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ABSTRACT:

Sentinel-2 satellites provide dense image time series exhibiting high spectral, spatial and temporal resolution. These images are in
particular of utter interest to map Land-Cover (LC) at large scale. LC maps can now be computed on a yearly basis at the scale of
a country with efficient supervised classifiers, assuming suitable training data are available. However, the efficient exploitation of
large amount of Sentinel-2 imagery still remain challenging on unexplored areas where state-of-the-art classifiers are prone to fail.
This paper focuses on Land-Cover mapping over Cameroon for the purpose of updating the national topographic geodatabase. The
ι2 framework is adopted and tested for the specificity of the country. Here, experiments focus on generic classes (five) which enables
providing robust focusing masks for higher resolution classifications. Two strategies are compared: (i) a LC map is calculated out
of a year long time series and (ii) monthly LC maps are generated and merged into a single yearly map. Satisfactory accuracy scores
are obtained, allowing to provide a first step towards finer-grained map retrieval.

1. INTRODUCTION

1.1 The need for Land-Cover (LC) mapping

Land cover (LC) is defined as the description of the biophysical
material over the surface of the Earth and immediate subsur-
faces and man-made structures. Understanding and monitoring
LC is important especially in environmental studies. Thus, up-
dating LC maps is essential for countries in development and
implementation of environmental policies (Grekousis, Moun-
trakis, 2015). Human activities related to serving specific soci-
etal and individual needs are the main drivers of contemporary
LC dynamics (Grekousis et al., 2015).

1.2 Sentinel-2 for LC mapping

The launch of the Sentinel-2 satellites in June 2015 enabled the
free access to an unprecedented amount of optical images. The
large swath, the short revisit time, the high spatial resolution of
about 10 m, and the spectral bands from visible to short wave
infra-red have already become essential to monitor large territ-
ories for a great variety of environmental applications.
Sentinel-2 (S2) satellites provide a global cover of continental
surfaces every five days in 13 spectral bands. This now en-
ables the implementation of novel LC map production systems
for the delivery of up to date and accurate information with
the appropriate timeliness (Whitcraft et al., 2015a, Whitcraft
et al., 2015b). The enhanced temporal resolution ensures a bet-
ter monitoring of land use and cover with better opportunities
to obtain cloudless mosaics and to discriminate natural classes
(vegetation types, crops, etc.) (Immitzer et al., 2016). The wide
spectral resolution facilitates the thematic identification of LC,
while the high spatial resolution allows for the identification
of quite small objects or landscapes structures (built-up areas,
large roads, specific textures).
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1.3 Needs of the National Cameroonian Mapping Agency

The national Cameroonian mapping agency aims at implement-
ing a fully operational automatic LC map production system
using both time series of Sentinel-2 images and available aerial
images. So far, the topographic database is established on the
basis of the visual interpretation of the latter images and field
surveys. The nomenclature of the national Cameroonian ref-
erence topographic and land cover database is highly detailed
(9 themes, 47 classes, and 136 sub-classes) and does not fully
match the current requirements of a yearly basis with detected
changes, as it now appears to be a crucial feature (Wulder et
al., 2018). Therefore, it is here targeted at investigating how
Sentinel-2 and aerial images can be jointly beneficial for this
task since they exhibit complementary strengths.

1.4 Scope of this work

This study focuses on the first step of this exploratory workflow:
the analysis of Sentinel-2 images for yearly LC map generation.
It aims at assessing state-of-the-art classifiers to this specific
context.
Indeed, a first difficulty states in the lack of reference data at
the spatial resolution of Sentinel images for the training of a
supervised classifier. The proposed solution consists in a direct
use of existing Very High Resolution topographic database with
the existing ι2 LC classification framework.
Other challenges consist in working on areas with numerous
cloudy days and significant intra-annual variability (Mertens,
Lambin, 2000).

2. DATA AND STUDY SITE

In order to design a reliable fully operational automatic
Cameroon LC map system out of Sentinel-2 time series, exper-
iments are conducted over a study area in the Extreme-North
(EN) of Cameroon.



Figure 1. Study area and reference data.

2.1 Study site

Current experiments and analyses are limited to one specific
site, located near Petté in the East-North of Cameroon, (see
Figure 1). Covering 189.072 km2, it was selected both for its
challenging conditions and the availability of reference and Co-
pernicus data (Figure 1). It has a short rainy season from June
to September and a long dry season from October to May. The
slope in the whole scene greatly varies with some hilly areas
and rocks. The soil is sandy in the dunes with sandy clay at the
median part levels, and essentially clayey at the shallow levels.
The drainage is almost nonexistent. The essential waterways,
Mayel Tchilé and Mayel Petté, are loosing their activities in
September. The principal LC categories are vegetation (prin-
cipally accacias, balanites, and goods of thorns), water areas,
buildings and roads.

2.2 Data

2.2.1 Remote sensing data Sentinel-2 is the only image data
source used in this work: 10 spectral bands from 10 to 60 m,
(see Figure 2). All Levels 2A and 2B data available through the
Copernicus Open Access Hub1 over the study area for the year
2018 were used. For each month, 4-7 images were available
(Figure 2). More specifically, a focus was made on a sub-area
of 10 km × 10 km.

2.2.2 Reference data The proposed approach relies on ex-
isting geodatabases available over the area to build the training
and reference datasets, needed for the supervised classification
and the subsequent validation of the LC maps. Two data sources
have been used in order to build a unique reference dataset :

• The topographic LC database of the Cameroonian Na-
tional Cartographic Institute (BDINC, simplified for our
purpose);

• OpenStreetMap data, made available through the QUICK-
OSM2 plugin of QGIS software (Herbreteau et al., 2018).

In further experiments, five generic classes are considered for
the classification: Roads, Vegetation, Water, Buildings and
Other. The Other class corresponds to the rest of Land-Cover
objects in the study area except the four others ones. Remain-
ing unlabelled areas correspond to LC types not included in the
specifications of the reference database.

1 https://scihub.copernicus.eu
2 https://plugins.qgis.org/plugins/QuickOSM/

3. PROPOSED WORKFLOW AND EXPERIMENTS

3.1 ι2 framework

Land-cover map generation is cast as a supervised classifica-
tion task as routinely adopted in the literature. The Iota2 or
ι2 supervised classification framework (Inglada et al., 2017) is
adopted. Indeed, it is specifically dedicated to process Land-
sat or Sentinel time series and it has proven to be an efficient
and highly parametrizable open-source solution. ι2 has already
demonstrated its high efficiency in performing country wide LC
classification out of multi-temporal high resolution Landsat and
Sentinel imagery at pixel level. It can run either on standard
desktop computers or High Performance Computing clusters.

A per-pixel machine learning classification scheme is retained,
on which simple post-processing steps can be plugged. Con-
textual classifiers or object-based approaches (Derksen et al.,
2018) would have been interesting but have been discarded yet.

3.2 Random Forests

A Random Forests (RF) classifier is used (Breiman, 2001).
This classifier is an aggregation of a set of decision CART trees.
Indeed, to improve the performance of single CART classifier,
RF classifier is based on two main principles: bagging and
randomsubspace.
A fusion of the different basic classifiers is carried out by
majority vote: each decision tree predicts a label for a new
sample to be classified and the label finally assigned to it is the
one which receives the greatest number of votes.
This study uses the RF algorithm as base classifier as it has
proven to be efficient for land-cover discrimination at large
scales under noisy labels, both in terms of computation times
and classification quality (Rodriguez-Galiano et al., 2012,
Pelletier et al., 2016).
Several parameters come into play during the construction of a
RF classifier: the number K of trees (arbitrarily set to a large
value), the number m of attributes drawn during each cutting
of the node of one of the trees (usually set to the value of the
square root of the number of attributes), the maximal depth
max depth of each tree and the minimal number of samples
min samples per node.

3.3 Process workflow

The proposed workflow can be decomposed into the next steps:

1. Data preparation: convert all images bands and create
masks of all images

2. Feature computation: compute standard features of all im-
ages

3. Training: select training samples from all images and ref-
erence groundtruth maps and build classification models

4. Prediction: LC map production

5. Classification fusion: fuse all monthly classifications

Each step is detailed in the followings sections.



Figure 2. Iota2 (ι2) configuration for monthly and yearly classifications over the study area.

Figure 3. Data preparation.

3.3.1 Data preparation This step (Figure 3) consists in ad-
apting the Copernicus Sentinel-2 data to fit the input format re-
quirements of ι2.
First, images bands are converted from .jp2 to .tif format us-
ing GDAL translate functionalities.
Then, for each Sentinel-2 image, three different masks are com-
puted in a manual way using the r.mask.rast command of the
Raster(r.∗) library of GRASS in QGIS. They correspond to
unusable image areas because of clouds (CLM R1*), satura-
tion (SAT R1*) or diverse reasons (EDG R1*).

3.3.2 Feature computation After data preparation, the fea-
ture vector that will be used for the classification of each pixel
has to be built. For each Sentinel-2 image, four standard fea-
tures are computed out of the original bands:
• Normalized Difference Vegetation Index (NDVI) (Tucker,

1979) to highlight vegetation cover;
• Normalized Difference Water Index (NDWI) (Gao, 1996)

to enhance water and wet areas;
• Soil Adjusted Vegetation Index (SAVI);
• Normalised Difference Red Edge (NDRE).

Selecting batchProcessing parameter in ι2’s configuration file
improves feature computation times.
At the end, each pixel is characterised by the original spectral
bands (limited to the 10 bands exhibiting a native 10 or 20 m
GSD) and the spectral indices corresponding to the different
dates of the time series. Here, for a year long time series, it
amounts to 760 features: 10 spectral bands plus 4 indices on 70
dates (see Figure 2). For monthly and yearly classifications, all
features are stacked into a single set.

3.3.3 Training the classifier As the proposed approach re-
lies on a supervised RF classifier, training this classifier is an
important step of the workflow. It consists in (i) sampling data
to obtain a training set and (ii) building a classification model
per image that will be applied in the next step (Section 3.3.4).

Training set design Five generic classes Roads, Vegetation,
Water, Buildings and Other are considered in these experi-
ments. (The Other class corresponds to the rest of Land-Cover
objects in the study area except the four others ones.) Training
samples are extracted for these classes from the reference data-
set described in Section 2.2.2, and especially the existing Very
High Resolution national topographic database. Using existing
databases as training data has proved to be a suitable solution
(Gressin et al., 2014, Postadjian et al., 2017), even if noisy la-
bels may appear due to misregistration, changes and geodata-
base specifications. Pixels are randomly taken as a 20% sub-
set of each class, keeping the same ratio between initial ref-
erence and training sets. In practice, a maximum sampling
of 1,051,919 pixels is performed over the area covered by the
(month or year long) Sentinel-2 time series. The number of
training samples selected for each class is proportional to the
area covered by this class over the useful parts of the image
(Figure 1). These areas are different (see Figure 4) depending
on classes and so the class samples are unbalanced.

Build RF model In supervised classification the balance
between class samples is important. There are many ways to
manage class balancing in iota2, using either data augmenta-
tion to enrich the training sample set or class weighting when
training the classifier. Data augmentation is used here, generat-
ing synthetic samples with jitter (strategy jitter standard factor
of 10) and smote (strategy smote neighbors of 5) methods by us-
ing the minNumber samples strategy to set the minimum num-
ber of samples by class required.

RF is not very sensitive to the choice of parameters as demon-
strated in (Pelletier et al., 2016). Thus, it is here applied with
the standard ι2 configuration (see fig. 2): a number K of 1,000
trees, a number m of features randomly selected at each node
equals to the square root of the total number of features, a max-
imum depth max depth for each tree of 25 levels and a min-
imum number min samples of 5 samples per node have been
used.

3.3.4 Prediction This step simply consists in classifying
Sentinel-2 data according to model obtained at previous step.
Here a LC map was generated for year 2018 at a spatial resolu-
tion of 10m over the areas of interest for the five generic classes
listed above.



Figure 4. Percentages of classes in the reference data over the
study area.

3.3.5 Classification fusion This last step is specific to the
case when several LC maps are calculated for different time
series configurations. For instance, in the next experiments, the
year is split into epochs (months), and one map is computed for
each epoch from four to seven Sentinel-2 images.

In this step, for each per epoch classification, each pixel con-
tains a value corresponding to its class. To synthesize this in-
formation to a unique map, one can rely on the Fusion by Vot-
ing. It consists in merging classifications by letting each of
them vote for its label and choosing the final label as the win-
ner of this majority vote. Such vote can be applied to hard label
classification results, but it can also exploit confidence inform-
ation associated to these maps.
This strategy is here applied to the twelve monthly hard label
classifications (supposed to be all well coregistered).

3.4 Experiment set up

This work aims at demonstrating the ability of state-of-the-art
RF classifier to classify time series of Sentinel-2 for large scale
land cover mapping in the specific Cameroonian context. Sev-
eral strategies are considered and compared. On one hand, a
LC map is calculated out of the complete year long time series
for 2018. On the other hand, the year is split into epochs
(months), and one map is computed for each epoch. The qual-
ity of these twelve monthly classifications is then assessed to
identify whether some periods are more prone to deliver good
results. At the end, these monthly classifications can be merged
into a unique map. One interest of such per month strategy
compared to year-long time series analysis states in its ability
to handle smaller amount of data for each classification.

3.5 Quality assessment

Results (from month or year long time series, and fusion of
monthly results) are all assessed quantitatively and qualitat-
ively.

3.5.1 Qualitative assessment A qualitative and visual as-
sessment of obtained results is done. Indeed, it may sometimes
be useful to assess the quality of the classifications locally (here
in a given yellow squared area of the study area (Figure 9). For
this aim, a classification indicating the confidence of the RF
classifier on the decision for each pixel of the classification can
be provided. Finally, a visual evaluation in order to highlight
anomalous characteristics will also be presented.

3.5.2 Quantitative evaluation Classification results are
compared to the reference data (section 2.2.2). Then, several
classic metrics are derived from the confusion matrix : Overall
Accuracy (OA), Kappa coefficient (K) and F-Score averaged
(Cohen, 1960), (Fleiss, Cohen, 1973) for global assessment, as
well as F-Score, producer’s and user’s accuracies for per class
analysis.

4. RESULTS AND DISCUSSION

The different classifications described in Section 3 were calcu-
lated over the study area for the year 2018 and evaluated as ex-
plained in Section 3.5. A visual assessment of a yellow squared
particular area displayed was also proposed to highlight some
phenomena which can not be detected with the metrics.

4.1 Quantitative evaluation

Figure 5 presents the mean F-Score and Kappa coefficients as
global metrics as well as the per-class F-Score, recall and preci-
sion quality metrics for the two classification modes (monthly
and yearly) and for the fusion. These metrics were calculated
over one run using the same training and validation sets (of
1,051,919 pixels each). Kappa coefficients are generally very
good with values above 0.8 (0.88-0.93 for monthly classific-
ations, 0.94 for the yearly one and 0.87 the fusion). Table 4
shows the confusion matrix for the fusion of monthly classific-
ations. It can be highlighted that overall accuracy and Kappa
coefficient values are 0.91 and 0.87 respectively. One can ob-
serve that the yearly classification yields better results than
monthly classifications and their fusion for these two global
metrics. Most monthly classifications results are also better
than the fusion one.
This is slightly different when considering per class metrics.
The classes Vegetation and Other obtained the best results for
the all classification modes. Compared to monthly results, the
fusion can slightly improve results (especially considering un-
derdetection), mostly for the other classes, but the best results
are still obtained for yearly classifications.The results are even
more improved for the classes with few training samples (Water
and Building). The class Vegetation is much better recognised
using the two classification modes and the fusion of monthly
classifications, mainly because of its higher training samples
(see Figure 4).
It can also be shown from Figure 5 the improvement for these
minority classes (Water and Buildings) mostly states in the re-
call: underdetection is reduced. Tables 1, 2 and 3 show the
confusion matrices for the best month (May), the baddest month
(December) and the year 2018 respectively. They allow a de-
tailed analysis of the errors for both modes. Several aspects
of the improvement yielded by the yearly classification can be
highlighted:
• No confusion between Other and Vegetation in both direc-

tions;
• The confusion of Water with Vegetation is reduced in one

direction;
• The confusion of Water with Other is reduced in one direc-

tion from 15.61% in June 2018 to 0.67% in the year 2018.

Table 4 shows the confusion matrix for the result from the fu-
sion of the twelve monthly classifications. Several aspects of
his improvement can also be highlighted:
• No confusion between Other and Vegetation in both direc-

tions;
• The confusion of Water with Vegetation is reduced in one

direction;



Figure 5. Global (F-Score averaged on classes and Kappa) and
per class (F-Score, recall and precision) quality metrics for the

study area for months and year 2018 and fusion.

• The confusion of Water with Other increases to 2.57%
compare to the yearly classification.

It can be seen from the confusion matrices most misclassific-
ations occur between Roads and Vegetation classes, as well as
the Roads classified as Other class. This is partly caused by the
fact that bare ground areas (that can be included in these classes
in the reference databases) are often classified as Roads class.

4.2 Classification confidence

The RF classifier associates a confidence (unsupervised mar-
gin) calculated out of the distribution of the labels predicted
by the trees (Frenay, Verleysen, 2014) of the forest. Figure 12
shows the confidence map obtained for the LC map in the yel-
low squared area of Figure 9 for the year 2018. One can ob-
serve that confidence is influenced by the proportion occupied
by the classes samples in the reference data (see Figure 4). For
example, the Vegetation class in that specific yellow zone is
easily recognised in the yearly confidence classification. Be-
sides, areas corresponding to LC not included in the reference
databases generally exhibit high confidence, which is encour-
aging for a use of such information. It is useful to study how
confidence values are related to correct and incorrect classific-
ations. Figure 13 shows the distribution of confidence values
calculated for only the learning samples categorie for Decem-
ber, May and yearly classifications. One can observe that all
the learning samples were correctly classified (in yellow) so
there was not incorrectly classified learning samples (in blue)
for each of these specific classifications. However, these cor-
rectly classified learning samples have different behaviours for
confidence values lower than 40% and higher than 60% and the
same behaviour between 50% and 60%. We have more pixels
(<200) which have confidence values lower than 40% in the
December classification compare to May and the yearly classi-
fications where we have less and less pixels having these con-
fidence values respectively. On the opposite, we have more and
more pixels having confidence values which evolve from 60%
to 100% in May and yearly classifications respectively com-
pare to the December classification where the number of pixels
having these confidence values is decreasing from 1000 to 0.
These results are consistent with the quantitative evaluation ar-
guing that the yearly classification exhibits better results than
monthly classifications. December also exhibits the worst ac-
curacy among the per month results. This difficulty to classify
the December month could be due to the presence of clouds and
cloud shadows associated with bad landscape in our study area.
Thus, introducing confidence to weight the majority vote would
probably improve fusion results.

4.3 Visual analysis

Quantitative assessment is not able to reveal alone several kinds
of errors present in the classifications, while a visual analysis
makes it possible to identify other phenomena which are ana-
lysed in this section. Indeed, important parts of the study area
are not labeled in the reference databases, and thus not included
in the quantitative evaluation.
For the considered legend, the study area is globally not diffi-
cult to classify using 10 m S2 images even if the small size of
Buildings class makes it more difficult to classify. Figures 6, 7
and 8 illustrate the classification of the yellow squared area
in the South-West of the study area for year 2018, December
2018 and May 2018 respectively. One can observe an important
over-detection of the Roads class, not necessarily revealed by
the metrics, as roads are mostly over-detected over unlabelled



Figure 6. Land-Cover map and zoom of the study yellow
squared area for year 2018.

Figure 7. Zoom of the study yellow squared area for dec. 2018.

Figure 8. Zoom of the study yellow squared area for may 2018.

Figure 9. Sentinel-2 image for the study yellow squared area for
dec. 2018.

Figure 10. Ground truth map: zoom of the study yellow squared
area for year 2016.



Figure 11. Monthly Land-Cover map fusion and zoom of the
study yellow squared area.

areas corresponding to LC types not included in the reference
database. December gives the baddest result per month, even
though the over-detection of roads is less important. This result
is consistent with the previous quantitative assessment.

Table 1. Confusion matrix May 2018
OA = 95.80% ; K = 0.93

Roads Veg. Water Build. Other
Roads 77.98 0.66 0.43 3.93 16.97
Veg. 0.91 98.00 1.05 0.01 0.00
Water 0.10 1.29 97.36 0.00 1.23
Build. 0.39 0.14 0.00 98.10 1.35
Other 0.00 0.03 0.00 0.00 99.96

Table 2. Confusion matrix December 2018
OA = 92.40% ; K = 0.88

Roads Veg. Water Build. Other
Roads 70.81 4.37 0.33 3.13 21.33
Veg. 1.51 96.70 0.91 0.01 0.84
Water 0.15 18.03 69.59 0.00 12.22
Build. 0.12 6.00 0.00 83.42 10.44
Other 0.00 2.87 0.00 0.00 97.12

Table 3. Confusion matrix Year 2018
OA = 96.00% ; K = 0.94

Roads Veg. Water Build. Other
Roads 77.73 0.54 0.45 3.99 17.26
Veg. 0.80 98.09 1.07 0.01 0.00
Water 0.06 0.74 98.52 0.00 0.67
Build. 0.11 0.02 0.00 99.74 20.11
Other 0.00 0.00 0.00 0.00 99.99

Figure 12. Confidence map: zoom of the study yellow squared
area for year 2018. The darker the pixel, the lower the

confidence.

Figure 13. Confidence statistics for the study area for december,
may and year 2018 from up to down.



Table 4. Confusion matrix Fusion
OA = 91.78% ; K = 0.87

Roads Veg. Water Build. Other
Roads 60.01 23.29 0.31 2.82 13.55
Veg. 0.00 98.86 1.13 0.00 0.00
Water 0.00 1.09 96.29 0.00 2.57
Build. 0.01 0.03 0.00 99.83 0.11
Other 0.00 0.00 0.00 0.00 100.00

5. CONCLUSION

This paper presented some experiments of fully automatic pro-
duction of LC maps at regional scale out of Sentinel-2 images
time series using the ι2 supervised classification chain. This
approach uses all available Sentinel-2 image data (no scene se-
lection in terms of appropriate dates or cloud cover) and uses
existing databases as reference training and validation data for
a supervised classification process robust to errors in the refer-
ence data (e.g., out of date databases).
The process is efficient (enabling a fast delivery of the classi-
fications after the acquisition of the satellites image data) and
not expensive (requiring neither field surveys for model cal-
ibration, nor human operators for decision making, and using
open and freely available imagery). This work was conduc-
ted in the context of defining a joint use of airborne and free
satellite images to update and enrich existing LC data. The ad-
vantage of the proposed approach resides in the regular avail-
ability of new images provided by Sentinel-2 to reduce the un-
certainty in the detection of study areas where airborne acquis-
itions and advanced analysis are mandatory. The considered
legend was quite simple, including Roads, Vegetation, Water
and Buildings classes, as well as an additional Other class cor-
responding to all other database objects of the study area. Des-
pite obtained accuracy is higher than most comparable (in terms
of areas covered and number of classes) state-of-the-art ap-
proaches, Roads and Water classes (corresponding to thin ob-
jects) suffered from poor recognition. On the opposite, better
results (90%) were obtained with the Vegetation class. It will
now be beneficial to develop the same study only on this partic-
ular changing class for also fulfilling the user requirements in
terms of crop type mapping and easily compare crop type maps
of successive years. S2 time series is supposed to be especially
relevant for this task.
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