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Abstract
In this work we study, by a semigroup approach, a transmission problem based on biharmonic

equations with boundary and transmission conditions, in two juxtaposed habitats. We give a
result of existence and uniqueness of the classical solution in Lp-spaces, for p ∈ (1,+∞), using
analytic semigroups and operators sum theory in Banach spaces. To this end, we invert explicitly
the determinant operator of the transmission system in Lp-spaces using the E∞-calculus and the
Dore-Venni sums theory.
Key Words and Phrases: Analytic semigroups, biharmonic equations, functional calculus, in-
terpolation spaces, maximal regularity.
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1 Introduction

In this work, we consider a system of linear biharmonic equations posed on two juxtaposed domains
and coupled through boundary conditions at the interface. Throughout the paper we shall impose the
continuity of the flux, of the dispersal and of its flux across the interface. Using an operator approach,
we investigate the existence, uniqueness as well as maximal Lp-regularity for such a problem.

Transmission problems arise in various applicative fields including engineering, physics and biology.
Here, we refer the reader for instance to [2], [11] or [17] for applications in plate theory, to [20], [29] or
[37] for applications in electromagnetism and to [12], [23] or [36] for other applications in population
dynamics. Let us also mention that mathematical models involving biharmonic operators also arise in
various fields such as elasticity for instance see [8], [18] or [33], electrostatic see [5], [15] or [24], plate
theory [2], [11] or [17] or population dynamics [7], [21], [22] or [28].

In this work, we consider a n-dimensional (with n > 2) straight cylinder of the form Ω = (a, b)×ω
where a < b are two given real numbers while the section ω ⊂ Rn−1 denotes a smooth bounded
domain. This cylinder Ω is split into two (open) sub-cylinders Ω± and an interface Γ given for some
γ ∈ (a, b) by

Ω− = (a, γ)× ω, Ω+ = (γ, b)× ω and Γ = {γ} × ω,
so that Ω = Ω− ∪ Γ ∪ Ω+.

We consider the following biharmonic equations,

(EQpde)
{

k−∆2u− = g− in Ω−
k+∆2u+ = g+ in Ω+,

where g− ∈ Lp(Ω−), g+ ∈ Lp(Ω+) are given and k+, k− > 0.
We denote by (x, y) the spatial variables with x ∈ (a, b) and y ∈ ω. Then, we consider the following

conditions on ∂Ω \ Γ, the lateral boundary of Ω,

(BCpde)


(1)
{

u−(x, ζ) = 0, x ∈ (a, γ), ζ ∈ ∂ω, u+(x, ζ) = 0, x ∈ (γ, b), ζ ∈ ∂ω
∆u−(x, ζ) = 0, x ∈ (a, γ), ζ ∈ ∂ω, ∆u+(x, ζ) = 0, x ∈ (γ, b), ζ ∈ ∂ω

(2)

 u−(a, y) = ϕ−1 (y), u+(b, y) = ϕ+
1 (y), y ∈ ω

∂u−
∂x

(a, y) = ϕ−2 (y), ∂u+
∂x

(b, y) = ϕ+
2 (y), y ∈ ω,
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where ϕ±1 and ϕ±2 will be given in appropriated spaces. The system is coupled on the interface Γ where
we impose the following continuity conditions,

(TCpde)



u− = u+ on Γ
∂u−
∂x

= ∂u+
∂x

on Γ

k−∆u− = k+∆u+ on Γ

k−
∂∆u−
∂x

= k+
∂∆u+
∂x

on Γ.

Let us now explain, for instance, in population dynamics framework, the boundary and transmis-
sion conditions.

The first line of (BCpde)−(1), means that the individuals could not lie on the boundaries (a, b)×∂ω,
because, for instance, they die or the edge is impassable. The second line means that there is no
dispersal in the normal direction. We deduce that the dispersal vanishes on (a, b)× ∂ω.

In (BCpde)− (2), the population density and the flux are given on {a, b}×ω. This means that the
habitats are not isolated.

In (TCpde), the two first transmission conditions mean the continuity of the density and its flux
at the interface, while the two second express, in some sense, the continuity of the dispersal and its
flux at Γ.

This work is a natural continuation of that done in [34]. Moreover, it completes the study realized
in [22] where the authors have considered equations

k±∆2u± − l±∆u± = f± in Ω±

and on the interface Γ, the last condition of (TCpde) is replaced by

∂

∂x
(k+∆u+ − l+u+) on Γ.

In the present work, l± = 0, which must be treated differently, since the proof in [22] uses the repre-
sentation formula obained in [21] which is not defined when l± = 0. Thus, we use the representation
formula obtained in [34] which is different.

Note that, due to the transmission conditions, we can not obtain a solution u ∈W 4,p(Ω) in all Ω.
We only can obtain a solution u such that u|Ω− ∈W

4,p(Ω−) and u|Ω+
∈W 4,p(Ω+).

The paper is organized as follows.
First, in section 2, we recall the PDE transmission problem (Ppde) and we define the Laplace

operator A0, then we rewrite problem (Ppde) under operational form which will be generalized replacing
A0 by a more general operator A in problem (P).

Then, in section 3, we recall some definitions about BIP operator and interpolation spaces. We
give our hypotheses and their consequences. We explain how to solve our problem (P) by introducing
two auxiliary problems (P−) and (P+). Finally, we present our main result in Theorem 3.9 and as a
consequence of this theorem, we obtain the Corollary 3.11 which states existence and uniqueness of
the solution of problem (Ppde) that is (EQpde)− (BCpde)− (TCpde) quoted above.

In section 4, we state technical results which allow us to prove our main result. In Proposition 4.2
and in Proposition 4.4 we give necessary and sufficient condition to solve problems (P−) and (P+).
Moreover, we give an explicit representation formula of the solutions of (P−) and (P+). We establish
(see Theorem 4.6) a useful technical result which help us to prove Theorem 3.9. Then, we show some
technical lemmas which lead us to apply functional calculus.

In Section 5, we give the proof of Theorem 3.9. This section is composed of three parts: in the
first part, we use Theorem 4.6 to make explicit the determinant of the transmission system. In the
second part, we explicitly inverse the determinant of the transmission system using functional calculus.
Finally, in the last part, we show that the unique solution of the transmission problem (P) is a classical
solution (see (2) in Section 2 below) by showing that this solution have the expected regularity.
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2 Operational formulation

In this section, we first recall the PDE problem (Ppde) composed by (EQpde) − (BCpde) − (TCpde).
Then, we define the Laplace operator A0 and we use it to rewrite (Ppde) using A0. Note that this
operational form is a vector values problem. Finally, we generalize this problem replacing A0 by a
more general operator A.

We consider the following problem

(Ppde)



k−∆2u− = g− in Ω−
k+∆2u+ = g+ in Ω+

u−(x, ζ) = 0, ∆u−(x, ζ) = 0, x ∈ (a, γ), ζ ∈ ∂ω
u+(x, ζ) = 0, ∆u+(x, ζ) = 0, x ∈ (γ, b), ζ ∈ ∂ω
u−(a, y) = ϕ−1 (y), u+(b, y) = ϕ+

1 (y), y ∈ ω
∂u−
∂x

(a, y) = ϕ−2 (y), ∂u+
∂x

(b, y) = ϕ+
2 (y), y ∈ ω

u− = u+ on Γ
∂u−
∂x

= ∂u+
∂x

on Γ

k−∆u− = k+∆u+ on Γ

k−
∂∆u−
∂x

= k+
∂∆u+
∂x

on Γ.

Let us define A0, the Laplace operator in Rn−1, n ∈ N \ {0, 1}, as follows{
D(A0) := {ψ ∈W 2,p(ω) : ψ = 0 on ∂ω}

∀ψ ∈ D(A0), A0ψ = ∆yψ.
(1)

Thus, using operator A0, problem (Ppde) becomes the following vector valued problem

u
(4)
− (x) + 2A0u

′′
−(x) +A2

0u−(x) = f−(x), for a.e. x ∈ (a, γ)

u
(4)
+ (x) + 2A0u

′′
+(x) +A2

0u+(x) = f+(x), for a.e. x ∈ (γ, b)

u−(a) = ϕ−1 , u+(b) = ϕ+
1

u′−(a) = ϕ−2 , u′+(b) = ϕ+
2

u−(γ) = u+(γ)

u′−(γ) = u′+(γ)

k−u
′′
−(γ) + k−A0u−(γ) = k+u

′′
+(γ) + k+A0u+(γ)

k−u
(3)
− (γ) + k−A0u

′
−(γ) = k+u

(3)
+ (γ) + k+A0u

′
+(γ),

where
f− ∈ Lp(a, γ;Lp(ω)), f+ ∈ Lp(γ, b;Lp(ω)) and p ∈ (1,+∞),

with
u±(x) := u(x, ·) and f±(x) := g±(x, ·)/k±.

Note that the boundary conditions on ∂ω in (Ppde) do not appear in the previous system since
they are already included in the domain of A0. Thus, a classical solution of this problem satisfies the
boundary conditions on ∂ω in (Ppde).

Then, using operator (A,D(A)) instead of (A0, D(A0)) and X instead of Lp(ω), we can write that
f− ∈ Lp(a, γ;X) and f+ ∈ Lp(γ, b;X).
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Moreover, in all the sequel, we will study the following more general transmission problem (P):

(P)



(EQ)

 u
(4)
− (x) + 2Au′′−(x) +A2u−(x) = f−(x), for a.e. x ∈ (a, γ)

u
(4)
+ (x) + 2Au′′+(x) +A2u+(x) = f+(x), for a.e. x ∈ (γ, b)

(BC)
{
u−(a) = ϕ−1 , u+(b) = ϕ+

1

u′−(a) = ϕ−2 , u′+(b) = ϕ+
2

(TC)



u−(γ) = u+(γ)

u′−(γ) = u′+(γ)

k−u
′′
−(γ) + k−Au−(γ) = k+u

′′
+(γ) + k+Au+(γ)

k−u
(3)
− (γ) + k−Au

′
−(γ) = k+u

(3)
+ (γ) + k+Au

′
+(γ).

The transmission conditions (TC) will be split into

(TC1)
{
u−(γ) = u+(γ)

u′−(γ) = u′+(γ),

and

(TC2)

 k−u
′′
−(γ) + k−Au−(γ) = k+u

′′
+(γ) + k+Au+(γ)

k−u
(3)
− (γ) + k−Au

′
−(γ) = k+u

(3)
+ (γ) + k+Au

′
+(γ).

Note that (TC2) is well defined from Lemma 3.7, see Section 3.2 below.
We will search a classical solution of problem (P), that is a solution u such that u− := u|(a,γ) ∈W 4,p(a, γ;X) ∩ Lp(a, γ;D(A2)), u′′− ∈ Lp(a, γ;D(A)),

u+ := u|(γ,b) ∈W 4,p(γ, b;X) ∩ Lp(γ, b;D(A2)), u′′+ ∈ Lp(γ, b;D(A)),
(2)

and which satisfies (EQ)− (BC)− (TC).

3 Assumptions, consequences and statement of results

3.1 The class BIP(X, θ)
Throughout the article, (X, ‖ · ‖) is a complex Banach space. We give some definitions about UMD
spaces, sectorial operators and BIP operators.

Definition 3.1. A Banach space X is a UMD space if and only if for all p ∈ (1,+∞), the Hilbert
transform is bounded from Lp(R, X) into itself (see [3] and [4]).

Definition 3.2. A closed linear operator T1 is called sectorial of angle θ ∈ [0, π) if

i) σ(T1) ⊂ Sθ,

ii) ∀ θ′ ∈ (θ, π), sup
{
‖λ(λ I − T1)−1‖L(X) : λ ∈ C \ Sω′

}
< +∞,

where

Sω :=
{
{z ∈ C : z 6= 0 and | arg(z)| < ω} if ω ∈ (0, π),

(0,+∞) if ω = 0,
(3)

see [16], p. 19,

Remark 3.3. From [19], p. 342, we know that any injective sectorial operator T1 admits imaginary
powers T is1 , s ∈ R, but, in general, T is1 is not bounded.
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Definition 3.4. Let θ ∈ [0, π). We denote by BIP(X, θ), the class of sectorial injective operators T1
such that

i) D(T1) = R(T1) = X,

ii) ∀ s ∈ R, T is1 ∈ L(X),

iii) ∃ C ≥ 1, ∀ s ∈ R, ||T is1 ||L(X) ≤ Ce|s|θ,

see [30], p. 430.

Remark 3.5. In the previous case, from [16], proof of Proposition 3.2.1, c), p. 71, D(T1) ∩R(T1) = X.

3.2 Interpolation spaces

Here we recall a definition given, for instance, in [9], [14], [25] or in [35] and a result from [14] concerning
real interpolation spaces.

Definition 3.6. Let T2 : D(T2) ⊂ X −→ X be a linear operator such that

(0,+∞) ⊂ ρ(T2) and ∃ C > 0 : ∀ t > 0, ‖t(T2 − tI)-1‖L(X) 6 C. (4)

Let k ∈ N \ {0}, θ ∈ (0, 1) and q ∈ [1,+∞]. We will use the real interpolation spaces

(D(T k2 ), X)θ,q = (X,D(T k2 ))1-θ,q,

defined, for instance, in [25], or in [26].
In particular, for k = 1, we have the following characterization

(D(T2), X)θ,q :=
{
ψ ∈ X : t 7−→ t1-θ‖T2(T2 − tI)-1ψ‖X ∈ Lq∗(0,+∞)

}
,

where Lq∗(0,+∞) is given by

Lq∗(0,+∞) :=
{
f ∈ Lq(0,+∞) :

(∫ +∞

0
‖f(t)‖q dt

t

)1/q
< +∞

}
, for q ∈ [1,+∞),

and for q = +∞, by
L∞∗ (0,+∞) := sup

t∈(0,+∞)
‖f(t)‖,

see [9] p. 325, or [14], p. 665, Teorema 3, or section 1.14 of [35], where this space is denoted by
(X,D(T2))1-θ,q. Note that we can also characterize the space (D(T2), X)θ,q taking into account the
Osservazione, p. 666, in [14].

We set also, for any k ∈ N \ {0}

(D(T2), X)k+θ,q :=
{
ψ ∈ D(T k2 ) : T k2 ψ ∈ (D(T2), X)θ,q

}
,

(X,D(T2))k+θ,q :=
{
ψ ∈ D(T k2 ) : T k2 ψ ∈ (X,D(T2))θ,q

}
.

We recall the following lemma.

Lemma 3.7 ([14]). Let T2 be a linear operator satisfying (4). Let u such that

u ∈Wn,p(a1, b1;X) ∩ Lp(a1, b1;D(T k2 )),

where a1, b1 ∈ R with a1 < b1, n, k ∈ N \ {0} and p ∈ (1,+∞). Then for any j ∈ N satisfying the
Poulsen condition 0 < 1

p + j < n and s ∈ {a1, b1}, we have

u(j)(s) ∈ (D(T k2 ), X) j
n

+ 1
np
,p.

This result is proved in [14], p. 678, Teorema 2’.
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3.3 Hypotheses

Througout this article, k+, k− ∈ R+ \ {0} and A denotes a closed linear operator in X.
We assume the following hypotheses:

(H1) X is a UMD space,

(H2) 0 ∈ ρ(A),

(H3) −A ∈ BIP(X, θA) for some θA ∈ (0, π/2),

(H4) σ(A) ⊂ (−∞, 0) and ∀ θ ∈ (0, π), supλ∈Sθ ‖λ(λI −A)−1‖L(X) < +∞.

Note that assumption (H4) means that −A is a sectorial operator of any angle θ ∈ (0, π). Now, we
give some consequences on our hypotheses.

3.4 Consequences

1. Note that A0 satisfies all the previous hypotheses with X = Lq(ω), with q ∈ (1,+∞). From [32],
Proposition 3, p. 207, X satisfies (H1) and from [13], Theorem 9.15, p. 241 and Lemma 9.17,
p. 242, A0 satisfies (H2). Moreover, from [31], Theorem C, p. 166-167, (H3) is satisfied for every
θA ∈ (0, π), thus (H4) is also satisfied.

2. In the scalar case, to solve each equation of (EQ), it is necessary to introduce the square roots
±
√
−A of the characteristic equations

x4 + 2Ax2 +A2 = 0,

this is why, in our operational case, we consider,

M := −
√
−A. (5)

From (H3), −A is a sectorial operator, thus the existence of M is ensured, see for instance [16],
e), p. 25.

3. From (H3), we have −A ∈ BIP(X, θA), then, from [16], Proposition 3.2.1, e), p. 71, we deduce

−M ∈ BIP(X, θA/2).

Since 0 < θA/2 < π/2, we deduce that M generate a bounded analytic semigroup (exM )x>0, see
[30], Theorem 2, p. 437.
Furthermore, due to [30], Theorem 4, p. 441, for n ∈ N \ {0}, we get −nM ∈ BIP(X, θA/4 + ε),
for any ε ∈ (0, π/2 − θA/4). Then, due to [30], Theorem 2, p. 437, nM generate a bounded
analytic semigroup (enxM )x>0. The last results use also the works of [9] and [10].

3.5 The main results

To solve our transmission problem (P), we introduce two auxiliary problems:

(P−)


u

(4)
− (x) + 2Au′′−(x) +A2u−(x) = f−(x), for a.e. x ∈ (a, γ)

u−(a) = ϕ−1 , u−(γ) = ψ1

u′−(a) = ϕ−2 , u′−(γ) = ψ2,

and

(P+)


u

(4)
+ (x) + 2Au′′+(x) +A2u+(x) = f+(x), for a.e. x ∈ (γ, b)

u+(γ) = ψ1, u+(b) = ϕ+
1

u′+(γ) = ψ2, u′+(b) = ϕ+
2 .
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Remark 3.8. We say that u is a classical solution of (P) if and only if there exist ψ1, ψ2 ∈ X such
that

(i) u− is a classical solution of (P−),

(ii) u+ is a classical solution of (P+),

(iii) u− and u+ satisfy (TC2).

Note that by construction, if there exist a classical solution u− of (P−) and u+ of (P+), then u− and
u+ satisfy (TC1).

Our goal is to prove that there exists a unique couple (ψ1, ψ2) which satisfies (i), (ii) and (iii).
This will lead us to obtain our main result.

Theorem 3.9. Let f− ∈ Lp(a, γ;X) and f+ ∈ Lp(γ, b;X). Assume that (H1), (H2) and (H3) be
satisfied. Then, there exists a unique classical solution u of the transmission problem (P) if and only
if

ϕ+
1 , ϕ

−
1 ∈ (D(A), X)1+ 1

2p ,p
and ϕ+

2 , ϕ
−
2 ∈ (D(A), X)1+ 1

2 + 1
2p ,p

. (6)

Remark 3.10.

1. In the proof of Theorem 3.9, we use operator M and interpolation spaces (D(M), X)3−j+ 1
p
,p,

j = 0, 1, 2, 3. But from the reiteration Theorem, we get
(D(M), X)3+ 1

p
,p = (D(A), X)1+ 1

2p ,p
, (D(M), X)2+ 1

p
,p = (D(A), X)1+ 1

2 + 1
2p ,p

(D(M), X)1+ 1
p
,p = (D(A), X) 1

2p ,p
, (D(M), X) 1

p
,p = (D(A), X) 1

2 + 1
2p ,p

.
(7)

2. We can generalize the previous Theorem by considering a transmission problem between n
juxtaposed habitats, with n ∈ N \ {0}. For instance, with n = 3, it suffices to use Theorem 3.9
on the two first habitats and then apply it on the transmission problem between the second and
third habitat to solve the problem. By recurrence, we obtain the result for n habitats.

As consequence of Theorem 3.9, we deduce the following result for problem (Ppde). Consider the
case A = A0 (other cases can be treated).

Corollary 3.11. Assume that ω is a bounded open set of Rn−1 where n ≥ 2 with C2-boundary. Let
g+ ∈ Lp(Ω+) and g− ∈ Lp(Ω−) with p ∈ (1,+∞) and p > n; let k+, k− ∈ R+ \ {0}. Then, there exists
a unique solution u of (Ppde), such that

u− ∈W 4,p(Ω−), u+ ∈W 4,p(Ω+),

if and only if

ϕ±1 , ϕ
±
2 ∈W

2,p(ω) ∩W 1,p
0 (ω), ∆ϕ±1 ,∈W

2− 1
p
,p(ω) ∩W 1,p

0 (ω) and ∆ϕ±2 ∈W
1− 1

p
,p(ω) ∩W 1,p

0 (ω).

Proof. The proof is quite similar to the one of Corollary 3.6 in [22], see also Corollary 2.7 in [21].

Taking into account the result of Theorem 3.9, we can also obtain anisotropic results by considering
f− ∈ Lp(a, γ;Lq(ω)) and f+ ∈ Lp(γ, b;Lq(ω)) with p, q ∈ (1,+∞).
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4 Preliminary results

Throughout this article, we set

c = γ − a > 0 and d = b− γ > 0.

From Remark 3.8, to solve problem (P), we first have to study problems (P−) and (P+). To this end,
we need the following invertibility result obtained in [34].

Lemma 4.1 ([34]). The operators U+, U−, V+, V− ∈ L(X) defined by

U+ := I − e2dM + 2dMedM

U− := I − e2cM + 2cMecM

V+ := I − e2dM − 2dMedM

V− := I − e2cM − 2cMecM ,

(8)

are invertible with bounded inverse.

All these exponentials are analytic semigroups and they are well defined due to statement 3 of
Section 3.4. For a detailed proof, see [34], Proposition 4.5.

4.1 Problem (P−)
Proposition 4.2. Let f− ∈ Lp(a, γ;X). Assume that (H1), (H2) and (H3) hold. Then there exists a
unique classical solution u− of problem (P−) if and only if

ϕ−1 , ψ1 ∈ (D(A), X)1+ 1
2p ,p

and ϕ−2 , ψ2 ∈ (D(A), X)1+ 1
2 + 1

2p ,p
. (9)

Moreover

u−(x) =
(
e(x−a)M − e(γ−x)M

)
α−1 +

(
(x− a)e(x−a)M − (γ − x)e(γ−x)M

)
α−2

+
(
e(x−a)M + e(γ−x)M

)
α−3 +

(
(x− a)e(x−a)M + (γ − x)e(γ−x)M

)
α−4 + F−(x),

(10)

where 

α−1 := −1
2U
−1
−

((
I + (I + cM) ecM

)
ψ1 − cecMψ2

)
+ ϕ̃−1

α−2 := 1
2U
−1
−

((
I + ecM

)
Mψ1 +

(
I − ecM

)
ψ2
)

+ ϕ̃−2

α−3 := 1
2V
−1
−

((
I − (I + cM) ecM

)
ψ1 + cecMψ2

)
+ ϕ̃−3

α−4 := −1
2V
−1
−

((
I − ecM

)
Mψ1 +

(
I + ecM

)
ψ2
)

+ ϕ̃−4 ,

(11)

with 

ϕ̃1
− := 1

2U
−1
−

(
ϕ−1 + ecM

(
ϕ−1 + c

(
Mϕ−1 + ϕ−2 − F

′
−(a)− F ′−(γ)

)))

ϕ̃2
− := −1

2U
−1
−

(
Mϕ−1 − ϕ

−
2 + F ′−(a) + F ′−(γ)

)
−1

2U
−1
− ecM

(
Mϕ−1 + ϕ−2 − F

′
−(a)− F ′−(γ)

)

ϕ̃3
− := 1

2V
−1
−

(
ϕ−1 − e

cM
(
ϕ−1 + c

(
Mϕ−1 + ϕ−2 − F

′
−(a) + F ′−(γ)

)))

ϕ̃4
− := −1

2V
−1
−

(
Mϕ−1 − ϕ

−
2 + F ′−(a)− F ′−(γ)

)
+1

2V
−1
− ecM

(
Mϕ−1 + ϕ−2 − F

′
−(a) + F ′−(γ)

)
,

(12)
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and F− is the unique classical solution of problem u
(4)
− (x) + 2Au′′−(x) +A2u−(x) = f−(x), a.e. x ∈ (a, γ)

u−(a) = u−(γ) = u′′−(a) = u′′−(γ) = 0.
(13)

Proof. Due to [34], Theorem 2.8, statement 2., there exists a unique classical solution u− of problem
(P−) if and only if (9) holds. Moreover, adapting the representation formula of u given by (31) in
[34], where u, f , b, F0,f , ϕ1, ϕ2, ϕ3 and ϕ4 are respectively replaced by u−, f−, γ, F−, ϕ−1 , ψ1, ϕ−2
and ψ2, we obtain that the representation formula of u− is given by (10), (11) and (12).

Remark 4.3. In the previous proposition, since (9), (11) and (12) hold, we have

α−1 , α
−
3 ∈ D(M3) and α−2 , α

−
4 ∈ D(M2).

Moreover, since F− is a classical solution of (13), from Lemma 3.7, for j = 0, 1, 2, 3 and s = a or γ

F
(j)
− (s) ∈ (D(M), X)3−j+ 1

p
,p.

4.2 Problem (P+)
Proposition 4.4. Let f+ ∈ Lp(γ, b;X). Assume that (H1), (H2) and (H3) hold. Then, there exists a
unique classical solution u+ of problem (P+) if and only if

ϕ+
1 , ψ1 ∈ (D(A), X)1+ 1

2p ,p
and ϕ+

2 , ψ2 ∈ (D(A), X)1+ 1
2 + 1

2p ,p
. (14)

Moreover

u+(x) =
(
e(x−γ)M − e(b−x)M

)
α+

1 +
(
(x− γ)e(x−γ)M − (b− x)e(b−x)M

)
α+

2

+
(
e(x−γ)M + e(b−x)M

)
α+

3 +
(
(x− γ)e(x−γ)M + (b− x)e(b−x)M

)
α+

4 + F+(x),
(15)

where 

α+
1 := 1

2U
−1
+

((
I + (I + dM) edM

)
ψ1 + dedMψ2

)
+ ϕ̃+

1

α+
2 := −1

2U
−1
+

((
I + edM

)
Mψ1 −

(
I − edM

)
ψ2
)

+ ϕ̃+
2

α+
3 := 1

2V
−1

+

((
I − (I + dM) edM

)
ψ1 − dedMψ2

)
+ ϕ̃+

3

α+
4 := −1

2V
−1

+

((
I − edM

)
Mψ1 −

(
I + edM

)
ψ2
)

+ ϕ̃+
4 ,

(16)

with 

ϕ̃1
+ := −1

2U
−1
+

(
ϕ+

1 + edM
(
ϕ+

1 + d
(
Mϕ+

1 − ϕ
+
2 + F ′+(γ) + F ′+(b)

)))

ϕ̃2
+ := 1

2U
−1
+

(
Mϕ+

1 + ϕ+
2 − F

′
+(γ)− F ′+(b)

)
+1

2U
−1
+ edM

(
Mϕ+

1 − ϕ
+
2 + F ′+(γ) + F ′+(b)

)

ϕ̃3
+ := 1

2V
−1

+

(
ϕ+

1 − e
dM
(
ϕ+

1 + d
(
Mϕ+

1 − ϕ
+
2 − F

′
+(γ) + F ′+(b)

)))

ϕ̃4
+ := −1

2V
−1

+

(
Mϕ+

1 + ϕ+
2 + F ′+(γ)− F ′+(b)

)
+1

2V
−1

+ edM
(
Mϕ+

1 − ϕ
+
2 − F

′
+(γ) + F ′+(b)

)
,

(17)
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and F+ is the unique classical solution of problem u
(4)
+ (x) + 2Au′′+(x) +A2u+(x) = f+(x), a.e. x ∈ (γ, b)

u+(γ) = u+(b) = u′′+(γ) = u′′+(b) = 0.
(18)

Proof. Due to [34], Theorem 2.8, statement 2., there exists a unique classical solution u+ of problem
(P+) if and only if (14) holds. Moreover, adapting the representation formula of u given by (31) in
[34], where u, f , a, F0,f , ϕ1, ϕ2, ϕ3 and ϕ4 are respectively replaced by u+, f+, γ, F+, ψ1, ϕ+

1 , ψ2
and ϕ+

2 , we obtain that the representation formula of u+ is given by (15), (16) and (17).

Remark 4.5. In the previous proposition, since (14), (16) and (17) hold, we have

α+
1 , α

+
3 ∈ D(M3) and α+

2 , α
+
4 ∈ D(M2).

Moreover, since F+ is a classical solution of (18), from Lemma 3.7, for j = 0, 1, 2, 3 and s = γ or b

F
(j)
+ (s) ∈ (D(M), X)3−j+ 1

p
,p.

4.3 The transmission system

In this section we give the proof of Theorem 4.6 stated below. This theorem make the link between
problem (P ) and the following system

(
P+

1 + P−1

)
Mψ1 −

(
P+

2 − P
−
2

)
ψ2 = S1(

P+
2 − P

−
2

)
Mψ1 −

(
P+

3 + P−3

)
ψ2 = S2.

(19)

The coefficients of the previous system are given by

P+
1 = k+

(
U−1

+

(
I + edM

)2
+ V −1

+

(
I − edM

)2
)

P+
2 = k+

(
U−1

+ + V −1
+

) (
I − e2dM

)
P+

3 = k+

(
U−1

+

(
I − edM

)2
+ V −1

+

(
I + edM

)2
) (20)

and 

P−1 = k−

(
U−1
−

(
I + ecM

)2
+ V −1

−

(
I − ecM

)2
)

P−2 = k−
(
U−1
− + V −1

−

) (
I − e2cM

)
P−3 = k−

(
U−1
−

(
I − ecM

)2
+ V −1

−

(
I + ecM

)2
)
.

(21)

The seconds members are given by

S1 = 2k+
((
ϕ̃+

2 + ϕ̃+
4

)
+ edM

(
ϕ̃+

2 − ϕ̃
+
4

))
− 2k−

((
ϕ̃−2 − ϕ̃

−
4

)
+ ecM

(
ϕ̃−2 + ϕ̃−4

))
−M−2Š (22)

where
Š = −k+F

(3)
+ (γ) + k+M

2F ′+(γ) + k−F
(3)
− (γ)− k−M2F ′−(γ) (23)

and
S2 = 2k+

((
ϕ̃+

2 + ϕ̃+
4

)
− edM

(
ϕ̃+

2 − ϕ̃
+
4

))
+ 2k−

((
ϕ̃−2 − ϕ̃

−
4

)
− ecM

(
ϕ̃−2 + ϕ̃−4

))
. (24)

Theorem 4.6. Let f− ∈ Lp(a, γ;X) and f+ ∈ Lp(γ, b;X). Assume that (H1), (H2) and (H3) hold.
Then, problem (P) has a unique classical solution if and only if the data ϕ+

1 , ϕ
−
1 , ϕ

+
2 , ϕ

−
2 satisfy (6)

and system (19) has a unique solution (ψ1, ψ2) such that

(ψ1, ψ2) ∈ (D(A), X)1+ 1
2p ,p
× (D(A), X)1+ 1

2 + 1
2p ,p

. (25)

10



Proof. Assume that problem (P ) has a unique classical solution u. We set

ψ1 = u−(γ) = u+(γ) and ψ2 = u′−(γ) = u′+(γ).

We get that u− (respectively u+) is the classical solution of (P−) (respectively (P+)). Then, applying
Proposition 4.2 (respectively Proposition 4.4), we obtain (6). Moreover, from (7), we have

ψ1 ∈ (D(M), X)3+ 1
p
,p and ψ2 ∈ (D(M), X)2+ 1

p
,p.

It remains to prove that (ψ1, ψ2) is solution of system (19). To this end, since u satisfies the trans-
mission conditions (TC2). Then, we obtain the following system k−u

(3)
− (γ) + k−Au

′
−(γ) = k+u

(3)
+ (γ) + k+Au

′
+(γ)

k−u
′′
−(γ) + k−Au−(γ) = k+u

′′
+(γ) + k+Au+(γ).

Hence  k+
(
u

(3)
+ (γ)−M2u′+(γ)

)
− k−

(
u

(3)
− (γ)−M2u′−(γ)

)
= 0

k+
(
u′′+(γ)−M2u+(γ)

)
− k−

(
u′′−(γ)−M2u−(γ)

)
= 0.

Moreover, for all x ∈ (a, γ), we have

u−(x) =
(
e(x−a)M − e(γ−x)M

)
α−1 +

(
(x− a)e(x−a)M − (γ − x)e(γ−x)M

)
α−2

+
(
e(x−a)M + e(γ−x)M

)
α−3 +

(
(x− a)e(x−a)M + (γ − x)e(γ−x)M

)
α−4 + F−(x),

u′−(x) = M
(
e(x−a)M + e(γ−x)M

)
α−1 +M

(
e(x−a)M − e(γ−x)M

)
α−3 + F ′−(x)

+
(
(I + (x− a)M)e(x−a)M + (I + (γ − x)M)e(γ−x)M

)
α−2

+
(
(I + (x− a)M)e(x−a)M − (I + (γ − x)M)e(γ−x)M

)
α−4 ,

u′′−(x) = M2
(
e(x−a)M − e(γ−x)M

)
α−1 +M2

(
e(x−a)M + e(γ−x)M

)
α−3 + F ′′−(x)

+
(
(2M + (x− a)M2)e(x−a)M − (2M + (γ − x)M2)e(γ−x)M

)
α−2

+
(
(2M + (x− a)M2)e(x−a)M + (2M + (γ − x)M2)e(γ−x)M

)
α−4 ,

and
u

(3)
− (x) = M3

(
e(x−a)M + e(γ−x)M

)
α−1 +M3

(
e(x−a)M − e(γ−x)M

)
α−3 + F

(3)
− (x)

+
(
(3M2 + (x− a)M3)e(x−a)M + (3M2 + (γ − x)M3)e(γ−x)M

)
α−2

+
(
(3M2 + (x− a)M3)e(x−a)M − (3M2 + (γ − x)M3)e(γ−x)M

)
α−4 .

Thus, we obtain

k−
(
u

(3)
− (γ)−M2u′−(γ)

)
= k−

(
2M2

(
I + ecM

)
α−2 − 2M2

(
I − ecM

)
α−4

)
+k−F (3)

− (γ)− k−M2F ′−(γ).
(26)

Moreover, from (13), we have

k−
(
u′′−(γ)−M2u−(γ)

)
= −k−

(
2M

(
I − ecM

)
α−2 − 2M

(
I + ecM

)
α−4

)
. (27)

Note that, from Remark 4.3, all terms of the previous equality are well defined.
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In the same way, for all x ∈ (γ, b), we have

u+(x) =
(
e(x−γ)M − e(b−x)M

)
α+

1 +
(
(x− γ)e(x−γ)M − (b− x)e(b−x)M

)
α+

2

+
(
e(x−γ)M + e(b−x)M

)
α+

3 +
(
(x− γ)e(x−γ)M + (b− x)e(b−x)M

)
α+

4 + F+(x),

u′+(x) = M
(
e(x−γ)M + e(b−x)M

)
α+

1 +M
(
e(x−γ)M − e(b−x)M

)
α+

3 + F ′+(x)

+
(
(I + (x− γ)M)e(x−γ)M + (I + (b− x)M)e(b−x)M

)
α+

2

+
(
(I + (x− γ)M)e(x−γ)M − (I + (b− x)M)e(b−x)M

)
α+

4 ,

u′′+(x) = M2
(
e(x−γ)M − e(b−x)M

)
α+

1 +M2
(
e(x−γ)M + e(b−x)M

)
α+

3 + F ′′+(x)

+
(
(2M + (x− γ)M2)e(x−γ)M − (2M + (b− x)M2)e(b−x)M

)
α+

2

+
(
(2M + (x− γ)M2)e(x−γ)M + (2M + (b− x)M2)e(b−x)M

)
α+

4 ,

and
u

(3)
+ (x) = M3

(
e(x−γ)M + e(b−x)M

)
α+

1 +M3
(
e(x−γ)M − e(b−x)M

)
α+

3 + F
(3)
+ (x)

+
(
(3M2 + (x− γ)M3)e(x−γ)M + (3M2 + (b− x)M3)e(b−x)M

)
α+

2

+
(
(3M2 + (x− γ)M3)e(x−γ)M − (3M2 + (b− x)M3)e(b−x)M

)
α+

4 .

Hence, we obtain

k+
(
u

(3)
+ (γ)−M2u′+(γ)

)
= k+

(
2M2

(
I + edM

)
α+

2 + 2M2
(
I − edM

)
α+

4

)
+k+F

(3)
+ (γ)− k+M

2F ′+(γ).
(28)

Moreover, from (18), we have

k+
(
u′′+(γ)−M2u+(γ)

)
= k+

(
2M

(
I − edM

)
α+

2 + 2M
(
I + edM

)
α+

4

)
. (29)

As previously, from Remark 4.5, all terms of the previous equality are justified. Then, from (23), (26),
(27), (28) and (29), we deduce that system (19) is equivalent to

k+
(
2M2

(
I + edM

)
α+

2 + 2M2
(
I − edM

)
α+

4

)
−k−

(
2M2

(
I + ecM

)
α−2 − 2M2

(
I − ecM

)
α−4

)
= Š

k+
(
2M

(
I − edM

)
α+

2 + 2M
(
I + edM

)
α+

4

)
+k−

(
2M

(
I − ecM

)
α−2 − 2M

(
I + ecM

)
α−4

)
= 0.

Thus, we obtain the following system

k+
((
I + edM

)
α+

2 +
(
I − edM

)
α+

4

)
−k−

((
I + ecM

)
α−2 −

(
I − ecM

)
α−4

)
= 1

2M
−2Š

k+
((
I − edM

)
α+

2 +
(
I + edM

)
α+

4

)
+k−

((
I − ecM

)
α−2 −

(
I + ecM

)
α−4

)
= 0.

(30)
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Now, we regroup all source terms provided from (11), (12), (16) and (17) in S1 and S2, defined by
(22), (23) and (24). Then, we deduce that system (30) writes

−k+
2 U−1

+

(
I + edM

) ((
I + edM

)
Mψ1 −

(
I − edM

)
ψ2
)

−k+
2 V −1

+

(
I − edM

) ((
I − edM

)
Mψ1 −

(
I + edM

)
ψ2
)

−k−2 U−1
−

(
I + ecM

) ((
I + ecM

)
Mψ1 +

(
I − ecM

)
ψ2
)

−k−2 V −1
−

(
I − ecM

) ((
I − ecM

)
Mψ1 +

(
I + ecM

)
ψ2
)

= −S1
2

−k+
2 U−1

+

(
I − edM

) ((
I + edM

)
Mψ1 −

(
I − edM

)
ψ2
)

−k+
2 V −1

+

(
I + edM

) ((
I − edM

)
Mψ1 −

(
I + edM

)
ψ2
)

+k−
2 U−1

−

(
I − ecM

) ((
I + ecM

)
Mψ1 +

(
I − ecM

)
ψ2
)

+k−
2 V −1
−

(
I + ecM

) ((
I − ecM

)
Mψ1 +

(
I + ecM

)
ψ2
)

= −S2
2 .

Finally, we obtain 

k+

(
U−1

+

(
I + edM

)2
+ V −1

+

(
I − edM

)2
)
Mψ1

+k−
(
U−1
−

(
I + ecM

)2
+ V −1

−

(
I − ecM

)2
)
Mψ1

−k+
(
U−1

+ + V −1
+

) (
I − e2dM

)
ψ2

+k−
(
U−1
− + V −1

−

) (
I − e2cM

)
ψ2 = S1

k+
(
U−1

+ + V −1
+

) (
I − e2dM

)
Mψ1

−k−
(
U−1
− + V −1

−

) (
I − e2cM

)
Mψ1

−k+

(
U−1

+

(
I − edM

)2
+ V −1

+

(
I + edM

)2
)
ψ2

−k−
(
U−1
−

(
I − ecM

)2
+ V −1

−

(
I + ecM

)2
)
ψ2 = S2.

(31)

Then, using (20) and (21) system (31) become system (19). So, (ψ1, ψ2) is solution of system (19).
Conversely, if (6) holds and system (19) has a unique solution (ψ1, ψ2) such that

ψ1 ∈ (D(A), X)1+ 1
2p ,p

and ψ2 ∈ (D(A), X)1+ 1
2 + 1

2p ,p
,

Then, considering u− (respectively u+) the unique classical solution of problem (P−) (respectively
problem (P+)), we obtain that

u =
{
u− in Ω−
u+ in Ω+,

is the unique classical solution of problem (P ).

4.4 Functional calculus

To prove Theorem 3.9, it remains, from Theorem 4.6, to solve system (19). To this end, we have to
inverse the determinant operator of system (19) by using functional calculus.
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We first recall some classical notations. Let θ ∈ (0, π), we denote byH(Sθ) the space of holomorphic
functions on Sθ (defined by (3)). Moreover, we consider the following subspace of H(Sθ):

E∞(Sθ) :=
{
f ∈ H(Sθ) : f = O(|z|−s) (|z| → +∞) for some s > 0

}
.

Thus, E∞(Sθ) is the space of polynomial decreasing holomorphic functions at +∞.
Let T be an invertible sectorial operator of angle θT ∈ (0, π) and let f ∈ E∞(Sθ), with θ ∈ (θT , π),

then, by functional calculus, we can define f(T ) ∈ L(X), see [16], p. 45. In this work, we use functional
calculus, as classicaly done, see for instance [6] or for analytic semigroup generation [1] and [27].

We recall a useful invertibility result from [21], Lemma 5.3.

Lemma 4.7 ([21]). Let P be an invertible sectorial operator in X with angle θ, for all θ ∈ (0, π). Let
G ∈ H(Sθ), for some θ ∈ (0, π), such that

(i) 1−G ∈ E∞(Sθ),

(ii) G(x) 6= 0 for any x ∈ R+ \ {0}.

Then, G(P ) ∈ L(X), is invertible with bounded inverse.

Now, to inverse the determinant of system (19), we introduce some holomorphic functions which
will play the role of G in the previous lemma. Then, we study them on the positive real axis.

Let δ > 0 and z ∈ C \ R−. We set uδ(z) = 1− e−2δ
√
z − 2δ

√
ze−δ

√
z

vδ(z) = 1− e−2δ
√
z + 2δ

√
ze−δ

√
z.

Then, we have

U+ = ud(−A), U− = uc(−A), V+ = vd(−A) and V− = vc(−A).

We set
C+ = {z ∈ C : Re(z) > 0}.

Moreover, from [34], Lemma 4.4, we have uδ(z) 6= 0 and vδ(z) 6= 0 for z ∈ C+ \ {0}, thus we note

fδ,1(z) = u−1
δ (z)

(
1 + e−δ

√
z
)2

+ v−1
δ (z)

(
1− e−δ

√
z
)2

fδ,2(z) =
(
u−1
δ (z) + v−1

δ (z)
) (

1− e−2δ
√
z
)

fδ,3(z) = u−1
δ (z)

(
1− e−δ

√
z
)2

+ v−1
δ (z)

(
1 + e−δ

√
z
)2

gδ(z) = 16u−1
δ (z)v−1

δ (z)e−2δ
√
z.

Thus, we obtain that{
P+

1 = k+fd,1(−A), P+
2 = k+fd,2(−A), P+

3 = k+fd,3(−A)

P−1 = k−fc,1(−A), P−2 = k−fc,2(−A), P−3 = k−fc,3(−A).

Moreover, for z ∈ C+ \ {0}, we define

f(z) := k2
+gd(z) + k2

−gc(z) + k+k− (fd,1(z)fc,3(z) + fc,1(z)fd,3(z) + 2fd,2(z)fc,2(z)) .

Note that f ∈ H(Sθ), for all θ ∈ (0, π). It follows that

f(−A) = 16k2
+U
−1
+ V −1

+ e2dM + 16k2
−U
−1
− V −1

− e2cM + P+
1 P

−
3 + P−1 P

+
3 + 2P+

2 P
−
2 . (32)

Lemma 4.8. For all x ∈ R+ \ {0}, then f(x) do not vanish.
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Proof. Let δ > 0, from Lemma 4.4, in [34], for all z ∈ C+ \ {0}, we have

0 < |uδ(z)| and 0 < |vδ(z)|.

Thus, for all x > 0, one has uδ(x), vδ(x) > 0. Moreover, for all x > 0, we deduce that

fδ,1(x), fδ,2(x), fδ,3(x), gδ(x) > 0

and since k+k− > 0, it follows that

f(x) = k2
+gd(x) + k2

−gc(x) + k+k− (fd,1(x)fc,3(x) + fc,1(x)fd,3(x) + 2fd,2(x)fc,2(x)) > 0.

5 Proof of the main result

Assume that (P) has a unique classical solution, then, (6) holds from Theorem 4.6.
Conversely, Assume that (6) holds. From Theorem 4.6, it suffices to show that system (19) has a
unique solution such that (25) is satisfies.

The proof is divided in three parts. In the first part, we make explicit the determinant of system
(19). Then, in the second part, we show the uniqueness of the solution, to this end, we inverse the
determinant with the help of functional calculus. Finally, in the last part, we prove that ψ1 and ψ2
have the expected regularity.

5.1 Calculus of the determinant

In this section, we make explicit the determinant. Recall system (19):
(
P+

1 + P−1

)
Mψ1 −

(
P+

2 − P
−
2

)
ψ2 = S1(

P+
2 − P

−
2

)
Mψ1 −

(
P+

3 + P−3

)
ψ2 = S2.

Moreover, we writes the previous system as the matrix equation ΛΨ = S, where

Λ =

 M
(
P+

1 + P−1

)
−
(
P+

2 − P
−
2

)
M
(
P+

2 − P
−
2

)
−
(
P+

3 + P−3

)  , Ψ =
(
ψ1
ψ2

)
, S =

(
S1
S2

)
.

To solve system (19), we calculate the determinant of the associated matrix Λ:

det(Λ) := −M
(
P+

1 + P−1

) (
P+

3 + P−3

)
+M

(
P+

2 − P
−
2

)2

= −M
(
P+

1 P
+
3 + P+

1 P
−
3 + P−1 P

+
3 + P−1 P

−
3 −

(
P+

2

)2
−
(
P−2

)2
+ 2P+

2 P
−
2

)
= −M

(
P+

1 P
+
3 −

(
P+

2

)2
+ P−1 P

−
3 −

(
P−2

)2
+ P+

1 P
−
3 + P−1 P

+
3 + 2P+

2 P
−
2

)
.

We begin to calculate each terms separately. Then, we have

P+
1 P

+
3 = k2

+

(
U−1

+

(
I + edM

)2
+ V −1

+

(
I − edM

)2
)(

U−1
+

(
I − edM

)2
+ V −1

+

(
I + edM

)2
)

= k2
+

((
U−2

+ + V −2
+

) (
I − e2dM

)2
+ U−1

+ V −1
+

((
I + edM

)4
+
(
I − edM

)4
))
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and (
I + edM

)4
+
(
I − edM

)4
=

(
I + 2edM + e2dM

)2
+
(
I − 2edM + e2dM

)2

=
(
I + e2dM

)2
+ 4edM

(
I + e2dM

)
+ 4e2dM

+
(
I + e2dM

)2
− 4edM

(
I + e2dM

)
+ 4e2dM

= 2
(
I + e2dM

)2
+ 8e2dM .

Thus

P+
1 P

+
3 = k2

+

((
U−2

+ + V −2
+

) (
I − e2dM

)2
+ 2U−1

+ V −1
+

(
I + e2dM

)2
+ 8U−1

+ V −1
+ e2dM

)
.

Moreover, we have(
P+

2

)2
= k2

+

(
U−1

+ + V −1
+

)2 (
I − e2dM

)2

= k2
+

(
U−2

+ + V −2
+

) (
I − e2dM

)2
+ 2k2

+U
−1
+ V −1

+

(
I − e2dM

)2
.

It follows

P+
1 P

+
3 −

(
P+

2

)2
= k2

+

((
U−2

+ + V −2
+

) (
I − e2dM

)2
+ 2U−1

+ V −1
+

(
I + e2dM

)2
+ 8U−1

+ V −1
+ e2dM

)
−k2

+

(
U−2

+ + V −2
+

) (
I − e2dM

)2
− 2k2

+U
−1
+ V −1

+

(
I − e2dM

)2

= 2k2
+U
−1
+ V −1

+

((
I + e2dM

)2
−
(
I − e2dM

)2
+ 4e2dM

)

= 2k2
+U
−1
+ V −1

+

((
I + 2e2dM + e4dM

)
−
(
I − 2e2dM + e4dM

)
+ 4e2dM

)
= 2k2

+U
−1
+ V −1

+

(
4e2dM + 4e2dM

)
= 16k2

+U
−1
+ V −1

+ e2dM .

In the same way, replacing respectively k+, U−1
+ , V −1

+ and d by k−, U−1
− , V −1

− and c, we obtain

P−1 P
−
3 −

(
P−2

)2
= 16k2

−U
−1
− V −1

− e2cM .

Thus, the determinant of Λ writes

det(Λ) = −M
(
16k2

+U
−1
+ V −1

+ e2dM + 16k2
−U
−1
− V −1

− e2cM + P+
1 P

−
3 + P−1 P

+
3 + 2P+

2 P
−
2

)
. (33)

Finally, from (32) and (33), we obtain

det(Λ) = −Mf(−A). (34)

5.2 Inversion of the determinant

Let C1, C2 two linear operators in X. We note C1 ∼ C2 to means that C1 = C2 + Σ, where Σ is a
finite sum of term of type kMneαM , with k ∈ R, n ∈ N and α ∈ R+ \ {0}. Note that Σ is a regular
term in the sense:

Σ ∈ L(X) with Σ(X) ⊂ D(M∞) :=
⋂
k>0

D(Mk).
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Since U± ∼ I and V± ∼ I, then setting W = U+U−V+V− ∼ I, we obtain
WP+

1 ∼ 2k+I, WP−1 ∼ 2k−I,

WP+
2 ∼ 2k+I, WP−2 ∼ 2k−I,

WP+
3 ∼ 2k+I, WP−3 ∼ 2k−I.

Moreover, we have

16k2
+W

2U−1
+ V −1

+ e2dM ∼ 0 and 16k2
−W

2U−1
− V −1

− e2cM ∼ 0.

We then deduce the following relation

−M−1W 2 det(Λ) = 16k2
+W

2U−1
+ V −1

+ e2dM + 16k2
−W

2U−1
− V −1

− e2cM

+WP+
1 WP−3 +WP−1 WP+

3 + 2WP+
2 WP−2

∼ 4k+k−I + 4k+k−I + 8k+k−I

∼ 16k+k−I.

Thus, we get

det(Λ) = −W−2M

16k+k−I +
∑
j∈J

kjM
njeαjM

 , (35)

where J is a finite set and for all j ∈ J :

kj ∈ R, nj ∈ N and αj ∈ R+ \ {0}.

From (35), we have
det(Λ) = −16k+k−W

−2MF, (36)
where

F = I +
∑
j∈J

kj
16k+k−

MnjeαjM . (37)

For z ∈ C \ R−, we set
f̃(z) = 1 +

∑
j∈J

kj
16k+k−

(
−
√
z
)nj e−αj√z.

Then, F = f̃(−A) and from (34) and (36), we have

f(−A) = −M−1 det(Λ) = 16k+k−W
−2f̃(−A).

Thus, by construction, for z ∈ C \ R−, the link between f and f̃ is

f(z) = 16k+k−u
−2
d (z)u−2

c (z)v−2
d (z)v−2

c (z)f̃(z). (38)

Proposition 5.1. The operator F ∈ L(X) defined by (37), is invertible with bounded inverse.
Proof. Note that f, f̃ ∈ H(Sθ), for a given θ ∈ (0, π). Moreover, for z ∈ C \ R− and j ∈ J , functions

kj
16k+k−

(
−
√
z
)nj are polynomial. Thus, 1− f̃ ∈ E∞(Sθ).

From Lemma 4.4 in [34], ud, uc, vd and vc do not vanish on C+ \{0}. Moreover, due to Lemma 4.8,
f does not vanish on R+ \ {0}, Thus, we deduce from (38) that f̃ do not vanish on R+ \ {0}.

Finally, we apply Lemma 4.7 with P = −A and G = f̃ to obtain that F = f̃(−A) ∈ L(X) is
invertible with bounded inverse.

We are now in position to prove the main result of this section.
Proposition 5.2. The operator det(Λ), defined by (36) is invertible with bounded inverse.
Proof. From Lemma 4.1, U+, U−, V+ and V− are bounded invertible operators with bounded in-
verse. So we deduce that W−2 is invertible with bounded inverse. Moreover, from (H2), (36) and
Proposition 5.1, we obtain that det(Λ) is invertible with bounded inverse.
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5.3 Regularity

To study the regularity, we need to recall the following technical result from [21], Lemma 5.1.

Lemma 5.3 ([21]). Let V ∈ L(X) such that 0 ∈ ρ(I + V ). Then, there exists W ∈ L(X) such that

(I + V )−1 = I −W,

and W (X) ⊂ V (X). Moreover, if T is a linear operator in X such that V (X) ⊂ D(T ) and for
ψ ∈ D(T ), TV ψ = V Tψ, then

∀ψ ∈ D(T ), WTψ = TWψ.

From Proposition 5.2, system (19) has a unique solution (ψ1, ψ2). From Theorem 4.6, it remains
to prove that

ψ1 ∈ (D(A), X)1+ 1
2p ,p

and ψ2 ∈ (D(A), X)1+ 1
2 + 1

2p ,p
.

To this end, we have to study the regularity of the inverse of the determinant det(Λ).

Lemma 5.4. There exists Rd ∈ D(M∞) such that

[det(Λ)]−1 = − 1
16k+k−

M−1 +Rd.

Proof. From (36) and Proposition 5.2, we have

[det(Λ)]−1 = − 1
16k+k−

M−1W 2F−1.

From Lemma 5.3, there exists RF ∈ D(M∞), such that

F−1 = I +RF .

Moreover, for δ > 0, we know that
eδMψ ∈ D(M∞). (39)

Since W = U+U−V+V−, from (39), there exists RW ∈ D(M∞) such that

W 2 = I +RW .

We deduce that there exists Rd ∈ D(M∞), such that

[det(Λ)]−1 = − 1
16k+k−

M−1 +Rd.

Now, we study the regularity of ψ1 and ψ2. We recall that

ΛΨ = S,

where Λ is invertible from Proposition 5.2. From Lemma 5.3, there exist RU± , RV± ∈ D(M∞), such
that

U−1
± = I +RU± and V −1

± = I +RV± . (40)

From (39) and (40), there exist Ri ∈ D(M∞), i = 1, 2, 3, 4, such that

Λ =
(

2(k+ + k−)M +R1 −2(k+ − k−)I +R2
2(k+ − k−)M +R3 −2(k+ + k−)I +R4

)
.
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It follows that there exist R1, R2 ∈ D(M∞), such that
ψ1 = (k+ + k−)

8k+k−
M−1S1 −

(k+ − k−)
8k+k−

M−1S2 +R1

ψ2 = (k+ − k−)
8k+k−

S1 −
(k+ + k−)

8k+k−
S2 +R2,

(41)

where S1 is given by (22) and S2 is given by (24).
Since F+ is a classical solution of problem (P+) and F− is a classical solution of problem (P−),

then from Remark 4.3 and Remark 4.5, we obtain that Š defined by (23) has the following regularity

Š ∈ (D(M), X) 1
p
,p. (42)

Moreover, from (7), we have

ϕ+
1 , ϕ

−
1 ∈ (D(A), X)1+ 1

2p ,p
= (D(M), X)3+ 1

p
,p

and
ϕ+

2 , ϕ
−
2 ∈ (D(A), X)1+ 1

2 + 1
2p ,p

= (D(M), X)2+ 1
p
,p .

Thus, from (12), (17), Lemma 5.3, Remark 4.3 and Remark 4.5, we deduce that

ϕ̃+
1 , ϕ̃

−
1 , ϕ̃

+
3 , ϕ̃

−
3 ∈ (D(M), X)3+ 1

p
,p and ϕ̃+

2 , ϕ̃
−
2 , ϕ̃

+
4 , ϕ̃

−
4 ∈ (D(M), X)2+ 1

p
,p . (43)

So, from (22), (24), (39), (42) and (43), we have

S1 ∈ (D(M), X)2+ 1
p
,p et S2 ∈ (D(M), X)2+ 1

p
,p. (44)

Finally, from (7), (41) and (44), we obtain

ψ1 ∈ (D(M), X)3+ 1
p
,p = (D(A), X)1+ 1

2p ,p
and ψ2 ∈ (D(M), X)2+ 1

p
,p = (D(A), X)1+ 1

2 + 1
2p ,p

.
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