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ABSTRACT This paper presents the experimental results of a 2-bit electronically reconfigurable unit-cell
for transmitarrays at Ka-band. The proposed unit-cell architecture is based on a six-metal layers design and
three dielectric substrates. Two patch antennas are printed respectively on the top and bottom layers of the
stack-up to achieve an antenna-filter-antenna structure. To implement the desired 2-bit phase resolution, two
p-i-n diodes are bonded on each patch. The unit-cell has been fabricated and characterized in a specific
waveguide simulator. The measurement results are compared to the simulated ones and show minimum
transmission loss in the range 1.5 – 2.3 dB. The 3-dB fractional bandwidth is in the range 10.1 – 12.1%.

INDEX TERMS Transmitarray antennas, beam steering, beam forming, Ka-band, discrete lens,
electronically steerable antenna.

I. INTRODUCTION
Relatively low cost and low power consumption
beam-forming architectures are required to develop inno-
vative electronically steerable antennas for the future mass
market high-data-rate satellite and terrestrial communica-
tions. In this context, spatial feeding techniques combined
with Printed Circuit Boards (PCB) technologies represent
cost-effective solutions to design innovative electronically
reconfigurable antennas based on the reflectarray or transmi-
tarray concepts [1]. On one side, for large antenna apertures,
the spatial feeding mechanism drastically reduces the loss
and complexity of the power division network compared to
classical phased array architectures. On the other side, PCB
technologies are compatible with the integration on the array
aperture of p-i-n diodes, RF-MEMS switches, varactors, etc.,
which can be used to easily control the antenna aperture
phase distribution without using complex and lossy phase
shifters. Furthermore, as they operate in transmission mode,
transmitarrays are also compatible with solutions to reduce
the overall antenna profile [2]–[4].

Several printed electronically steerable transmitarrays
have been demonstrated in the last decade from L- up
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to Ka-band [5]. Continuous phase control [6]–[8] or
phase quantization techniques [9]–[16] are used to
tune the transmission phase and perform beam-forming
functions.

This paper focuses on the experimental characterization
of a 2-bit unit-cell based on p-i-n diodes and operating at
Ka-band. Therefore, this unit-cell can be electronically recon-
figured to provide four phase states mutually shifted by
90◦. A 2-bit phase quantization significantly improves the
transmitarray performance in terms of collimating capability
(e.g. improved directivity and lower slide lobe level) com-
pared to the 1-bit architectures. At same time, such an
approach provides a very good trade-off between number
of solid-state components, complexity of the bias network,
efficiency, bandwidth, and power consumption, compared to
the continuous phase shift based unit-cell designs. Indeed,
a transmitarray with a 2-bit phase quantization exhibits
a typical aperture efficiency around 30-40% [15], [16],
which is comparable to configurations with continuous phase
control [2].

To the best of the authors’ knowledge, excluding our
very preliminary studies [17], only one 2-bit electronically
reconfigurable unit-cell based on RF-MEMS switches has
been previously demonstrated [9]. However, such unit-cell
has been realized considering a wafer-based technology and
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includes five switches biased with six independent bias lines.
This solution is much more complex than the one pro-
posed here where we use only four p-i-n diodes and two
bias lines per unit-cell. Furthermore, the performance pre-
sented in [9] are highly affected by the large value of
the RF-MEMS switch resistance, with insertion loss in the
range 4.9-9.2 dB (depending on the phase-shift state of the
unit-cell). As clearly presented in the recent survey paper
[5], phase quantization with 1-bit resolution is typically used
in the actual state-of-the-art on electronically reconfigurable
transmitarrays; this choice is often driven by the fact that 1-bit
phase quantization can be achieved using a limited number of
switches andmetal layers. The unit-cell architecture validated
experimentally here paves the way for 2-bit steerable trans-
mitarrays at Ka-band, with improved performance compared
to their 1-bit counterparts.

This paper is organized as follows. The fabricated 2-bit
unit-cell and its experimental setup in waveguide are pre-
sented in Section II. The measurement results are discussed
in Section III. They are also compared to those achieved with
full-wave electromagnetic simulations. Moreover, the impact
of the bias current is also discussed. Finally, conclusions are
drawn in Section IV.

II. 2-BIT RECONFIGURBALE UNIT-CELL: FABRICATION
AND EXPERIMENTAL SETUP
A. FABRICATED UNIT-CELL
The proposed unit-cell (size of 5.1 × 5.1 × 1.3 mm3,
λ0/2 × λ0/2 × λ0/8 at 29 GHz) has been recently used
to demonstrate an electronically reconfigurable transmi-
tarray showing the possibility to steer the beam over a
120 × 120-degree window [15], [16]. Nonetheless, its indi-
vidual characterization has never been reported yet. This
constitutes the main objective of this contribution.

The proposed architecture is based on six-metal layer
(M1 – M6 in Fig. 1(a), thickness 18 µm) stack-up with
three RT/Duroid 6002 Rogers substrates (εr = 2.94,
tanδ = 0.0012) and two bonding films (RO4405F,
εr = 3.52, tanδ = 0.004, thickness 100 µm). The substrate
between layers M5-M6 has a thickness of 508 µm. Instead,
the substrates between layers M1-M2 and M3-M4 have a
thickness of 254 µm. The six metal layers are the following:
transmitting (Tx) patch antenna (M1), delay line (M2), bias
line associated to the Tx patch (M3), ground plane (M4), bias
line associated to the receiving (Rx) patch (M5), and the Rx
patch (M6). Standard Printed Circuit Board (PCB) process,
i.e. with minimum trace width of 80 µm and minimum
via-diameter of 120µm, has been selected to demonstrate the
possibility to implement the proposed design by using mature
and relatively low cost fabrication technologies.

Two p-i-n diodes MACOM MA4AGP907, indicated as
D1 – D4 in Fig. 1, are flip-chipped on each radiating ele-
ment (O-slotted rectangular patch antennas, as represented
in Fig. 1(b)) to control electronically the transmission phase
of the unit-cell with the required 2-bit phase resolution.
Four phase states (UC000, UC090, UC180, and UC270)

FIGURE 1. Reconfigurable 2-bit unit-cell. (a) Three-dimensional view.
(b) Schematic view of the experimental setup (waveguide simulator) and
photographs of the realized prototype: transmitting (Tx) patch printed on
metal layer M1, and receiving (Rx) patch printed on M6.

are generated by opportunely controlling the diode states as
presented In Table 1.

The two patch antennas having an O-slot are connected by
a metallized via hole, with a diameter of 200 µm, to imple-
ment an Antenna-Filter-Antenna unit-cell. For isolation rea-
son, a 700-µm diameter hole is realized in the ground plane
to allow the passage of this via. Metallized vias of diameter
150 µm are realized between M1-M2, M3-M4, and M5-M6
to correctly bias the p-i-n diodes and realize the 90◦ delay line
connected on the Tx-patch.

From Table 1 it is clear that four switches (i.e. p-i-n
diodes in this specific design) is the minimum number of
devices required to achieve a 2-bit phase quantization. The
number of diodes per unit-cell used in our design can be
compared with ref. [9] where 5 RF-MEMS switches are used
to achieve the same phase resolution. Furthermore as both
diodes of each pair of p-i-n diodes (i.e. D1-D2 and D3-D4)
are biased in opposite state (see Fig. 2(a)), the proposed
unit-cell contains only two bias lines, as compared to 6 lines
required [9].
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TABLE 1. P-i-n diodes bias state as a function of the unit-cell
transmission phase state.

FIGURE 2. (a) Configuration of the p-i-n diodes mounted in the opposite
direction (series). Equivalent model of the diode p-i-n: (b) forward bias
(ON), and (c) reverse bias (OFF).

The equivalent electrical model of the diodes
(see Fig.s 2(b)-(c)) has been extracted up to 40GHz by fitting,
in simulations, two-port on-probe measured S-parameters
of the devices mounted on an ad-hoc board [18]. For a
forward bias current Ibias equal to 10 mA, the equivalent
model consists of a series L-R circuit (Ron = 4.2 � and
Ld = 0.05 nH). In the reverse state (Vbias = 1.2 V), the diode
is modelled as a shunt R-C circuit (Roff = 300 k� and
Coff = 42 fF) with a series inductor (Ld = 0.05 nH). The
Gallium-Arsenide packaging (εr = 12.9) of the p-i-n diodes,
with dimensions of 0.686×0.368×0.19mm3, is also included
in the full-wave model of the unit-cell (see Fig. 1(a)). More
details on the unit-cell optimization, full-wave simulation

setup, geometrical parameters, and operation principle are
presented in our preliminary paper [17].

The unit-cell operation principle and p-i-n diode impacts
can be analyzed by plotting the surface current distributions
computed on the Tx and Rx patch antennas as a function of the
diode states (Fig. 3). As presented in Fig. 3(a) and considering
the configuration of Fig. 2(a), when the Tx patch is biased
with a positive current D1 is ON, whereas D2 is in the OFF
state. By inverting the sign of the bias current (D1 OFF
and D2 ON, Fig. 3(b)), the current flow is inverted and a
phase-shift of 180◦ is achieved. Almost the same behavior
is achieved on the Rx patch when the diodes D3 and D4 are
controlled (Fig.s 3(c)-(d)). However, when the diodes D3 is
ON and D4 is OFF (Fig. 3(d)), the current flows on the delay
line producing a 90◦ phase-shift.

B. ELECTROMAGNETIC SIMULATION AND
MEASUREMENT SETUPS
The unit-cell has been characterized using a waveguide
simulator based on standard WR28 waveguides
(7.112 × 3.556 mm2), as presented in Fig. 1(b). It is com-
posed by two coax-to-WR28 adaptors, two WR28 straight
waveguide sections, and two tapered transitions between
the rectangular section of the waveguide and the square
aperture of the unit-cell. The length of these transitions equals
1.2 mm (λ/8.6); its value has been optimized to minimize the
impedance mismatch and the impact of oblique incidence in
the waveguide simulator [19].

Full-wave simulations using Ansys HFSS v2019 have
been performed to study the impact of oblique incidence
on the scattering parameters of the unit-cell. For this pur-
pose, three different configurations have been considered:
unit-cell embedded in a WR28 standard rectangular waveg-
uide (Fig. 1(b)), unit-cell with periodic boundary conditions

FIGURE 3. Surface current distributions of the unit-cell for the four phase states on the Tx and Rx patch antennas.
(a) Tx patch when D1 is ON and D2 is OFF, (b) Tx patch when D1 is OFF and D2 is ON, (c) Rx patch when D3 is ON
and D4 is OFF, and (d) Rx patch when D3 is OFF and D4 is ON.
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FIGURE 4. Magnitude and phase of the reflection and transmission
coefficients of the phase state UC000. Simulations in waveguide, and
with Floquet ports for normal incidence and 45◦ oblique incidence.

and Floquet ports, for normal incidence and for 45◦ oblique
incidence. The 45◦ incidence has been selected as it coincides
with the equivalent incidence angle of the fundamental TE10
mode in the WR28 waveguide at 29 GHz. Furthermore, 45◦

is close to the maximum incidence angle for a transmitarray
with a typical focal over aperture size (F /D) ratio in the range
0.5 – 0.7.

Here, for brevity reasons, we compare the three simulation
setups (e.g. Waveguide, Floquet 45◦, and Floquet Norm.)
only for the 0◦ phase state (UC000, Fig. 4). The conclusion
of this analysis is similar to the case of the 1-bit unit-cell
(see [18]) and shows that, there are slight differences between
the magnitude of the simulated scattering parameters com-
puted with 45◦ oblique incidence and with the full waveguide
setup. A frequency shift around 500 MHz is obtained in
reflection (S11) between the results in waveguide and under
normal incidence. Moreover, there is a phase difference up
to 80◦ in the 27 – 30 GHz frequency range when compar-
ing the transmission phase computed with the waveguide
setup and with the Floquet boundary conditions under normal
incidence. In the same frequency band, the phase differ-
ence between the Floquet simulations under normal and 45◦

incidence is lower than 40◦. The phase variation achieved
with the waveguide setup is mostly due to the presence of
the rectangular-to-square waveguide transition, which is not
de-embedded as in the case of the calibration process used in
the measurements. Note that in the rest of the paper, the mea-
surement results are compared to the simulations including
the full waveguide experimental setup.

III. EXPERIMENTAL CHARACTERIZATION
We compare here the experimental results of the unit-cell
obtained with the measurement setup described in
Section II.B and with 3D full-wave simulations. The impact
of the bias lines on the unit-cell performance has been also
analyzed; for brevity purposes, we only consider the unit-cell
with two bias lines, one for each pair of p-i-n diodes. The
complete study considering a 14× 14-element transmitarray
is presented in [15]. The obtained results show very stable
scattering parameters, demonstrating that the bias lines do
not affect the RF performance.

FIGURE 5. Simulated and measured relative phase-shifts between the
UC000 and the other phase states.

A. SCATTERING PARAMETERS
The results presented in this section have been obtained
by considering a p-i-n diode forward bias current of
±10 mA. The simulated and measured relative phase-shifts
between the UC000 and the other phase states are plot-
ted in Fig. 5. The phase values measured between 27 and
30.2 GHz vary in the ranges 114.2◦-138.3◦, 172.3◦-185.4◦,
and 282.4◦-311.6◦, for the phase states UC090, UC180, and
UC270, respectively. They are in acceptable agreement with
the simulation data (the corresponding phase-shift ranges
equal 100.8◦-121.2◦, 172.2◦-195.6◦, and 279.3◦-292.9◦,
respectively).

The measured and computed reflection and transmission
coefficients are plotted in Fig. 6 in amplitude for the
four phase states. The simulated 3-dB fractional transmis-
sion bandwidth (BW) is equal to 9.6%, 16.5%, 12.1% and
15.5% for UC000, UC090, UC180, and UC270, respectively.
These values are in acceptable agreement with the mea-
sured ones (11.7%, 10.1%, 12.1%, and 10.3%, respectively).
Furthermore, the measured insertion loss at 29 GHz equals
2.1, 1.5, 2.3, and 1.6 dB for the UC000, UC090, UC180, and
UC270, respectively. Also in this case they are in acceptable
agreement with the simulated data (1.0, 0.8, 1.0, and 0.8 dB,
respectively).

The discrepancies observed between measurements and
simulations are probably due to the fabrication tolerances
of the six-metal-layer PCB, including layer misalignments
(i.e.±50µm), unit-cell geometrical dimensions (i.e.±30µm
for the trace width and length,±50µm for the via diameters),
non-uniform thickness of the bonding film layers due to the
bonding process (i.e. up to 30 µm less than the nominal
value), etc., and to the misalignment of the unit-cell in the
waveguide setup. However, the systematic analysis of possi-
ble manufacturing errors cannot be easily performed due to
the large number of design parameters. Despite the observed
differences between measurements and simulations in terms
of insertion losses and -10 dB reflection bandwidth, the work-
ing principle of the active unit-cell has been validated.
Furthermore, the non-perfect 90◦ phase-shift does not affect
the overall performance of the transmitarray, as demonstrated
in [15].
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FIGURE 6. Simulated and measured reflection and transmission coefficients of the unit-cell in the four phase states: (a) UC000, (b) UC090, (c) UC180,
and (d) UC270. The measured results have been obtained using the waveguide setup described in Section II.B and the simulations have been carried
out using Ansys HFSS v2018.

FIGURE 7. Measured transmission coefficients in amplitude and phase
for UC000 as a function if the diode p-i-n bias current. Note that the
measured phase responses are superposed.

B. IMPACT OF BIAS CURRENT
To highlight the tradeoff between unit-cell power consumption
and insertion loss, the impact of the bias current on the
unit-cell performance has also been investigated. Here,
the bias current varies in the range 1-10 mA. The correspond-
ing measured transmission coefficients of the UC000 are
plotted in amplitude and phase in Fig. 7 for the bias current
values 1, 5, and 10 mA.

The measured minimum insertion losses are provided
in Table 2 for the four phase states. Their value increases
by about 0.5 dB for a bias current of 1 mA (compared to
10 mA) while the total power consumption is reduced by a

TABLE 2. Measured minimum insertion loss of the 2-bit unit-cell as a
function of the p-i-n diodes bias current.

TABLE 3. Measured transmission phase at 29 GHz of the 2-bit unit-cell as
a function of the p-i-n diodes bias current.

factor 10. The measured increase of insertion loss at 29 GHz
for a bias current 1 mA (compared to 10 mA) is equal to
0.33, 0.45, 0.35 and 0.39 dB for UC090, UC180, and UC270,
respectively.

To complete the analysis, the measured transmission phase
at 29 GHz when the bias current varies in the range 1-10 mA
is presented in Table 3. It is important to notice, that the
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transmission phase response remains very stable on the full
operation bandwidth as a function of the bias current value.

IV. CONCLUSION
A 2-bit electronically reconfigurable unit-cell for steerable
transmitarray has been optimized, fabricated, and fully char-
acterized in a waveguide measurement setup. Four p-in
diodes have been integrated on the two radiating elements
to control electronically the transmission phase with the
required 90◦ phase-shift difference.

The unit-cell frequency response has been also studied
experimentally as a function of the p-i-n diode forward bias
current (from 1 to10 mA). At 29 GHz the nominal transmis-
sion insertion loss measured with a bias current of 10 mA
is in the range 1.39-1.67 dB. The 3-dB transmission phase
bandwidth varies between 10.1% and 12.1%. The experimen-
tal results show an acceptable agreement when compared to
full-wave electromagnetic simulations.
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