) we denote
by δS ⊗ u ∈ D′(M ;S) the distribution defined by

(v|δS ⊗ u)M ··=
ˆ
S
v|S ·u dm, v ∈ C∞c (M). (3.20)

If S is a smooth space-like Cauchy hypersurface and φ ∈ Solsc(M), we can rewrite
(3.12) or (3.13) as

φ = −G(δS ⊗ ΓSrSφ), φ ∈ Solsc(M), (3.21)
where S is equipped with the appropriate density and ΓS : S → End(S∗S , SS) denotes
the factor Γ(n) or Γ(∇f) in (3.12) or (3.13).

Note that (3.21) extends to φ ∈ SolL2(M). In fact the trace rSφ of φ on S is well
defined using that WF(φ) ⊂ N .

In this subsection we will show how to extend (3.21) for φ ∈ SolL2(M) to cases where
S is not necessarily smooth nor everywhere space-like. We recall that J(K) for K ⊂M
is the causal shadow of K.

Proposition 3.4. Let S ⊂M be a piecewise smooth hypersurface and SS the restriction
of S to S. Let dm be a piecewise smooth density on S and iΓS : S → End(S∗S ,SS)
a piecewise smooth positive Hermitian structure on S∗S. We denote by L2(S;S∗S) the
Hilbert space of L2 sections of S∗S equipped with the scalar product:

(u|u)S ··= i

ˆ
S
u·ΓSu dm.

We assume the following:
(1) J(K) ∩ S is compact for all K bM .
(2) there exists a map rS : Solsc(M)→ L2(S; S∗S) such that

φ = −G(δS ⊗ ΓSrSφ), ∀φ ∈ Solsc(M).



The Unruh state for massless fermions on Kerr spacetime and its Hadamard property 14

(3) the map rS extends as a bounded operator

TS : SolL2(M)→ L2(S;S∗S).

Then for each χ ∈ C∞c (M) and χS ∈ C∞c (S) such that χS ≡ 1 on J(suppχ) ∩ S one
has:

χφ = −χG(δs ⊗ ΓSχSTSφ), ∀φ ∈ SolL2(M).

Proof. For v ∈ C∞c (M ;S), u ∈ L2(S; S∗S) and χS ∈ C∞c (S), we have
(v|iG(δS ⊗ ΓSχSu))M = (iGv|δS ⊗ ΓSχSu)M

= (irSGv|χSu)S = (iTSGv|χSu)S

= (iGv|T ∗SχSu)D = (v|T ∗SχSu)M .

In the first line we use (3.9), in the second line we use that Gv ∈ Solsc(M) and in the
third line we use that T ∗S : L2(S; S∗S)→ SolL2(M) ⊂ D′(M ;S∗) and the identity (3.19).

It follows that
iG(δS ⊗ ΓSχSu) = T ∗SχSu, u ∈ L2(S, S∗S). (3.22)

Let now χ ∈ C∞c (M) and χS ∈ C∞c (S) such that χS ≡ 1 on J(suppχ)∩S. Because of
the support of properties of G we have

χφ = −χG(δS ⊗ ΓSrSφ)

= −χG(δS ⊗ ΓSχSrSφ) = iχT ∗SχSTSφ, φ ∈ Solsc(M).
(3.23)

Observing that χ : SolL2(M) → L2(M ; S∗) is bounded, the identity (3.23) extends to
φ ∈ SolL2(M) by density. �

3.4. Action of Killing vector fields. Let X be a complete Killing vector field on
(M, g). By Lemmas A.3, A.4, L∗X preserves C∞(M ;S) and DC∞c (M ; S∗), and LX
preserves Solsc(M).

Proposition 3.5. The operator i−1LX with domain Solsc(M) is essentially selfadjoint
on the Hilbert space SolL2(M).

Proof. Let φ1, φ2 ∈ Solsc(M). Since X is Killing, using the properties of the spinorial
Lie derivative listed in Appendix A, we obtain

X(φ1 ·Γ(v)φ2) = LXφ1 ·Γ(v)φ2 + φ1 ·Γ(v)LXφ2 + φ1 ·Γ(LXv)φ2,

so defining the 1-form K(φ1, φ2) ∈ C∞(M ;T ∗M) by

K(φ1, φ2)·v ··= LXφ1 ·Γ(v)φ2 + φ1 ·Γ(v)LXφ2,

we have K(φ1, φ2) = LXJ(φ1, φ2), where J(φ1, φ2) is the conserved current defined in
(3.2).

Since X is Killing we have:

(g−1LXJ)y Ωg = LX(g−1J)y Ωg = LX(g−1Jy Ωg),

and by Cartan’s formula:

LX(g−1Jy Ωg) = Xy d(g−1Jy Ωg) + d(Xy g−1Jy Ωg).

Since J is conserved we have d(g−1Jy Ωg) = 0 hence:

g−1Ky Ωg = d(Xy g−1Jy Ωg).

and since i∗dω = di∗ω we get:ˆ
S
i∗(g−1Ky Ωg) =

ˆ
S
di∗(Xy g−1Jy Ωg) = 0.
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If S is space-like this yields:ˆ
Σ

(LXφ1 ·Γ(n)φ2 + φ1 ·Γ(n)LXφ2) dvolh = 0,

i.e. i−1LX is symmetric on Solsc(M). The one parameter group {esLX}s∈R preserves
Solsc(M), is isometric and strongly continuous on Solsc(M). Therefore, by Nelson’s
invariant domain theorem, it extends to a unitary group {Us}s∈R on SolL2(M), whose
generator is the closure of i−1LX on Solsc(M). �

In the sequel we will also denote by i−1LX the corresponding selfadjoint extension
on SolL2(M).

3.5. Use of null tetrads. Let (l, n,m,m) be a normalized null tetrad (see Sub-
sect. 2.5) and (o, ı) the associated frame of S. For φ ∈ C∞(M ;S∗) one sets then:

φ0 = φ·o, φ1 = φ·ı, Uφ =

(
φ0

φ1

)
∈ C∞(M ;C2), (3.24)

so that φ = φ0o
∗ + φ1ı

∗ if (o∗, ı∗) is the dual frame of S∗. If the tetrad is chosen such
that l + n is normal to a space-like Cauchy surface S , then from (2.11) we obtain

(φ|φ)D =
1√
2

ˆ
S

(
|φ0|2 + |φ1|2

)
dvolh. (3.25)

3.5.1. Action of Killing vector fields. Let X be a complete Killing vector field, and
i−1LX its selfadjoint action on SolL2(M). We would like to compute U ◦ LX ◦ U−1,
where U is defined in (3.24). Assume that the null tetrad (l, n,m,m) is invariant under
X. Then by Lemma A.6 we have L∗Xo = L∗X ı = 0. We have LXo∗ = LX ı∗ = 0 so

LX(φ0o
∗ + φ1ı

∗) = X(φ0)o∗ +X(φ1)ı∗.

Therefore
U ◦ LX ◦U−1 = X, (3.26)

where on the right we mean the trivial action of the vector field X on C∞(M ;C2).

4. Hadamard states for the Weyl equation

4.1. The CAR ∗-algebra and states. We denote by CAR(M) the CAR ∗-algebra
associated to any of the equivalent pre-Hilbert spaces in Proposition 3.3 (see Appendix
B for the definition).

We can use any of the three pre-Hilbert spaces in Proposition 3.3 to specify a quasi-
free state on CAR(M). If one considers the first one as the starting point (which is
possibly the most natural choice), then one can show that to define a quasi-free state
ω it suffices to specify a pair of spacetime covariances (or two-point functions if one
speaks of the associated Schwartz kernels), i.e. a pair of operators

V± satisfying:

i)

V±: C∞c (M ;S)→ D′(M ; S∗) is linear continuous,

ii)

V±≥ 0,

iii)

V+ +

V−= iG,

iv) D

V±=

V±D = 0.

(4.1)

Alternatively, one can define the state ω by its solution space covariances, i.e. operators
C± ∈ B(SolL2(M)) such that

C± ≥ 0, C+ + C− = 1. (4.2)
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By Proposition 3.3, the two types of covariances are related as follows:

v·

V± v = (Gv|C±Gv)D, v ∈ C∞c (M ; S). (4.3)

4.2. Hadamard states. The definition of Hadamard states for Weyl fields is analogous
to the well-known case of Dirac fields, see e.g. [39].

Definition 4.1. A quasi-free state ω on CAR(M) is a Hadamard state if it satisfies
(the Hadamard condition):

WF(

V±)′ ⊂ N± ×N±, (4.4)

where N+ and N− are the two components of the characteristic set defined in (3.8).

Several equivalent definitions of the wave front set WF(φ) of a distribution φ are
recalled in Appendix E. Here we only sketch very briefly the characterization of WF(φ)
in terms of what we call generalized oscillatory functions.

Namely, in the simplest Rn setting, an oscillatory function at q0 = (x0, ξ0) ∈ T ∗Rn
is a function (strictly speaking, family of functions) on Rn of the form

wλq (x) = χ(x)eiλ(x−y)·η, λ ≥ 1, q = (y, η) ∈ T ∗Rn,

where χ ∈ C∞c (Rn) and χ(x0) 6= 0. This can be extended to the setting of manifolds
in the obvious way. Next, we say that vλq is a generalized oscillatory function at q0 ∈
T ∗M \o if it is of the form vλq = A∗wλq , where vλq is an oscillatory function at q0 and A
is a properly supported pseudo-differential operator of order 0 and elliptic at q0.

With these definitions, q0 = (x0, ξ0) /∈WF(φ) iff there exists a generalized oscillatory
test function vλq at q0 such that for all N ∈ N,

|(vλq |φ)M | ≤ CNλ−N , λ ≥ 1,

uniformly for q in a neighborhood of (x0, ξ0) in T ∗M \o. If

V

: C∞c (M ; S)→ D′(M ;S∗)
is linear and continuous, then WF(

V

) is by definition the wavefront set of the Schwartz
kernel of

V

, and WF(

V

)′ is defined by the usual convention

(x, ξ, y, η) ∈WF(

V

)′ ⇔ (x,−ξ, y,−η) ∈WF(

V

).

The fact that the phase space for Weyl or Dirac fields is a (pre)-Hilbert space has
some important consequences for Hadamard states, which we will now explain.

Let us assume that the quasi-free state ω is defined by its solution space covariances
C±, see Subsect. 4.1.

Lemma 4.2. Suppose that for any q0 ∈ N∓ there exists a generalized oscillatory test
function vλq at q0 such that if φλq = Gvλq one has

‖(C±)
1
2φλq ‖D ≤ CNλ−N , ∀N ∈ N

uniformly for q in a neighborhood of q0 in T ∗M \o. Then ω is a Hadamard state.

Proof. By the same argument as for Klein-Gordon fields, see e.g. [52], it suffices to
prove that WF(

V±)′ ∩ ∆ ⊂ N± × N±, where ∆ ⊂ T ∗M × T ∗M is the diagonal. If
q0 ∈ N∓ and vλq are as in the lemma, we have

vq
λ·

V± vλq = (φλq |C±φλq )D = ‖(C±)
1
2φλq ‖2D ∈ O(λ−N ), N ∈ N,

so (q0, q0) 6∈ WF(

V±)′, which by the remark above implies that ω is a Hadamard
state. �
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Theorem 4.3. Suppose that

WF((C±)
1
2φ) ⊂ N± ∀φ ∈ SolL2(M). (4.5)

Then the state ω is a Hadamard state.

Proof. Let q0 ∈ N∓ and N ∈ N. By (4.5) and Lemma E.4, there exists a generalized
oscillatory test function vλq at q0 such that

sup
λ≥1

λN |(vλq |((C±)
1
2φ)M | <∞ ∀φ ∈ SolL2(M).

Applying the uniform boundedness principle to the family of linear forms

Tλ : SolL2(M) 3 φ 7→ λN (vλq |((C±)
1
2φ)M ∈ C

we obtain that
sup

λ≥1,‖φ‖D=1
λN |(vλq |((C±)

1
2φ)M | <∞. (4.6)

Denoting φλq = Gvλq and using also (3.19) this gives

‖(C±)
1
2φλq ‖D = sup

‖φ‖D=1
|((C±)

1
2φλq |φ)D|

= sup
‖φ‖D=1

|(φλq |(C±)
1
2φ)D| = sup

‖φ‖D=1
|(vλq |(C±)

1
2φ)M | ∈ O(λ−N )

(4.7)

which by Lemma 4.2 implies that ω is a Hadamard state. �

The first, obvious advantage of Theorem 4.3 is that it gives a criterion in terms of
solutions rather than bi-solutions. On top of that, the merit is that we now only need
to consider square-integrable solutions rather than arbitrary distributional ones. This
will become crucial in the next chapters, where the use of scattering theory will force
us to work in an L2 setting.

5. The Weyl equation on Kerr spacetime

5.1. Boyer-Lindquist blocks. We now recall the relevant facts on Kerr black hole
geometry.

We fix a ∈ R,M > 0 with 0 < |a| < M , i.e. we consider the slowly rotating Kerr
case. One sets

∆ = r2 − 2Mr + a2, ρ2 = r2 + a2 cos2 θ,

σ2 = (r2 + a2)2 − a2∆ sin2 θ = (r2 + a2)ρ2 + 2a2Mr sin2 θ,

and r± = M ±
√
M2 − a2 for the two roots of ∆ as a function of r.

The Boyer-Lindquist blocks are the manifolds (MI, g), (MII, g), where

MI = Rt × ]r+,+∞[r × S2
θ,ϕ,

MII = Rt × ]r−, r+[r × S2
θ,ϕ,

θ ∈ [0, π], ϕ ∈ R/2πZ are the spherical coordinates on S2, and

g = −
(

1− 2Mr

ρ2

)
dt2 − 4aMr sin2 θ

ρ2
dtdϕ+

ρ2

∆
dr2 + ρ2dθ2 +

σ2

ρ2
sin2 θ dϕ2.
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(We will not need to consider the third Boyer-Lindquist block MIII corresponding to
r ∈ ]−∞, r−[). The global coordinates (t, r, θ, ϕ) on MI,MII are called Boyer-Lindquist
coordinates. We have det g = −ρ4 sin2 θ and the inverse metric g−1 has components:

gtt = − σ2

∆ρ2
, grr =

∆

ρ2
,

gtϕ = −2aMr

∆ρ2
, gϕϕ =

∆− a2 sin2 θ

∆ρ2 sin2 θ
, gθθ =

1

ρ2
,

(5.1)

all other being equal to 0. Since gtt < 0 in MI, the vector field ∇t is time-like and
one fixes the time orientation of (MI, g) by declaring −∇t to be future directed. By
convention the time orientation of MII is the one inherited from its embedding into K∗,
see 5.3.2 below.

The following fact appears to be folklore knowledge. For lack of a reference that
show the precise statement, a proof is given in Proposition C.8.

Proposition 5.1. (MI, g) is globally hyperbolic.

5.2. Time reversal. When considering the gluing of various blocks into a larger space-
time it is useful to introduce the following notation.

If (M, g) is a spacetime we denote by (M ′, g) the same Lorentzian manifold with the
opposite time orientation. So, id : (M, g)→ (M ′, g) is an isometric involution reversing
the time orientation. If (M, g) admits a spinor bundle S π−→ M , then so does (M ′, g).
We will generally decorate with primes the objects associated to (M ′, g).

Consequences of the time reversal on the level of classical and quantized Weyl fields
are discussed in Section B.2 in the appendix.

5.3. The K∗ and ∗K spacetimes. We now recall the Kerr-star and star-Kerr co-
ordinates, which allow to glue together MI and MII along parts of {r = r+}. As
pre-announced, we will remove from K∗ and ∗K the parts corresponding to the third
Boyer-Lindquist block MIII.

5.3.1. The K∗ spacetime. We set

K∗ = Rt∗ × ]r−,+∞[r × S2
θ,ϕ∗ ,

equipped with the metric

g = gttdt
∗2 + 2gtϕdt

∗dϕ∗ + gϕϕdϕ
∗2 + 2dt∗dr − 2a sin2 θdϕ∗dr + ρ2dθ2.

The global coordinates (t∗, r, θ, ϕ∗) are called Kerr-star coordinates.
We will denote by ∂r∗ , ∂θ∗ , the coordinate vector fields ∂r, ∂θ in Kerr-star coordinates.

We time orient K∗ by declaring that the null vector −∂r∗ is future directed. We have
det g = −ρ4 sin2 θ. The inverse metric g−1 has components:

gt
∗t∗ =

a2 sin2 θ

ρ2
, gt

∗r∗ =
r2 + a2

ρ2
, gr

∗r∗ =
∆

ρ2
,

gt
∗ϕ∗ =

a

ρ2
, gr

∗ϕ∗ =
a

ρ2
,

gϕ
∗ϕ∗ =

1

ρ2 sin2 θ
, gθ

∗θ∗ =
1

ρ2
,

(5.2)

all other being equal to 0.
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5.3.2. Embedding MI and MII into K∗. Let x(r) and Λ(r) for r ∈ ]r−, r+[ ∪ ]r+,+∞[
be such that

dx

dr
=
r2 + a2

∆
,
dΛ

dr
=

a

∆
. (5.3)

We choose, see [48, Lem. 3.4.2]:

x(r) = r + 1
2κ+

ln(|r − r+|) + 1
2κ−

ln(|r − r−|),

Λ(r) = a
r+−r− ln(

|r − r+|
|r − r−|

),
(5.4)

where

κ± =
r± − r∓

2(r2
± + a2)

, (5.5)

so that κ− < 0 < κ+ and κ+κ
−1
− = −r−r−1

+ .
We define the map j∗ : MI ∪MII → K∗ by:

t∗ ◦ j∗ = t+ x(r), r ◦ j∗ = r, θ ◦ j∗ = θ, ϕ∗ ◦ j∗ = ϕ+ Λ(r),

which allows to identify isometrically (MI, g) resp. (MII, g) with (M∗I , g), resp. (M∗II, g),
where

M∗I = K∗ ∩ {r+ < r}, M∗II = K∗ ∩ {r− < r < r+}.

Using j∗ one can glue MI with MII inside K∗ along the future horizon:

H+ = Rt∗ × {r = r+} × S2
θ,ϕ.

The embedding of MI and MII into K∗ respects the time orientation. For coherence
of notation we will use the following definition.

Definition 5.2. We set

MI∪II ··= (j∗)−1(K∗) = MI ∪MII ∪H+,

with the spacetime structure inherited from K∗.

The following fact will be checked in Appendix C, see Proposition C.11.

Proposition 5.3. (MI∪II, g) is globally hyperbolic.

5.3.3. The ∗K spacetime. Similarly we set

∗K = R∗t × ]r−,+∞[r × S2
θ,∗ϕ,

equipped with the metric

g = gttd
∗t2 + 2gtϕd

∗td∗ϕ+ gϕϕd
∗ϕ2 − 2d∗tdr + 2a sin2 θd∗ϕdr + ρ2dθ2.

The global coordinates (∗t, r, θ, ∗ϕ) are called star-Kerr coordinates and as before ∂∗r,
∂∗θ denote the coordinate vector fields ∂r, ∂θ in star-Kerr coordinates. We time orient
∗K by declaring that the null vector ∂∗r is future directed. We have det g = −ρ4 sin2 θ.
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5.3.4. Embedding MI and MII into ∗K. Again, the map ∗j : MI ∪MII → K∗ defined by:
∗t ◦ ∗j = t− x(r), r ◦ ∗j = r, θ ◦ ∗j = θ, ∗ϕ ◦ ∗j = ϕ− Λ(r),

allows to identify isometrically (MI, g) resp. (MII, g) with (∗MI, g), resp. (∗MII, g), where
∗MI = ∗K ∩ {r+ < r}, ∗MII = ∗K ∩ {r− < r < r+}.

Using ∗j one can glue MI with MII inside ∗K along the past horizon:

H− = R∗t × {r = r+} × S2
θ,∗ϕ. (5.6)

The embedding of MI (resp. MII) into ∗K respects (resp. reverses) the time orientation,
see [48, Lem. 3.1.3].

In the original Boyer–Lindquist coordinates, the future and past horizons H+ and
H− are reached at infinite values of t.

5.4. Conformal extension of MI. The Penrose conformal extension of MI is obtained
by setting ĝ = w2g, where w = r−1 ∈

]
0, r−1

+

[
. The metric ĝ expressed in coordinates

(t∗, w, θ, ϕ∗) equals , see e.g. [34, (8.36)]:

ĝ = −
(
w2 − 2Mw3

1 + a2w2 cos2 θ

)
dt∗2 − 4Maw3 sin2 θ

1 + a2w2 cos2 θ
dt∗dϕ∗

+
(

1 + a2w2 +
2Ma2w3 sin2 θ

1 + a2w2 cos2 θ

)
sin2 θdϕ∗2

+
(
1 + a2w2 cos2 θ

)
dθ2 − 2dt∗dw + 2a sin2 θdϕ∗dw.

We have det ĝ = −(1 + a2w2 cos2 θ)2 sin2 θ, so ĝ extends as a smooth, non-degenerate
metric to w ∈

]
−∞, r−1

+

[
. Clearly we can fix ε0 > 0 small enough so that ĝ is Lorentzian

for w ∈
]
−ε0, r−1

+

[
. We define the conformal extension of MI as

M̂I ··= Rt∗ ×
]
−ε0, r−1

+

]
w
× S2

θ,ϕ∗ .

Past null infinity is then the null hypersurface

I− = Rt∗ × {w = 0} × S2
θ,ϕ∗ . (5.7)

In an analogous way, extending ĝ expressed in coordinates (∗t, w, θ, ∗ϕ) to

R∗t ×
]
−ε0, r−1

+

[
w
× S2

θ∗ϕ

allows to define future null infinity I+ = R∗t × {w = 0} × S2
θ∗ϕ , see Figure 2 for the

conformal diagram.

H−

H+ I+

I−

Figure 2. The conformal extensions of MI.

The time orientations of the conformal extensions of MI are inherited from the time
orientation of MI.
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5.5. The Kerr-Kruskal extension. Recall that κ± was defined in (5.5). The Kerr-
Kruskal extension M is the manifold (M, g) with:

M = RU × RV × S2
θ,ϕ# .

The global coordinates (U, V, θ, ϕ#) on M are called KBL coordinates. One defines r
as a smooth function on M by the equation:

r − r+

UV
= G(r), for G(r) = e−2κ+r(r − r−)r−/r+ ,

see [48, Lem. 3.4.9]. M is then equipped with the metric [48, Prop. 3.5.3]:

g =
G2(r)a2 sin2 θ

4κ2
+ρ

2

(r − r−)(r + r+)

(r2 + a2)(r2
+ + a2)

( ρ2

r2 + a2
+

ρ2
+

r2
+ + a2

)
(U2dV 2 + V 2dU2)

+
G(r)(r − r−)

2κ2
+ρ

2

( ρ4

(r2 + a2)2
+

ρ4
+

(r2
+ + a2)2

)
dUdV

+
G(r)a sin2 θ

κ2
+ρ

2(r2
+ + a2)

(
ρ2

+(r − r−) + (r2 + a2)(r + r+)
)
(UdV − V dU)dϕ]

+ ρ2dθ2 +
(
r2 + a2 +

2Mra2 sin2 θ

ρ2

)
sin2 θdϕ]2,

(5.8)

where ρ+ = ρ(r+, θ). Again, the following result is proved in Proposition C.12.

Proposition 5.4. (M, g) is globally hyperbolic.

5.5.1. Null tetrad on M. One sets:

l =
e−κ+r(r − r−)M/r+

(r − r−)
√

2ρ2

(
2κ+(r2 + a2)

G(r)
∂V −

a(r + r+)

r2
+ + a2

U∂ϕ#

)
,

n =
e−κ+r(r − r−)M/r+

(r − r−)
√

2ρ2

(
−2κ+(r2 + a2)

G(r)
∂U −

a(r + r+)

r2
+ + a2

V ∂ϕ#

)
,

m =
1√
2p

(
ia sin θ∂t + ∂θ +

i

sin θ
∂ϕ

)
,

(5.9)

for p = r + ia cos θ. Then (l, n,m,m) is a global null tetrad on M. We time orient
(M, g) by saying that l + n is future directed.

The submanifolds HR ··= {U = 0}, HL ··= {V = 0} are called the long horizons,
and they intersect at the crossing sphere S(r+) ··= {U = V = 0}.

The following changes of coordinates allow to embed isometrically MI,MII,M
′
I,M

′
II

into M, respecting the time orientations:

U = e−κ+
∗t, V = eκ+t∗ , on MI,

U = −e−κ+
∗t, V = eκ+t∗ on MII,

U = −e−κ+
∗t, V = −eκ+t∗ on M′I,

U = e−κ+
∗t, V = −eκ+t∗ on M′II,

ϕ] = 1
2(ϕ∗ + ∗ϕ− a

r2
++a2 (t∗ + ∗t)) = ϕ− a

r2
++a2 t.

(5.10)

We recall that if M is a spacetime, M ′ stands for the Lorentzian manifold M with the
reversed time orientation. By slightly altering this rule we denote by

MI = {U > 0, V > 0}, MII = {U < 0, V > 0},
MI′ = {U < 0, V < 0}, MII′ = {U > 0, V < 0},
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the four quadrants of M \ (HL ∪HR).

5.5.2. The wedge reflection. The map

R :
M→ M
(U, V, θ, ϕ#) 7→ (−U,−V, θ, ϕ#)

(5.11)

is called the wedge reflection. It preserves the orientation, it reverses the time orienta-
tion and it gives an identification of M′I and MI′ (resp. of M′II and MII′) as spacetimes.

MI

MII

MI′

MII′

HL

HR
S(r+)

Figure 3. The Kerr–Kruskal spacetime M.

5.6. The Weyl equation on the Kerr–Kruskal spacetime. From the global null
tetrad (l, n,m,m) defined in (5.9), we obtain a global orthonormal frame as in Sub-
sect. 2.5 and hence a spinor bundle as in 2.2.1. We denote by D the associated Weyl
operator and by SolL2(M) the space of L2 solutions as in Subsect. 3.2.

The restriction of D on MI, MI′ etc will be denoted by the same letter, and the
corresponding spaces of solutions by SolL2(MI), SolL2(MI′), etc.

5.6.1. Killing vector fields. An important role is played by the two Killing vector fields:

vI = ∂t = κ+(−U∂U + V ∂V )− ΩH ∂ϕ# ,

vH = ∂t + ΩH ∂ϕ = κ+(−U∂U + V ∂V ),

where ΩH = a
r2
++a2 is the angular velocity of the horizon. The vector field vH is

tangent to H− (in ∗K), while vI is tangent to I− (in the conformal extension M̂I of
MI).

The self-adjoint generators of their unitary actions on SolL2(MI) will be denoted by
i−1LH and i−1LI (so that i−1LH = i−1LvH and i−1LI = i−1LvI in the notation of
Prop. 3.5), and we also set i−1Lϕ ··= i−1L∂ϕ .

6. Evolutionary form of the Weyl equation in MI

6.1. The HN reduction. Following [34], we now explain how the Weyl equation
Dφ = 0 can be reduced to an equation of the form ∂tΨ − iHΨ = 0 with H a t-
independent differential operator.
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In [34] two related null tetrads are used over MI. The basic null tetrad is given by:

l =
1√

2∆ρ2

(
(r2 + a2)∂t + ∆∂r + a∂ϕ

)
,

n =
1√

2∆ρ2

(
(r2 + a2)∂t −∆∂r + a∂ϕ

)
,

m =
1√
2p

(
ia sin θ∂t + ∂θ +

i

sin θ
∂ϕ

)
,

(6.1)

for p = r + ia cos θ. As in Subsect. 3.5 we set

φ0 = φ·o, φ1 = φ·ı.

Another null tetrad (l,n,m,m) adapted to the foliation of MI by the hypersurfaces
Σs = {t = s} is used for the scattering theory arguments, with the property that

l + n = 2t,

where t is the future directed unit normal vector field to this foliation. Concretely we
have, see [34, 2.5.1]:

l =
σ√

2∆ρ2

(
∂t +

2aMr

σ2
∂ϕ

)
+

√
∆

2ρ2
∂r,

n =
σ√

2∆ρ2

(
∂t +

2aMr

σ2
∂ϕ

)
−

√
∆

2ρ2
∂r,

m =
1√
2ρ2

(
∂θ +

iρ2

σ sin θ
∂ϕ

)
.

(6.2)

If (o, i) is the spinor basis associated to (l,n,m,m), one sets then:

Ψ ··=
(

∆ρ2σ2

(r2 + a2)2

) 1
4
(
φ·o
φ·i

)
=

(
Ψ0

Ψ1

)
=·· Vφ, (6.3)

and uses the coordinates (t, x, θ, ϕ) where x(r) is defined in (5.3). Let us define the
matrix U ∈M2(C) corresponding to the above change of spinor basis by(

φ·o
φ·i

)
= U

(
φ·o
φ·ı

)
. (6.4)

We refer the reader to [34, (2.50)] for the concrete expression of U. We have:(
Ψ0

Ψ1

)
=

(
∆ρ2σ2

(r2 + a2)2

) 1
4

U

(
φ0

φ1

)
. (6.5)

Finally, one sets
D = VDV−1,

and

(Ψ|Ψ)D =
1√
2

ˆ
Σ

(
|Ψ0|2 + |Ψ1|2

)
dxd2ω. (6.6)

The equation DΨ = 0 can be rewritten as

∂tΨ− iHΨ = 0,
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which we will call the reduced Weyl equation. A concrete expression for the t-independent
differential operator H can be found in [34, (2.56)] (the operator H is denoted by /DK

therein).
We denote by SolL2(MI) the closure of the space Sol sc(MI) of space-compact solu-

tions of DΨ = 0 for the scalar product (·|·)D defined in (6.6). Using (3.25) and the
identity

dvolΣ =

√
σ2ρ2∆

r2 + a2
dxd2ω,

we obtain that:

V : SolL2(MI)
∼−→ SolL2(MI) is unitary. (6.7)

6.1.1. Cauchy evolution. Let H be the Hilbert space associated to (Ψ|Ψ)D. We set

ρΣ : SolL2(MI) 3 ψ 7→ ψ(0) ∈ H

and denote by Ψ = UΣf the unique solution of the Cauchy problem{
DΨ = 0,

ρΣΨ = f ∈ H.

6.1.2. Killing vector fields. The Killing vector fields vH−/I− preserve (l,n,m,m) and

vH /I

(
∆ρ2σ2

(r2+a2)2

) 1
4

= 0, hence by (3.26) we have, in the sense of unitary equivalence of
selfadjoint operators:

V ◦ i−1LH−/I− ◦ V
−1 = i−1vH /I , (6.8)

where we also denote by vH /I the first order differential operators associated to
vH−/I− , acting on SolL2(MI).

Furthermore, we have:

i−1vH ◦ UΣ = UΣ ◦ (H + ΩH i−1∂ϕ), i−1vI ◦ UΣ = UΣ ◦H. (6.9)

6.2. Decomposition of SolL2(MI).

6.2.1. Asymptotic velocity. The first important result of [34] is the existence of the
asymptotic velocity for solutions of the reduced Weyl equation. For the sake of brevity
we will consider only the past asymptotics t→ −∞. The following result is proved in
[34, Thm. 2.1] (see also [35] for an introductory account).

Theorem 6.1. There exists a selfadjoint operator v ∈ B(H), called the past asymptotic
velocity such that:

χ(v) = s− lim
t→−∞

e−itHχ
(x
t

)
eitH , ∀χ ∈ C∞c (R).

The spectrum of v is sp(v) = {−1, 1}, and

[v,H] = [v, ∂ϕ] = 0. (6.10)

Definition 6.2. We set

πH−
··= 1{1}(v), πI−

··= 1{−1}(v).
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The orthogonal decomposition 1 = πH− + πI− allows to split an initial data f ∈ H
as fH−+fI− with eitHfH− resp. eitHfI− moving towards H−, resp. I− when t→ −∞.

It follows that we can decompose SolL2(MI) as an orthogonal direct sum:

SolL2(MI) = SolL2,H−(MI)⊕ SolL2,I−(MI),

where
SolL2,H−/I−(MI) ··= UΣ ◦ πH−/I−H

correspond to solutions going entirely through H−, resp. I− in the past. We will
denote by

ΠH−/I− = UΣ ◦ πH−/I− ◦ ρΣ (6.11)
the orthogonal projections on SolL2,H−/I−(MI).

6.2.2. Killing vector fields. By (6.10), we know that πH−/I− commute with H and ∂ϕ
hence by (6.9) i−1vH , resp. i−1vI preserves SolL2,H−(MI) resp. SolL2,I−(MI).

6.3. Traces at infinities. Another important fact proved in [34] is the existence of
traces of solutions on H− and I− and their relationship with the spaces SolL2,H−/I−(MI).

6.3.1. Traces on H−. For Ψ ∈ Sol sc(MI), the trace

TH−Ψ ··= Ψ1|H− ∈ C
∞(H−;C)

is well defined, see [34, Subsect. 8.2]. The following result is shown in [34, Thm. 8.2].

Proposition 6.3. TH− uniquely extends as a bounded operator

TH− : SolL2(MI)→ L2(H−, dvolH−),

where H− is identified with R∗t×S2
θ,∗ϕ, see (5.6) and dvolH− = sin θd∗tdθd∗ϕ. One has:

KerTH− = SolL2,I−(MI), RanTH− = L2(H−, dvolH−),

(Ψ|Ψ)D = 1√
2

´
H−
|TH−Ψ|2 dvolH− , Ψ ∈ SolL2,H−(MI).

(6.12)

Note that at H−, only the Ψ1 component is relevant for the trace, whereas at I−
only the Ψ0 component is relevant.

6.3.2. Killing vector field on H−. The Killing vector field vH is null and tangent to
H . On H− it equals ∂∗t+ΩH ∂∗ϕ, resp. −κ+U∂U in star-Kerr, resp. KBL coordinates.

If we also denote by i−1vH its selfadjoint realization on L2(H−, dvolH−) we have:

TH− ◦ (i−1vH ) = (i−1vH ) ◦ TH− on SolL2,H−(MI).

6.3.3. Traces on I−. For Ψ ∈ Sol sc(MI), the trace

TI−Ψ ··= Ψ0|I− ∈ C
∞(I−;C)

is well defined, see [34, Subsect. 8.3]. The following result is shown in [34, Thm. 8.3].

Proposition 6.4. TI− uniquely extends as a bounded operator

TI− : SolL2(MI)→ L2(I−, dvolI−),

where I− is identified with Rt∗ × S2
θ,ϕ∗ and dvolI− = sin θ dt∗dθdϕ∗. One has

KerTI− = SolL2,H−(MI), RanTI− = L2(I−, dvolI−)

(Ψ|Ψ)D = 1√
2

´
I−
|TI−Ψ|2 dvolI− , Ψ ∈ SolL2,I−(MI).

(6.13)
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6.3.4. Killing vector field on I−. The Killing vector field vI is null and tangent to I .
On I− it equals ∂t∗ in Kerr-star coordinates. If we also denote by i−1vI its selfadjoint
realization on L2(I−, dvolI−), we have:

TI− ◦ (i−1vI ) = (i−1vI ) ◦ TI− on SolL2,I−(MI).

We summarize this subsection in the following theorem.

Theorem 6.5 ([34]). T = TH−⊕TI− from SolL2(MI) = SolL2,H−(MI)⊕SolL2,I−(MI)

to L2(H−, dvolH−)⊕ L2(I−, dvolI−) is unitary with

T i−1vH ΠH− = (i−1vH ⊕ 0)T, T i−1vI ΠI− = (0⊕ i−1vI )T.

7. Traces on horizons and at infinity

In Section 6, scattering theory was formulated for vectors Ψ ∈ SolL2(MI). In this
section we first re-express these results as the existence of traces on the horizon and
infinity for spinors φ ∈ SolL2(MI). We then extend the traces at the horizon and at
infinity to SolL2(M).

7.1. Decomposition of SolL2(MI). The map V : φ 7→ Ψ in (6.3) allows to construct
the corresponding orthogonal decomposition of SolL2(MI):

SolL2(MI) = SolL2,H−(MI)⊕ SolL2,I−(MI), (7.1)

where
SolL2,H−/I−(MI) ··= VSolL2,H−/I−(MI).

We denote by
PH− = VΠH−V−1, PI− = VΠI−V−1, (7.2)

the orthogonal projections on SolL2,H−/I−(MI). By 6.2.2, the subspaces SolL2,H−/I−(MI)

are invariant under i−1LH , i−1LI .

7.2. Traces on H−. For φ ∈ Solsc(MI) we set

TH−φ = φ|H− ∈ C
∞(H−;C2), (7.3)

which is clearly well defined. We denote by L2(H−) the completion of C∞c (H−;C2)
for the (degenerate) scalar product

(φ|φ)H− = −i

ˆ
H−

φ·Γ(∇V )φ|g|
1
2 dUdθdϕ#, (7.4)

where we recall that (U, V, θ, ϕ#) are the KBL coordinates, see Subsect. 5.5, in terms
of which H− = {0}V × ]0,+∞[U × S2

θ,ϕ# .
We will see in the proof of Prop. 7.1 below that (·|·)H− is positive semidefinite.

Proposition 7.1. TH− uniquely extends to a bounded operator TH− : SolL2(MI) →
L2(H−) with:

Ker TH− = SolL2,I−(MI), Ran TH− = L2(H−), (7.5)

(φ|φ)D = −i
´
H−

TH−φ·Γ(∇V )TH−φ|g|
1
2 dUdθdϕ#

= i
´
H−

i∗(g−1J(φ, φ)yΩg), φ ∈ SolL2,H−(MI).
(7.6)
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Proof. If Ψ = Vφ ∈ SolL2,H−(MI) for φ ∈ SolL2,H−(MI), we have by (6.7), (6.12)
after passing to KBL coordinates:

‖φ‖2D = ‖Ψ‖2D = κ−1
+

1√
2

ˆ
R+
U×S

2
θ,ϕ#

|TH−Ψ|2U−1 sin θ dUdθdϕ#, (7.7)

and hence by (7.1) we have:

κ−1
+

1√
2

ˆ
R+
U×S

2
θ,ϕ#

|TH−Ψ|2U−1 sin θ dUdθdϕ# ≤ ‖φ‖2D, φ ∈ SolL2(MI). (7.8)

We would like to reexpress the l.h.s. above in terms of φ, for φ ∈ Solsc(MI) i.e. Ψ ∈
Sol sc(MI). One associates to the KBL coordinates the new null tetrad (l, n,m,m) given
by:

l =
U√
∆

e−κ+r(r − r−)M/r+ l, n =
V√
∆

e−κ+r(r − r−)M/r+n, (7.9)

which has the advantage of extending smoothly to H+ ∪H−. The associated spinor
basis (o, i) is:

o =

(
U√
∆

e−κ+r(r − r−)M/r+

) 1
2

o, i =

(
V√
∆

e−κ+r(r − r−)M/r+

) 1
2

ı. (7.10)

If we set
f0 = φ·o, f1 = φ·i, (7.11)

it is shown in [34, Corr. 8.1] that for Ψ ∈ Sol sc(MI) one has:

(TH−Ψ)(U, θ, ϕ#) = Ψ1(U, 0, θ, ϕ#) = C1

√
p+(θ)U f1(U, 0, θ, ϕ#), (7.12)

where:
C1 = e−κ+r+/2(r+ − r−)M/2r+ , p+(θ) = r+ + ia cos θ. (7.13)

Therefore we have for Ψ ∈ Sol sc(MI):

κ−1
+

1√
2

ˆ
R+
U×S

2
θ,ϕ#

|TH−Ψ|2U−1 sin θ dUθdϕ#

= κ−1
+

1√
2
C2

1

ˆ
R+
U×S

2
θ,ϕ#

|p+|(θ)|f1|2 sin θ dUdθdϕ#

(7.14)

On the other hand over H− we have n = C
|p+(θ)|∂U (see [34, Subsect. 8.2.2]), for

C = −κ+(r2
+ + a2)eκ+r+(r+ − r−)−M/r+ .

Since the matrix of iΓ(n) in the spinor basis (o, i) equals
(

0 0
0 1

)
, this implies that

|f1|2 = C|p+(θ)|−1φ·iΓ(∂U )φ,

and hence:
κ−1

+

1√
2
C2

1

ˆ
R+
U×S

2
θ,ϕ#

|p+|(θ)|f1|2 sin θ dUdθdϕ#

= −i
√

2(r2
+ + a2)

ˆ
R+
U×S

2
θ,ϕ#

φ · Γ(∂U )φ sin θ dUdθdϕ#.

(7.15)

Finally over H− we have, see [34, (8.21)],

g = 2gUV dUdV + gV V dV
2 + 2gV ϕ#dV dϕ# + gθθdθ

2 + gϕ#ϕ#(dϕ#)2,
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where gθθ = ρ2, gϕ#ϕ# = ρ−2σ2 sin2 θ. It follows that:

|g|
1
2 = |gUV |(r2

+ + a2) sin θ, ∇V = (gUV )−1∂U . (7.16)

Therefore we have:

κ−1
+

1√
2
C2

1

ˆ
R+
U×S

2
θ,ϕ#

|p+|(θ)|f1|2 sin θ dUdθdϕ#

= −i

ˆ
R+
U×S

2
θ,ϕ#

φ · Γ(∇V )φ|g|
1
2 dUdθdϕ#,

(7.17)

for φ ∈ Solsc(MI). From (7.14) and (7.8) we obtain:

− i

ˆ
R+
U×S

2
θ,ϕ#

φ · Γ(∇V )φ|g|
1
2 dUdθdϕ# ≤ ‖φ‖2D, φ ∈ Solsc(MI), (7.18)

Thus, TH− uniquely extends as a bounded operator on SolL2(MI). From (7.7) we obtain
that Ker TH− = SolL2,I−(MI) and

(φ|φ)D = −i

ˆ
H−

TH−φ·Γ(∇V )TH−φ|g|
1
2 dUdθdϕ#, φ ∈ SolL2,H−(MI).

It remains to check that Ran TH− is the closure of C∞c (H−;C2) for the scalar product
(·|·)H− defined in (7.4). This follows from the fact that RanTH− , where TH− was intro-
duced in 6.3.1, is equal to L2(H−, dvolH−), which has C∞c (H−) as a dense subspace.
This completes the proof of (7.5) and of the first identity of (7.6).

On H− we have ∇V = g−1
UV ∂U = −λn for λ > 0. By the time orientation of M,

(see Subsect. 5.5) l + n is future directed, hence by 2.5.1 n is also future directed. It
follows that −∇V is future directed on H−. We then apply (3.14) to obtain the second
identity of (7.6). �

7.2.1. Killing vector field on H−. As in 6.3.2, we have since vH is tangent to H−:

TH− ◦ i−1LH φ = i−1LH ◦ TH−φ, φ ∈ Solsc(MI). (7.19)

We would like to express i−1LH ◦ TH−φ using the decomposition (7.11). Let us set:

SH− : Solsc(MI) 3 φ 7→ φ·i|H− ∈ C
∞(H−;C), (7.20)

so that
SH−φ = TH−φ·i.

This new trace operator is particularly useful because thanks to the choice of tetrad
(7.9), (7.10), it leads to simpler expressions.

Definition 7.2. We denote by L2(H−;C) the closure of C∞c (H−;C) for the scalar
product

(f1|f1) = κ−1
+

1√
2
C2

1

ˆ
R+
U×S

2
θ,ϕ#

|p+|(θ)|f1|2 sin θ dUdθdϕ#.

Proposition 7.3. The map

SH− : SolL2,H−(MI)→ L2(H−;C) is unitary,

and one has:
SH− ◦ i−1LH = −i−1κ+(U∂U +

1

2
) ◦ SH− , (7.21)

in the sense of unitary equivalence of selfadjoint operators.
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Proof. Since φ·i = f1, the identity (7.17) means that SH− is unitary from SolL2,H−(MI)

to L2(H−;C). Next we use that VLH φ = vH Vφ by (6.8). From (7.12) we obtain then
that

U
1
2 ((LH φ)·i)|H− = −κ+U∂U (U

1
2φ·i|H−),

which implies (7.21) since U−
1
2 ◦ (U∂U ) ◦ U

1
2 = U∂U + 1

2 . �

7.3. Traces on I−.

7.3.1. Conformal rescaling. Following [34, Subsect. 8.3] we consider the conformally
rescaled metric

ĝ = c2g, c = r−1 =·· w,
which can be smoothly extended to the domain Rt∗ × [0, r−1

+ ]w × S2
θ,ϕ∗, with I− =

Rt∗ × {0}w × S2
θ,ϕ∗ . Denoting with hats the objects canonically attached to (MI, ĝ) we

have by Subsect. 2.7:

Γ̂(v) = Γ(v), τ̂ = τ, ε̂ = cε, D̂ = c−3Dc. (7.22)

In the coordinates (t∗, w, θ, ϕ∗) we have:

l =
1√

2∆ρ2

(
2(r2a2)∂t∗ −∆w2∂w + 2a∂ϕ∗

)
,

n =
∆w2√
2∆ρ2

∂w,

m =
1√
2p

(
ia sin θ∂t + ∂θ +

i

sin θ
∂ϕ

)
.

This tetrad extends smoothly up to I− = {w = 0} with

l|I− =
√

2∂t∗ , ±n|I− = m|I− = 0,

so the tetrad degenerates on I−. A normalized null tetrad for (MI, ĝ) which is non
degenerate near I− is given by (see [34, 8.3.1]):

(l̂, n̂, m̂, m̂) = (l, c−2n, c−1m, c−1m). (7.23)

Using (7.22) we see that the associated spinor basis is

(ô, ı̂) = (o, c−1ı). (7.24)

7.3.2. Traces on I−. For φ ∈ Solsc(MI) we set:

TI−φ ··= φ̂|I− , φ̂ = c−1φ ∈ Solsc(D̂). (7.25)

We denote by L2(I−) the completion of C∞c (I−;C2) for the scalar product:

(φ̂|φ̂)I− = −i

ˆ
I−

φ̂·Γ̂(∇̂w)φ̂|ĝ|
1
2 dt∗dθdϕ∗.

As before we will see in the proof of Prop. 7.4 that (·|·)I− is positive semidefinite.

Proposition 7.4. TI− uniquely extends to a bounded operator TI− : SolL2(MI) →
L2(I−) with:

Ker TI− = SolL2,H−(MI), Ran TI− = L2(I−), (7.26)

(φ|φ)D = −i
´
I−

TI−φ·Γ̂(∇̂w)TI−φ sin θ dt∗dθdϕ∗

= i
´
I− i

∗(ĝ−1Ĵ(φ̂, φ̂)yΩĝ), φ ∈ SolL2,I−(MI).
(7.27)
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Proof. Let Ψ = Vφ ∈ SolL2,I−(MI) for φ ∈ SolL2,I−(MI). From (6.7) and Prop. 6.4
we have

(φ|φ)D = (Ψ|Ψ)D =
1√
2

ˆ
Rt∗×S2

θ,ϕ∗

|Ψ0|2 sin θ dt∗dθdϕ∗, (7.28)

hence by (7.1) we have:

1√
2

ˆ
Rt∗×S2

θ,ϕ∗

|Ψ0|2 sin θ dt∗dθdϕ∗ ≤ ‖φ‖2D, φ ∈ SolL2(MI). (7.29)

As in the proof of Prop. 7.1 we re-express the l.h.s. above in terms of φ for φ ∈ Solsc(MI).
From the definition (6.5) of Ψ, we obtain:

Ψ = Uc

(
∆ρ2σ2

(r2 + a2)2

) 1
4

(
φ̂·o
φ̂·ı

)
,

where we recall that φ̂ = c−1φ. On I− the matrix U introduced in (6.4) is equal to 12

and c
(

∆ρ2σ2

(r2 + a2)2

) 1
4

= 1, hence

1√
2

ˆ
Rt∗×S2

θ,ϕ∗

|Ψ0|2 sin θ dt∗dθdϕ∗ =
1√
2

ˆ
Rt∗×S2

θ,ϕ∗

|φ̂·o|2 sin θ dt∗dθdϕ∗. (7.30)

Since o = ô and the matrix of iΓ̂(l) in the basis (ô, ı̂) equals
(

1 0
0 0

)
we have

|φ̂·o|2 = |φ̂·ô|2 = iφ̂·Γ̂(l)φ̂ = i
√

2φ̂·Γ̂(∂t∗)φ̂,

hence:
1√
2

ˆ
Rt∗×S2

θ,ϕ∗

|Ψ0|2 sin θ dt∗dθdϕ∗ = i

ˆ
Rt∗×S2

θ,ϕ∗

φ̂·Γ̂(∂t∗)φ̂ sin θ dt∗dθdϕ∗.

Denoting by ∇̂ the gradient w.r.t. ĝ, we obtain that on I−, |ĝ| = sin2 θ and ∇̂w = −∂t∗.
Therefore if we use the coordinates (t∗, w, θ, ϕ∗) near I− we obtain:

1√
2

ˆ
Rt∗×S2

θ,ϕ∗

|Ψ0|2 sin θ dt∗dθdϕ∗ = −i

ˆ
I−

φ̂·Γ̂(∇̂w)φ̂ sin θ dt∗dθdϕ∗. (7.31)

From (7.29) and (7.31) we obtain:

− i

ˆ
I−

φ̂·Γ̂(∇̂w)φ̂ sin θ dt∗dθdϕ∗≤ ‖φ‖2D, φ ∈ Solsc(MI), (7.32)

so TI− uniquely extends as a bounded operator on SolL2(MI). From (7.28) we obtain
that Ker TI− = SolL2,H−(MI) and

(φ|φ)D = −i

ˆ
I−

TI−φ·Γ̂(∇̂w)TI−φ sin θ dt∗dθdϕ∗, φ ∈ SolL2,I−(MI).

As in Prop. 7.1 we obtain (7.26) and the first identity in (7.27). On I− we have
∇̂w = −∂t∗ and ∂t∗ is future directed. Applying (3.14) we obtain the second identity
of (7.27). �
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7.3.3. Killing vector field on I−. As in 6.3.4 we have

TI− ◦ i−1LI φ = i−1LI ◦ TI−φ, φ ∈ Solsc(MI),

since vI = ∂t∗ is tangent to I− and the conformal factor c = r−1 is invariant under
vI . Let us set

SI− : Solsc(MI) 3 φ 7→ f̂0 = φ̂·ô|I− ∈ C
∞(I−;C), (7.33)

so that
SI−φ = TI−φ·ô.

Definition 7.5. We denote by L2(I−;C) the closure of C∞c (I−;C) for the scalar
product

(f̂0|f̂0) =
1√
2

ˆ
Rt∗×S2

θ,ϕ∗

|f̂0|2 sin θ dt∗dθdϕ∗.

Proposition 7.6. The map

SI− : SolL2,I−(MI)→ L2(I−, sin θ dt
∗dθdϕ∗) is unitary,

and one has:
SI− ◦ (i−1LI ) = i−1∂t∗ ◦ SI− , (7.34)

in the sense of unitary equivalence of selfadjoint operators.

Proof. The identities (7.30), (7.31) mean that SI− is unitary. (7.34) follows from
the fact that the null tetrad (l̂, n̂, m̂, m̂) in (7.23) is invariant under LI , and from the
identities in 3.5.1. �

We can summarize the results of Subsect. 7.2 and 7.3 as follows.

Proposition 7.7. (1) The map TMI
= TH− ⊕ TI− from SolL2(MI) to L2(H−) ⊕

L2(I−) is unitary.
(2) The map SMI

= SH−⊕SI− from SolL2(MI) to L2(H−;C)⊕L2(I−;C) is unitary.
(3) One has

SH− ◦ i−1LH = −i−1κ+(U∂U + 1
2) ◦ SH− ,

SI− ◦ i−1LI = i−1∂t∗ ◦ SI− ,

in the sense of unitary equivalence of selfadjoint operators.

7.4. Decomposition of SolL2(M). By Proposition C.12, ΣM = {U = V } is a space-
like Cauchy surface in M. Let us also set

ΣI ··= ΣM ∩MI = {t = 0} ∩MI, ΣI′ ··= ΣM ∩MI′ = {t = 0} ∩MI′ ,

so that by (C.18)
ΣM = ΣI ∪ ΣI′ ∪ S(r+).

Since S(r+) is of measure 0 in ΣM for the induced Riemannian metric, this implies for
the corresponding L2 spaces of Cauchy data that:

L2(ΣM) 3 f 7→ f|ΣI
⊕ f|ΣI′

∈ L2(ΣI)⊕ L2(ΣI′)

is unitary, where we denote by L2(Σ) the completion of C∞c (Σ;S∗Σ) for the scalar
product νΣ, see (3.17). By Proposition 3.3 this yields a unitary map:

SolL2(M) 3 φ 7→ φI ⊕ φI′ ∈ SolL2(MI)⊕ SolL2(MI′) (7.35)

where φI, resp. φI′ are the restrictions of φ to MI, resp. MI′ .
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Next, we observe that while M′I and MI′ are strictly speaking different, they can be
identified as spacetimes through the isometry

R : MI′ 3 (U, V, θ, ϕ#) 7→ (−U,−V, θ, ϕ#) ∈ M′I

which preserves the orientation and time-orientation. We also denote byR : SolL2(MI′)→
SolL2(M′I) the unitary map

Rφ = φ ◦R.

7.5. Traces on the long horizon and at infinity.

7.5.1. Traces on the long horizon. Recall that HL = {V = 0} is the left long horizon
in M, which decomposes as

HL = H− ∪H ′
− ∪S(r+), H− = {V = 0, U > 0}, H ′

− = {V = 0, U < 0} = R(H−).

To ease notation HL will be simply denoted by H in the sequel.
Let us denote by L2(H ) the completion of C∞c (H \S(r+);C2) for the scalar product

(φ|φ)H = −i

ˆ
H
φ·Γ(∇V )φ|g|

1
2dUdθdϕ#.

Clearly we have

L2(H ) ∼ L2(H−)⊕ L2(H ′
−)

with obvious notations. We denote

TH−φ ··= TH−φI, TH ′
−
φ ··= RTH−RφI′ ,

and

TH ··= TH− ⊕ TH ′
−

: SolL2(M)→ L2(H )

Similarly we denote by L2(H ;C) the closure of C∞c (H ;C) for the scalar product

(f1|f1) = κ−1
+

1√
2
C2

1

ˆ
RU×S2

θ,ϕ#

|p+|(θ)|f1|2 sin θ dUdθdϕ#,

so that

L2(H ;C) ∼ L2(H−;C)⊕ L2(H ′
−;C).

We set

SH−φ ··= SH−φI, SH ′
−
φ ··= RSH−RφI′ ,

and

SH ··= SH− ⊕ SH ′
−

: SolL2(M)→ L2(H ;C).

7.5.2. Traces at infinity. We set

TI−φ ··= TI−φI, TI ′−
φ ··= TI−RφI′ ,

SI−φ ··= SI−φI, SI ′−
φ ··= SI−RφI′ ,
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7.5.3. Summary. The results of this section are summarized in the following theorem.

Theorem 7.8. The maps

TM ··= TH ⊕ TI− ⊕ TI ′−
: SolL2(M)→ L2(H )⊕ L2(I−)⊕ L2(I−)

SM ··= SH ⊕ SI− ⊕ SI ′−
: SolL2(M)→ L2(H ;C)⊕ L2(I−;C)⊕ L2(I−;C)

(7.36)
are unitary.

The geometric situation is illustrated in Figure 4.

MI

MII

MI′

MII′

HL

I−

I ′−

ΣM

Figure 4. The Kerr-Kruskal spacetime with Cauchy surface ΣM.

8. The Unruh state in the Kerr-Kruskal spacetime

We recall that the solution space covariances of a quasi-free state were defined in
Subsect. 4.1. They will frequently be simply called covariances in the sequel.

8.1. The Unruh state in M.

Definition 8.1. The Unruh state ωM is the quasi-free state on CAR(M) with solution
space covariances:

C±M = S−1
M

(
1R±(−i−1∂U )⊕ 1R±(i−1∂t∗)⊕ 1R∓(i−1∂t∗)

)
SM. (8.1)

Theorem 8.2. (1) The Unruh state ωM is a pure state.
(2) The restriction ωMI∪II

of ωM to MI∪II is a pure state.
(3) The restriction ωMI

of ωM to MI has covariances

C±MI
= S−1

MI

(
χ±H−(−i−1κ+(U∂U +

1

2
))⊕ χ±I−(i−1∂t∗)

)
SMI

for
χ±I−(λ) = 1R±(λ), χ±H−(λ) =

(
1 + e∓T

−1
H λ
)−1

, (8.2)

where TH = (2π)−1κ+ is the Hawking temperature.
(4) The restriction ωMI′ of ωM to MI′ is the image of ωMI

under R, and has covariances

C±MI′
= R ◦ C∓MI

◦R.

Theorem 8.3. There exists 0 < a0 ≤ 1 such that if |a|M−1 < a0 then the restriction
ωMI∪II

of the Unruh state ωM to MI∪II is a Hadamard state.
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Remark 8.4. There are good reasons to expect that ωM is not a Hadamard state in the
whole of M, and that the Hadamard condition fails precisely on the long horizon HL,
and in fact computations of the renormalized stress-energy tensor show that it diverges
at HL [6]. In our formalism, the problem comes from the wavefront set estimate in
Proposition E.5, more precisely from (E.5). In general one hasN∗ suppu ⊂WF(δS⊗u),
where N∗S is the conormal bundle to S and N∗ suppu = N∗S ∩ T ∗suppuM . Since S
is null, N∗S is invariant under the bicharacteristic flow, so N∗S ⊂ WF(G(δS ⊗ u)),
and therefore WF(G(δS) ⊗ u) intersects both N+ and N− over S. One applies this
observation to the long horizon HL, which is included in M (but not in MI or MI∪II), see
for example the key identity (8.25) below, and one sees that the form of the ‘boundary
data’ of ωM on HL given in (8.1) cannot imply the Hadamard condition over HL.

8.2. Proof of Theorem 8.2. (1) follows from Lemma B.1 (which says that the state
is pure if the covariances are projections). To prove (3), we note that the image of
SolL2(MI) under SM equals L2(H−;C)⊕L2(I−;C)⊕ {0} and hence the restriction of
C±M to SolL2(MI) (viewed as a sesquilinear form using the scalar product (·|·)D) equals

S−1
H−

(
ı∗1R±(−i−1∂U )ı

)
SH− ⊕ S−1

I−
1R±(i−1∂t∗)SI− ,

where ı : L2(H−;C)→ L2(H ;C) is the canonical injection. By Lemma D.1 we have

ı∗1R±(−i−1∂U )ı = (1 + e±2πA),

where A = i−1(U∂U + 1
2) is the generator of dilations in U acting on L2(H−;C), see

Appendix D. This completes the proof of (3).
Let us now prove (2). We claim that the image of SolL2(MI∪II) under SM is included

in L2(H ;C)⊕L2(I−;C)⊕{0}, which will imply (2) by Lemma B.1 and the fact that
1R±(−i−1∂U )⊕1R±(i−1∂t∗)⊕1R∓(i−1∂t∗) restricted to L2(H ;C)⊕L2(I−;C)⊕{0} is
a projection. To prove our claim we take φ ∈ Solsc(MI∪II), which has hence compactly
supported Cauchy data on one of the space-like Cauchy surfaces ZT defined in C.6.2.
The conformal trace of φ on I ′− vanishes, which by density implies our claim.

It remains to prove (4). We note that

RC±MI
R = S−1

MI

(
1R∓(−i−1∂U )⊕ 1R±(i−1∂t∗)⊕ 1R∓(i−1∂t∗)

)
SMI

.

Then (4) follows from (3) and the fact that the image of SolL2(MI′) under SM equals
L2(H ′

−;C)⊕ {0} ⊕ L2(I−;C). �

8.3. Preparations. We now collect some preparations for the proof of Theorem 8.3.

8.3.1. Cauchy surfaces in MI. In the proof of the Hadamard condition we will need
two convenient families of Cauchy surfaces ΣT and Σ̃T in MI.

Since r2+a2

∆ = 1 − 2r−1 + O(r−2) when r → +∞ we can choose x(r) in (5.3) such
that

x(r) = r − 2 ln r +O(r−1), when r → +∞.
It follows that the hypersurface {t + r − 2 ln r = T} intersects I− (inside M̂I, the
conformal extension of MI, see 5.4), transversally along the submanifold {w = 0, t∗ =
T}. We set then

ΣT ··= {t+ r − 2 ln r = T} ∪I− ∩ {t∗ ≥ T},

which we smooth out near the intersection, to make it smooth and space-like inside
MI, null on I− (see Figure 5).
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Σ0

ΣT

Figure 5. The Cauchy surfaces ΣT .

To define the hypersurfaces Σ̃T we set f(r) =
(r2 + a2)2

∆2
− a2 +M2

∆
. We have

f > 0 in ]r+,+∞[ and f
1
2 (r)− r2 + a2

∆
∈ O(1) when r → r+. (8.3)

We define the function y(r) by

y′(r) = f
1
2 (r), lim

r→r+
y(r)− x(r) = 0, (8.4)

noting that the second condition can be imposed due to (8.3). Finally we define

x̃(r) = 1]1,3](r)y(r) + 1]3,+∞[(r)y(3), (8.5)

making y(r) constant in {r ≥ 3}.
The hypersurface {t − x̃(r) = T} intersects H− (inside ∗K, see 5.3) transversally

along the submanifold {r = r+,
∗t = T}. We set

Σ̃T ··= {t− x̃(r) = T} ∪H− ∩ {∗t ≥ T}

again smoothed out near the intersection, to make it smooth and space-like inside MI,
null on H− (see Figure 6).

Σ0

Σ̃T

Figure 6. The Cauchy surfaces Σ̃T .

The fact that ΣT and Σ̃T are Cauchy surfaces follows from the constructions in
Subsect. C.6, which provide a way of approximating ΣT and Σ̃T by families of space-
like Cauchy surface ΣT,n and Σ̃T,n. The space-like property of ΣT and Σ̃T inside of MI

can be also deduced from the computations in Subsect. C.6.

8.3.2. Cauchy surfaces in M. We will also need Cauchy surfaces Σ̂T in M, obtained by
gluing together along S(r+) the surface Σ̃T with its image under the wedge reflection
R, see Figure 7.
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MI

MII

MI′

MII′

HL

I−

I ′−

ΣM

Σ̂T

Figure 7. The Cauchy surfaces Σ̂T .

8.3.3. Wavefront set estimates. The next lemma provides a way of producing solutions
with wave front set in N+ or N− using a Killing vector field X, in a region where it is
assumed to be time-like. For the sake of simplicity we formulate it here in the specific
case of the Killing vector fields vH and vI on MI which will be needed later on. Below,
〈λ〉 = (1 + λ2)

1
2 .

Lemma 8.5. Let X = vH or vI and recall that i−1LX is the selfadjoint generator of
a unitary group on SolL2(MI). Let χ± ∈ L∞(R) be such that χ± − 1R± ∈ O(〈λ〉−∞)
and sing suppχ± is compact. Then, if X is future directed time-like near x0 ∈ MI, one
has:

WF(χ±(i−1LX)φ) ⊂ N± over a neighborhood of x0,

for all φ ∈ SolL2(MI).

Proof. We consider the case of vI = ∂t, the other one being analogous. Let us denote
φ+ = χ+(i−1LX)φ. Let q0 = (x0, ξ0) ∈ N−.

Let ϑ ∈ C∞(R) be such that ϑ(λ) = 1 for λ � 0 and ϑ(λ) = 0 for λ > 0 and
λ ∈ sing suppχ+. Setting χ∞ = ϑχ+ ∈ O(〈λ〉−∞), by functional calculus we have

ϑ(i−1LX)φ+ = χ∞(i−1LX)φ. (8.6)

In coordinates, LXφ = M(t)∂tM(t)−1φ for some smooth family of invertible fiber
endomorphisms M(t). It follows that

ϑ(i−1LX)φ+ = M(t)
(
ϑ(i−1∂t)⊗ 1y

)
M(t)−1φ+,

where ϑ(i−1∂t) ⊗ 1y acts as a product-type pseudo-differential operator. Let A ∈ Ψ0

be a properly supported pseudo-differential operator (in the sense of the usual calculus
on manifolds), elliptic at q0 and microsupported in a small conic neighborhood Γ0 of
q0. Since q0 ∈ N− and ∂t is future directed time-like in the relevant region, the symbol
of ϑ(i−1∂t)⊗ 1y equals 1 on Γ0 away fromo. Therefore, the operator

B ··= A ◦M(t)
(
ϑ(i−1∂t)⊗ 1y

)
M(t)−1

belongs to Ψ0 and is elliptic at q0, and similarly one can show that A◦
(
χ∞(i−1∂t)⊗1y

)
belongs to Ψ−∞. Thus, by acting on both sides of (8.6) with A we find Bφ+ ∈ C∞.
Consequently, q0 /∈WF(φ+).

The proof of the minus sign version of the statement is analogous. �

The other essential ingredient are the Green’s formulas from Subsect. 3.3 (which
roughly speaking, allow to represent a solutions locally as φ = −G(δS ⊗ v), with S
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a Cauchy surface and v a trace on S) combined with Proposition E.5 in the appen-
dix (which allows to estimate WF

(
G(δS ⊗ v)

)
in terms of WF(v) if v is compactly

supported).

8.4. Hadamard property in MI. Our objective is to prove the Hadamard property
of ωMI∪II

. We start by considering the restriction ωMI
to MI. From Proposition 7.7 we

obtain the key formula

C±MI
= PH− ◦ χ

±
H−

(i−1LH ) + PI− ◦ χ
±
I−

(i−1LI ), (8.7)

where the projections PH−/I− are defined in (7.2).

Proposition 8.6. There exists 0 < a0 ≤ 1 such that if |a|M−1 < a0 then ωMI
is a

Hadamard state.

Remark 8.7. The Hadamard property extends to any state in MI of the form (8.7)
where χ±H− , χ

±
I−
∈ L∞(R) are such that sing suppχ± is compact, and:

χ+
H−/I−

+ χ−H−/I− = 1

χ±H−/I−(λ) ∈ O(〈λ〉−∞) in R∓.
(8.8)

Such states can be called asymptotically passive. The class of passive states was in-
troduced by Pusz–Woronowicz [51], and was investigated by Sahlmann–Verch [53] in
settings with a global time-like Killing vector field v (cf. the work of Hack–Verch [31] for
the related notion of non-equilibrium steady states in a relativistic setting). Roughly
speaking, a passive state is a mixture of ground and thermal states with respect to v.
The name asymptotically passive indicates that at H−, the state is passive with respect
to vH , and asymptotically at I− it is passive with respect to vI .

Proof of Proposition 8.6. By Theorem 4.3 it suffices to prove that

WF((C±MI
)

1
2φ) ⊂ N±, ∀φ ∈ SolL2(MI). (8.9)

We will prove only the + case, the − case being analogous. Let q0 = (x0, ξ0) ∈
T ∗MI ∩N− and let γ be the null bicharacteristic in T ∗M from q0.

Case 1: suppose that π(γ) (where π : T ∗M → M is the base projection) intersects
I− at some point y0. We will need a family ΣT,n of smooth, space-like Cauchy surfaces
in MI that approximates ΣT . It is constructed in Proposition C.9 in the appendix.

We will use the conformal transformation ĝ = c2g, c = r−1, see Subsects. 2.7 and
5.4. We recall from Subsect. 2.7 that Γ̂(X) = β̂γ̂(X) = Γ(X), D̂ = c−3Dc and Ĝ is the
Pauli-Jordan operator for D̂, equal to c−1Gc3, see [27, (17.51)].

Applying (3.11) to the conformally rescaled Weyl operator D̂ and recalling that
φ̂ = c−1φ, this yields:

φ̂(x) = −
ˆ

ΣT,n

Ĝ(x, y)Γ̂(ĝ−1ν)(y)φ̂±(y)i∗l (dvolĝ)(y), φ ∈ Solsc(MI). (8.10)

The solution φ̂ extends across I− to the conformal extension M̂I of MI defined in
Subsect. 5.4, as a smooth solution of D̂φ̂ = 0. We can then take the limit n→ +∞ in
(8.10) and obtain that:

φ̂(x) = −
ˆ

ΣT

Ĝ(x, y)Γ̂(ĝ−1ν)(y)φ̂(y)i∗l (dvolĝ)(y), φ ∈ Solsc(MI). (8.11)



The Unruh state for massless fermions on Kerr spacetime and its Hadamard property 38

From Subsect. 7.3 we recall that the conformal trace on I−, TI−φ = φ̂|I− is well
defined on Solsc(MI) and extends as a bounded operator TI− : SolL2(MI) → L2(I−).
On the other hand the trace of φ̂ on ΣT \I− is also well defined and obviously bounded
from SolL2(MI) to the appropriate L2 space, because ΣT \ I− is a part of a smooth,
space-like Cauchy surface and the conformal factor c = r−1 is bounded with bounded
inverse on ΣT \I−.

Summarizing we obtain a bounded operator TΣT
: SolL2(MI) → L2(ΣT ), extending

the map φ 7→ φ̂|ΣT , where we denote by L2(ΣT ) the appropriate L2 space on ΣT . Let
us also recall from (3.16) that SolL2(MI) 3 φ 7→ φ̂ = c−1φ ∈ SolL2(M̂I) is unitary.

It follows then from Proposition 3.4 that (8.11) extends to φ ∈ SolL2(MI). More
precisely if χ ∈ C∞c (MI) is a cutoff function supported near x0, there exists χ1 ∈
C∞c (ΣT ) such that

χφ̂(x) = −
ˆ

ΣT

Ĝ(x, y)Γ̂(ĝ−1ν)(y)χ1(y)TΣT
φ(y)i∗l (dvolĝ)(y), φ ∈ SolL2(MI).

We then choose T � −1 such that t∗(y0) > T . Since one has

WF(Ĝ)′ ⊂ {(q, q′) : q ∼ q′},

we can find χ2 ∈ C∞c (I−), equal to 1 near y0 such that:

χφ̂(x) = −
ˆ

ΣT

Ĝ(x, y)Γ̂(ĝ−1ν)(y)χ2(y)TI−φ(y)i∗l (dvolĝ)(y) + u, φ ∈ SolL2(MI),

(8.12)
with q0 6∈ WF(u). We will drop the error term u in the sequel. Using (3.13) we can
rewrite this identity as:

χφ̂(x) = −
ˆ

I−

Ĝ(x, y)Γ̂(∇̂w)χ2TI−φ|ĝ|
1
2dt∗dθdϕ∗.

We can assume that χ2 depends only on t∗. Since ∇̂w = −∂t∗ and |ĝ|
1
2 = sin θ on I−,

we get:

χφ̂(x) =

ˆ
I−

Ĝ(x, t∗, θ, ϕ∗)Γ̂(∂t∗)χ2(t∗)TI−φ sin θ dt∗dθdϕ∗. (8.13)

We use the spinor basis (ô, ı̂) associated to the null tetrad (l̂, n̂, m̂, m̂) introduced in
Subsect. 7.3, see (7.23), (7.24) to express the r.h.s. of (8.13) in terms of the components

f̂0 = TI−φ · ô = SI−φ, f̂1 = TI−φ · ı̂.

We have ∂t∗ =
√

2
−1
l hence the matrix of Γ̂(∂t∗) equals i−1

√
2
−1
(

1 0
0 0

)
, see the

proof of Prop. 7.4 . We set

Ĝ0(x, y) = Ĝ(x, y)ô∗(y), Ĝ1(x, y) = Ĝ(x, y)̂ı∗(y),

and obtain finally:

χφ(x) = Cr−1

ˆ
I−

Ĝ0(x, t∗, θ, ϕ∗)χ2(t∗)SI−φ sin θ dt∗dθdϕ∗. (8.14)

We apply (8.14) to (C+
MI

)
1
2φ, using that SI−PH− = 0 and Proposition 7.6 to obtain:

χ(C+
MI

)
1
2φ = Cr−1

ˆ
I−

Ĝ0(x, t∗, θ, ϕ∗)χ2(t∗)(χ+
I−

)
1
2 (i−1∂t∗)SI−φ sin θ dt∗dθdϕ∗.
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We apply Prop. E.5 with S = I− and X = vI = ∂t∗ . We claim that for

g+ = χ2(t∗)(χ+
I−

)
1
2 (i−1∂t∗)SI−φ ∈ E ′(I−),

we have
WF(g+) ⊂ {(y, η) ∈ T ∗I− \o : +η ·vI (y) ≥ 0},

which is immediate, since by (8.8) χ+
I−

decays rapidly in R−.
By Prop. E.5 this implies that q0 6∈WF(φ+).

Case 2: suppose that π(γ) intersects H− at some y0. We use now the family Σ̃T,n

of Cauchy surfaces in MI and write

φ(x) = −
ˆ

Σ̃T,n

G(x, y)Γ(g−1ν)(y)φ(y)i∗l (dvolg)(y), φ ∈ Solsc(MI). (8.15)

The smooth solutions φ extends across H− to ∗K as smooth solutions of Dφ = 0. We
can again pass to the limit n→ +∞ in (8.15) and obtain:

φ(x) = −
ˆ

Σ̃T

G(x, y)Γ(g−1ν)(y)φ(y)i∗l (dvolg)(y), φ ∈ Solsc(MI). (8.16)

As before the traces on H− and on Σ̃T \H− extend as a bounded operator T
Σ̃T

:

SolL2(MI)→ L2(Σ̃T ), by Proposition 7.1 for the trace on H− and using that Σ̃T \H−
is a part of a smooth, space-like Cauchy surface for the trace on Σ̃T \H−.

Again we denote by L2(Σ̃T ) the appropriate L2 space on Σ̃T .
By Proposition 3.4 we can extend (8.16) to φ ∈ SolL2(MI) and obtain:

χφ(x) = −
ˆ

Σ̃T

G(x, y)Γ(g−1ν)(y)χ1T
Σ̃T
φ(y)i∗l (dvolg)(y), φ ∈ SolL2(MI).

We choose T � −1 such that ∗t(y0) > T . Again we can find χ2 ∈ C∞c (H−) equal to
1 near y0 such that

χφ(x) = −
ˆ

H−

G(x, y)Γ(g−1ν)(y)χ2(y)TH−φ(y)i∗l (dvolg)(y) + u, φ ∈ SolL2(MI),

(8.17)
with q0 6∈ WF(u), and we will forget the error term u in the sequel. Using (3.13) we
can rewrite this identity as

χφ(x) = −
ˆ

H−

G(x, y)Γ(∇V )χ2TH−φ |g|
1
2 dUdθdϕ#, (8.18)

where H− ∼ R+
U × S2

θ,ϕ# .
We can assume that χ2 depends only on the variable U . Since ∇V = (gUV )−1∂U

and |g|
1
2 = gUV (r2

+ + a2) sin θ, see (7.16), we obtain:

χφ(x) = −(r2
+ + a2)

ˆ
H−

G(x, U, θ, ϕ#)Γ(∂U )χ2(U)TH−φ sin θ dUdθdϕ#. (8.19)

We now use the spinor basis (o, i) associated to the null tetrad (l, n,m,m) introduced
in Subsect. 7.2, see (7.9), (7.10), and express (8.19) in terms of the components

f0 = TH−φ·o, f1 = TH−φ·i = SH−φ.
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We have ∂U = C|p+(θ)|n, hence the matrix of Γ(∂U ) in the basis (o, i) is equal to

i−1C|p+(θ)|
(

0 0
0 1

)
, see the proof of Prop. 7.1. We also set

G0(x, y) = G(x, y)o∗(y), G1(x, y) = G(x, y)i∗(y),

where we recall that (o∗, i∗) is the dual basis of (o, i). This yields

χφ(x) = C

ˆ
H−

G1(x, U, θ, ϕ#)χ2(U)SH−φ sin θ dUdθdϕ#. (8.20)

Finally we apply (8.20) to (C+
MI

)
1
2φ, using that SH−PI− = 0 and Proposition 7.3 to

obtain:

χ(C+
MI

)
1
2φ(x) = C

ˆ
H−

G1(x, U, θ, ϕ#)g+(U, θ, ϕ#) sin θ dUdθdϕ#,

where

g+ = χ2(U)(χ+
H−

)
1
2
(
− i−1κ+(U∂U + 1

2)
)
SH−φ ∈ E ′(H−).

We now apply Proposition E.5, with S = H− and X = vH = −κ+U∂U . This yields
WF(χ(C+

MI
)

1
2φ) ⊂ N+ and hence q0 6∈WF((C+

MI
)

1
2φ) provided that

WF(g+) ⊂ {(y, η) ∈ T ∗H− \o : +η ·vH (y) ≥ 0}. (8.21)

To prove (8.21) we use the unitary map:

B : L2(]0,+∞[U×S2) 3 f 7→ Bf(s, ω) = κ
1
2
+e−κ+s/2f(e−κ+s, ω),

implementing the change of coordinates U = e−κ+s, which satisfies:

B ◦ (−i−1κ+(U∂U + 1
2)) = (i−1∂s) ◦B.

Since by (8.8) χ+
H−

(λ) decays rapidly in R−, we have

WF
(
B(χ+

H−
)

1
2 (−i−1κ+(U∂U + 1

2))SH−φ
)
⊂ {(y, η) ∈ T ∗H− \o : +η ·∂s ≥ 0},

which implies (8.21) by the covariance of the wavefront set under change of coordinates.

Case 3: suppose that π(γ) does not end up at H− nor at I−.
By Lemma C.4, there exists x1 ∈ π(γ) such that vH and vI are future directed

time-like near x1. We have

C+
MI
φ = (χ+

H−
)

1
2 (i−1LH )PH−φ+ (χ+

I−
)

1
2 (i−1LI )PI−φ =·· φH + φI

By Lemma 8.5 we get that

WF(φH /I ) ⊂ N+ above a neighborhood of x1.

By propagation of singularities this implies that q0 6∈WF(C+
MI
φ). �
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8.5. Hadamard property in MI∪II. Finally, we prove the Hadamard property in
MI∪II.

Proof of Theorem 8.3. We only consider the + case. By Theorem 4.3 it suffices to
prove that

WF(C+
Mφ) ∩ T ∗MI∪II ⊂ N+, φ ∈ SolL2(M), (8.22)

where we recall that
C+

Mφ = C+
MI
φI ⊕RC−MI

RφI′ .

Let q0 = (x0, ξ0) ∈ T ∗MI∪II ∩ N− and let γ the null bicharacteristic through q0 in
T ∗M, and let π be the base projection.

Case 1: suppose that π(γ) intersects MI. We have C+
Mφ = C+

MI
φI over MI, with

φI ∈ SolL2(MI) and C±MI
the covariances of ωMI

in Theorem 8.2. We already know that
ωMI

is Hadamard in MI by Proposition 8.6, which implies that WF(C+
Mφ) ⊂ N+ over

MI, hence q0 6∈WF(C+
Mφ) by propagation of singularities.

Case 2: suppose that π(γ) intersects MI′ . We have C+
Mφ = RC−MI

RφI′ over MI′ ,
with RφI′ ∈ SolL2(MI). Since ωMI

is Hadamard, we have WF(C−MI
RφI′) ⊂ N−, hence

WF(C+
Mφ) ⊂ N+ over MI′ , and q0 6∈WF(C+

Mφ) by propagation of singularities.

Case 3: suppose that π(γ) does not intersect MI nor MI′ , which means that π(γ)
leaves MI∪II through S(r+), see the proof of Proposition C.12. By propagation of
singularities, we can assume that x0 belongs to an arbitrarily small neighborhood of
S(r+) in M. If χ ∈ C∞c (M) then as in the proof of Proposition 8.6, we can find
χ1 ∈ C∞c (Σ̂T ) such that

χφ(x) = −
ˆ

Σ̂T

G(x, y)Γ(g−1ν)(y)χ1rΣ̃T
φ(y)i∗l (dvolg)(y), φ ∈ SolL2(M),

where r
Σ̂T

: SolL2(M)→ L2(Σ̂T ) is the bounded extension of the trace on Σ̂T .
We can then find χ2 ∈ C∞c (HL), equal to 1 near S(r+) such that

χφ(x) = −
ˆ

Σ̂T

G(x, y)Γ(g−1ν)(y)χ2TH φ(y)i∗l (dvolg)(y) + u, φ ∈ SolL2(M),

where q0 6∈WF(u) and we will drop the error term u. We rewrite this identity as

χφ(x) = −
ˆ

H
G(x, y)Γ(∇V )χ2TH φ |g|

1
2 dUdθdϕ#, (8.23)

where H ∼ RU × S2
θ,ϕ# , and assume that χ2 depends only on the variable U . The

same arguments as in the proof of Proposition 8.6 yield:

χφ(x) = C

ˆ
H

G1(x, U, θ, ϕ#)χ2(U)SH φ sin θ dUdθdϕ#. (8.24)

We apply (8.24) to C+φ using that

SH C+φ = 1R+(−i−1∂U )SH φ,

and obtain:

χφ(x) = C

ˆ
H

G1(x, U, θ, ϕ#)χ2(U)1R+(−i−1∂U )SH φ sin θ dUdθdϕ#. (8.25)

We apply Proposition E.5 with S = HL and X = −∂U . Clearly for

g+ = χ2(U)1R+(−i−1∂U )SH φ
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we have
WF(g+) ⊂ {(y, η) ∈ T ∗H \o : η ·X(y) ≥ 0}.

Thus, Proposition E.5 combined with (8.25) imply that q0 6∈WF(φ). �

Appendix A. Properties of the spinorial Lie derivative

A.1. Lie derivative of spinors. We will use the notation introduced in Section 2 and
assume that we are given a spinor bundle S π−→ M on an oriented and time oriented
Lorentzian manifold of dimension 4. Recall the definition:

LXψ = ∇SXψ +
1

8
((∇aX)b − (∇bX)a)γ

aγbψ, ψ ∈ C∞(M,S), (A.1)

for X ∈ C∞(M ;TM), and:

LX(γ(v)ψ) =·· (LXγ)(v)ψ + γ(LXv)ψ + γ(v)LXψ, ψ ∈ C∞(M ;S),

for all v ∈ C∞(M ;TM). One has the identity ([43, (III.10)]):

(LXγ)b = −1

2
((∇aX)b + (∇bX)a)γ

a. (A.2)

If X is Killing this yields:

LX(γ(v)ψ) = γ(LXv)ψ + γ(v)LXψ. (A.3)

We denote by X(f) the action of the vector field X on the scalar function f . Recall
that the divergence δX of X is defined by LXΩg =: δXΩg, where Ωg is the volume
form associated to g.

Lemma A.1. One has

X(ψ1 ·βψ2) = LXψ1 ·βψ2 + ψ1 ·βLXψ2,

for all X ∈ C∞(M ;TM), ψi ∈ C∞(M ;S). It follows that if δX = 0, then LX is
formally self-adjoint for the (non-positive) Hermitian scalar product

(ψ1|ψ2)M,β =

ˆ
M
ψ1 ·βψ2 dvolg, ψ1, ψ2 ∈ C∞c (M ;S).

Furthermore, ∇SX is formally self-adjoint when δX = 0.

Proof. For ψ1, ψ2 ∈ C∞(M ;S) we have

X(ψ1 ·βψ2) = ∇Xψ1 ·βψ2 + ψ1 ·β∇Xψ2

= LXψ1 ·βψ2 + ψ1 ·βLXψ2 +R(X)ψ1 ·βψ2 + ψ1 ·βR(X)ψ2,

for R(X) = 1
8((∇aX)b − (∇bX)a)γ

bγa. Since (γa)∗β = −βγa, we obtain

R(X)∗β + βR(X) =
1

8
(∇aX)b − (∇bX)aβ(γaγb + γbγa)

=
1

8
((∇aX)b − (∇bX)a)g

abβ = 0,

since gab = gba. �

Lemma A.2. One has [LX , κ] = 0.

Proof. This follows from [∇SX , κ] = 0, [γ(v), κ] = 0 and (2.16). �

Lemma A.3. One has [LX , H] = 0 and thus LX preserves C∞(M ;We/o).
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Proof. We know that [∇SX , H] = 0 and γ(v)H = −γ(v)H, so the result follows from
(2.16). �

Lemma A.4. If X is a Killing vector field then

[LX , /D] = 0.

Proof. By [43, eqs. (V.1), (III.50)] one has

[LX , /D] = (LXγ)a∇Sa −
1

2
(∂a(δX) +

1

2
∇b(LXg)ba)γ

a.

If X is Killing then LXγ = 0 by (A.2) and δX = 0. �

A.2. Lie derivative of Weyl spinors. By Lemma A.3, LX preserves C∞(M ;We).
Since S =W∗e we can define L∗X acting on C∞(M ; S) by:

X((w|s)) =·· (LXW |s) + (w|L∗Xs), w ∈ C∞(M ;We), s ∈ C∞(M ;S).

We recall that L(We,W∗e ) is identified with S⊗S and we define L̃X acting on C∞(M ; S⊗
S∗) by:

L̃X |s1)(s2| ··= |L∗Xs1)(s2|+ |s1)(L∗Xs2|, si ∈ C∞(M ;S).

We also recall that

τ : C∞(M ;CTM) 3 v 7→ βγ(v) ∈ C∞(M ; S⊗ S)

is the canonical isomorphism.
The bundle S is equipped with the symplectic form ε = 1√

2
(βκ)−1. From Lemmas

A.1, A.2 we obtain that:

X(s1 ·εs2) = L∗Xs1 ·εs2 + s1 ·εL∗Xs2, si ∈ C∞(M ; S). (A.4)

Lemma A.5. If X is Killing then we have:

τ ◦ LX = L̃X ◦ τ.

Proof. For wi ∈ C∞(M ;We), si ∈ C∞(M ;S) and A = |s1)(s2| we have:

X((w1|Aw2)) = X((w1|s1)× (s2|w2))

= ((LXw1|s1) + (w1|L∗Xs1))(w2|s2)

+ (w1|s1)((L∗Xs2|w2) + (s2|LXw2))

= (LXw1|s1)(w2|s2) + (w1|s1)(s2|LXw2) + (w1|L̃XAw2).

(A.5)

If A = τ(v) for v ∈ C∞(M ;CTM), we have (w1|Aw2) = w1 ·βγ(v)w2 so by Lemma
A.1:

X((w1|Aw2)) = LXw1 ·βγ(v)w2 + w1 ·βLX(γ(v)w2).

If X is Killing this yields using (A.3):

X((w1|Aw2)) = LXw1 ·βγ(v)w2 + w1 ·βγ(LXv)w2 + w1 ·βγ(v)LXw2

= (LXw1|s1)(w2|s2) + (w1|s1)(s2|LXw2) + w1 ·βγ(LXv)w2.
(A.6)

By comparing (A.5) with (A.6) we obtain that τ(LXv) = L̃Xτv. �
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Lemma A.6. Let l, n,m,m be a normalized null tetrad, and let (o, ı) be the associated
frame of S, such that

iτ l = o ⊗ o, iτn = ı⊗ ı, iτm = o ⊗ ı, iτm = ı⊗ o.

Then if X is a Killing vector field such that LX l = LXn = LXm = 0, one has:

L∗Xo = L∗X ı = 0.

Proof. Let us denote L∗Xo,L∗X i simply by o′, i ′. Since LX l = LXn = LXm = 0, we
obtain from Lemma A.5:

1) o′ ⊗ o + o ⊗ o′ = 0,

2) ı′ ⊗ ı+ ı⊗ ı′ = 0,

3) o′ ⊗ ı+ o ⊗ ı′ = 0,

4) ı′ ⊗ o + ı⊗ o′ = 0.

Using (A.4) and the fact that o ·εı = 1 we obtain o′ ·εı+ o ·εı′ = 0 hence o ′ ·εı = ı′ ·εo.
Composing then 1) and 3) to the right with 1⊗ εı and 1⊗ εo respectively gives:

o ′ + (o′ ·εı)o = 0,

−o ′ + (ı′ ·εo)o = 0,

hence o ′ = 0 since o′·εı = ı′·εo. Composing then 4) to the right with 1⊗ εı gives finally
ı′ = 0. �

Appendix B. Algebraic quantization of the Weyl equation

B.1. Quasi-free states on CAR ∗-algebras. In this appendix of algebraic quantiza-
tion of fermionic fields. Below, we follow [27, Sect. 17.14]. Let (Y , ν) be a pre-Hilbert
space. We denote by CAR(Y , ν) the unital complex ∗-algebra generated by elements
ψ(y), ψ∗(y), y ∈ Y , with the relations

ψ(y1 + λy2) = ψ(y1) + λψ(y2),

ψ∗(y1 + λy2) = ψ(y1) + λψ∗(y2), y1, y2 ∈ Y , λ ∈ C,

[ψ(y1), ψ(y2)]+ = [ψ∗(y1), ψ∗(y2)]+ = 0,

[ψ(y1), ψ∗(y2)]+ = y1 · νy21, y1, y2 ∈ Y ,
ψ(y)∗ = ψ∗(y), y ∈ Y ,

(B.1)

where [A,B]+ = AB +BA is the anti-commutator.
A quasi-free state ω on CAR(Y , ν) is determined by its covariances λ± ∈ Lh(Y ,Y∗),

defined by

ω(ψ(y1)ψ∗(y2)) =·· y1 ·λ+y2, ω(ψ∗(y2)ψ(y1)) =·· y1 ·λ−y2, y1, y2 ∈ Y .

A pair of Hermitian sesquilinear forms λ± on Y are the covariances of a quasi-free state
on CAR(Y , ν) iff

λ± ≥ 0, λ+ + λ− = ν. (B.2)

It follows that λ± uniquely extend to the completion Ycpl of Y for ν. The follow-
ing characterization of pure quasi-free states is well-known, see e.g. [16, Thm. 17.31,
Subsect. 17.2.3].
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Lemma B.1. The quasi-free state ω on CAR(Y , ν) is a pure state iff there exist pro-
jections π± on Ycpl such that

λ± = ν ◦ π±.

Note that π± are selfadjoint for ν and π+ + π− = 1.

B.2. Time reversal. In the remaining part of this section we discuss the notion of
time reversal in the context of quantization of Weyl fields.

B.2.1. Time reversal on CAR(Y , ν). Let (Y , ν) a pre-Hilbert space as in Subsect. B.1.
A time reversal is a unitary involution τ ∈ U(Y , ν) i.e.

τ2 = 1, τy1 ·ντy2 = y1 ·νy2, y1, y2 ∈ Y .

We associate to τ the anti-linear ∗-involution τ̂ on CAR(Y , ν) defined by

τ̂(ψ(y)) ··= ψ∗(τy), τ̂(ψ∗(y)) ··= ψ(τy), y ∈ Y .

Note that this map is well defined in CAR(Y , ν) since

τ̂([ψ(y1), ψ∗(y2)]+) = τ̂(y1 ·νy21) = y2 ·νy11,

= [τ̂(ψ(y1)), τ̂(ψ∗(y2))]+

= [ψ∗(τy1), ψ(τy2)]+ = y2 ·νy11.

If ω is a quasi-free state on CAR(Y , ν) with covariances λ± we define τ̂∗ω = ω̂ by

ω̂(A) ··= ω(τ̂(A∗)), A ∈ CAR(Y , ν),

which is also a quasi-free state on CAR(Y , ν). We have then

ω̂(ψ(y1)ψ∗(y2)) = ω(ψ∗(τy2)ψ(τy1)),

ω̂(ψ∗(y2)ψ(y1)) = ω(ψ(τy1)ψ∗(τy2)),

so the covariances λ̂± of ω̂ are:
λ̂± = τ∗λ∓τ.

B.2.2. Time reversal on a spacetime. Recall that if (M, g) is a spacetime, (M ′, g) is the
same Lorentzian manifold with the reversed time orientation. Denoting with primes
the objects associated to (M ′, g) we have:

γ′ = γ, κ′ = κ, β′ = −β, N±′ = N∓,

∇S′ = ∇S , /D
′
= /D, D′ = −D, G′ = G,

(·|·)M ′ = (·|·)M , (·|·)D′ = (·|·)D,

so id : (Solsc(M), (·|·)D)→ (Solsc(M
′), (·|·)D′) is a time reversal in the sense of B.2.1.

B.2.3. Time reversal on quasi-free states. If

V± resp. C± are the spacetime resp. solu-
tion space covariances of a quasi-free state ω on CAR(M), then

V±′=

V∓, C±′ = C∓

are the spacetime resp. solution space covariances of the corresponding state ω′ on
CAR(M ′) (denoted by ω̂ in B.2.1). Since N±′ = N∓, we see that if ω is a Hadamard
state on CAR(M), then ω′ is a Hadamard state on CAR(M ′) (see Subsect. 4.2 for the
definition of Hadamard states).
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Appendix C. Null geodesics and Cauchy surfaces in Kerr spacetime

C.1. Summary. The first purpose of this appendix is to show that various hyper-
surfaces used throughout the text are Cauchy, and that the corresponding spacetime
regions are therefore globally hyperbolic. We remark that the causal structure of the
Kerr spacetime could be deduced from detailed knowledge of lower-dimensional di-
agrams, see [8] for the relevant framework. Here however we need to analyse the
geodesics directly to treat the families of hypersurfaces that are of interest to us.

We also prove an important result used in the main text, namely (2) of Lemma C.4,
which states that for sufficiently small a, null geodesics in MI that do not meet H−
nor I− always cross a region where the Killing vector fields vH and vI are time-like

C.2. Null geodesics and first integrals. We first recall some well-known facts about
null geodesics in the Kerr spacetime, see [48, Ch. 4], [5, Ch. 7].

Denoting by ga,M the Kerr metric in the Boyer-Lindquist coordinates (r, t, θ, ϕ),
the change of coordinates r = Mr̃, t = Mt̃ gives ga,M = M2gaM−1,1. After a trivial
conformal transformation, we can assume thatM = 1 to make the computations easier.
However, we will state the main results about null geodesics for arbitrary values of M .

With the convention thatM = 1, recall that we have the sub-extremality assumption
0 < a < 1, and:

∆ = r2 − 2r + a2, ρ2 = r2 + a2 cos2 θ,

and r± = 1±
√

1− a2 are the horizon radii.
Let γ : I 3 s 7→ x(s) be a null geodesic, where s is the affine parameter. We have

the following three independent first integrals:

E = −∂t · gẋ, L = ∂ϕ · gẋ, K = Carter constant,

which are constant along γ. One sets Q = K − (L − aE)2, and one uses (E,L,Q) as
independent first integrals. Any null geodesic starting away from the axis {sin θ = 0} is
entirely determined by its initial coordinates (r, t, θ, ϕ)(0), the signs of r′(0) and θ′(0)
and the constants (E,L,Q), see [48, Lem. 4.2.5].

C.3. Equations of motion. Let:

P (r) = (r2 + a2)E − aL, D(θ) = L− aE sin2 θ.

If γ : I 3 s 7→ x(s) is an affinely parametrized null geodesic, we have, see [48,
Thm. 4.2.2]: ρ

4ṙ2 = R(r),

ρ4θ̇2 = Θ(θ),
(C.1)

for
R(r) = P 2(r)−∆(r)K,

= E2r4 + (a2E2 − L2 −Q)r2 + ((aE − L)2 +Q)2r − a2Q,

Θ(θ) = K − sin−2(θ)D2(θ).

Knowing the functions r(s), θ(s), the functions t(s), ϕ(s) are then determined by the
equations: 

ρ2ϕ̇ = sin−2 θD(θ) + a
P (r)

∆(r)
,

ρ2ṫ = aD(θ) +
(r2 + a2)P (r)

∆(r)
=·· T (r, θ)

(C.2)
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see [48, Prop. 4.1.5].

C.3.1. Some more facts. The polar planes P = P (t0, ϕ0) are the submanifolds {t =
t0, ϕ = ϕ0}. The axis is the submanifold A = {sin θ = 0}. We know, see [48, Cor. 4.2.8,
Lem. 4.2.9], that if γ is a null geodesic then:
(1) K ≥ 0,
(2) K = 0 iff γ is a principal null geodesic,
(3) L = E = 0 and K > 0 iff γ is in a time-like polar plane (hence in MII (in order

for the polar plane to be time-like),
(4) K = L = 0 and E 6= 0 iff γ is in A \ (H+ ∪H−),
(5) K = L = E = 0 iff γ is in H+ ∪H−.
Moreover, see e.g. [48, Prop. 2.5.5], the horizons H± are closed and totally geodesic,
hence any geodesic tangent to H± is entirely included in H±.

C.3.2. Double zeros of R. We now look at possible double zeros (roots) of R.
If E = 0, then R(r) is a polynomial of degree 0 if K = 0, and 2 if K 6= 0. If K = 0,

then R(r) = −a2Q so R has double zeros only if Q = 0. If K 6= 0, then K > 0 and R
has a double zero if L2 = (a2−1)Q, which implies that Q < 0 and K = a2Q < 0 which
is a contradiction. Therefore if E = 0, R has a double zero only if K = L = E = 0,
i.e. if γ is included in H+ ∪H−.

If E 6= 0 it is convenient to set

ξ = LE−1, η = QE−2, κ = KE−2 = η + (ξ − a)2. (C.3)

One has the following constraints on the integrals of motions for null geodesics:

η + (ξ − a)2 ≥ 0, (C.4)

η < 0 ⇒ η2 ≤ a2, 0 ≤ |ξ| ≤ |a| −
√
|η|, (C.5)

see equations (194), (206) in [5, Ch. 7]. The following lemmas will be needed later on.

Lemma C.1. (1) There are no double zeros of R in ]r−, r+[.
(2) There exists 0 < a0 < 1 and C > 0 such that for |a| ≤ a0 and E 6= 0 the double

zeros of R in [r−,+∞[ belong to [3− Ca, 3 + Ca] and one has |ξ| ≤ C, |η| ≤ C.

Proof. By the computations in [5, p. 351] the conditions R(r) = 0, ∂rR(r) = 0 imply
that:

ξ =
1

a(r − 1)
((r2 − a2)− r∆), (C.6)

η =
r3

a2(r − 1)2
(4a2 − r(r − 3)2), (C.7)

see equations (224), (225) in [5, Ch. 7]. The conditions η < 0 and (C.5) are incompatible
with (C.6), (C.7) (see [5, p. 352]). It follows hence from (C.7) that if r is a double zero
of R then r(r − 3)2 ≤ 4a2. If r ∈]r−, r+[ we have ∆(r) < 0, i.e. a2 < 2r − r2 hence

r(r − 3)2 < 4(2r − r2)

and therefore r(r − 1)2 < 0, which is a contradiction. This proves (1).
Let us now prove (2). By studying the graph of f(r) = r(r− 3)2 we obtain that the

double zeros of R belong to[
0,

4

9
a2 +O(a3)

]
∪
[
3− 2√

3
a+O(a2), 3 +

2√
3
a+O(a2)

]
.
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Since r− = 1
2a

2 + O(a3), the first interval above is disjoint from [r−,+∞[ for a small
enough. If r is a double zero in [r−,+∞[ then from r = 3 +O(a) and (C.6) we obtain
that ξ ∈ O(1), and since 0 ≤ 4a2 − r(r − 3)2 ≤ 4a2 we obtain that η ∈ O(1). �

Lemma C.2. Let r0 > r+ be a double zero of R. Then

T (r0, θ) 6= 0, ∀ θ ∈ [0, π].

Proof. We note that

T (r, θ) =
σ2(r, θ)E − 2arL

∆(r)
,

where σ2(r, θ) = (r2 + a2)2 − a2(sin2 θ)∆(r). Assume that T (r0, θ) = 0. Setting
σ0 = σ(r0, θ),∆0 = ∆(r0), we obtain ξ =

σ2
0

2ar0
. By equation (224) in [5, Ch. 7] we have

ξ =
1

a(r0 − 1)
(r2

0 − a2 − r0∆0), (C.8)

which yields:
σ2

0(r0 − 1)− 2r0(r2
0 − a2 − r0∆0) = 0.

We write
σ2

0(r0 − 1)− 2r0(r2
0 − a2 − r0∆0) = (r0 − 1)(r2

0 + a2)2 − 2r0(r2
0 − a2)

+ (2r2
0 − a2 sin2 θ(r0 − 1))∆0.

We have

2r2
0 − a2 sin2 θ(r0 − 1) ≥ 2r2

0 − a2r0 = r0(2r0 − a2) > 0,

and
(r0 − 1)(r2

0 + a2)2 − 2r0(r2
0 − a2) ≥ 2r0((r0 − 1)(r2

0 + a2)− (r2
0 − a2))

= 2r0(r3
0 + a2r0 − r2

0 − a2 − r2
0 + a2)

= 2r2
0(r2

0 + a2 − 2r0) = 2r2
0∆0 > 0.

Therefore ξ 6= σ2
0

2ar0
which proves the lemma. �

Corollary C.3. There exists 0 < a1 ≤ 1 such that for |a|M−1 < a1 the Killing vector
fields vH and vI are future directed time-like at all points (r, θ, ϕ) ∈ [r+,+∞[ × S2

such that r is a double zero of R.

Proof. We can assume without loss of generalityM = 1 as explained at the beginning
of the section. Let fH /I (a, r, θ) = vH /I ·gvH /I . We have fH /I (0, 3, θ) = −1/3,
which implies that there exists ε, δ > 0 such that vH−/I− are time-like for |a| ≤ ε and
|r − 3| ≤ δ. By applying Lemma C.1 we obtain that vH and vI are time-like at all
points (r, θ, ϕ) ∈ [r+,+∞[ × S2 such that r is a double zero of R. They are clearly
future directed since −∇t is future directed. �

C.4. Null geodesics in MI. We recall the classification of null geodesics according to
the behavior of r(s) for s → ∞. By (C.1) the region {R(r) < 0} is not accessible to
null geodesics. One can then discuss the possible connected components of {R(r) ≥ 0},
depending of the values of the first integrals E,L,Q.

Another standard fact, see e.g. [48, Ch. 4], is that r(s) can reach a first order zero
of R only for some finite affine time s0, and then ṙ(s) changes sign at s = s0. On the
contrary r(s) can reach a double zero r0 of R only for s = ±∞, or else r(s) ≡ r0. These
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facts follow easily from (C.1). The horizon {r = r+} can be crossed only transversally,
at finite affine time, see [48, Sect. 4.4].

We obtain the following classification for future directed null geodesics.
In the tables below, type [a, b] for example means that γ starts at r = a and ends

at r = b for finite values of the affine parameter, while type [a, b[ means that γ ends at
r = b for infinite value of the affine parameter. Furthermore, r0 denotes some double
zero of R, and [r0] corresponds to a geodesic for which r(s) = r0 for all s.

Table 1. E = 0

Type Constants
[r+→r+] E = 0, K > 0, L 6= 0

[r+→∞[ or ]∞→r+] E = 0, K = 0, L 6= 0 (princ. null)

Table 2. E 6= 0

Type Constants

[r+→r+]
E 6= 0, Q > 0, R(r+) > 0

E 6= 0, Q = 0, L 6= aE, R(r+) > 0

[r+→∞[ or ]∞→r+]
E 6= 0, Q ≥ 0, R(r+) > 0

E 6= 0, Q < 0

]∞→∞[
E 6= 0, Q > 0

E 6= 0, Q = 0, L 6= aE

[r+→r0[ or ]r0→r+]
E 6= 0, Q > 0, R(r+) > 0

E 6= 0, Q = 0, L 6= aE, R(r+) > 0

]r0→∞[ or ]∞→ r0[ E 6= 0, Q > 0, R(r+) > 0

[r0]
L = 1

a(r0−M) [M(r2
0 − a2)− r0∆(r0)]E,

Q =
r3
0

a2(r0−M)2 [4M∆(r0)− r0(r0 −M)2]E2

To summarize the tables above, let γ a future directed null geodesic in MI, parametrized
by s ∈ I. We have I = ]s−, s+[ for

−∞ = s−, s+ = +∞ if γ is of type ]∞→∞[, ]r0→∞[, ]∞→r0[,

−∞ < s−, s+ = +∞ if γ is of type [r+→∞[, [r+→r0[,

−∞ = s−, s+ < +∞ if γ is of type ]∞→r+], ]r0→r+]

−∞ < s−, s+ < +∞ if γ is of type [r+→r+].

Lemma C.4. (1) Let γ be a future directed null geodesic. Then

i) lims→s± t(s) = ±∞,

ii) lims→s− t
∗(s) = −∞ if γ starts at r+.

(C.9)

(2) There exists 0 < a0 ≤ 1 such that for |a|M−1 < a0 any future directed null
geodesic which does not start at r+ nor at ∞ passes through a region where the
Killing vector fields vH and vI are both time-like.

Proof. Again we assume M = 1. Statement (2) follows from Corollary C.3 and the
tables above. Let us now prove (1).
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Let us first check ii). If γ starts at r+, then γ enters MI from M′II, and since MI and
M′II belong to a common ∗K patch we have lims→s−

∗t(s) finite, lims→s− r(s) = r+, so
lims→s− t

∗(s) = −∞.
Let us now prove i). We first assume that E 6= 0.
From (C.1), (C.2) we have

t = ±
ˆ
T (r, θ)

R
1
2 (r)

dr. (C.10)

Case 1: assume that lims→s± r(s) = +∞. We have:

T (r, θ)

R
1
2 (r)

=
E

|E|
+O(r−1), r → +∞. (C.11)

Note that E > 0 since γ is future directed. Therefore by (C.10) lims→s± t(s) = +∞.
Case 2: assume next that lims→s± r(s) = r+. By Table 2 we have R

1
2 (r+) =

|P (r+)| 6= 0 hence

T (r, θ)

R
1
2 (r)

=
2r+

(r − r+)(r+ − r−)
+O(1), r → r+, (C.12)

which by (C.10) shows that lims→s± t(s) = +∞.
Case 3: assume that lims→s± r(s) = r0, where r0 6= r+ is a double root of R. By

Lemma C.2, T (r0, θ) 6= 0 for θ ∈ [0, π]. If r(s) is not constant, then (C.10) implies that
lims→s± t(s) = +∞. If r(s) ≡ r0 we use (C.2) to obtain again that lims→s± t(s) = +∞.

Consider now the case E = 0. If K > 0 and L 6= 0 then γ is of type [r+→r+] and

ρ−2T = − 2a2Lr+
(r−r+)(r+−r−) +O(1),

ρ−2R
1
2 (r) = |aL|+O(r − r+),

when r → r+, uniformly in θ, (C.13)

Again, the assertion of the lemma is satisfied. If K = 0, L 6= 0, γ is a principal null
geodesic and i) is satisfied. If K = L = 0 γ is not in MI. �

C.5. Null geodesics in MII. In MII we have other possibilities: a future directed null
geodesic can originate at the bifurcation sphere S(r+) and terminate at the bifurcation
sphere S(r−). We obtain the following table of null geodesics in MII:

Table 3. E = 0

Type Constants

[r±→r∓]
E = 0, K > 0, L 6= 0

E = 0, K = 0, L 6= 0 (princ. null)
[S(r±)→S(r∓)] E = 0, K > 0, L 6= 0
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Table 4. E 6= 0

Type Constants

[r±→r∓]
E 6= 0, Q ≥ 0, R(r±) > 0
E 6= 0, Q < 0, R(r±) > 0

[r−→r−]
E 6= 0, Q > 0, R(r−) > 0

E 6= 0, Q = 0, L 6= aE, R(r−) > 0

[r+→r+]
E 6= 0, Q > 0, R(r+) > 0

E 6= 0, Q = 0, L 6= aE, R(r+) > 0

[r+→S(r−)]
E 6= 0, Q > 0, R(r−) = 0

E 6= 0, Q = 0, L 6= aE, R(r−) = 0

[S(r+)→r−]
E 6= 0, Q > 0, R(r+) = 0

E 6= 0, Q = 0, L 6= aE, R(r+) = 0

Let γ be a future directed null geodesic in MII, parametrized by s ∈ I. We have
I = ]s−, s+[ for −∞ < s− < s+ < +∞. We have the following analogue of Lemma
C.4.

Lemma C.5. Let γ be a future directed null geodesic in MII. Then:

1) lims→s− t
∗(s) = −∞ if γ enters MII from MI′ ,

2) lims→s− t
∗(s) = −∞ if γ enters MII from MII′ ,

3) lims→s− t
∗(s) finite if γ enters MII from MI,

4) lims→s+ t
∗(s) = +∞ if γ leaves MII into MIII′ ,

5) lims→s+ t
∗(s) = +∞ if γ leaves MII into MII′ ,

6) lims→s+ t
∗(s) finite if γ leaves MII into MIII.

Proof. We recall that

t∗ = ∗t+ 2x(r), lim
r→r±

x(r) = ∓∞. (C.14)

The blocks MI′ , MII and MIII′ belong to a common ∗K patch. This implies that if γ
enters MII from MI′ then lims→s−

∗t(s) finite, lims→s− r(s) = r+, and if γ leaves MII

into MIII′ then lims→s+
∗t(s) finite, lims→s+ r(s) = r−. Using (C.14) this implies 1) and

4).
Since MI, MII and MIII belong to a common K∗ patch we obtain similarly 3) and 6).
If γ enters MII from MII′ , then γ passes through the crossing sphere S(r+), hence

lims→s− V (s) = 0, which proves 2), using (5.10). Finally if γ leaves MII into MII′ , then
γ passes through the other crossing sphere S(r−). One uses then the KBL coordinates
used to construct the Kerr-Kruskal extension D(r−), see [48, Def. 3.4.5]. The same
argument as before shows that lims→s+ t

∗(s) = +∞, which proves 5). �

C.6. Cauchy surfaces. We now prove that several hypersurfaces are Cauchy surfaces
in MI,MI∪II or M. To prove that a set S is a Cauchy surface in some spacetime (M, g)
we use the following facts. We recall that a set S ⊂ M is called achronal if each
time-like curve intersects S at most once.

Theorem C.6. (1) A closed achronal set S is a Cauchy surface iff each maximal null
geodesic intersects S and enters I+(S) and I−(S).
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(2) A closed connected non time-like hypersurface S is achronal if M \ S is discon-
nected.

Statement (1) can be found in [30], [61, Thm. 8.3.7], and statement (2) in [48, Corr.
3.10.2].

We will use the following corollary of Theorem C.6.

Corollary C.7. Suppose u ∈ C∞(M) is such that:
(1) ∇u is time-like,
(2) supγ u = +∞ and infγ u = −∞ for any maximal future directed null geodesic γ.
Then the level sets ST = u−1({T}) are Cauchy surfaces in (M, g).

Proof. Since ∇u is time-like, ST is space-like and achronal and clearly closed and
connected. Possibly replacing u by −u, we can assume that ∇u is future directed.
This implies that {u(x) > T} ⊂ I+(ST ) and {u(x) < T} ⊂ I−(ST ), since the integral
curves of ∇u are time-like future directed. Using (2) this shows that any maximal null
geodesic intersects ST and enters I±(ST ). �

Proposition C.8. The surfaces ΣT = {t = T} are Cauchy surfaces in MI.

Proof. gtt < 0 in MI, so ∇t is time-like in MI. We apply then Lemma C.4 i) and
Corollary C.7. �

C.6.1. Auxiliary Cauchy surfaces in MI. Recall that in 8.3.1 we defined the family of
hypersurfaces ΣT , Σ̃T . We now introduce families ΣT,n, Σ̃T,n of Cauchy surfaces in MI

converging to ΣT , Σ̃T when n→∞.
We start with defining ΣT,n. We set xn(r) = min(r − 2 ln r, n) for n ∈ N and

ΣT,n = {t+ xn(r) = T}.

Σ0

ΣT,n

Figure 8. The Cauchy surfaces ΣT,n.

Proposition C.9. The surfaces ΣT,n for T � −1, n ∈ N are Cauchy surfaces in MI.

Proof. Let un(t, r) = t+ xn(r). We have using (5.1):

−dun ·g−1dun ≥
1

∆ρ2
((r2 + a2)2 − a2∆−∆2(1− 2r−1)2)

≥ 1

∆ρ2
((r2 + a2)2 − a2∆−∆2)

=
1

∆ρ2
(2r(r2 + a2) + (2r − a2)∆) > 0 for r > r+,

so ∇un is time-like in MI. For each n, un(t, r)− t is bounded, so we conclude again by
Lemma C.4 and Corollary C.7. �
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Let us now define Σ̃T,n. We set x̃n(r) = min(−n, x̃(r)) for n ∈ N, where x̃(r) is
defined in (8.5) and

Σ̃T,n = {t+ x̃n(r) = T}.

Σ0

Σ̃T,n

Figure 9. The Cauchy surfaces Σ̃T,n.

Proposition C.10. The surfaces Σ̃T,n for T � −1, n ∈ N are Cauchy surfaces in MI.

Proof. Let ũn(t, r) = t− x̃n(r). We have

−dũn ·g−1dũn ≥
1

∆ρ2
((r2 + a2)2 − a2∆−∆2(x̃′n)2)

≥ 1

∆ρ2
((r2 + a2)2 − a2∆−∆2(y′)2) =

1

ρ2
,

where we recall that y(r) is defined in (8.4). It follows that ∇ũn is time-like in MI.For
each n ũn(t, r)− t is bounded, and we complete the proof as for Proposition C.9. �

C.6.2. Cauchy surfaces in MI∪II. We construct a family of space-like Cauchy surfaces
in MI∪II.

It is easy to see that for T � 1 the equation x(r) − r = −T has a unique solution
rT in ]r+, 2r+[ with rT − r+ ∈ O(e−cT ) for some c > 0. We fix a smooth decreasing
function χ with χ = 1 in ]−∞, r−+ ε] and χ = 0 in ]1

2(r+ + r−),+∞[. We define v(r)
by

v′(r) = 1 + χ(r)
1

r − r−
, v(r+) = r+

so

v(r) = r in [r+,+∞[, v(r)→ −∞ when r → r−. (C.15)

We define the function uT on MI∪II by

uT =

{
t∗ − v(r) + T, for r ≤ rT ,
t for rT < r.

We set

ZT ··= {uT (x) = 0} ⊂ MI∪II.
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MII

MI
ZT

Figure 10. The Cauchy surfaces ZT .

Proposition C.11. The surfaces ZT for T � 1 are Cauchy surfaces in MI∪II.

Proof. In {r > rT } we have duT ·g−1duT = gtt < 0. In {r < rT } we have

duT ·g−1duT =
1

ρ2

(
∆(r)(v′)2(r)− 2(r2 + a2)v′(r) + a2 sin2 θ

)
≤ 1

ρ2

(
∆(r)(v′)2(r)− 2(r2 + a2)v′(r) + a2

)
.

In [r+,+∞[ we have

∆(r)(v′)2(r)− 2(r2 + a2)v′(r) + a2 = ∆(r)− 2(r2 + a2) + a2 = −r2 − 2r < 0.

In ]r−, r+] we have ∆(r) ≤ 0 and (v′)2(r) ≥ v′(r) so

∆(r)(v′)2(r)− 2(r2 + a2)v′(r) + a2 ≤ (∆(r)− 2(r2 + a2))v′(r) + a2

= (−r2 − 2r)v′ + a2 − a2v′ ≤ −r2 − 2r < 0,

since v′ ≥ 1. It follows that ∇uT is time-like in MI∪II. Let now γ : J 3 s 7→ x(s) be a
future directed null geodesic in MI∪II. We claim that

sup
γ
uT = +∞, (C.16)

inf
γ
uT = −∞, (C.17)

which using Corollary C.7 will complete the proof.
Let us set γI = γ ∩MI, γII = γ ∩MII.
If γI = γII = ∅, then γ is included in the horizon H+ and γ is a rest photon,

see [48, Lem. 4.2.9]. By [48, Lem. 3.4.10] we have V (x(s)) = s which implies that
supγ t

∗ = +∞, infγ t
∗ = −∞ and hence (C.16), (C.17), since v(r+) is finite.

It remains to check (C.16), (C.17) if γI or γII is not empty. Let us first check (C.16).
Case I: γII 6= ∅. Using Lemma C.5 4), 5), 6) and the fact that limr→r− v(r) = −∞,

we obtain (C.16).
Case II: γII = ∅, γI 6= ∅. Let ]s−, s+[ be the interval of affine parameter s such that

x(s) ∈ MI. Note that γI cannot end at r+ otherwise γ enters MII. If γI ends at ∞
or some double root r0, then by Lemma C.4 we have lims→s+ t(s) = +∞ and since
rT < r0 (at least for T large enough), we have uT (x(s)) = t(s) for s close to s+, which
shows (C.16).

Let us now check (C.17).
Case I: γI 6= ∅.
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If γI starts at r+ then by Lemma C.4, we have lims→s− t
∗ = −∞, lims→s− r(s) = r+

which implies (C.17).
If γI starts at∞ or some double root r0, then by Lemma C.4 we have lims→s− t(s) =

−∞ and since rT < r0 for T large enough, we have uT (x(s)) = t(s) for s close to s−
hence (C.17) holds also in this case.

Case II: γI = ∅, γII 6= ∅. We use Lemma C.5 1), 2) and the fact that v(r+) is finite
to obtain (C.17). �

C.6.3. Cauchy surfaces in M.

Proposition C.12. The surface ΣM ··= {U = V } is a space-like Cauchy surface in M.

Proof. Using (5.10), we obtain first that

ΣM = ({t = 0} ∩MI) ∪ ({t = 0} ∩MI′) ∪ S(r+), (C.18)

and that over ΣM∩MI we have d(U−V ) = −2κ+Udt, while over ΣM∩MI′ d(U−V ) =
2κ+Udt. Since gtt < 0 on MI,MI′ we obtain that d(U − V ) ·g−1d(U − V ) < 0 on
ΣM \ S(r+). On S(r+) we see directly that d(U − V )·g−1d(U − V ) < 0, using (5.8).
This implies that ΣM is space-like, hence achronal by Theorem C.6 (2), since M \ ΣM

is clearly disconnected.
Let us now γ a future directed null geodesic in M. If γ passes through MI, then by

Proposition C.8 γ crosses {t = 0} ∩MI and enters I±({t = 0} ∩MI), hence crosses ΣM

and enters I±(ΣM). The similar conclusion holds if γ passes through MI′ .
Assume now that γ passes through MII. If γ enters MII from MI or MI′ we argue

as before. Otherwise γ enters MII through S(r+). Since S(r+) is totally geodesic, γ is
transverse to S(r+) and passes through MII and MII′ , hence enters I±(ΣM). We argue
similarly if γ passes through M′II.

Finally if γ passes through one horizon without entering any of the Boyer-Lindquist
blocks, then γ is included in a horizon, for example in HR = {U = 0} and γ is a rest
photon, see [48, Lem. 4.2.9]. By [48, Lem. 3.4.10] we have V (x(s)) = s so γ again
crosses ΣM and enters I±(ΣM). Applying Theorem C.6 (1) we obtain that ΣM is a
Cauchy surface. �

Appendix D. Spectral projections in exponential coordinates

D.1. A one-dimensional lemma. For β > 0, let χ±β (s) = (1 + e∓βs)−1. Let 1R±(s)

be the characteristic function of ±[0,+∞[.
We consider the momentum operator Dx = i−1∂x acting in L2(R). Let us denote by

χ±∞(Dx) ··= ı∗ ◦ 1R±(Dx) ◦ ı

the restriction of 1R±(Dx) to L2(R+) using the canonical embedding ı : L2(R+) →
L2(R). We also consider the selfadjoint generator of dilations

A =
1

2
(xDx +Dxx) = i−1(x∂x +

1

2
)

defined on L2(R+) by eisAu(x) = es/2u(esx), s ∈ R.

Lemma D.1. On L2(R+) we have χ±∞(Dx) = χ±2π(A).

Proof. Using the formula for the Fourier transform of 1R± (see e.g. [24, Ch. 2.3, (22)])
one finds that the Schwartz kernel of χ±∞(Dx) equals

χ±∞(Dx)(x, y) = ±i(2π)−
1
2 (x− y ± i0)−1. (D.1)
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We will use the following convention for the Mellin transform on C∞c (R+) and the
inverse Mellin transform:

(Mf)(σ) =
1√
2π

ˆ
R+

x−
1
2
−iσf(x)dx,

(M−1g)(x) =
1√
2π

ˆ
R
x−

1
2

+iσg(σ)dσ.

(D.2)

It is well known that M extends to a unitary map M : L2(R+) → L2(R), and the
extension of M−1 to L2(R) is the inverse of M. Another essential fact is that M
diagonalizes the generator of dilations, meaning that

χ±β (A) =M−1 ◦ χ±β (σ) ◦M, (D.3)

where χ±β (σ) denotes the operator of multiplication by χ±β . A brief computation using
(D.2) shows that the Schwartz kernel of (D.3) equals

χ±β (A)(x, y) =
1

y
(M−1χ±β )

(
x
y

)
. (D.4)

On the other hand, (as follows from e.g. Formula 2.4 in [47])

(M−1χ±2π)(x) = ±i(2π)−
1
2 (x− 1± i0)−1

in the sense of distributions. Plugging this into (D.4) and comparing with (D.1) yields
the result. �

Let us now rename the variable x on R+ to U , and let us consider the change of
coordinates U = e−κu for some κ > 0. This change of coordinates is implemented by a
unitary map Φ : L2(R+, dU)→ L2(R, du), which satisfies

Φ ◦ (−κ(U∂U + ∂UU)) = Du ◦ Φ.

From Lemma D.1 we obtain immediately

χ±∞(DU ) = Φ−1 ◦ χ∓β
(
Du

)
◦ Φ, with β =

2π

κ
. (D.5)

This identity (together with its analogue for bosons) plays an important rôle in the
description of the Unruh and Hawking effect.

Appendix E. Wavefront sets and oscillatory test functions

E.1. Oscillatory test functions. We first recall a well-known characterization of the
wavefront set of a distribution using oscillatory test functions. The equivalence with
other standard definitions, stated in Lemma E.1 below, follows from e.g. [20, Sect. 1.3].

Let Ω ⊂ Rn be an open set. For x ∈ Ω, q = (y, η) ∈ T ∗Ω \o and χ ∈ C∞c (Ω) we
denote

vλq (x) ··= χ(x)eiλ(x−y)·η, λ ≥ 1. (E.1)

We then extend the definition to manifolds by chart diffeomorphism pullback. We will
say that a function vλq of this form is an oscillatory test function at q0 = (x0, ξ0) if
vλq (x0) 6= 0. Oscillatory test functions can be used to give the following elementary
characterization of the wavefront set.

Let (·|·)M be the L2(M,dµ) pairing associated to some arbitrary smooth density dµ.
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Lemma E.1. Let u ∈ D′(M) and (x0, ξ0) ∈ T ∗M \o. Then (x0, ξ0) /∈WF(u) iff there
exists an oscillatory test function vλq at q0 such that for all N ∈ N,

|(vλq |u)M | ≤ CNλ−N , λ ≥ 1, (E.2)

uniformly for q in a neighborhood of (x0, ξ0) in T ∗M \o.

This fact extends in a straightforward way to distributional sections of a hermitian
vector bundle.

A very simple, but useful observation is that microlocal regularity can be tested with
more general oscillatory functions.

Definition E.2. We say that wλq is a generalized oscillatory test function at q0 =

(x0, ξ0) ∈ T ∗M \o if it is of the form wλq = A∗vλq , where A ∈ Ψ0(M) is properly
supported and elliptic at q0, and vλq is an oscillatory test function at q0.

Lemma E.3. Let u ∈ D′(M) and q0 ∈ T ∗M \o. Then q0 /∈ WF(u) iff there exists a
generalized oscillatory test function wλq at q0 such that for all N ∈ N,

|(wλq |u)M | ≤ CNλ−N , λ ≥ 1,

uniformly for q in a neighborhood of q0 in T ∗M \o.

Proof. Let A and vλq be as in Definition E.2. Since A is elliptic at q0, q0 ∈ WF(u)

iff q0 ∈ WF(Au). We also have (wλq |u)M = (vλq |Au)M , so the assertion follows from
Lemma E.1 applied to Au. �

The next lemma shows that the oscillatory function wλq (and the neighborhood of q0

where the estimate holds) can be chosen in a uniform way if u varies in some set.

Lemma E.4. Let X ⊂ D′(M) and let Γ ⊂ T ∗M \o be closed. Then WF(u) ⊂ Γ for
all u ∈ X iff for all non-zero q0 ∈ T ∗M \ Γ there exists a generalized oscillatory test
function wλq at q0 such that for all u ∈ X and N ∈ N,

|(wλq |u)M | ≤ Cu,Nλ−N , λ ≥ 1, (E.3)

uniformly for q in a neighborhood of q0 in T ∗M \o.

Proof. Suppose that WF(u) ⊂ Γ for all u ∈ X . Let q0 ∈ T ∗M \ Γ. Let A ∈ Ψ(M)
be properly supported and such that WF′(A) ∩ Γ = ∅ and A is elliptic at q0. Then
Au ∈ C∞(M) for all u ∈ X . Thus, if vλq is an arbitrary oscillatory test function at q0,
then for all u ∈ X ,

|(vλq |Au)M | ≤ Cu,Nλ−N , λ ≥ 1, N ∈ N,

uniformly in q. Thus, the assertion (E.3) follows by setting wλq = A∗vλq .
The opposite direction trivially follows from Lemma E.3. �

E.2. Wavefront set estimates. The proposition below provides a refinement of the
general strategy used by Moretti in [45] and in subsequent works [11, 12, 2, 28] to
estimate wave front sets of solutions in terms of their traces on a null hypersurface.
Strictly speaking, we will use its generalization to distributional sections of vector
bundles, which is immediate.
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Proposition E.5. Let (M, g) be an oriented and time oriented Lorentzian manifold of
dimension n, and let S ⊂M be a null hypersurface equipped with a smooth density dm.
For u ∈ E ′(S) we define δS ⊗ u ∈ E ′(M) by:ˆ

M
(δS ⊗ u)ϕdvolg ··=

ˆ
S
uϕdm, ϕ ∈ C∞c (M).

Let also X be a vector field on M , tangent to S, null, future directed on S and suppose
G ∈ D′(M ×M) satisfies WF(G)′ ⊂ {(q, q′) : q ∼ q′}. Then for any u ∈ E ′(M) one
has the implication:

WF(u) ⊂ {(y, η) ∈ T ∗S \o : ±η ·X(y) ≥ 0} ⇒WF(G(δS ⊗ u)) ∩ π−1(M \ S) ⊂ N±.

Proof. Since WF(G)′M = ∅ (i.e. WF(G)′ has no points of the form (x1, 0, x2, ξ2)), we
can apply G to δS ⊗ u and we have (see e.g. [27, 7.2.7])

WF(G(δS ⊗ u)) ⊂WF(G)′(WF(δS ⊗ u)). (E.4)

Denoting by i : S →M the canonical injection, we have:

WF(δS ⊗ u) ⊂ (i∗)−1(WF(u)) ∪N∗S, (E.5)

where N∗S = {(x, ξ) ∈ T ∗M \o : x ∈ S, ξ|TxS = 0} is the conormal bundle to S.
Let now (x1, ξ1) ∈ WF(G(δS ⊗ u)) with x1 6∈ S. By (E.4) there exists (x0, ξ0) ∈

WF(δS ⊗ u) such that (x1, ξ1) ∼ (x0, ξ0). Since g|Tx0S
is positive semi-definite with

kernel RX(x0), we can find L ⊂ Tx0S space-like with Tx0S = L ⊕ RX(x0). The
orthogonal L⊥ is time-like and 2-dimensional, hence contains two null lines, RX(x0)
and Rv for v ∈ Tx0M transverse to S. We can assume that X(x0)·g(x0)v = −1 and v
is future directed.

We fix a basis (w1, . . . , wn−2) of L and denote by x = (y1, y2, y
′), y′ ∈ Rn−2 the

coordinates in the basis (v,X(x0), w1, . . . , wn−2) of Tx0M . We have then

x·g(x0)x = −2y1y2 + y′ ·hy′, where h > 0,

and consequently, for ξ0 = (η1, η2, η
′) expressed in dual coordinates, we have

ξ0 ·g(x0)−1ξ0 = −2η1η2 + η′ ·h−1η′. (E.6)

Since (x0, ξ0) ∈ N , we have ξ0 ·g−1(x0)ξ0 = 0. On the other hand, from (E.5) either
(x0, η2, η

′) ∈WF(u) or η2 = η′ = 0, i.e. (x0, ξ0) ∈ N∗S. Since h is positive definite and
the l.h.s. of (E.6) vanishes, η2 = 0 implies η′ = 0. Therefore we have ξ0 = (η1, η2, η

′)
with either

− 2η1η2 + η′ ·hη′ = 0, (x0, η2, η
′) ∈WF(u), η2 6= 0, (E.7)

or (x0, ξ0) ∈ N∗S. Let us first consider the second case. The fact that S is null is
equivalent to N∗S ⊂ N , which using the fact that N∗S is a Lagrangian submanifold
of T ∗M implies that N∗S is invariant under the bicharacteristic flow. Therefore the
null bicharacteristic from (x0, ξ0) stays in N∗S, hence above S, and thus cannot reach
the point (x1, ξ1) which is above M \ S.

Let us now consider the first case. Since by assumption WF(u) ⊂ {(y, η) ∈ T ∗S \o :
±η·X(y) ≥ 0} we deduce from (E.7) that ±η2 > 0 and ±η1 = η−1

2 η′·hη′ > 0. Therefore
(x0, ξ0) ∈ N± hence (x1, ξ1) ∈ N± since (x1, ξ1) ∼ (x0, ξ0). This completes the proof
of the proposition. �
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