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In this work we study, by a semigroup approach, a transmission problem based on biharmonic equations with boundary and transmission conditions, in two juxtaposed habitats. We give a result of existence and uniqueness of the classical solution in L p -spaces, for p ∈ (1, +∞), using analytic semigroups and operators sum theory in Banach spaces. To this end, we invert explicitly the determinant operator of the transmission system in L p -spaces using the E ∞ -calculus and the Dore-Venni sums theory.

Introduction

In this work, we consider a system of linear biharmonic equations posed on two juxtaposed domains and coupled through transmission conditions at the interface. Throughout the paper we shall impose the continuity of the flux, of the dispersal and of its flux across the interface. Using an operator approach, we investigate the existence, uniqueness as well as maximal L p -regularity for such a problem.

Transmission problems arise in various applicative fields including engineering, physics and biology. Here, we refer the reader for instance to [START_REF] Barraza Martínez | Regularity and asymptotic behavior for a damped plate-membrane transmission problem[END_REF], [START_REF] Favini | Transmission Problem for an Abstract Fourth-order Differential Equation of Elliptic Type in UMD Spaces[END_REF] or [START_REF] Hassine | Logarithmic stabilization of the Euler-Bernoulli transmission plate equation with locally distributed Kelvin-Voigt damping[END_REF] for applications in plate theory, to [START_REF] Kotschote | Maximal L p -regularity for a linear three-phase problem of parabolic-elliptic type[END_REF], [START_REF] Perfekt | The transmission problem on a three-dimensional wedge[END_REF] or [START_REF] Yanga | Uniqueness of the interior transmission problem with partial information on the potential and eigenvalues[END_REF] for applications in electromagnetism and to [START_REF] Favini | Analytic semigroups generated by the dispersal process in two habitats incorporating individual behavior at the interface[END_REF], [START_REF] Limam | On Some Problems Set in a Biological Cell, Analysis and Resolution[END_REF] or [START_REF] Wang | Global dynamics of an age-structured HIV infection model incorporating latency and cell-to-cell transmission[END_REF] for other applications in population dynamics. Let us also mention that mathematical models involving biharmonic operators also arise in various fields such as elasticity for instance see [START_REF] Costabel | On boundary integral equations of the first kind for the bi-Laplacian in a polygonal plane domain[END_REF], [START_REF] Hrustalev | A boundary-value problem for the biharmonic equation in elasticity theory, (Russian) Izv. Vysš[END_REF] or [START_REF] Saker | On the bilaplacian problem with nonlinear boundary conditions[END_REF], electrostatic see [START_REF] Cakoni | On the boundary integral equation methodfor a mixed boundary value problem of the biharmonic equation[END_REF], [START_REF] Guo | Revisiting the biharmonic equation modelling electrostatic actuation in lower dimensions[END_REF] or [START_REF] Lin | Nonlinear non-local elliptic equation modelling electrostatic actuation[END_REF], plate theory [START_REF] Barraza Martínez | Regularity and asymptotic behavior for a damped plate-membrane transmission problem[END_REF], [START_REF] Favini | Transmission Problem for an Abstract Fourth-order Differential Equation of Elliptic Type in UMD Spaces[END_REF] or [START_REF] Hassine | Logarithmic stabilization of the Euler-Bernoulli transmission plate equation with locally distributed Kelvin-Voigt damping[END_REF] or population dynamics [START_REF] Cohen | A generalized diffusion model for growth and dispersal in population[END_REF], [START_REF] Labbas | On the regularity of a generalized diffusion problem arising in population dynamics set in a cylindrical domain[END_REF], [START_REF] Labbas | Generalized linear models for population dynamics in two juxtaposed habitats[END_REF] or [START_REF] Ochoa | A generalized reaction-diffusion model for spatial structures formed by motile cells[END_REF].

In this work, we consider an n-dimensional (with n 2) straight cylinder of the form

Ω = (a, b) × ω,
where a < b are two given real numbers while the section ω ⊂ R n-1 denotes a smooth bounded domain. This cylinder Ω is split into two (open) sub-cylinders Ω ± and an interface Γ given for some γ ∈ (a, b) by Ω -= (a, γ) × ω, Ω + = (γ, b) × ω and Γ = {γ} × ω, so that Ω = Ω -∪ Γ ∪ Ω + . We consider the following biharmonic equations,

(EQ pde ) k -∆ 2 u -= g -in Ω - k + ∆ 2 u + = g + in Ω + ,
where g -∈ L p (Ω -), g + ∈ L p (Ω + ) are given and k + , k -> 0.

We denote by (x, y) the spatial variables with x ∈ (a, b) and y ∈ ω. Then, we consider the following conditions on ∂Ω \ Γ, the lateral boundary of Ω,

(BC pde )                (1) u -(x, ζ) = 0, x ∈ (a, γ), ζ ∈ ∂ω, u + (x, ζ) = 0, x ∈ (γ, b), ζ ∈ ∂ω ∆u -(x, ζ) = 0, x ∈ (a, γ), ζ ∈ ∂ω, ∆u + (x, ζ) = 0, x ∈ (γ, b), ζ ∈ ∂ω (2)    u -(a, y) = ϕ - 1 (y), u + (b, y) = ϕ + 1 (y), y ∈ ω ∂u - ∂x (a, y) = ϕ - 2 (y), ∂u + ∂x (b, y) = ϕ + 2 (y), y ∈ ω,
where ϕ ± 1 and ϕ ± 2 will be given in appropriated spaces. The system is coupled on the interface Γ where we impose the following continuity conditions,

(T C pde )                  u -= u + on Γ ∂u - ∂x = ∂u + ∂x on Γ k -∆u -= k + ∆u + on Γ k - ∂∆u - ∂x = k + ∂∆u + ∂x on Γ.
Let us now explain, for instance, in population dynamics framework, the boundary and transmission conditions.

The first line of (BC pde ) - [START_REF] Barraza Martínez | Regularity and asymptotic behavior for a damped plate-membrane transmission problem[END_REF], means that the individuals could not lie on the boundaries (a, b) × ∂ω, because, for instance, they die or the edge is impassable. The second line means that there is no dispersal in the normal direction. We deduce that the dispersal vanishes on (a, b)×∂ω.

In (BC pde ) -(2), the population density and the flux are given on {a, b} × ω. This means that the habitats are not isolated.

In (T C pde ), the two first transmission conditions mean the continuity of the density and its flux at the interface, while the two second express, in some sense, the continuity of the dispersal and its flux at Γ. This work is a natural continuation of that done in [START_REF] Thorel | Operational approach for biharmonic equations in L p -spaces[END_REF]. Moreover, it completes the study realized in [START_REF] Labbas | Generalized linear models for population dynamics in two juxtaposed habitats[END_REF] where the authors have considered equations

k ± ∆ 2 u ± -l ± ∆u ± = f ± in Ω ±
and on the interface Γ, the last condition of (T C pde ) is replaced by

∂ ∂x (k + ∆u + -l + u + ) on Γ.
In the present work, l ± = 0, which must be treated differently, since the proof in [START_REF] Labbas | Generalized linear models for population dynamics in two juxtaposed habitats[END_REF] uses the representation formula obained in [START_REF] Labbas | On the regularity of a generalized diffusion problem arising in population dynamics set in a cylindrical domain[END_REF] which is not defined when l ± = 0. Thus, we use the representation formula obtained in [START_REF] Thorel | Operational approach for biharmonic equations in L p -spaces[END_REF] which is different and does not corresponds to the representation formula in [START_REF] Labbas | On the regularity of a generalized diffusion problem arising in population dynamics set in a cylindrical domain[END_REF] when the limit of l ± tends to 0. Therefore, even if the proof follows the same steps than the one in [START_REF] Labbas | Generalized linear models for population dynamics in two juxtaposed habitats[END_REF], the calculus are different and cannot be deduce from those in [START_REF] Labbas | Generalized linear models for population dynamics in two juxtaposed habitats[END_REF], since they use a different representation formula. Note that, due to the transmission conditions, we can not obtain a solution u ∈ W 4,p (Ω) in all Ω. We only can obtain a solution u such that u

| Ω -∈ W 4,p (Ω -) and u | Ω + ∈ W 4,p (Ω + ).
The paper is organized as follows.

First, in section 2, we recall the PDE transmission problem (P pde ) and we rewrite it under operational form. Then, in section 3, we recall some definitions about BIP operator and interpolation spaces. We give our hypotheses and their consequences. We present our main result in Theorem 3.9 and Corollary 3.11 which states existence and uniqueness of the solution of problem (P pde ) that is (EQ pde ) -(BC pde ) -(T C pde ) quoted above. In section 4, we state technical results which allow us to prove our main result. Section 5, is devoted to the proof of Theorem 3.9.

Operational formulation

In this section, we first recall the PDE problem (P pde ) composed by (EQ pde ) -(BC pde ) -(T C pde ). Then, we define the Laplace operator A 0 and we use it to rewrite (P pde ). Note that this operational form is a vector values problem. Finally, we generalize this problem replacing A 0 by a more general operator A. We consider the following problem

(P pde )                                                      k -∆ 2 u - = g - in Ω - k + ∆ 2 u + = g + in Ω + u -(x, ζ) = 0, ∆u -(x, ζ) = 0, x ∈ (a, γ), ζ ∈ ∂ω u + (x, ζ) = 0, ∆u + (x, ζ) = 0, x ∈ (γ, b), ζ ∈ ∂ω u -(a, y) = ϕ - 1 (y), u + (b, y) = ϕ + 1 (y), y ∈ ω ∂u - ∂x (a, y) = ϕ - 2 (y), ∂u + ∂x (b, y) = ϕ + 2 (y), y ∈ ω u - = u + on Γ ∂u - ∂x = ∂u + ∂x on Γ k -∆u - = k + ∆u + on Γ k - ∂∆u - ∂x = k + ∂∆u + ∂x on Γ.
Let us define A 0 , the Dirichlet Laplace operator in R n-1 , n ∈ N \ {0, 1}, as follows

D(A 0 ) := {ψ ∈ W 2,p (ω) : ψ = 0 on ∂ω} ∀ψ ∈ D(A 0 ), A 0 ψ = ∆ y ψ.
(

Thus, using operator A 0 , problem (P pde ) becomes the following vector valued problem

                                           u (4) -(x) + 2A 0 u -(x) + A 2 0 u -(x) = f -(x), for a.e. x ∈ (a, γ) u (4) + (x) + 2A 0 u + (x) + A 2 0 u + (x) = f + (x), for a.e. x ∈ (γ, b) u -(a) = ϕ - 1 , u + (b) = ϕ + 1 u -(a) = ϕ - 2 , u + (b) = ϕ + 2 u -(γ) = u + (γ) u -(γ) = u + (γ) k -u -(γ) + k -A 0 u -(γ) = k + u + (γ) + k + A 0 u + (γ) k -u (3) -(γ) + k -A 0 u -(γ) = k + u (3) + (γ) + k + A 0 u + (γ),
where

f -∈ L p (a, γ; L p (ω)), f + ∈ L p (γ, b; L p (ω)) and p ∈ (1, +∞), with u ± (x) := u(x, •) and f ± (x) := g ± (x, •)/k ± .
Note that the boundary conditions on ∂ω in (P pde ) do not appear in the previous system since they are already included in the domain of A 0 . Thus, a classical solution of this problem satisfies the boundary conditions on ∂ω in (P pde ).

Then, using operator (A, D(A)) instead of (A 0 , D(A 0 )) and X instead of L p (ω), we can write that f -∈ L p (a, γ; X) and f + ∈ L p (γ, b; X).

Moreover, in all the sequel, we will study the following more general transmission problem :

(P)                                            (EQ)    u (4) -(x) + 2Au -(x) + A 2 u -(x) = f -(x), for a.e. x ∈ (a, γ) u (4) + (x) + 2Au + (x) + A 2 u + (x) = f + (x), for a.e. x ∈ (γ, b) (BC) u -(a) = ϕ - 1 , u + (b) = ϕ + 1 u -(a) = ϕ - 2 , u + (b) = ϕ + 2 (T C)                u -(γ) = u + (γ) u -(γ) = u + (γ) k -u -(γ) + k -Au -(γ) = k + u + (γ) + k + Au + (γ) k -u (3) -(γ) + k -Au -(γ) = k + u (3) + (γ) + k + Au + (γ).
The transmission conditions (T C) will be split into

(T C1) u -(γ) = u + (γ) u -(γ) = u + (γ),
and

(T C2)    k -u -(γ) + k -Au -(γ) = k + u + (γ) + k + Au + (γ) k -u (3) 
-(γ) + k -Au -(γ) = k + u (3) 
+ (γ) + k + Au + (γ). Note that (T C2) is well defined from Lemma 3.7, see Section 3.2 below.

We will search a classical solution of problem (P), that is a solution u such that

   u -:= u |(a,γ) ∈ W 4,p (a, γ; X) ∩ L p (a, γ; D(A 2 )), u -∈ L p (a, γ; D(A)), u + := u |(γ,b) ∈ W 4,p (γ, b; X) ∩ L p (γ, b; D(A 2 )), u + ∈ L p (γ, b; D(A)), (2) 
and which satisfies (EQ) -(BC) -(T C).

3 Assumptions, consequences and statement of results

The class BIP(X, θ)

Throughout the article, (X, • ) is a complex Banach space. We give some definitions about UMD spaces, sectorial operators and BIP operators.

Definition 3.1.

A Banach space X is a UMD space if and only if for all p ∈ (1, +∞), the Hilbert transform is bounded from L p (R, X) into itself (see [START_REF] Bourgain | Some remarks on Banach spaces in which martingale difference sequences are unconditional[END_REF] and [START_REF] Burkholder | A geometrical characterisation of Banach spaces in which martingale difference sequences are unconditional[END_REF]).

Definition 3.2. A closed linear operator

T 1 is called sectorial of angle θ ∈ [0, π) if i) σ(T 1 ) ⊂ S θ , ii) ∀ θ ∈ (θ, π), sup λ(λ I -T 1 ) -1 L(X) : λ ∈ C \ S ω < +∞,
where

S ω := {z ∈ C : z = 0 and | arg(z)| < ω} if ω ∈ (0, π), (0, +∞) if ω = 0, (3) 
see [START_REF] Haase | The functional calculus for sectorial Operators[END_REF], p. 19, such an operator is noted A ∈ Sect (ω).

Remark 3.3. From [START_REF] Komatsu | Fractional powers of operators[END_REF], p. 342, we know that any injective sectorial operator T 1 admits imaginary powers

T is 1 , s ∈ R, but, in general, T is 1 is not bounded. Definition 3.4. Let θ ∈ [0, π).
We denote by BIP(X, θ), the class of sectorial injective operators

T 1 such that i) D(T 1 ) = R(T 1 ) = X, ii) ∀ s ∈ R, T is 1 ∈ L(X), iii) ∃ C ≥ 1, ∀ s ∈ R, ||T is 1 || L(X) ≤ Ce |s|θ ,
see [START_REF] Prüss | On operators with bounded imaginary powers in Banach spaces[END_REF], p. 430.

Remark 3.5. From [START_REF] Haase | The functional calculus for sectorial Operators[END_REF], proof of Proposition 3.2.1, c), p. 71, D(T 1 ) ∩ R(T 1 ) = X.

Interpolation spaces

Here we recall a definition given, for instance, in [START_REF] Da Prato | Sommes d'opérateurs linéaires et équations différentielles opérationnelles[END_REF], [START_REF] Grisvard | Spazi di tracce e applicazioni[END_REF], [START_REF] Lions | Sur une classe d'espaces d'interpolation[END_REF] or in [START_REF] Triebel | Interpolation theory, function Spaces, differential Operators[END_REF] and a result from [START_REF] Grisvard | Spazi di tracce e applicazioni[END_REF] concerning real interpolation spaces.

Definition 3.6. Let T 2 : D(T 2 ) ⊂ X -→ X be a linear operator such that (0, +∞) ⊂ ρ(T 2 ) and ∃ C > 0 : ∀ t > 0, t(T 2 -tI) -1 L(X) C. (4) 
Let k ∈ N \ {0}, θ ∈ (0, 1) and q ∈ [1, +∞]. We will use the real interpolation spaces

(D(T k 2 ), X) θ,q = (X, D(T k 2 )) 1-θ,q ,
defined, for instance, in [START_REF] Lions | Sur une classe d'espaces d'interpolation[END_REF], or in [START_REF] Lunardi | Analytic semigroups and optimal regularity in parabolic problems[END_REF].

In particular, for k = 1, we have the following characterization

(D(T 2 ), X) θ,q := ψ ∈ X : t -→ t 1-θ T 2 (T 2 -tI) -1 ψ X ∈ L q * (0, +∞) ,
where L q * (0, +∞) is given by

L q * (0, +∞) := f ∈ L q (0, +∞) : +∞ 0 f (t) q dt t 1/q < +∞ , for q ∈ [1, +∞),
and for q = +∞, by

L ∞ * (0, +∞; C) := f measurable on (0, +∞) : sup t∈(0,+∞) |f (t)| < +∞ ,
see [START_REF] Da Prato | Sommes d'opérateurs linéaires et équations différentielles opérationnelles[END_REF] p. 325, or [START_REF] Grisvard | Spazi di tracce e applicazioni[END_REF], p. 665, Teorema 3, or section 1.14 of [START_REF] Triebel | Interpolation theory, function Spaces, differential Operators[END_REF], where this space is denoted by (X, D(T 2 )) 1-θ,q . Note that we can also characterize the space (D(T 2 ), X) θ,q taking into account the Osservazione, p. 666, in [START_REF] Grisvard | Spazi di tracce e applicazioni[END_REF]. We set also, for any k ∈ N \ {0}

(D(T 2 ), X) k+θ,q := ψ ∈ D(T k 2 ) : T k 2 ψ ∈ (D(T 2 ), X) θ,q , (X, D(T 2 )) k+θ,q := ψ ∈ D(T k 2 ) : T k 2 ψ ∈ (X, D(T 2 )) θ,q .
We recall the following lemma.

Lemma 3.7 ([12]

). Let T 2 be a linear operator satisfying [START_REF] Cakoni | On the boundary integral equation methodfor a mixed boundary value problem of the biharmonic equation[END_REF]. Let u such that

u ∈ W n,p (a 1 , b 1 ; X) ∩ L p (a 1 , b 1 ; D(T k 2 )),
where

a 1 , b 1 ∈ R with a 1 < b 1 , n, k ∈ N \ {0} and p ∈ (1, +∞).
Then for any j ∈ N satisfying the Poulsen condition 0 < 1 p + j < n and s ∈ {a 1 , b 1 }, we have

u (j) (s) ∈ (D(T k 2 ), X) j n + 1 np ,p .
This result is proved in [START_REF] Grisvard | Spazi di tracce e applicazioni[END_REF], p. 678, Teorema 2'.

Hypotheses

Througout this article, k + , k -∈ R + \ {0} and A denotes a closed linear operator in X.

We assume the following hypotheses:

(H 1 ) X is a UMD space, (H 2 ) 0 ∈ ρ(A), (H 3 ) -A ∈ BIP(X, θ A ) for some θ A ∈ (0, π/2), (H 4 ) -A ∈ Sect(0).
Note that assumption (H 4 ) means that -A is a sectorial operator of any angle θ ∈ (0, π). This assumption is satisfied, for instance, by elliptic differential operators of second order. Now, we give some consequences on our hypotheses.

Consequences

1. Note that A 0 satisfies all the previous hypotheses with X = L q (ω), with q ∈ (1, +∞).

From [START_REF] Rubio De Francia | Martingale and integral transforms of Banach space valued functions[END_REF], Proposition 3, p. 207, X satisfies (H 1 ) and from [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF], Theorem 9.15, p. 241 and Lemma 9.17, p. 242, A 0 satisfies (H 2 ). Moreover, from [START_REF] Prüss | Imaginary powers of elliptic second order differential operators in L p -spaces[END_REF], Theorem C, p. 166-167, (H 3 ) is satisfied for every θ A ∈ (0, π), thus (H 4 ) is also satisfied.

2. In the scalar case, to solve each equation of (EQ), it is necessary to introduce the square roots ± √ -A of the characteristic equations

x 4 + 2Ax 2 + A 2 = 0,
this is why, in our operational case, we consider,

M := - √ -A. (5) 
From (H 3 ), -A is a sectorial operator, thus the existence of M is ensured, see for instance [START_REF] Haase | The functional calculus for sectorial Operators[END_REF], e), p. 25.

3. From (H 3 ), we have -A ∈ BIP(X, θ A ), then, from [START_REF] Haase | The functional calculus for sectorial Operators[END_REF], Proposition 3.2.1, e), p. 71, we deduce -M ∈ BIP(X, θ A /2).

Since 0 < θ A /2 < π/2, we deduce that M generate a bounded analytic semigroup (e xM ) x 0 , see [START_REF] Prüss | On operators with bounded imaginary powers in Banach spaces[END_REF], Theorem 2, p. 437. Furthermore, due to [START_REF] Prüss | On operators with bounded imaginary powers in Banach spaces[END_REF], Theorem 4, p. 441, for n ∈ N \ {0}, we get -nM ∈ BIP(X, θ A /4 + ε), for any ε ∈ (0, π/2 -θ A /4). Then, due to [START_REF] Prüss | On operators with bounded imaginary powers in Banach spaces[END_REF], Theorem 2, p. 437, nM generate a bounded analytic semigroup (e nxM ) x 0 . The last results use also the works of [START_REF] Da Prato | Sommes d'opérateurs linéaires et équations différentielles opérationnelles[END_REF] and [START_REF] Dore | On the closedness of the sum of two closed operators[END_REF].

The main results

To solve our transmission problem (P), we introduce two auxiliary problems:

(P -)          u (4) -(x) + 2Au -(x) + A 2 u -(x) = f -(x), for a.e. x ∈ (a, γ) u -(a) = ϕ - 1 , u -(γ) = ψ 1 u -(a) = ϕ - 2 , u -(γ) = ψ 2 ,
and

(P + )          u (4) + (x) + 2Au + (x) + A 2 u + (x) = f + (x), for a.e. x ∈ (γ, b) u + (γ) = ψ 1 , u + (b) = ϕ + 1 u + (γ) = ψ 2 , u + (b) = ϕ + 2 .
Remark 3.8. Recall that a classical solution of (P ± ), in L p (J; X), with J = (a, γ) or (γ, b), is a solution to (P ± ) such that

u ± ∈ W 4,p (J; X) ∩ L p (J; D(A 2 )), u ∈ L p (J; D(A)).
We say that u is a classical solution of (P) if and only if there exist ψ 1 , ψ 2 ∈ X such that (i) u -is a classical solution of (P -), (ii) u + is a classical solution of (P + ), (iii) u -and u + satisfy (T C2).

Note that by construction, if there exist a classical solution u -of (P -) and u + of (P + ), then u - and u + satisfy (T C1).

Our goal is to prove that there exists a unique couple (ψ 1 , ψ 2 ) which satisfies (i), (ii) and (iii). This will lead us to obtain our main result. Theorem 3.9. Let f -∈ L p (a, γ; X) and f + ∈ L p (γ, b; X). Assume that (H 1 ), (H 2 ) and (H 3 ) be satisfied. Then, there exists a unique classical solution u of the transmission problem (P) if and only if

ϕ + 1 , ϕ - 1 ∈ (D(A), X) 1+ 1 2p ,p and ϕ + 2 , ϕ - 2 ∈ (D(A), X) 1+ 1 2 + 1 2p ,p . (6) 
Remark 3.10.

1. In the proof of Theorem 3.9, we use operator M and interpolation spaces (D(M ), X) 3-j+ 1 p ,p , j = 0, 1, 2, 3. But from the reiteration Theorem, we get

     (D(M ), X) 3+ 1 p ,p = (D(A), X) 1+ 1 2p ,p , (D(M ), X) 2+ 1 p ,p = (D(A), X) 1+ 1 2 + 1 2p ,p (D(M ), X) 1+ 1 p ,p = (D(A), X) 1 2p ,p , (D(M ), X) 1 p ,p = (D(A), X) 1 2 + 1 2p ,p . (7) 
2. We can generalize the previous Theorem by considering a transmission problem between N juxtaposed habitats, with N ∈ N \ {0}. For instance, with N = 3, it suffices to use Theorem 3.9 on the two first habitats and then apply it on the transmission problem between the second and third habitat to solve the problem. By recurrence, we obtain the result for N habitats.

As consequence of Theorem 3.9, we deduce the following result for problem (P pde ). Consider the case A = A 0 (other cases can be treated).

Corollary 3.11. Assume that ω is a bounded open set of R n-1 where n ≥ 2 with C 2 -boundary. Let g + ∈ L p (Ω + ) and g -∈ L p (Ω -) with p ∈ (1, +∞) and p > n; let k + , k -∈ R + \ {0}. Then, there exists a unique solution u of (P pde ), such that

u -∈ W 4,p (Ω -), u + ∈ W 4,p (Ω + ), if and only if ϕ ± 1 , ϕ ± 2 ∈ W 2,p (ω) ∩ W 1,p 0 (ω), ∆ϕ ± 1 , ∈ W 2-1 p ,p (ω) ∩ W 1,p 0 (ω) and ∆ϕ ± 2 ∈ W 1-1 p ,p (ω) ∩ W 1,p 0 (ω).
Proof. The proof is quite similar to the one of Corollary 3.6 in [START_REF] Labbas | Generalized linear models for population dynamics in two juxtaposed habitats[END_REF], see also Corollary 2.7 in [START_REF] Labbas | On the regularity of a generalized diffusion problem arising in population dynamics set in a cylindrical domain[END_REF].

Taking into account the result of Theorem 3.9, we can also obtain anisotropic results by considering f -∈ L p (a, γ; L q (ω)) and f + ∈ L p (γ, b; L q (ω)) with p, q ∈ (1, +∞).

Preliminary results

Throughout this article, we set

c = γ -a > 0 and d = b -γ > 0.
From Remark 3.8, to solve problem (P), we first have to study problems (P -) and (P + ). To this end, we need the following invertibility result obtained in [START_REF] Thorel | Operational approach for biharmonic equations in L p -spaces[END_REF]. All these exponentials are analytic semigroups and they are well defined due to statement 3 of Section 3.4. For a detailed proof, see [START_REF] Thorel | Operational approach for biharmonic equations in L p -spaces[END_REF], Proposition 4.5.

Problem (P -)

Proposition 4.2. Let f -∈ L p (a, γ; X). Assume that (H 1 ), (H 2 ) and (H 3 ) hold. Then there exists a unique classical solution u -of problem (P -) if and only if

ϕ - 1 , ψ 1 ∈ (D(A), X) 1+ 1 2p ,p and ϕ - 2 , ψ 2 ∈ (D(A), X) 1+ 1 2 + 1 2p ,p . (9) 
Moreover

u -(x) = e (x-a)M -e (γ-x)M α - 1 + (x -a)e (x-a)M -(γ -x)e (γ-x)M α - 2 + e (x-a)M + e (γ-x)M α - 3 + (x -a)e (x-a)M + (γ -x)e (γ-x)M α - 4 + F -(x), (10) 
where

                         α - 1 := - 1 2 U -1 - I + (I + cM ) e cM ψ 1 -ce cM ψ 2 + φ- 1 α - 2 := 1 2 U -1 - I + e cM M ψ 1 + I -e cM ψ 2 + φ- 2 α - 3 := 1 2 V -1 - I -(I + cM ) e cM ψ 1 + ce cM ψ 2 + φ- 3 α - 4 := - 1 2 V -1 - I -e cM M ψ 1 + I + e cM ψ 2 + φ- 4 , (11) 
with

                                                   φ1 -:= 1 2 U -1 - ϕ - 1 + e cM ϕ - 1 + c M ϕ - 1 + ϕ - 2 -F -(a) -F -(γ) φ2 -:= - 1 2 U -1 - M ϕ - 1 -ϕ - 2 + F -(a) + F -(γ) - 1 2 U -1 -e cM M ϕ - 1 + ϕ - 2 -F -(a) -F -(γ) φ3 -:= 1 2 V -1 - ϕ - 1 -e cM ϕ - 1 + c M ϕ - 1 + ϕ - 2 -F -(a) + F -(γ) φ4 -:= - 1 2 V -1 - M ϕ - 1 -ϕ - 2 + F -(a) -F -(γ) + 1 2 V -1 -e cM M ϕ - 1 + ϕ - 2 -F -(a) + F -(γ) , ( 12 
)
and F -is the unique classical solution of problem

         u (4) -(x) + 2Au -(x) + A 2 u -(x) = f -(x), a.e. x ∈ (a, γ) u -(a) = u -(γ) = 0 u -(a) = u -(γ) = 0. ( 13 
)
Proof. Due to [START_REF] Thorel | Operational approach for biharmonic equations in L p -spaces[END_REF], Theorem 2.8, statement 2., there exists a unique classical solution u -of problem (P -) if and only if (9) holds. Moreover, adapting the representation formula of u given by ( 31) in [START_REF] Thorel | Operational approach for biharmonic equations in L p -spaces[END_REF], where u, f , b, F 0,f , ϕ 1 , ϕ 2 , ϕ 3 and ϕ 4 are respectively replaced by u -, f -, γ, F -, ϕ - 1 , ψ 1 , ϕ - 2 and ψ 2 , we obtain that the representation formula of u -is given by ( 10), [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] and [START_REF] Grisvard | Spazi di tracce e applicazioni[END_REF]. Remark 4.3. In the previous proposition, since [START_REF] Favini | Transmission Problem for an Abstract Fourth-order Differential Equation of Elliptic Type in UMD Spaces[END_REF], [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] and ( 12) hold, we have

α - 1 , α - 3 ∈ D(M 3 ) and α - 2 , α - 4 ∈ D(M 2 ).
Moreover, since F -is a classical solution of ( 13), due to Lemma 3.7, for j = 0, 1, 2, 3 and s = a or γ

F (j) -(s) ∈ (D(M ), X) 3-j+ 1 p ,p .

Problem (P + )

Proposition 4.4. Let f + ∈ L p (γ, b; X). Assume that (H 1 ), (H 2 ) and (H 3 ) hold. Then, there exists a unique classical solution u + of problem (P + ) if and only if

ϕ + 1 , ψ 1 ∈ (D(A), X) 1+ 1 2p ,p and ϕ + 2 , ψ 2 ∈ (D(A), X) 1+ 1 2 + 1 2p ,p . ( 14 
)
Moreover

u + (x) = e (x-γ)M -e (b-x)M α + 1 + (x -γ)e (x-γ)M -(b -x)e (b-x)M α + 2 + e (x-γ)M + e (b-x)M α + 3 + (x -γ)e (x-γ)M + (b -x)e (b-x)M α + 4 +F + (x), (15) 
where

                                 α + 1 := 1 2 U -1 + I + (I + dM ) e dM ψ 1 + de dM ψ 2 + φ+ 1 α + 2 := - 1 2 U -1 + I + e dM M ψ 1 -I -e dM ψ 2 + φ+ 2 α + 3 := 1 2 V -1 + I -(I + dM ) e dM ψ 1 -de dM ψ 2 + φ+ 3 α + 4 := - 1 2 V -1 + I -e dM M ψ 1 -I + e dM ψ 2 + φ+ 4 , (16) 
with

                                                   φ1 + := - 1 2 U -1 + ϕ + 1 + e dM ϕ + 1 + d M ϕ + 1 -ϕ + 2 + F + (γ) + F + (b) φ2 + := 1 2 U -1 + M ϕ + 1 + ϕ + 2 -F + (γ) -F + (b) + 1 2 U -1 + e dM M ϕ + 1 -ϕ + 2 + F + (γ) + F + (b) φ3 + := 1 2 V -1 + ϕ + 1 -e dM ϕ + 1 + d M ϕ + 1 -ϕ + 2 -F + (γ) + F + (b) φ4 + := - 1 2 V -1 + M ϕ + 1 + ϕ + 2 + F + (γ) -F + (b) + 1 2 V -1 + e dM M ϕ + 1 -ϕ + 2 -F + (γ) + F + (b) , ( 17 
)
and F + is the unique classical solution of problem

   u (4) + (x) + 2Au + (x) + A 2 u + (x) = f + (x), a.e. x ∈ (γ, b) u + (γ) = u + (b) = u + (γ) = u + (b) = 0. ( 18 
)
Proof. Due to [START_REF] Thorel | Operational approach for biharmonic equations in L p -spaces[END_REF], Theorem 2.8, statement 2., there exists a unique classical solution u + of problem (P + ) if and only if [START_REF] Haase | The functional calculus for sectorial Operators[END_REF] holds. Moreover, adapting the representation formula of u given by ( 31) in [START_REF] Thorel | Operational approach for biharmonic equations in L p -spaces[END_REF], where u, f , a, F 0,f , ϕ 1 , ϕ 2 , ϕ 3 and ϕ 4 are respectively replaced by u + , f + , γ, F + , ψ 1 , ϕ + 1 , ψ 2 and ϕ + 2 , we obtain that the representation formula of u + is given by ( 15), ( 16) and [START_REF] Komatsu | Fractional powers of operators[END_REF]. Remark 4.5. In the previous proposition, since [START_REF] Haase | The functional calculus for sectorial Operators[END_REF], ( 16) and ( 17) hold, we have

α + 1 , α + 3 ∈ D(M 3 ) and α + 2 , α + 4 ∈ D(M 2 ).
Moreover, since F + is a classical solution of ( 18), due to Lemma 3.7, for j = 0, 1, 2, 3 and s = γ or b F

(j) + (s) ∈ (D(M ), X) 3-j+ 1 p ,p .

The transmission system

In this section we give the proof of Theorem 4.6 stated below. This theorem ensures the equivalence between the resolution of problem (P ) and the resolution of the following system

     P + 1 + P - 1 M ψ 1 -P + 2 -P - 2 ψ 2 = S 1 P + 2 -P - 2 M ψ 1 -P + 3 + P - 3 ψ 2 = S 2 . ( 19 
)
The coefficients of the previous system are given by

                 P + 1 = k + U -1 + I + e dM 2 + V -1 + I -e dM 2 P + 2 = k + U -1 + + V -1 + I -e 2dM P + 3 = k + U -1 + I -e dM 2 + V -1 + I + e dM 2 (20) 
and

                 P - 1 = k -U -1 - I + e cM 2 + V -1 - I -e cM 2 P - 2 = k -U -1 -+ V -1 - I -e 2cM P - 3 = k -U -1 - I -e cM 2 + V -1 - I + e cM 2 . ( 21 
)
The seconds members are given by

S 1 = 2k + φ+ 2 + φ+ 4 + e dM φ+ 2 -φ+ 4 -2k - φ- 2 -φ- 4 + e cM φ- 2 + φ- 4 -M -2 Š ( 22 
)
where Š = -k + F

(

+ (γ) + k + M 2 F + (γ) + k -F 3) 
-(γ) -k -M 2 F -(γ) (3) 
and

S 2 = 2k + φ+ 2 + φ+ 4 -e dM φ+ 2 -φ+ 4 + 2k - φ- 2 -φ- 4 -e cM φ- 2 + φ- 4 . ( 24 
)
Theorem 4.6. Let f -∈ L p (a, γ; X) and f + ∈ L p (γ, b; X). Assume that (H 1 ), (H 2 ) and (H 3 ) hold. Then, problem (P) has a unique classical solution if and only if the data ϕ + 1 , ϕ - 1 , ϕ + 2 , ϕ - 2 satisfy (6) and system [START_REF] Labbas | On the regularity of a generalized diffusion problem arising in population dynamics set in a cylindrical domain[END_REF] has a unique solution (ψ 1 , ψ 2 ) such that

(ψ 1 , ψ 2 ) ∈ (D(A), X) 1+ 1 2p ,p × (D(A), X) 1+ 1 2 + 1 2p ,p . (25) 
Proof. Assume that problem (P ) has a unique classical solution u. We set

ψ 1 = u -(γ) = u + (γ) and ψ 2 = u -(γ) = u + (γ).
We get that u -(respectively u + ) is the classical solution of (P -) (respectively (P + )). Then, applying Proposition 4.2 (respectively Proposition 4.4), we obtain [START_REF] Costabel | On boundary integral equations of the first kind for the bi-Laplacian in a polygonal plane domain[END_REF]. Moreover, from (7), we have [START_REF] Labbas | On the regularity of a generalized diffusion problem arising in population dynamics set in a cylindrical domain[END_REF]. To this end, since u satisfies the transmission conditions (T C2). Then, we obtain the following system

ψ 1 ∈ (D(M ), X) 3+ 1 p ,p and ψ 2 ∈ (D(M ), X) 2+ 1 p ,p . It remains to prove that (ψ 1 , ψ 2 ) is solution of system
   k -u (3) -(γ) + k -Au -(γ) = k + u (3) + (γ) + k + Au + (γ) k -u -(γ) + k -Au -(γ) = k + u + (γ) + k + Au + (γ). Hence    k + u (3) + (γ) -M 2 u + (γ) -k -u (3) -(γ) -M 2 u -(γ) = 0 k + u + (γ) -M 2 u + (γ) -k -u -(γ) -M 2 u -(γ) = 0.
by ( 22), ( 23) and [START_REF] Lunardi | Analytic semigroups and optimal regularity in parabolic problems[END_REF]. Then, we deduce that system [START_REF] Saker | On the bilaplacian problem with nonlinear boundary conditions[END_REF] writes

                                                                   - k + 2 U -1 + I + e dM I + e dM M ψ 1 -I -e dM ψ 2 - k + 2 V -1 + I -e dM I -e dM M ψ 1 -I + e dM ψ 2 - k - 2 U -1 - I + e cM I + e cM M ψ 1 + I -e cM ψ 2 - k - 2 V -1 - I -e cM I -e cM M ψ 1 + I + e cM ψ 2 = - S 1 2 - k + 2 U -1 + I -e dM I + e dM M ψ 1 -I -e dM ψ 2 - k + 2 V -1 + I + e dM I -e dM M ψ 1 -I + e dM ψ 2 + k - 2 U -1 - I -e cM I + e cM M ψ 1 + I -e cM ψ 2 + k - 2 V -1 - I + e cM I -e cM M ψ 1 + I + e cM ψ 2 = - S 2 2 .
Finally, we obtain

                                                               k + U -1 + I + e dM 2 + V -1 + I -e dM 2 M ψ 1 +k -U -1 - I + e cM 2 + V -1 - I -e cM 2 M ψ 1 -k + U -1 + + V -1 + I -e 2dM ψ 2 +k -U -1 -+ V -1 - I -e 2cM ψ 2 = S 1 k + U -1 + + V -1 + I -e 2dM M ψ 1 -k -U -1 -+ V -1 - I -e 2cM M ψ 1 -k + U -1 + I -e dM 2 + V -1 + I + e dM 2 ψ 2 -k -U -1 - I -e cM 2 + V -1 - I + e cM 2 ψ 2 = S 2 . ( 31 
)
Then, using ( 20) and ( 21) system (31) become system [START_REF] Labbas | On the regularity of a generalized diffusion problem arising in population dynamics set in a cylindrical domain[END_REF]. So, (ψ 1 , ψ 2 ) is solution of system [START_REF] Labbas | On the regularity of a generalized diffusion problem arising in population dynamics set in a cylindrical domain[END_REF]. Conversely, if (6) holds and system [START_REF] Labbas | On the regularity of a generalized diffusion problem arising in population dynamics set in a cylindrical domain[END_REF] has a unique solution (ψ 1 , ψ 2 ) such that

ψ 1 ∈ (D(A), X) 1+ 1 2p ,p and ψ 2 ∈ (D(A), X) 1+ 1 2 + 1 2p ,p ,
Then, considering u -(respectively u + ) the unique classical solution of problem (P -) (respectively problem (P + )), we obtain that

u = u -in Ω - u + in Ω + ,
is the unique classical solution of problem (P ).

Functional calculus

To prove Theorem 3.9, it remains, from Theorem 4.6, to solve system [START_REF] Labbas | On the regularity of a generalized diffusion problem arising in population dynamics set in a cylindrical domain[END_REF]. To this end, we have to show that the determinant operator of system ( 19) is an invertible operator using functional calculus.

We first recall some classical notations. Let θ ∈ (0, π), we denote by H(S θ ) the space of holomorphic functions on S θ (defined by ( 3)). Moreover, we consider the following subspace of H(S θ ):

E ∞ (S θ ) := f ∈ H(S θ ) : f = O(|z| -s ) (|z| → +∞) for some s > 0 .
Thus, E ∞ (S θ ) is the space of polynomially decreasing holomorphic functions at +∞.

Let T be an invertible sectorial operator of angle θ T ∈ (0, π) and let f ∈ E ∞ (S θ ), with θ ∈ (θ T , π), then, by functional calculus, we can define f (T ) ∈ L(X), see [START_REF] Haase | The functional calculus for sectorial Operators[END_REF], p. 45.

We recall a useful invertibility result from [START_REF] Labbas | On the regularity of a generalized diffusion problem arising in population dynamics set in a cylindrical domain[END_REF], Lemma 5.3.

Lemma 4.7 ([19]

). Let P be an invertible sectorial operator in X with angle θ, for all θ ∈ (0, π).

Let G ∈ H(S θ ), for some θ ∈ (0, π), such that

(i) 1 -G ∈ E ∞ (S θ ), (ii) G(x) = 0 for any x ∈ R + \ {0}.
Then, G(P ) ∈ L(X), is invertible with bounded inverse. Now, to inverse the determinant of system [START_REF] Labbas | On the regularity of a generalized diffusion problem arising in population dynamics set in a cylindrical domain[END_REF], we introduce some holomorphic functions which will play the role of G in the previous lemma. Then, we study them on the positive real axis.

Let δ > 0 and z ∈ C \ R -. We set

   u δ (z) = 1 -e -2δ √ z -2δ √ ze -δ √ z v δ (z) = 1 -e -2δ √ z + 2δ √ ze -δ √ z .
Then, we have

U + = u d (-A), U -= u c (-A), V + = v d (-A) and V -= v c (-A).
We set

C + = {z ∈ C : Re(z) 0}.
Moreover, from [START_REF] Thorel | Operational approach for biharmonic equations in L p -spaces[END_REF], Lemma 4.4, we have u δ (z) = 0 and v δ (z) = 0 for z ∈ C + \ {0}, thus we note

                     f δ,1 (z) = u -1 δ (z) 1 + e -δ √ z 2 + v -1 δ (z) 1 -e -δ √ z 2 f δ,2 (z) = u -1 δ (z) + v -1 δ (z) 1 -e -2δ √ z f δ,3 (z) = u -1 δ (z) 1 -e -δ √ z 2 + v -1 δ (z) 1 + e -δ √ z 2 g δ (z) = 16 u -1 δ (z)v -1 δ (z)e -2δ √ z .
Thus, we obtain that

P + 1 = k + f d,1 (-A), P + 2 = k + f d,2 (-A), P + 3 = k + f d,3 (-A) P - 1 = k -f c,1 (-A), P - 2 = k -f c,2 (-A), P - 3 = k -f c,3 (-A).
Moreover, for z ∈ C + \ {0}, we define

f (z) := k 2 + g d (z) + k 2 -g c (z) + k + k -(f d,1 (z)f c,3 (z) + f c,1 (z)f d,3 (z) + 2f d,2 (z)f c,2 (z)) .
Note that f ∈ H(S θ ), for all θ ∈ (0, π). It follows that

f (-A) = 16k 2 + U -1 + V -1 + e 2dM + 16k 2 -U -1 -V -1 -e 2cM + P + 1 P - 3 + P - 1 P + 3 + 2P + 2 P - 2 . ( 32 
)
Lemma 4.8. For all x ∈ R + \ {0}, then f (x) does not vanish.

Proof. Let δ > 0, from Lemma 4.4, in [START_REF] Thorel | Operational approach for biharmonic equations in L p -spaces[END_REF], for all z ∈ C + \ {0}, we have

0 < |u δ (z)| and 0 < |v δ (z)|.
Thus, for all x > 0, one has u δ (x), v δ (x) > 0. Moreover, for all x > 0, we deduce that

f δ,1 (x), f δ,2 (x), f δ,3 (x), g δ (x) > 0 and since k + k -> 0, it follows that f (x) = k 2 + g d (x) + k 2 -g c (x) + k + k -(f d,1 (x)f c,3 (x) + f c,1 (x)f d,3 (x) + 2f d,2 (x)f c,2 (x)) > 0.

Proof of the main result

Assume that (P) has a unique classical solution, then, (6) holds from Theorem 4.6. Conversely, Assume that (6) holds. From Theorem 4.6, it suffices to show that system (19) has a unique solution such that (25) is satisfies. The proof is divided in three parts. In the first part, we make explicit the determinant of system [START_REF] Labbas | On the regularity of a generalized diffusion problem arising in population dynamics set in a cylindrical domain[END_REF]. Then, in the second part, we show the uniqueness of the solution, to this end, we inverse the determinant with the help of functional calculus. Finally, in the last part, we prove that ψ 1 and ψ 2 have the expected regularity.

Calculus of the determinant

In this section, we make explicit the determinant. Recall system [START_REF] Labbas | On the regularity of a generalized diffusion problem arising in population dynamics set in a cylindrical domain[END_REF]:

     P + 1 + P - 1 M ψ 1 -P + 2 -P - 2 ψ 2 = S 1 P + 2 -P - 2 M ψ 1 -P + 3 + P - 3 ψ 2 = S 2 .
Moreover, we writes the previous system as the matrix equation ΛΨ = S, where

Λ =   M P + 1 + P - 1 -P + 2 -P - 2 M P + 2 -P - 2 -P + 3 + P - 3   , Ψ = ψ 1 ψ 2 , S = S 1 S 2 .
To solve system [START_REF] Labbas | On the regularity of a generalized diffusion problem arising in population dynamics set in a cylindrical domain[END_REF], we calculate the determinant of the associated matrix Λ: det(Λ) := -M P + 1 + P -

We begin to calculate each terms separately. Then, we have

P + 1 P + 3 = k 2 + U -1 + I + e dM 2 + V -1 + I -e dM 2 U -1 + I -e dM 2 + V -1 + I + e dM 2 = k 2 + U -2 + + V -2 + I -e 2dM 2 + U -1 + V -1 + I + e dM 4 + I -e dM 4
and I + e dM 4 + I -e dM 4 = 2 I + e 2dM 2 + 8e 2dM .

Thus

P + 1 P + 3 = k 2 + U -2 + + V -2 + I -e 2dM 2 + 2U -1 + V -1 + I + e 2dM 2 + 8U -1 + V -1 + e 2dM .
Moreover, we have

P + 2 2 = k 2 + U -1 + + V -1 + 2 I -e 2dM 2 = k 2 + U -2 + + V -2 + I -e 2dM 2 + 2k 2 + U -1 + V -1 + I -e 2dM 2 .
It follows 

P + 1 P + 3 -P + 2 2 = k 2 + U -2 + + V -2 + I -e 2dM 2 + 2U -1 + V -1 + I + e 2dM 2
= 2k 2 + U -1 + V -1 + 4e 2dM + 4e 2dM = 16k 2 + U -1 + V -1 + e 2dM .
In the same way, replacing respectively k + , U -1 + , V -1 + and d by k -, U -1 -, V -1 -and c, we obtain

P - 1 P - 3 -P - 2 2 = 16k 2 -U -1 -V -1 -e 2cM .
Thus, the determinant of Λ writes det(Λ) = -M 16k 2 + U -1 + V -1 + e 2dM + 16k 2 -U -1 -V -1 -e 2cM + P + 1 P - 3 + P -

1 P + 3 + 2P + 2 P - 2 . ( 33 
)
Finally, from [START_REF] Triebel | Interpolation theory, function Spaces, differential Operators[END_REF] and [START_REF] Wang | Global dynamics of an age-structured HIV infection model incorporating latency and cell-to-cell transmission[END_REF], we obtain det(Λ) = -M f (-A). [START_REF] Yanga | Uniqueness of the interior transmission problem with partial information on the potential and eigenvalues[END_REF] Note that, since f (-A) ∈ L(X), it follows that D(det(Λ)) = D(M ).

Inversion of the determinant

Let C 1 , C 2 two linear operators in X. We note C 1 ∼ C 2 to means that C 1 = C 2 + Σ, where Σ is a finite sum of term of type kM n e αM , with k ∈ R, n ∈ N and α ∈ R + \ {0}. Note that Σ is a regular term in the sense: Moreover, we have

Σ ∈ L(X)
16k 2 + W 2 U -1 + V -1 + e 2dM ∼ 0 and 16k 2 -W 2 U -1 -V -1 -e 2cM ∼ 0.
We then deduce the following relation

-M -1 W 2 det(Λ) = 16k 2 + W 2 U -1 + V -1 + e 2dM + 16k 2 -W 2 U -1 -V -1 -e 2cM +W P + 1 W P - 3 + W P - 1 W P + 3 + 2W P + 2 W P - 2 ∼ 4k + k -I + 4k + k -I + 8k + k -I = 16k + k -I.
Thus, we get

det(Λ) = -W -2 M   16k + k -I + j∈J k j M n j e α j M   , ( 35 
)
where J is a finite set and for all j ∈ J: k j ∈ R, n j ∈ N and α j ∈ R + \ {0}.

From (35), we have det(Λ) = -16k + k -W -2 M F, (

where

F = I + j∈J k j 16k + k - M n j e α j M . ( 37 
) For z ∈ C \ R -, we set f (z) = 1 + j∈J k j 16k + k - - √ z n j e -α j √ z .
Then, F = f (-A) and from [START_REF] Yanga | Uniqueness of the interior transmission problem with partial information on the potential and eigenvalues[END_REF] and (36), we have

f (-A) = -M -1 det(Λ) = 16k + k -W -2 f (-A).
Thus, by construction, for z ∈ C \ R -, the link between f and f is

f (z) = 16k + k -u -2 d (z)u -2 c (z)v -2 d (z)v -2 c (z) f (z). ( 38 
)
Proposition 5.1. The operator F ∈ L(X) defined by (37), is invertible with bounded inverse.

Lemma 4 . 1 (

 41 [START_REF] Thorel | Operational approach for biharmonic equations in L p -spaces[END_REF]). The operators U + , U -, V + , V -∈ L(X) defined by    U -:= I -e 2cM + 2cM e cM , U + := I -e 2dM + 2dM e dM V -:= I -e 2cM -2cM e cM , V + := I -e 2dM -2dM e dM , (8) are invertible with bounded inverse.

- 2 + + V - 2 +I -e 2dM 2 -2k 2 + U - 1 + V - 1 +I -e 2dM 2 = 2k 2 + U - 1 + V - 1 +I + e 2dM 2 -

 2221122112 I -e 2dM 2 + 4e 2dM

1 ∼ 1 ∼+ 2 ∼ 2 ∼+ 3 ∼ 3 ∼

 112233 with Σ(X) ⊂ D(M ∞ ) := k 0 D(M k ).Since U ± ∼ I and V ± ∼ I, then setting W = U + U -V + V -∼ I, we obtain 2k + I, W P - 2k -I, W P 2k + I, W P - 2k -I, W P 2k + I, W P - 2k -I.
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Moreover, for all x ∈ (a, γ), we have u -(x) = e (x-a)M -e (γ-x)M α - 1 + (x -a)e (x-a)M -(γ -x)e (γ-x)M α - 2 + e (x-a)M + e (γ-x)M α - 3 + (x -a)e (x-a)M + (γ -x)e (γ-x)M α -

4

+F -(x)

u -(x) = M e (x-a)M + e (γ-x)M α - 1 + M e (x-a)M -e (γ-x)M α - u -(x) = M 2 e (x-a)M -e (γ-x)M α - 1 + M 2 e (x-a)M + e (γ-x)M α - 3 + F -(x)

Thus, we obtain

Moreover, from (13), we have

Note that, from Remark 4.3, all terms of the previous equality are well defined.

In the same way, for all x ∈ (γ, b), we have

and

+ (x).

Hence, we obtain

Moreover, from ( 18), we have

As previously, from Remark 4.5, all terms of the previous equality are justified. Then, from ( 23), ( 26), ( 27), ( 28) and ( 29), we deduce that system [START_REF] Labbas | On the regularity of a generalized diffusion problem arising in population dynamics set in a cylindrical domain[END_REF] is equivalent to

Thus, we obtain the following system

Now, we regroup all source terms provided from ( 11), ( 12), ( 16) and ( 17) in S 1 and S 2 , defined

Proof. Note that f, f ∈ H(S θ ), for a given θ ∈ (0, π). Moreover, for z ∈ C \ R -and j ∈ J,

From Lemma 4.4 in [START_REF] Thorel | Operational approach for biharmonic equations in L p -spaces[END_REF], u d , u c , v d and v c do not vanish on C + \ {0}. Moreover, due to Lemma 4.8, f does not vanish on R + \ {0}, Thus, we deduce from (38) that f do not vanish on R + \ {0}.

Finally, we apply Lemma 4.7 with P = -A and G = f to obtain that F = f (-A) ∈ L(X) is invertible with bounded inverse.

We are now in position to prove the main result of this section.

Proposition 5.2. The operator det(Λ), defined by ( 36) is invertible with bounded inverse.

Proof. From Lemma 4.1, U + , U -, V + and V -are bounded invertible operators with bounded inverse. So we deduce that W -2 is invertible with bounded inverse. Moreover, from (H 2 ), (36) and Proposition 5.1, we obtain that det(Λ) is invertible with bounded inverse.

Regularity

To study the regularity, we need to recall the following technical result from [START_REF] Labbas | On the regularity of a generalized diffusion problem arising in population dynamics set in a cylindrical domain[END_REF], Lemma 5.1.

Lemma 5.3 ([19]

). Let V ∈ L(X) such that 0 ∈ ρ(I + V ). Then, there exists

and

From Proposition 5.2, system ( 19) has a unique solution (ψ 1 , ψ 2 ). From Theorem 4.6, it remains to prove that

To this end, we have to study the regularity of the inverse of the determinant det(Λ).

Lemma 5.4. There exists

Proof. From (36) and Proposition 5.2, we have

From Lemma 5.3, there exists R F ∈ D(M ∞ ), such that

Moreover, for δ > 0, we know that

We deduce that there exists

Now, we study the regularity of ψ 1 and ψ 2 . We recall that ΛΨ = S, where Λ is invertible from Proposition 5.2. From Lemma 5.3, there exist

From ( 39) and (40), there exist

where S 1 is given by ( 22) and S 2 is given by [START_REF] Lunardi | Analytic semigroups and optimal regularity in parabolic problems[END_REF]. Since F + is a classical solution of problem (P + ) and F -is a classical solution of problem (P -), then from Remark 4.3 and Remark 4.5, we obtain that Š defined by ( 23) has the following regularity

Moreover, from (7), we have (43) So, from ( 22), ( 24), (39), ( 42) and (43), we have