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Let p be a positive integer and A be a nilpotent complex matrix. We prove that the set of all p-th roots of A is path-connected.

Introduction

Let U be an open subset of the field C of complex numbers, f : U → C be an analytic function and n be a positive integer. Given a matrix A ∈ M n (C), it is natural to ask whether the matrix equation f (X) = A, with unknown X ∈ M n (C), has at least one solution. By using the fact that X commutes with f (X), and by using the characteristic subspaces of A, this problem can be reduced to the one of deciding whether the equation g(X) = N has a solution, where N is a given nilpotent matrix, and g is a given analytic function.

There is a (not very satisfying) answer to that question, and we shall recall it in short notice. Given a nilpotent matrix A ∈ M n (C) and a positive integer k, we denote by m k (A) the number of Jordan cells of size k in the Jordan normal form of A. The sequence (m k (A)) k≥1 is called the (Jordan) profile of A. It belongs to the additive semigroup N (N * ) of all sequences of non-negative integers with finite support and indexed over the positive integers (here, N denotes the set of all non-negative integers, and N * the one of all positive integers). More generally, any element of N (N * ) is called a profile. Two nilpotent matrices are similar if and only if they have the same Jordan profile. Throughout the article, profiles will be seen as elements of the abelian group Z (N * ) of all sequences of integers with finite support.

Given k ∈ N * , we denote by J k ∈ M k (C) the Jordan cell of size k (i.e. the matrix of M k (C) in which the entry at the (i, i + 1)-spot equals 1 for all i ∈ [[1, k -1]], and all the other entries equal 0), and we denote its profile by e k (so that (e k ) i = 1 if i = k, and (e k ) i = 0 otherwise). We convene that J 0 is the 0-by-0 matrix and that e 0 is the zero sequence in N (N * ) .

The following result is folklore:

Lemma 1.1.
Let k and p be positive integers. Then J p k is similar to the direct sum of k -pa copies of J a+1 and of p(a + 1) -k copies of J a , for every nonnegative integer a such that pa ≤ k ≤ p(a + 1) (in particular, this holds when a is the quotient of k modulo p).

From there, one proves (see Appendix A for details) that, given a nilpotent matrix A ∈ M n (C), the equation f (X) = A has a solution if and only if the profile of A belongs to the sub-semigroup of N (N * ) generated by the profiles of the form r • e a+1 + (p -r) • e a -where a is a non-negative integer, p is the finite multiplicity of some zero of f , and r ∈ [[0, p]] -and the profile e 1 if some zero of f has infinite multiplicity (i.e. f is constant on the connected component of that zero). In particular, if f has at least one simple zero then the equation f (X) = A has a solution for every nilpotent matrix A.

The above characterization is not very convenient though. In very special cases, one can formulate an equivalent one that can easily be tested: a nilpotent matrix A has a p-th root if and only if, for all k ∈ N * , the integer p -m k (A) is less than or equal to the remainder of +∞ j=k+1 m j (A) modulo p provided that this remainder is non-zero (for example, if p = 2 this means that m k (A) > 0 whenever +∞ j=k+1 m j (A) is odd). Moreover this result holds not only over the field of complex numbers, but over any skew field. If f has exactly two zeroes, one with multiplicity 2 and one with multiplicity 3 (e.g. if f : z → z 3 (z -1) 2 ), then, given a nilpotent matrix A ∈ M n (C), the equation f (X) = A has a solution if and only if there is no pair (k, l) of positive integers for which m k (A) = m k+2l (A) = 0 and m k+i (A) = 1 for all i ∈ [ [1, 2l -1]]. We leave these results as exercises for the reader.

Here, we will stick to the equation X p = A for a fixed nilpotent complex matrix A and a fixed positive integer p. When this equation has a solution, we are interested in the topological structure of its solution set A 1/p , i.e. the set of all p-th roots of A. Note that all the matrices in A 1/p are nilpotent.

A very ambitious goal is to understand the homotopy type of A 1/p . As a first step towards that goal, we will consider here its path-connectedness. Here is our main theorem: Theorem 1.2. Let p be a positive integer and A be a nilpotent complex matrix. Then the set A 1/p is path-connected.

The case p = 1 is straightforward. In the remainder of this section, we fix an integer p > 1 and a nilpotent matrix A ∈ M n (C). Given m ∈ N (N * ) , we denote by A 1/p m the subset of all N ∈ A 1/p with profile m (of course this subset may be empty). We denote by P p (A) the set of all profiles m such that A Finally, we denote by A p (A) the set of all pairs {m, m } of distinct p-adjacent elements of P p (A). Thus, we have defined a non-oriented graph (P p (A), A p (A)).

The definition of p-adjacency is motivated by the following basic result:

Lemma 1.3. Let a, k, l be integers such that 0 ≤ pa ≤ k < l ≤ p(a + 1)
. Then the matrices (J k ⊕ J l ) p and (J k+1 ⊕ J l-1 ) p are similar.

Proof. Denote respectively by r and s the remainders of k and l -1 modulo p. By Lemma 1.1, we find that (J k ⊕ J l ) p is similar to the direct sum of r + (s + 1) copies of J a+1 and of (p -r) + (p -s -1) copies of J a . Likewise, (J k+1 ⊕ J l-1 ) p is similar to the direct sum of (r +1)+s copies of J a+1 and of (p-r -1)+(p-s) copies of J a . The claimed result ensues.

We are now able to state the three steps of our proof of Theorem 1.2:

Lemma 1.4. Let m ∈ P p (A). Then the space A 1/p m is path-connected. Lemma 1.5. Let m, m be adjacent profiles in P p (A). Then there exist N ∈ A 1/p m and N ∈ A 1/p m together with a path from N to N in A 1/p . Lemma 1.6. The graph (P p (A), A p (A)) is connected.
Combining those three results readily yields Theorem 1.2.

Proof of Theorem 1.2

Throughout this part, we let A ∈ M n (C) be a nilpotent matrix and p be a positive integer.

Proof of Lemma 1.4

Let m belong to P p (A). Let X and Y belong to A 1/p m . The matrices X and Y are nilpotent with the same profile, and hence they are similar. Thus we have some

P ∈ GL n (C) such that Y = P XP -1 . Since X p = Y p = A, we obtain that P belongs to the centralizer C(A) of A in the algebra M n (C). As C(A) ∩ GL n (C) is a Zariski-open subset of the complex finite-dimensional vector space C(A), it is path-connected (see Lemma 7.2 in [5]). Choose a path Q : t ∈ [0, 1] → Q(t) ∈ C(A) ∩ GL n (C) from I n to P . Then, one checks that q : t ∈ [0, 1] → Q(t)XQ(t) -1 is a path from X to Y , and q(t) p = Q(t)AQ(t) -1 = A for all t ∈ [0, 1]
. Finally, q(t) is similar to X for all t ∈ [0, 1], and hence its profile is m. Hence, there is a path from X to Y in A 1/p m . This completes the proof of Lemma 1.4.

Proof of Lemma 1.5

As we will see, the proof of Lemma 1.5 boils down to the following basic result: Lemma 2.1. Let a, k, l be integers such that 0 ≤ pa ≤ k < l ≤ p(a + 1). Set N := k + l. Then there exists a path γ : [0, 1] → M N (C) such that:

(i) γ(0) = J k ⊕ J l ; (ii) γ(1) is similar to J k+1 ⊕ J l-1 ; (iii) the mapping t ∈ [0, 1] → γ(t) p is constant.
Proof. We shall think in terms of endomorphisms of C N : denote by u the endomorphism of C N represented by J k ⊕J l in the standard basis (x k , . . . , x 1 , y l , . . . , y 1 ) of C N . We convene that y j = 0 for all j > l, and that x i = 0 for all i > k. Hence, u maps x i to x i+1 for all i > 0, and it maps y j to y j+1 for all j > 0. Given t ∈ [0, 1], define u t as the endomorphism of C N on the standard basis by u t (y 1 ) = (1 -t)y 2 + tx 1 , and by mapping any other vector z of that basis to u(z). Clearly, t ∈ [0, 1] → u t is a path in the space of all endomorphisms of C N , and u 0 = u.

Next, one sees that u 1 is represented by the matrix J k+1 ⊕ J l-1 in the basis (x k , . . . , x 1 , y 1 , y l , . . . , y 2 ).

Next, let t ∈ (0, 1). One checks that (x k , . . . , x 1 , (1 -t)y l + tx l-1 , . . . , (1t)y 2 + tx 1 , y 1 ) is a basis of C N , and the matrix of u t in that basis is J k ⊕ J l . Hence, u t is similar to u 0 , and it follows that u p t is similar to u p 0 . Besides, Lemma 1.3 shows that u p 1 is also similar to u p 0 . Now, for t ∈ [0, 1], denote by U t the matrix of u t in the standard basis of C N . It follows from the above that t ∈ [0, 1] → U t is a path, in the space M N (C), from J k ⊕ J l to a matrix that is similar to J k+1 ⊕ J l-1 , and that the path t ∈ [0, 1] → (U t ) p takes its values in the similarity class S(U p 0 ) of the matrix U p 0 . It is folklore that the mapping P ∈ GL N (C) → P U p 0 P -1 ∈ S(U p 0 ) is a fibration (it is a principal fibre bundle whose structural group is the group of all invertible elements of the centralizer of U p 0 ): see Appendix B for a short elementary proof, and the combination of Theorem 1.4.3 and Proposition 1.4.6 of [START_REF] Bröcker | Representations of compact Lie groups[END_REF] and Proposition 8.3 of [START_REF] Humphreys | Linear algebraic groups[END_REF] for a more sophisticated one. Hence, there is a path q : [0, 1] → GL N (C) such that ∀t ∈ [0, 1], U p t = q(t) U p 0 q(t) -1 and q(0) = I N .

Finally, we consider the path γ :

t ∈ [0, 1] → q(t) -1 U t q(t) ∈ M N (C). The above properties of q show that t → γ(t) p is constant. Next, γ(0) = U 0 = J k ⊕ J l .
Finally, γ(1) is similar to U 1 and hence to J k+1 ⊕ J l-1 . Now, we can prove Lemma 1.5. Let m, m be distinct adjacent profiles in P p (A). We wish to prove that some element of A 1/p m is path-connected in A 1/p to some element of A 1/p m . Without loss of generality, we can assume that there is a non-negative integer a together with elements k < l of [[pa, p(a + 1)]] such that m -m = e k + e l -e k+1 -e l-1 . A m = m , we must have l > k + 1, and it follows that m k > 0 and m l > 0. Let us choose N ∈ A 1/p m . Then N has at least one Jordan cell of each size k and l. Hence, N = P (B ⊕ J k ⊕ J l )P -1 for some nilpotent matrix B and some P ∈ GL n (C). The profile of B is obviously m -e k -e l .

Let us take a path γ that satisfies the conclusion of Lemma 2.1 for the pair (k, l): then, q : t ∈ [0, 1] → P (B ⊕ γ(t))P -1 is a path in M n (C), and we see from condition (iii) in Lemma 2.1 that t → q(t) p is constant with value q(0) p = N p = A. In other words, q is a path in A 1/p . Finally, q(1) is similar to B ⊕ γ(1), and hence to B ⊕ J k+1 ⊕ J l-1 , whose profile equals (m -e k -e l ) + e k+1 + e l-1 = m . Hence, q(1) ∈ A 1/p m . This completes the proof of Lemma 1.5.

Proof of Lemma 1.6

We start with some preliminary notation. Given an element m ∈ Z (N * ) , we set Using the results recalled in the introduction, one sees that if m is the profile of some nilpotent matrix N , then m [p] is the profile of N p , while S(m) is obviously the number of rows of N , and hence S(m [p] ) = S(m). Besides, using Lemma 1.3, we find that m [p] = (m ) [p] for any two p-adjacent profiles m and m .

Given profiles m and m , a p-chain of profiles from m to m is a list (a (0) , . . . , a (N ) ) of profiles such that a (i) ∼ p a (i+1) for all i ∈ [[0, N -1]], and m = a (0) and m = a (N ) .

From there, Lemma 1.6 can be seen as a reformulation of the following result:

Lemma 2.2. Let m, m be two profiles such that m [p] = (m ) [p] . Then there is a p-chain of profiles from m to m .

Proof. Note that the assumptions yield S(m) = S(m [p] ) = S((m ) [p] ) = S(m ).

We will prove the result by induction on the size of m. The result is obvious if S(m) = 0: in that case both m and m equal the zero sequence, and we simply take the trivial chain (m). Assume now that S(m) > 0.

Assume first that there exists an integer k ≥ 1 such that m k > 0 and m k > 0. Then m-e k and m -e k obviously satisfy the assumptions, and their size equals S(m)-k. By induction, there is a p-chain (a (0) , . . . , a (N ) ) of profiles from m-e k to m -e k . Clearly, (a (0) + e k , . . . , a (N ) + e k ) is a p-chain of profiles from m to m .

Hence, in the remainder of the proof we assume that m k m k = 0 for all k ≥ 1. Denote by q the greatest positive integer such that m q + m q > 0. Without loss of generality, we can assume that m q > 0 (and hence m q = 0). Denote by a the least (non-negative) integer such that q ∈ [[pa, p(a + 1)]], so that q > pa. Hence, m

[p] a+1 = (m ) [p] a+1 ≥ q -pa. In particular, m k > 0 for some k ∈ [[pa + 1, p(a + 1)]],
and we consider the greatest such integer k. Note that pa

< k < q. If m k > 1, we note that m-2e k +e k+1 +e k-1 is still a profile that is p-adjacent to m. If m k = 1, then having m [p] a+1 ≥ q -pa we must also have m l > 0 for some l ∈ [[pa+1, k -1]],
and then we note that m -e k -e l + e k+1 + e l-1 is a profile. In any case, we have found a profile a (k+1) that is p-adjacent to m and for which k + 1 is the greatest integer i such that a (k+1) i > 0. Continuing by finite induction, we create a p-chain (a (k) , a (k+1) , . . . , a (q) ) of profiles from m to some profile a (q) such that (a (q) ) q > 0. Hence (a (q) [p] . As (a (q) ) q > 0, the first case tackled in the above yields a p-chain of profiles from a (q) to m . Linking those p-chains yields a p-chain of profiles from m to m . Lemmas 1.4 to 1.6 are now proved, and hence Theorem 1.2 is established.

) [p] = • • • = (a (k) ) [p] = m [p] = (m )

Further questions

Now that Theorem 1.2 has been proved, we wish to suggest several related open problems. First, given an analytic function f : U → C, what are the nilpotent complex matrices A for which the set of all solutions of the equation f (X) = A is path-connected? More precisely, is there a simply characterization of such matrices in terms of the profile of A and the zeroes of f (and their multiplicities)?

Next, given a positive integer p, we wonder about the homotopy type of A 1/p . For example, if A = 0 then A 1/p is contractible (since it is star-shaped around 0). However, for E :=   0 0 1 0 0 0 0 0 0   , one checks that E 1/2 is the set of all matrices of the form   0 x y 0 0 x -1 0 0 0   , a space that is homeomorphic to (C {0}) × C and hence homotopy equivalent to the circle S 1 (and not contractible!). Is there a simple way to compute the homotopy type of A 1/p as a function of p and the profile of A? Computing the fundamental group of A 1/p would be interesting, for a start. There are other interesting open questions related to the real and quaternionic cases. The set of all square roots of E with real entries is homeomorphic to (R {0}) × R, and hence it has exactly two path-connected components. Is there a sensible way to compute the number of path-connected components of the set of all p-th roots of A (with real entries) as a function of p and of the profile of A? In that prospect, it is worthwhile to note that the real equivalent of Lemmas 1.5 and 1.6 holds (with the same proof): the only step that fails is the real equivalent of Lemma 1.4. Nevertheless, the set of all real p-th roots of A is a real affine variety, and hence it has finitely many path-connected components (alternatively, one can adapt the proof of Lemma 1.4 to yield that A 1/p m has finitely many path connected components, using the fact that C(A) ∩ GL n (R) is a Zariski open subset of a finite-dimensional real vector space, see [START_REF] Bochnak | Real algebraic geometry[END_REF], Section 2.4). Finally, there are similar issues in the quaternionic case: in that one however we have not succeeded in finding a single example of a nilpotent quaternionic matrix A and of a positive integer p such that the set of all p-th roots of A is not path-connected.

along the same pattern. The mapping v ∈ End(V ) → A(v) ∈ M p (F) is linear, and hence continuous. It follows that

U := {v ∈ End(V ) : A(v) ∈ GL p (F)}
is an open subset of End(V ) that contains u.

Next, let v ∈ U . Consider the invertible matrix

N (v) := I p -A(v) -1 C(v) 0 (n-p)×p I n-p ∈ GL n (F), so that M (v)N (v) = A(v) 0 p×(n-p) B(v) ?
has the same rank as M (v). Assume that v has rank p. Since A(v) has rank p, it follows that the last n -p columns of M (v)N (v) equal zero, and in particular M (v) annihilates the last column of N (v). For v ∈ U , denote by f (v) the vector of V whose matrix in B is the last column of N (v); obviously f : U → V is continuous, and the previous study shows that v[f (v)] = 0 for all v ∈ U with rank p. Finally, f (u) = e n = x 0 . Remark 1. Set p := rk u and define End p (V ) as the set of all endomorphisms of V with rank p, and ξ : (u, x) ∈ End p (V ) × V → u ∈ End p (V ) the trivial vector bundle with fiber V and base space End p (V ). The mapping f : (u, x) → (u, u(x)) is obviously a End p (V )-bundle morphism from ξ to itself with constant rank p, therefore its kernel, which equals (u, x) ∈ End p (V ) × V : u(x) = 0 -→ End p (V ) (u, x) -→ u, is also a vector bundle: see [START_REF] Husemoller | Fibre bundles[END_REF], Chapter 3 Theorem 8.2. The above result can be then obtained by using a local trivialization of this bundle.

We are now ready to construct the claimed local cross-section. Consider the endomorphism ad A : M → AM -M A of the vector space M n (F). Denote by p its rank. Applying the above lemma, we find a neighborhood U of ad A in End(M n (F)) together with a continuous mapping f : U → M n (F) such that f (ad A ) = I n and v(f (v)) = 0 for all v ∈ U with rank p. The mapping

Φ : B ∈ M n (F) → [M → BM -M A] ∈ End(M n (F))
is affine, and hence continuous: thus U 0 := Φ -1 (U ) is a neighborhood of A in M n (F). We set g : B ∈ U 0 ∩ S(A) → f (Φ(B)) ∈ M n (F), so that g(A) = I n . Since g is continuous, U 0 := g -1 (GL n (F)) is a neighborhood of A in S(A).

We will conclude the proof by showing that the restriction g |U 0 is a local cross-section for the mapping P ∈ GL n (F) → P AP -1 ∈ S(A).

m

  ) m∈Pp(A) yields a partition of A 1/p . Two profiles m and m are called p-adjacent, and we write m ∼ p m , when there exist non-negative integers a, k, l such that pa ≤ k < l ≤ p(a + 1) and m -m = ±(e k + e l -e k+1 -e l-1 ).

  size of m), andm [p] := -p<k<p (p -|k|) m pa+k a≥1 ,which is an element of Z (N * ) . Note that both maps S : Z (N * ) → Z and m ∈ Z (N * ) → m[p] ∈ Z (N * ) are group homomorphisms.

Q where L N : M → N M for all N ∈ M n (F). Hence, rk Φ(B) = rk(ad A ) = p. It follows that Φ(B)[g(B)] = 0, that is Bg(B) = g(B)A. Moreover, g(B) is invertible, and hence B = g(B)Ag(B) -1 , as claimed.

Appendix

Appendix A. When does the equation f (X) = N have a solution?

Let U be an open subset of C and f : U → C be an analytic function. Let N ∈ M n (C) be nilpotent. We wish to characterize the existence of a solution to the equation f (X) = N with unknown X ∈ M n (C). Proof. This result is known by Lemma 1.1 if f : z → (z -x) p , in which case f (xI n + N ) = N p . In the general case we factorize f : z → (z -x) p g(z) for some analytic function g on U . Using the commutation of P := g(xI n +N ) with N , we see that N p P is nilpotent and rk (N p P ) k = rk (N p ) k P k = rk (N p ) k for every non-negative integer k. Classically, the similarity class of a nilpotent matrix M is characterized by the sequence of ranks (rk M k ) k≥0 , and hence N p P N p , which completes the proof.

Lemma Appendix

If, on the other hand, x is a zero of f with infinite multiplicity (i.e. f vanishes on a whole neighborhood of x) then f

The eigenvalues of f (X) are the images under f of those of X, and hence the eigenvalues of X are zeroes of f . Using the Jordan reduction theorem, we obtain

where x 1 , . . . , x p are zeroes of f and N 1 , . . . , N p are Jordan cells with respective positive sizes d 1 , . . . , d p . Therefore

and it follows that the Jordan profile of N is the sum of the Jordan profiles of the matrices f (x k I d k + N k ). Using Lemma Appendix A.1 and the remark thereafter, we deduce the "only if" part in the following statement:

Let N ∈ M n (C) be nilpotent. The following conditions are equivalent:

(i) There exists a matrix X ∈ M n (C) such that f (X) = N .

(ii) The Jordan profile of N belongs to the sub-semigroup of N (N * ) generated by the elements of the form (p-r)•e a +r•e a+1 where p the (finite) multiplicity of some zero of f , a is an arbitrary non-negative integer and r belongs to [[0, p]], together with the additional element e 1 if f has a zero with infinite multiplicity.

The "if" part of the above statement is proved in a similar fashion as the "only if" part.

Appendix B. The fibration P → P AP -1

Here, F denotes one of the fields R or C. Let A ∈ M n (F). Denote by C(A) the centralizer of A in the algebra M n (F), by C(A) × its group of invertible elements, and by S(A) the similarity class of A. We wish to prove that the mapping π : P ∈ GL n (F) → P AP -1 ∈ S(A) defines a C(A) × -principal bundle. For the continuous left-action (P, M ) → P M P -1 of GL n (F) on M n (F), the stabilizer of A is C(A) × , and hence classically it suffices to prove that the mapping π admits a local cross-section around A.

The proof is based upon the following elementary lemma:

Lemma Appendix B.1. Let V be a finite-dimensional vector space over F. Let u ∈ End(V ), and let x 0 ∈ V be a non-zero vector such that u(x 0 ) = 0.

Then there exists a neighborhood U of u in End(V ), together with a continuous mapping f : U → V such that v[f (v)] = 0 for all v ∈ U with the same rank as u, and f (u) = x 0 .

Proof. Denote by n the dimension of V , and by p the rank of u. Let us extend x 0 first into a basis (e n-p , . . . , e n ) of the kernel of u, with e n = x 0 , and then into a basis B := (e 1 , . . . , e n ) of V . We extend the linearly independent p-tuple (u(e 1 ), . . . , u(e p )) into a basis C := (u(e 1 ), . . . , u(e p ), f p+1 , . . . , f n ) of V . In the bases B and C, the matrix of u reads I p 0 p×(n-p) 0 (n-p)×p 0 (n-p)×(n-p) .

For any v ∈ End(V ), let us write its matrix in the bases B and C as