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Summary

This paper develops a state-feedbackModel Predictive Control (MPC) framework for
Nonlinear Parameter Varying (NLPV) systems with explicit Lipschitz nonlinearities
along the input trajectory. Considering a guess for the evolution of the schedul-
ing parameters along the prediction horizon, the proposed optimization procedure
for the MPC design includes a terminal stage cost, a contracting terminal region
constraint and nominal predictions scheduled with respect to this guess. The termi-
nal region is taken so that it is monotonically decreasing to a pre-determined set,
which guarantees recursive feasibility of the algorithmwith respect to a bound on the
admissible uncertainties (introduced from the scheduling parameter guess). The ter-
minal set is a scheduled robust control invariant set for Lipschitz nonlinear systems,
computed through some proposed LMIs. The inclusion of the terminal ingredient
also serves to demonstrate Input-to-State Quadratic Stability. This paper ends with
a successful numerical simulation example of the technique applied to the control
of a Semi-Active automotive suspension system equipped with Electro-Rheological
dampers.
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1 INTRODUCTION

Model Predictive Control (MPC) is a very well-established and widespread technique, with a large gamma of industrial applica-
tions, more than 5800 successful results are reported1,2, including application for processes in chemical, mechanical and thermal
areas3.
The basic MPC algorithm provides a natural framework for optimal control, computing some action u at each discrete instant

k by solving an optimization problem, which is written in terms of a process prediction model1. The optimization cost function
is used to include performance goals, such as reference tracking and disturbance rejection. Furthermore, this framework allows
to explicitly consider the effect of input, output and state constraints in the control design procedure, which is rather convenient.
The first MPC schemes were originally intended for linear time-invariant (LTI) processes, using impulse-response or state-

space formulations4,5. Nowadays, LTI MPC design has many variations and adaptations, including design with feedforward

0Abbreviations: LPV, Linear Parameter Varying; NLPV, Nonlinear Parameter Varying; LTI, Linear Time Invariant; MPC, Model Predictive Control; PC, Proper C;
ISS, Input-to-state Stability.

1Of course, predictive control has also been generalized for the case of model-free paradigms, which are often referred to as “data-driven” or “learning” algorithms.
These are not within the scope of this paper.
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capabilities, for economic purposes, using mixed-integer constraints and son on. The future promise of predictive control and
some of these developments have been unfolded by a recent survey6.
Soon enough, these LTI predictive control algorithms were adapted for nonlinear paradigms7, for those when systems are

controlled over larger operating conditions or for when the process responses heavily depend on external parameters. To extend
MPC to included nonlinearities (which is often referred to as NMPC) in the process model is not a trivial task, increasing
the algorithm’s complexity8. It is worth noting that stability can be guaranteed for nonlinear plants controlled under MPC
policies with quite systematic verification axioms9. Literature has blossomed with quite efficient NMPC frameworks, as recently
reviewed10. Although the majority of NMPC design requires excessive computational capacities, some papers show real-time,
embedded applications of these methods11,12,13.
To overlap the numerical complexity of full-blown NMPC design, the neatness of these recent methods include: a) some

approaches that overcome the nonlinearities via model linearization along the trajectory14; b) manipulating the nature of the
nonlinearities to represent them in some specific manner (as bilinearities, for instance), which may reduce complexity15; c) a
few approaches that parametrize the control inputs in finite amount of possible discrete values, solving a search algorithm to
find the smallest cost instead of an actual optimization procedure16,17. Essentially, all these works let go of optimality and use
sub-optimal solutions of the complex nonlinear prediction problem18. We understand that real embedded NMPC applications
for fast processes (with small sampling rates, at the magnitude of a few milliseconds) without abdicating optimality concerns
are still not available, but should soon enough be established, in the view of the recent progress in this field.

1.1 Linear Parameter Varying Systems
Literature points out that to tackle and facilitate the control of nonlinear processes, the use of Linear Parameter Varying (LPV)
systems19,20 is an interesting option. Today, the LPV framework has become one of the most popular kinds of modelling toolkits
for process with complex dynamics21,22.
LPV systems are nonlinear ones that depend on known, bounded scheduling parameters � (their current values �(k) can be

measured online or estimated, while their future behaviour is generally not known). Due to the inclusion of these scheduling
parameters, LPV systems are linear in the state space, but nonlinear in the parameter space2. Due to this property (linear differ-
ential inclusion25), LPV systems are represented with a much simpler framework than full nonlinear models, being very similar
to LTI models (and, thus, possessing many of the LTI advantages) - one can say that LPV embedding is somewhere in between
the nonlinear and the LTI formalisms.
Due to the advantages of LPV embedding, it is indeed an interesting option for NMPC purposes26. NMPC design based on

LPV models has been formally been investigated since the beginning of the 00’s; some relevant papers are recalled:

• Explicit methods with stability and optimality guarantees have been adressed27,28; the main downside in such methods
is that, since the future values of the scheduling parameters are unknown, the algorithm ensures the constraints are satis-
fied for all possible system trajectories, which leads to conservative performances and (numerical-wise) high-demanding
optimization procedures.

• Dynamic output feedback algorithms have also been developed29,30,31,32. Some of these papers use an input/output LPV
formulation. Anyhow, they are all robust with respect to �, solving worst-case (usually referred to as “min./max.”)
optimization procedures and resulting in conservative results.

• Other papers26,33,34 consider bounded limits upon the rates of variation of the scheduling parameters, which a major
advance. This simple constraint simplifies the optimization procedure, treating the evolution of the scheduling parameters
offline, via Linear Matrix Inequality (LMI) or ellipsoidal constraints.

• Frozen guesses for the scheduling parameter trajectory, that iterates according to measurements, have also be used35,
transforming the nonlinear optimization problem into a linear one. The issue that resides with such methods is that the
results may be sub-optimal and that the system trajectory might not be inside the region of attraction of the MPC, resulting
in infeasibility.

2Theoretical analysis of LPV system properties, such as stability, observability, controllability, often falls into the framework of linear time-varying systems or of
nonlinear systems, which usually presents more difficulty compared to the classical LTI case 23,24.
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• In previous works, the Authors have also developed a Quadratic Programming (QP) version of the LPV MPC algorithm
using a frozen parameter trajectory guess36,37 and a scheduling trajectory estimation algorithm38. In the latter, Lyapunov-
decreasing terminal costs and control invariant sets are used to guarantee that feasibility with an enlarged domain of
attraction (addressing the issue of possible infeasibility).

1.2 Nonlinear Parameter Varying Systems
As evidenced, the LPV toolkit has allowed the extent ofMPC techniques to the control of nonlinear processes without necessarily
resorting to full-blown nonlinear programming optimization. The advances were made by using the linearity of the system and
the known scheduling parameter to achieve simplified programs for the online part.
However, as also discussed in the parallel papers of this special issue, retaining (at least a portion of) the nonlinearity instead

of reducing it to linearity by appropriately “hidding” it embedded to the scheduling parameters, can be more appropriate in some
cases, leading to less conservativeness and over-approximations. Recent literature shows that there has been a growing concern
in extending available LPV methods to the class of systems that have been progressively named Nonlinear Parameter Varying
(NLPV),39,40,41,42. NLPV have been brought to focus because in many practical applications, where the time-varying model part
appears as an explicit nonlinear term43,44,45.
For the above-mentioned reasons, this paper deals with MPC applied to the class of NLPV systems, focusing on those that

contain an explicit Lipschitz nonlinearity. We must mention that MPC applied to NLPV systems has not yet been seen in the
literature.

1.3 Lipschitz Nonlinearities
This paper is specially interested in NLPV systems with Lipchitz nonlinearities because this class of nonlinearities appears in
many real applications46. As an example, when controlling vehicle suspension dampers, a hyperbolic tangent function appears
due to the hysteresis behaviour of the damping fluid. This function, indeed, agrees with a Lipschitz condition45.
The control47 and observation of Lipschitz nonlinear systems48,49 has been analysed in several works. Tube-based MPC

has been applied to nonlinear Lipschitz systems50, but the NLPV design paradigm is not used, which essentially means that
more complex nonlinear optimization procedure had to be implemented. The input-to-state stability of MPC with bounded
uncertainties derived from a Lipschitz nonlinearity has also been assessed51. LMI techniques for stabilization of Lipschitzian
nonlinear systems have been seen in52,53,45.

1.4 Contributions
With respect to the previous discussion and the identified literature gaps, this paper proposes a novel MPC design framework
for NLPV systems with explicit Lipschitz nonlinear terms. More specifically, the contributions we put forward are:

1. The notions of Robust Positive Invariant Sets and Scheduled Robust Postive Invariant Sets are recalled (Section 2). Two
Lemmas are presented to compute extended Lipschitz conditions for the NLPV system. Moreover, a Theorem is provided
for computing Scheduled Robust Positive Invariant Sets for NLPV Lipschitz systems using LMIs.

2. Then, an MPC optimization procedure is formally proposed for the case of NLPV systems (Section 3), which uses con-
tracting terminal ingredients bases on the previous Scheduled Robust Positive Invariant Sets. Moreover, the MPC stage
cost function is provided for input-to-state stabilization.

3. Input-to-state stability and recursive feasibility analysis of the proposed MPC design method are analysed (Section 4).

4. Some practical issues on implementation details are discussed (Section 5).

5. A realistic simulation example considering the case of a vehicle suspension system is presented to analyse and discuss the
effectiveness of the proposed method (Section 6).

Concluding remarks are drawn in Section 7.
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1.5 Notation
In this work, the set of nonnegative real number is denoted byℝ+, whist the set of nonnegative integers including zero is denoted
byℕ. The index setℕ[a,b] represents {i ∈ ℕ | a ≤ i ≤ b}, with 0 ≤ a ≤ b. Ij denotes an identify matrix of size j, col{a , b , c}
denotes the vectorization (collection) of the entries and diag{v} denotes the diagonal matrix generated with the line vector v.
The predicted value of a given variable v(k) at time instant k+ i, made based on the information available at instant k, is denoted
as v(k + i|k).
For a given matrix P , �min{P } and �max{P } denote, respectively, its minimal and maximal eigenvalues.
 refers to the class of positive and strictly increasing scalar functions that pass through the origin. A given function f ∶ ℝ → ℝ
is of class  if f (0) = 0 and lim�→+∞ f (�) → +∞.
n denotes the set of all compact convex subsets of ℝn. A convex and compact set X ∈ n with non-empty interior, which
contains the origin, is named a PC-set. A subset of ℝn is denoted a polyhedron if it is an intersection of a finite number of half
spaces. A polytope is defined as a compact polyhedron. A polytope can be analogously represented as the convex hull of a finite
number of points inℝn. A hyperbox is a convex polytope where all the ruling hyperplanes are parallel with respect to their axes.
Finally, consider two sets A ⊂ ℝn and B ⊂ ℝn. A scalar set contraction (0 < � < 1) or expansion (� > 1) of A is given with
� ∈ ℝ and �A = {�a | a ∈ A}. The Minkowski set addition is defined by A ⊕ B ∶= {a + b | a ∈ A , b ∈ B}, while the
Pontryagin set difference is defined by A ⊖ B ∶= {a | a ⊕ B ⊆ A}.

2 PRELIMINARY CONSIDERATIONS

2.1 Lipschitz NLPV Systems
Throughout this paper, we consider the following class of discrete-time affine NLPV system:

x(k + 1) = A(�(k))x(k) + B(�(k))Φ(x(k))u(k) , (1)

where k ∈ ℕ represents the sampling instant, x ∶ ℕ →  ⊂ ℝnx are the system states, � ∶ ℕ →  ⊂ ℝnp is a scheduling
parameter and u ∶ ℕ →  ⊂ ℝnu is the control input. Matrices A(⋅) and B(⋅) are parameter-dependent and have appropriate
dimensions. The sets  and are named the feasibility sets for the states and for the control law, respectively; these sets define
the operational constraints for this process, under closed-loop.  contains the origin. The scheduling set  defines the following
constraints for the scheduling parameters: � ≤ �(k) ≤ �∀ k ∈ ℕ. The map Φ(x(k)) defines an explicit nonlinearity along the
input.

Assumption 1. This nominal NLPV system in Eq. (1) is such that the origin is a steady-state.

Assumption 2. The NLPV system in Eq. (1) has a structurally known explicit nonlinear map Φ(x(k)) which obeys a local
Lipschitz condition around x(k). Assuming that the nonlinearityΦ(x) ∶ ℝnx → ℝnx is continuously differentiable with respect
to x, the Lipschitz condition is given by:

||Φ(x) − Φ(x̂)|| ≤ Γ||(x − x̂)|| , ∀ x ∈  , ∀ x̂ ∈  , (2)

where the smallest constant Γ that satisfies Eq. (2) is known as the Lipschitz constant for the nonlinearity Φ(⋅).

Remark 1. In the majority of LPV models for nonlinear systems, the nonlinearities Φ(⋅) are embedded into the scheduling
parameters �. Much on the contrary, in an NLPV setting, they are willingly made explicit (outside of �), implying that the
designer knows how they are physically derived. To assume that the designer knows the explicit structure of the nonlinearity
Φ(⋅) is not at all absurd, since they arise from phenomenological characteristics of the processes. In many cases, for example,
when two physical systems are cascaded (actuator and actual process, for instance), and one of them has a phenomenologically
known nonlinearity, this nonlinearity re-appears in the model of the complete cascaded block. Take a vehicle suspension system:
the dynamics of the suspended vehicle chassis depend on the suspension control system (damper and spring), which inherently
have known nonlinear behaviours - for the case of electro-rheological suspensions, this behaviour is a hyperbolic tangent45;
therefore Φ(x) is a hyperbolic tangent map.

Assumption 3. The considered class of NLPV systems given by Eq. (1) agrees with the following hypothesis:

• The states are measurable at each and every discrete-time instant k ∈ ℕ;
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• The scheduling parameter � is also measurable or perfectly estimated at each and every discrete-time instant k ∈ ℕ;

• The feasibility set  is a PC-set, which is defined as:

 ∶=
{

x(k) ∈ ℝnx
| x ≤ x(k) ≤ x∀ k ∈ ℕ

}

; (3)

• The admissible control inputs belong to the PC-set  , which is defined as:

 ∶=
{

u(k) ∈ ℝnu
| |u| ≤ umax ∀ k ∈ ℕ

}

; (4)

• The system is controllable, which means that the rank of matrix Ctrb is full (i.e. equal to nx) for all x ∈  and all � ∈  ,
with:

Ctrb =
[

B(�)Φ(x) A(�)B(�)Φ(x) A(�)2B(�)Φ(x) … A(�)nx−1B(�)Φ(x)
]

; (5)

• The system is quadratic stabilizable within the feasibility region defined by  ;

• The system matrices depend affinely on the scheduling parameters, this is:

A(�(k)) = A0 +
np
∑

j=1
�j(k)Aj , B(�(k)) = B0 +

np
∑

j=1
�j(k)Bj , (6)

where �j stands for the j th element of the scheduling parameter vector �(k) = col{�1(k) , … , �np(k)} and Aj and Bj are
constant matrices of appropriate sizes;

• The rate of variation of the scheduling variable is denoted by )�(k) = �(k) − �(k − 1). This rate is bounded by a slew
constraint defined as )p(k) ∈ ) ∀ k ∈ ℕ, being ) a hyperbox defined as:

) ∶= {)p(k) ∈ ℝnp
|)pj ≤ )pj(k) ≤ )p

j
, j ∈ ℕ[1,np]} . (7)

In this work, we aim to develop a new framework for the design of an MPC algorithm for NLPV systems with an explicit
Lipschitz nonlinearity along the input. As previously discussed, the predictive control paradigm is structured upon model-based
predictions of the future output/state response of the system over a (sliding) prediction horizon ofNp steps ahead of the sampling
instant k. For this reason, it is reasonably direct to understand that for (both LPV and) NLPV models, the values for the future
scheduling parameters ahead, i.e. �(k+j)with j ∈ ℕ[1,Np−1], are needed to construct the state predictions x(k+j|k). In practice,
the only available value is of �(k). Therefore, the following Assumptions are needed:

Assumption 4. The NLPV system in Eq. (1) is, in fact, quasi-NLPV. This means that the scheduling parameters � depend, at
each and every sampling instant k, on a map of endogenous variables of the system, i.e.:

�(k) = f� (x(k), u(k)) . (8)

Remark 2. Assumption 4 excludes from Eq. (1) those systems for which the scheduling parameters � are exogenous, such as
activation signals, for instance.

Assumption 5. The collection of the scheduling parameters necessary to make state predictions for the nextNp steps are named
scheduling sequence, denoted as Pk = col{�(k) , … , �(k+Np − 1)}. This scheduling sequence, at each sampling instant k, is
estimated accurately enough by some estimation scheme. Moreover, considering P̂k as this estimation/guess for the scheduling
sequence, it is assumed that ||Pk − P̂k||∞ < �P , with a small real bound �P . Since each vector �(k) is bounded to  ∀ k ∈ ℕ,
by definition, it is implied that Pk ∈  ×⋯ ×  ⊆ ℝ(np)

Np , i.e.:

P ≤ Pk ≤ P ∀k ∈ ℕ . (9)

Remark 3. The estimation of the scheduling sequence Pk (computed at each discrete-time instant) is, in fact, realizable for real-
time applications with different kinds of estimation algorithms, as verified in the recent literature35,38,54. This estimation, given
by P̂k, is possible through recursive least-square algorithm38, or even with iterative guessing methods35. It is important to notice
that good-quality estimation is usually yielded for the first few samples of Pk, while the quality gets corrupted for bigger horizons
Np. Nonetheless, P̂k will be used for the MPC framework at instant k and a new estimation P̂k+1 is used at k + 1. Since MPC
uses a sliding horizon concept, this means that the portion of the scheduling sequence with less precision is not so important
after all, given that the horizon slides and new information gets plugged to the control policy at each instant. For simplicity, in
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the sequel, we will consider that P̂k = Pk. The admissible bound on the scheduling prediction �P will be used to compute the
terminal ingredients of the MPC.

2.2 Some Useful Definitions
There are a couple of useful definitions that will be needed to develop the NLPV MPC paradigm proposed in this paper. Firstly,
we will recall the regular MPC online algorithm and the notions of stabilizability, input-to-state stability and recursive feasibility
of processes regulated under MPC; these will serve later on for verification purposes of the proposed framework (in Section 4).
Secondly, we will put forth the definitions of Scheduled Robust Positively Invariant Control Sets (and sequence of sets), that
will be used as terminal ingredients of the proposed MPC tool for these Lipschitzian NLPV systems.

2.2.1 The Regular State-Feedback MPC Algorithm
MPC policies are essentially obtained by solving an online optimization procedure, which takes into account a process model and
states, outputs and input constraints. The (states/outputs) performance goals (such as reference tracking, disturbance rejection,
sensitivity to noise and so forth) are written in the cost function of this optimization procedure. Below, the regular state-feedback
MPC optimization problem1 is given:

Problem 1. Standard MPC Optimization Procedure

min
Uk

JNp
= min

Uk

⎛

⎜

⎜

⎝

Np
∑

i=1
(l (x, u, k)) + V (x(k +Np|k))

⎞

⎟

⎟

⎠

(10)

s.t. System Model: x(k + i) = x(x(k + i − 1), u(k + i − 1), �(k + i − 1)) ∀ i ∈ ℕ[1 , Np] , (11)
u(k + i − 1|k) ∈  ∀ i ∈ ℕ[1 , Np] , (12)
x(k + i|k) ∈  ∀ i ∈ ℕ[1 , Np] , (13)
x(k +Np|k) ∈ XNr , (14)

where Uk = col{u(k|k) ,… , u(k+Np − 1|k)} is the vector which collects the sequence of control actions inside the prediction
horizon Np. The algorithm resides in solving the optimization Problem 1 at each discrete-time instant, applying the first entry
of the control vector, i.e. u(k|k), to the controlled plant, and then “rolling the horizon forward”, incrementing k.

The MPC stage cost JNp
includes a terminal ingredient (stage value for x in the last step of the horizon, k+Np) and a terminal

set constraint, which are used to ensure feasibility, which will be discussed in the sequel.
When the system model is LTI, the process constraint function x(⋅) is inherently linear and the optimization in Problem (1)

becomes a regular constrained QP, which is easily tackled by standard solvers. For the studied case, since the system is NLPV,
the optimization procedure will become nonlinear, even though the scheduling sequences Pk is assumed to be known/estimated
along the horizon, since the Lipschitz term Φ(⋅) is maintained in the NLPV formulation. In the LPV case, when Pk is available,
Problem 1 is also translated as a QP, as discussed by the Authors in previous papers36,38.

Remark 4. Load disturbances can be included into the optimization problem if they are known along the future horizon of Np
steps. Including them directly in the process model constraint results in a feedforward compensation of their behaviour and of
their effects upon the state variable.

2.2.2 Stability, Feasibility
There are three standard axioms that must be accounted for in order to guarantee recursive feasibility of MPC algorithms.
Recursive feasibility means that if the optimization is feasible for a starting condition x(0) = x0, it will also be so for following
iterations. These axioms are recalled:

Definition 1. Recursive Feasibility of MPC Algorithms55
Consider that the terminal set constraint on x exists such thatXNr ⊂  , with  closed, convex and compact and that the origin
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lies within the interior of Ω, for Ω being the largest admissible set3 such that Ω ⊆  . Then, essentially, the following axioms
verify if the MPC terminal cost function is Lyapunov-decreasing along the control horion:

• A1) l(⋅) ≥ �1(||x||),∀x ∈ Ω,∀u ∈  ,∀� ∈  , for �1(⋅) of class 4.

• A2) V (⋅) ≤ �2(||x||),∀x ∈ XNr ,∀� ∈  , for �2(⋅) of class 5.

• A3) V (x(k + 1)) − V (x(k) + l(x(k), u(k)) ≤ 0,∀x ∈ XNr ,∀u ∈  ,∀� ∈  ,∀k6.

If these three axioms hold. the MPC will be recursively feasible for any starting condition x0 ∈  .
The terminal set XNr is given by

{

x ∈ ℝnx
|V (x) ≤ �s

}

such that XNr ⊂ Ω. Moreover, �s is some scalar such that for all
x ∈ Ω, x(x, �x, Pk) ∈ XNr .

Definition 2. Quadratic Stabilizability inside the Feasibility Region
The considered NLPV system given in Eq. (1) is said to be stabilizable if there exists a positive definite map V ∶ x(k) →
x(k)TPx(k), where P = P T ≻ 0 and P ∈ ℝnx×nx and a state-feedback control policy of fashion u(k) = �x(k), with
� ∈ ℝnu×nx , such that the following inequality:

V (A(�(k))x(k) + B(�(k))Φ(x(k))�x(k)) − V (x(k)) ≤ −x(k)T
(

Q + �TR�
)

x(k) (15)

holds for all x ∈  and � ∈  , withQ = QT ≻ 0 andR = RT ≻ 0. Then, the origin is globally exponentially stable within
the feasibility region  is globally exponentially stable for x(k + 1) ∀ � ∈  and any initial condition x0 ∈  .

Remark 5. The above notion of quadratic stabilizability “inside the feasibility region” is slightly smoother than the notion of
pure quadratic stabilizability, which would require the verification of the inequality for all x ∈ ℝnx . The notion of the feasibility
regionalization implies that only  must be considered, which may be a priori a smaller PC-set than ℝnx (inequality must hold
for all x ∈  instead of ℝnx).

The concept of input-to-state stability (ISS) is used to verify the stability and also allows control synthesis for nonlinear
systems51. In this paper, we will use the concept of ISS generalized for discrete-time nonlinear process56. Note that we will be
concerned with input-to-state stability because the NLPV system in Eq. (1) will be controlled by a state-feedback MPC of form
u(k) = �x(k), since the states are measurable (Assumption 3), which means that the states must be stabilized by the action
implied by the predictive control policy.

Definition 3. Input-to-State Stability56

Consider a generalized discrete-time nonlinear plant whose dynamics are given by:

x(k + 1) = x (x(k), u(k), w(k)) , (16)

where x(k) is the state of the system and u(k) is a bounded control input of the system, while w(k) is a bounded model-process
mismatch variable/disturbance such that |w(k)| ≤ wmax ∀ k ∈  . Then, this nonlinear system is said to be input-to-state
stable if there exists a pair o -function �i(⋅, ⋅) and �i(⋅) such that the following inequality holds:

||x(k)|| ≤ �i(x(0), k) + �i(wmax) (17)

Remark 6. We must stress that an ISS sytem is asymptotically stable in the absence of inputs u and w or if the inputs are time-
decaying. Note that if the inputs are merely bounded, thus the evolution of the system states will be ultimately bounded in a set
for which the size depends on the bounds of the inputs, which is quite logical.

Remark 7. The system described by Eq. (16) indeed encompasses the class of Lipschitzian NLPV processes as those in Eq. (1).

Definition 4. ISS-Lyapunov Functions56
A continuous map V (⋅) ∶ ℝnx → ℝ is denoted an ISS Lyapunov function for the nonlinear system described by Eq. (16) if
there exists four class  functions �1(⋅), �2(⋅), �3(⋅) and 
w(⋅) such that the following inequalities hold:

�1(||x||) ≤ V (x) ≤ �2(||x||) , (18)
V
(

x(x, u,w)
)

− V (x) ≤ −�3(||x||) + 
w(||w||) . (19)

3In fact, this set must also be positively control invariant; this definition is given in the sequel.
4This axiom implies that l is function-wise lower bounded.
5This axiom implies that V is function-wise upper bounded.
6This axiom implies that V decreasing along the horizon.
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Remark 8. We must raise attention to the question of equivalence between input-to-state stability and recursive feasibility. As
evidenced, the inequality described for an ISS-Lyapunov function and those for the axioms of recursive feasibility aremuch alike.
Anyhow, recursive feasibility does not necessarily imply in stabilization to the origin - because sub-optimaily may guarantee the
stabilization to some other steady-state equilibria near the origin - this is due to the fact that function �3(⋅) is usually equivalent
to the MPC cost l(⋅) in the recursive feasibility inequalities, but the term 
w(||w||) is not present. For these reasons, in the
sequel, we will investigate and verify recursive feasibility of the proposed algorithm a priori and, thence, the ISS property of
the closed-loop system regulated with the MPC policy.

2.2.3 Sets, Sequence of Sets
Definition 5. The 1-Step Robust Positive Invariant Set57
The 1-Step set of X is named 1{X}. The set 1{X} stands for the set of states x(k), considering the system in Eq. (1), that
can be steered in a single sampling with an admissible control action u(k) ∈  into the target set X.

Definition 6. Robust Positive Invariant Set57
A set X ⊂  is robust positively invariant (RPI) for the considered system in Eq. (1) with u(k) = � x(k) ∈  if, for all
x(k) ∈ X and �(k) ∈  , x(k + 1) ∈ X. The definition of a RPI set holds if and only if X ⊆ 1{X}.

Definition 7. Scheduled Robust Positive Invariant Set
A scheduled robust positively invariant (SRPI) set X ⊂  for the considered system in Eq. (1) with u(k) = � x(k) ∈  is a
RPI computed based on the scheduling sequence (guess) from instant k, i.e. it is RPI ∀pj ∈ Pk.

Definition 8. Finite-step Set Contraction Sequence58
Let Nr ≥ 1 be an integer and let � ∈ [0 , 1). Take Nr = {X1 , … , XNr} as a sequence of PC-sets. This sequence is said a
Finite-Step Set Contraction Sequence if and only if:

• X1 is a RPI set,

• Xj = 1{Xj+1} ∀ j ∈ ℕ[1 , Nr−1],

• Xj+1 ⊂ Xj ∀ j ∈ ℕ[0 , Nr−1] and

• XNr = �X1.

Remark 9. With respect to the previous notation, the setΩ is equivalent toXNr−1, i.e. the one-step set from the terminal setXNr .

Definition 9. Scheduled Robust Positive Invariant Sequence
A scheduled RPI sequence is a Finite-step sequence of Nr steps computed at instant k with respect to the available scheduling
sequence Pk. This scheduled robust positive invariant sequence is denoted Nr and congregates the set sequence through which
x can be steered through, leaping from one set Xj to the following Xj+1, with feasible control actions u(k) = �x(k) ∈  ,
until finally reaching the target invariant set XNr . This scheduled RPI sequence agrees with all the necessities of the definition
of a Finite-Step Set Contraction Sequence. Moreover, it is defined that XNr is a SRPI set for the system in Eq. (1) for all
Pk ∈  ×⋯ ×  ⊆ ℝ(np)

Np . By design, it is imposed thatNr ≤ Np.

2.3 Preliminary Results
Now, we present some preliminary results (Lemmas and Theorems) that will be used to analyse and design the discussed MPC
strategy for NLPV systems.

2.3.1 RPI Sets
As shown and discussed in the prequel, and mentioned throughout the cited literature, RPI sets play a vital role in MPC and
optimization-based control paradigms for feasibility concerns, since the terminal ingredient of the optimization must always be
a RPI set. Now, we present the first (preliminary) results of this paper, which concern how to compute these scheduled RPI sets
for the case of Lipschitzian NLPV systems. The following Lemma sets a result in terms of nominal boundaries and the Theorem
presents an LMI-traceable solution for these set computations. With this Theorem, we provide conservative sufficient conditions
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for the computation of a quadratic Lyapunov map S(e(k)) = eT (k)Pe(k) that can be used to compute RPI sets for the considered
class of systems.

Lemma 1. Set Bounds, adapted from59

Let S ∶ ℝnx → [0 , ∞) be a continuously differentiable function and s1(||e||) ≤ S(e) ≤ s2(||e||), with s1 and s2 as class 
functions and e ∈  . Suppose u ∶ ℕ → nu is a priori chosen and there exist two constants 
 > 0 and � > 0 such that:

S(e(k + 1)) − 
S(e(k)) − �wTw ≤ 0 , ∀w ∈  , (20)

where w represents some bounded uncertainty with maximal normed value wmax. Then, the system trajectories departing from
e(k0) ∈ Ω ⊆  will remain contained within this set Ω, where:

Ω ∶=

{

e ∈ ℝnx
|S(e) ≤

�w2
max

1 − 


}

. (21)

Proof. This proof is very straightforward: denote S(k + 1) = S(e(k + 1)) and S(k) = S(e(k)), for simplicity; apply the Final
Value Theorem to Eq. (20) with k → ∞, since the “input” variable w in this difference equation is ultimately bounded. This
leads to (1 − 
)S(∞) = �wTw = �w2

max. Therefore, for whichever trajectory e follows along k, it holds that the maximal
value S takes is bounded within Ω. This concludes this proof.

Remark 10. Consider that x(k) are the actual system states and x̂(k|k) are state predictions; both these variables are limited to
the feasibility set  . Then, a state prediction error variable e(k) = x(k) − x̂(k|k) is also bounded to a constrained feasibility set
 , given by:

 ∶=
{

e(k) ∈ ℝnx
| e ≤ e(k) ≤ e∀ k ∈ ℕ

}

. (22)

Theorem 1. Scheduled RPI Set for Lipschitzian NLPV Systems
Consider that Eq. (1) is used to make predictions for the behaviour for NLPV System with an explicit Lipschitz nonlinearity.
Moreover, consider that the actual trajectories of this NLPV system behave according to Eq. (1), but also subject to some bounded
additive uncertainty w(k), with maximal normed value wmax, entering the system dynamics through some disturbance input
matrix Bw, i.e. x(k+1) = A(�(k))x(k)+B(�(k)Φ(x(k))u(k)+Bww(k). This uncertainty is used to represent the model-process
mismatches due to the fact that a scheduling prediction guess Pk is used for the controller design7. Consider that an admissible
control law u(k) ∈  is applied to this system. Consider that Assumptions 1, 2, 3 and 4 hold albeit this additive uncertainty.
Then, e(k) represents the dynamics of the prediction error, given by the difference between the actual process and the prediction
model (x̂(k + j|k) = x̂(k + j)), which is denoted as:

e(k + 1) = A(�(k))e(k) + B (Φ(x(k)) − Φ(x̂(k)) u(k) + Bww(k) . (23)

Then, suppose that there exits a positive definite matrix affine on the scheduling parameters X ∈ ℝnx×nx =
∑np
j=1 �jXj and

three scalars 
 > 
0 > 0 and � > 0 such that the two following inequalities hold for a fixed �j :
[ (

A(�j)TXA(�j) − 
0X
)

A(�j)TBw
⋆ −�I

]

≤ 0 , (24)

and

Γ ≤
(
 − 
0)�max{P }

||B||u2max
(

�max{P } + 2||P ||||A(�j)|| + 2||P ||||||Bw||w2
max

) . (25)

If this is true, then the error system described by Eq. (23) is robust positively invariant within a set Ω ⊆  and the system
trajectories departing from e(k0) =

(

x(k0) − x̂(k0)
)

∈ Ωe will remain contained inside this set, where:

Ωe ∶=

{

e(k) ∈ ℝnx
| eT (k)Pe(k) ≤

�w2
max

1 − 


}

, (26)

being S(e(k)) ∶= eT (k)Pe(k), for P = X−1. Moreover, the predicted system state trajectories x̂(k), described by Eq. (1), will
be positively invariant within a set Ω ⊆  such that Ω =  ⊖ Ωe, meaning that all nominal state trajectories departing from

7Note that wmax is linked to the bound on the scheduling prediction guess �P , as put forth in Lemma 2, in the sequel.
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x̂(k0) will be contained inside Ω. Finally, the actual state trajectories will be positively invariant within another set given by
 ⊕ Ωe, which means that the state trajectories departing from x(k0) will be contained inside this robust set.

Proof. In this proof, we will denote Aj as A(�j), for notation simplicity. First of all, being e(k + 1) in Eq. (23) the prediction
error system, we will denote �(k + 1) as a Lipschitzian-less error system, given by:

�(k + 1) = Aj�(k) + Bww(k) . (27)

Assume, then, that there exists an auxiliary Lyapunov function Ĕ(k) = Ĕ(�(k)) ∶= �T (k)P�(k). It is implied that Ĕ(k+ 1) =
�T (k + 1)P�(k + 1). Moreover, we assume that this auxiliary Lyapunov function is  class envelope-bounded, i.e.:

��1(||�||) ≤ Ĕ(k) ≤ ��2(||�||) , (28)

being ��1(⋅) and ��2(⋅) two class  maps.
Then, we want to verify that Ĕ(k) is indeed negative decrescent along the solution of �(k), i.e. Eq. (27). For such, we define

a map with respect to Lemma 1 so that we can bound the trajectories to a pre-defined set. This new map is obligatorily smaller
or equal to zero, as gives:

H(k) = H(Ĕ(k)) ∶= Ĕ(k + 1) − 
0Ĕ(k) − �wT (k)e(k) ≤ 0 . (29)

Then, we develop:

H(k) = �T (k + 1)TP�(k + 1) − 
0�T (k)P�(k) − �wT (k)w(k) (30)
=

[

Aj�(k) + Bww(k)
]T P

[

Aj�(k) + Bww(k)
]

− 
0�
T (k)P�(k) − �wT (k)w(k)

= �T (k)
[

ATj PAj − 
0P
]

�(k)

+ (wT (k)BTwPAj�(k)) + (�
T (k)ATj PBww(k)) − �w

T (k)w(k) ≤ 0 .

MultiplyingH(k) from both sides with diag{P , I} and replacing P by X−1, we obtain the following LMI:
[ (

A(�j)TXA(�j) − 
0X
)

A(�j)TXBw
⋆ −�

]

≤ 0 . (31)

Then, multiplying this LMI from the left and right sides with
[

�(k) w(k)
]

and
[

�T (k) wT (k)
]T , respectively, it becomes clear

that ensuring Eq. (31) is sufficient to ensure thatH(�(k)) ≤ 0. Due to Lemma 1, there exists a positively invariant set Ω0 such
that the system in Eq. (27) is robustly invariant, where Ω0 ∶=

{

�(k) ∈ ℝnx
| �T (k)P�(k) ≤ �w2max

1−
0

}

. From this, we continue.
DenoteE(k) = E(e(k)) ∶= eT (k)Pe(k) as the “real” Lyapunov map. Assume that it also agrees to a class envelope-bounded
equivalent to Eq. (28). Then, to ensure an negative decrescent along its solution given by Eq. (23), we denote:

M(k) = M(E(k)) = E(k + 1) − 
E(k) − �wT (k)w(k) ≤ 0 . (32)

Thus, we develop:

M(k) =
[

Aje(k) + B (Φ(x(k)) − Φ(x̂(k))) u(k) + Bww(k)
]T P

[

Aje(k) + B (Φ(x(k)) − Φ(x̂(k))) u(k) + Bww(k)
]

(33)
− 
eT (k)Pe(k) − �wT (k)w(k)

=
(

eT (k)ATj PAje(k) + e
T (k)ATj PBww(k) +w

T (k)BTwPAje(k) +w
T (k)BTwPBww(k)

)

− 
eT (k)Pe(k)

+
(

uT (k) (Φ(x(k)) − Φ(x̂(k)))T BTPB (Φ(x(k)) − Φ(x̂(k))) u(k)
)

+
(

eT (k)ATj PB (Φ(x(k)) − Φ(x̂(k))) u(k) + u
T (k) (Φ(x(k)) − Φ(x̂(k)))T BTPAje(k)

)

+
(

wT (k)BTwPB (Φ(x(k)) − Φ(x̂(k))) u(k) + u
T (k) (Φ(x(k)) − Φ(x̂(k)))T BTPBww(k)

)

.

The first term of the above Equation is easily identified asH(e(k)) + 
0eT (k)Pe(k), the second is maintained, while the third
and fourth are symmetric and can be simplified, as follows:
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M(k) =
(

H(e(k)) + (
 − 
0)eT (k)Pe(k)
)

(34)
+

(

uT (k) (Φ(x(k)) − Φ(x̂(k)))T BTPB (Φ(x(k)) − Φ(x̂(k))) u(k)
)

+
(

2uT (k) (Φ(x(k)) − Φ(x̂(k)))T BTPAje(k)
)

+
(

2uT (k) (Φ(x(k)) − Φ(x̂(k)))T BTPBww(k)
)

.

By definition, it is implied that the second term agrees with the following inequality:

�min{P } ≤
(

uT (k) (Φ(x(k)) − Φ(x̂(k)))T BTPB (Φ(x(k)) − Φ(x̂(k))) u(k)
)

||B||||u(k)|||| (Φ(x(k)) − Φ(x̂(k))) ||
≤ �max{P } . (35)

Therefore, it follows that:

(

uT (k) (Φ(x(k)) − Φ(x̂(k)))T BTPB (Φ(x(k)) − Φ(x̂(k))) u(k)
)

≤ �max{P }||B||||u(k)|||| (Φ(x(k)) − Φ(x̂(k))) || , (36)

since the Lipschitz condition given by Eq. (2) holds and ||u|| ≤ u2max, it follows that:
(

uT (k) (Φ(x(k)) − Φ(x̂(k)))T BTPB (Φ(x(k)) − Φ(x̂(k))) u(k)
)

≤ ||B||�max{P }u2maxΓ||e(k)|| (37)
≤ ||B||�max{P }u2maxΓ||e(k)||

2.

Thereof, and sinceH(e(k)) ≤ 0, we can state that:

M(k) ≤
(

(
 − 
0)eT (k)Pe(k)
)

(38)
+ ||B||�max{P }Γ||e(k)||2u2max
+

(

2uT (k) (Φ(x(k)) − Φ(x̂(k)))T BTPAje(k)
)

+
(

2uT (k) (Φ(x(k)) − Φ(x̂(k)))T BTPBww(k)
)

≤ 0.

Moving to the latter terms, we develop:
(

2uT (k) (Φ(x(k)) − Φ(x̂(k)))T BTPAje(k)
)

≤ 2uT (k) (Φ(x(k)) − Φ(x̂(k)))T BTPAje(k)eT (k)ATj PB (Φ(x(k)) − Φ(x̂(k))) u(k)
≤ 2||B||||u(k)||||Φ(x(k)) − Φ(x̂(k))||||P ||||Aj||||e(k)||
≤ 2||B||Γ||P ||||Aj||||e(k)||2u2max .

Equivalently,
(

2uT (k) (Φ(x(k)) − Φ(x̂(k)))T BTPBww(k)
)

≤ 2uT (k) (Φ(x(k)) − Φ(x̂(k)))T BTPBww(k)w(k)TBTwPB (Φ(x(k)) − Φ(x̂(k))) u(k)
≤ 2||B||Γ||P ||||Bw||||e(k)||2u2maxw

2
max .

From these developments, we obtain:

M(k) ≤
(

(
 − 
0)�max{P }||e||2
)

(39)
+ ||B||�max{P }Γ||e(k)||2u2max
+

(

2||B||Γ||P ||||Aj||||e(k)||2u2max
)

+
(

2||B||Γ||P ||||Bw||||e(k)||2u2maxw
2
max

)

≤ 0.

Finally, since ||e(k)||2 is always positive, it remains that:

Γ ≤
(
 − 
0)�max{P }

||B||u2max
(

�max{P } + 2||P ||||A(�j)|| + 2||P ||||||Bw||w2
max

) . (40)

Because of Lemma 1, it is sufficient to conclude that Ωe, defined in terms of P , is a (scheduled) positively invariant set for the
error system.
By the definition of the error system, with respect to Remark 10, it is direct to see that the (scheduled) positively invariant set

for the nominal Lipschitzian NLPV system is given by the Pontryagin set difference between the state feasibility set and SRPI
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set for e(k), while for the real system by a Minkowski set addition, as follows:

x̂(k) = x(k) − e(k) ,
e(k) ∈ Ωe ,

x̂(k) , x(k) ∈  ,
x̂(k) ∈

(

 ⊖ Ωe
)

.
x(k) ∈

(

 ⊕ Ωe
)

.

This concludes the proof.

Remark 11. From the viewpoint of the MPC controller, the actual system trajectories are not known. Therefore, only
(

 ⊖ Ωe
)

is used to bind the terminal value for the predicted system states, as gives constraint (14) in Problem 1.

Finally, we present a Lemma that relates the bounds on the estimation of the scheduling sequence, �P to the bounds on the
disturbance variable w(k).

Lemma 2. The bounds on the disturbance variable wmax can be given in terms of the bounds on the error of the scheduling
sequence as follows:

wmax = ANp(�P )e + BNp(�P )Γe
⎡

⎢

⎢

⎣

1
⋮
1

⎤

⎥

⎥

⎦

T

(Np+1)×1

umax
⎡

⎢

⎢

⎣

1
⋮
1

⎤

⎥

⎥

⎦

T

Np×1

. (41)

Proof. Firstly, we demonstrate how the actual state trajectories behave for the first two steps ahead of k and generalize them to
j steps ahead:

x(k + 1) = A(�(k))xk + B(�(k))Φ(xk)u(k) , (42)
x(k + 2) = A(�(k + 1))x(k + 1) + B(�(k + 1))Φ(x(k + 1))u(k + 1) , (43)

= A(�(k + 1))A(�(k))xk + A(�(k + 1)B(�(k))Φ(xk)u(k)
+ B(�(k + 1))Φ(x(k + 1))u(k + 1) .

We denote ⃖⃖⃗Xk,j as the collection of states from xk until x(k + j), i.e.: ⃖⃖⃗Xk,j = col{xk , x(k + 1) , … , x(k + j)} and Uk,j as the
collection of control input u(k + j) from u(k) until u(k + j − 1), i.e. vector Uk truncated at the (j − 1)-th position. Note that
⃖⃖⃗Xk,j = Ak,jx(k) and, ultimately:

⃖⃖⃗Xk,j ≤ ⃖⃖⃗Xk,j ≤ ⃖⃖⃗Xk,j , (44)

⃖⃖⃗Ak,j ≤ ⃖⃖⃗Ak,j ≤ ⃖⃖⃗Ak,j . (45)

We also extended the Lipschitz nonlinearity vector-wise, this is:

Φ( ⃖⃖⃗Xk,j) = col{Φ(xk) , Φ(x(k + 1)) , … , Φ(x(k + j))} , (46)

for which the Lipschitz condition also holds:

||Φ( ⃖⃖⃗Xk,j) − Φ(
⃖⃖⃗̂Xk,j)|| ≤ Γ|| ⃖⃖⃗Xk,j −

⃖⃖⃗̂Xk,j|| . (47)

Therefore, it follows that:

x(k + j) = Aj(Pk)xk + Bj(Pk)Φ( ⃖⃖⃗Xk,j)Uk,j , (48)

being8:

Aj(Pk) =
j−1
∐

i=0
A(�(k + i)) and (49)

Bj(Pk)Φ( ⃖⃖⃗Xk,j)Uk,j =
j−k
∑

m=1−k

( m+1
∐

n=k+i
[A(�(n))]B(�(j − m))Φ(x(j − m))u(j − m)

)

. (50)

8∐ stands for the left-side matrix product.
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Now, take the state deviance variable and its trajectories:

e(k + j) = x(k + j) − x̂(k + j|k) (51)
=

(

Aj(Pk)xk − Aj(P̂k)x̂k
)

+
(

Bj(Pk)Φ( ⃖⃖⃗Xk,j) − Bj(P̂k)
⃖⃖⃗̂Xk,j

)

Uk,j ,

since A(⋅) and B(⋅) are defined as affine on �, we can develop:

e(k + j) = Aj(Pk − P̂k)ek +
(

Bj(Pk)Φ( ⃖⃖⃗Xk,j) − Bj(P̂k)
⃖⃖⃗̂Xk,j

)

Uk,j , (52)

which, due to the Lipschitz condition, holds as:

e(k + j) ≤ Aj(�P )ek + Bj(�P )Γ⃖⃖⃗Ek,jUk,j . (53)

Alternatively, with respect to Remark 10, we can write:

e
⎡

⎢

⎢

⎣

1
⋮
1

⎤

⎥

⎥

⎦

T

(j+1)×1

≤ ⃖⃖⃗Ek,j ≤ e
⎡

⎢

⎢

⎣

1
⋮
1

⎤

⎥

⎥

⎦

T

(j+1)×1

∀ k ∈ ℕ , (54)

−umax
⎡

⎢

⎢

⎣

1
⋮
1

⎤

⎥

⎥

⎦

T

j×1

≤ Uk,j ≤ umax
⎡

⎢

⎢

⎣

1
⋮
1

⎤

⎥

⎥

⎦

T

j×1

∀ k ∈ ℕ . (55)

Since, with respect to Lemma 1 and Theorem 1, we need to express the upper bound on a disturbance variablew(k), it holds,
by definition, that e(k + j) = Bww(k + j − 1), for which, the ultimate upper bound is:

e(k +Np) ≤ ANp(�P )e + BNp(�P )Γe
⎡

⎢

⎢

⎣

1
⋮
1

⎤

⎥

⎥

⎦

T

(Np+1)×1

umax
⎡

⎢

⎢

⎣

1
⋮
1

⎤

⎥

⎥

⎦

T

Np×1

. (56)

Finally, it follows that:

Bw = Inx , (57)

wmax = ANp(�P )e + BNp(�P )Γe
⎡

⎢

⎢

⎣

1
⋮
1

⎤

⎥

⎥

⎦

T

(Np+1)×1

umax
⎡

⎢

⎢

⎣

1
⋮
1

⎤

⎥

⎥

⎦

T

Np×1

, (58)

which concludes this proof.

2.3.2 Extended Lipschitz Constraints
Now, finally, two Lemmas are presented to extended the Lipschitz condition for the complete state transition map x(⋅) and to
bind the state estimation error e(k+ j) with respect to wmax. These Lemmas will be, later on, used to verify the ISS property of
the closed-loop system.

Lemma 3. Extended Lipschitz Condition
Consider the NLPV system in Eq. (1) such that Assumptions 1 and 2 are satisfied. Since Φ(x(k)) in Eq. 1 is locally Lipschitz
in x(k), it holds that the complete nonlinear state transition map x(x(k), u(k), �(k)) = A(�(k))x(k) + B(�(k))Φ(x(k))u(k) is
locally Lipschitz in x(k) in the domain  × × , i.e. there exists a constant 0 < Γe < +∞ such that for all x, x̂ ∈  , u ∈ 
and � ∈  ,

||x(x, u, �) − x(x̂, u, �)|| ≤ Γe||x − x̂|| . (59)
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Proof. This Lemma is demonstrated by a trivial extension of the local Lipschitz condition of Φ(⋅) to x(⋅):

||x(x, u, �) − x(x̂, u, �)|| = || (A(�)x + B(�)Φ(x)u) − (A(�)x̂ + B(�)Φ(x̂)u) ||
= ||A(�)(x − x̂) + B(�)(Φ(x) − Φ(x̂)u||

||x(x, u, �) − x(x̂, u, �)|| ≤ ||A(�)(x − x̂)|| + ||B(�)(Φ(x) − Φ(x̂)u||
≤ A(�)||x − x̂|| + B(�)||Φ(x) − Φ(x̂)||u
≤ A(�)||x − x̂|| + B(�)Γ||x − x̂||u
≤ Γe||x − x̂|| ,

for Γe =
(

A(�) + B(�)Γu
)

, which concludes this proof.

Lemma 4. Adapted from51

Consider the NLPV system in Eq. (1) such that Assumption 2 and Lemma 3 are satisfied. Assume, once again, that the actual
trajectories of this NLPV system behave according to Eq. (1), but also subject to some bounded additive uncertaintyw(k), with
maximal normed value wmax, which enters the system dynamics through some disturbance input matrix Bw, i.e. x(k + 1) =
A(�(k))x(k)+B(�(k)Φ(x(k))u(k)+Bww(k). This uncertainty is used to represent the model-process mismatches due to the fact
that a scheduling prediction guess Pk is used for the controller design. We will denote w(k) ∈  , |w(k)| ≤ wmax ∀ k ∈ ℕ.
Then, for a given sequence of inputs, the difference between the nominal prediction of the states x̂(k + j|k) (that disregards
w(k)) and the real states of the system x(k + j) is bounded by:

||x(k + j) − x̂(k + j|k)|| = ||e(k + j)|| ≤
Γje − 1
Γe − 1

wmax , (60)

where Γe is the extended Lipschitz constant of the system, with respect to Lemma 3.

Proof. This proof is lead using the triangular inequality, as follows:

||x(k + 1) − x̂(k + 1|k)|| = ||Bww(k)|| ≤ Bwwmax ,
||x(k + 2) − x̂(k + 2|k)|| ≤ Γe||x(k + 1) − x̂(k + 1|k)|| + ||w(k + 1)|| ≤ (Γe + 1)Bwwmax ,

⋮

||x(k + j) − x̂(k + j|k)|| ≤ Γe||x(k + j − 1) − x̂(k + j − 1|k)|| + |w(k + j − 1)|| ≤
j−1
∑

i=0
ΓieBwwmax

=
Γje − 1
Γe − 1

Bwwmax .

Due to Lemma 2, we take Bw = Inx , which concludes this proof.

3 MPC FOR LIPSCHITZIAN NLPV SYSTEMS

Bearing in mind the preliminary results, this Section discusses the proposed MPC method for Lipschitzian NLPV systems on
the form of Eq. (1).
The proposed control algorithm resides in solving Problem 1, where x(⋅) represents the nominal prediction model x̂(k + i)

on the basis of Eq. (1). In the sequel, we show the used functions for the horizon cost l(⋅) (i.e. main MPC cost) and terminal
ingredient V (⋅), used to construct the complete MPC stage cost JNp

.

3.1 Horizon Cost
The horizon cost is used to include performance goals to the MPC control policy. In this paper, we follow the structure of the
majority of costs in regular MPC designs60, where we weight the quadratic difference between the states and the target state
together with the quadratic difference between the control signals along the horizon and the steady-state control input. This is:

l(x(k + i|k), u(k + i − 1|k)) = ||x(k + i|k) − xs||2Q + ||u(k + i − 1|k) − us||2R (61)
= (x(k + i|k) − xs)TQ(x(k + i|k) − xs) + (u(k + i − 1|k) − us)TR(u(k + i − 1|k) − us) ,
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where ps =
(

xs , us
)

represents a steady-state target reference; Q and R are constant matrices of appropriate dimensions.
Dimension and form-wise, Q is strictly defined positive with rank{Q} = nx.
This kind of horizon cost l(⋅) explicitly includes a tracking objective, since the optimization procedure will force values of x

(along the horizon) which are longest away from xs to be further forced towards xs. Moreover, disturbance rejection is implicitly
included for this same reason: albeit some load disturbance forcing x to move away from xs, u will be chosen such that this
effect is corrected. The values for matrices Q and R are designer degrees-of-freedom, which can be tuned to achieve the aimed
closed-loop responses: increasingQ forces tighter offset-free tracking performances, whilst decreasing R lets the control action
move more loosely.

3.2 Terminal Cost
The terminal cost is also taken as suggests60, penalizing the difference between the target state reference and the last state
prediction along the horizon, this is:

V (⋅) = ||x(k +Np|k) − xs||2P = (x(k +Np|k) − xs)TP (x(k +Np|k) − xs) . (62)

In this terminal cost, P is a constant matrix of adequate sizes taken according to LMI (24) and ensuring ISS property and
recursive feasibility (explained in the sequel). P is also strictly positive definite with rank{P } = nx.

3.3 Closed-Loop Behaviour
Proposition 1. Steady-State Target Reference
The target operation point ps is indeed an admissible steady-state for the system in Eq. (1).

Proof. Since this system is assumed to be quadratic stabilizable within the feasibility region defined by  (property which is
verified in Proposition 2), if xs ∈  (is admissible), then us is also feasible and given by:

B(�s)Φ(xs)us =
(

Inx − A(�s)
)

xs , (63)

for any fixed �s ∈  .

Lemma 5. Closed-loop Equilibrium
If the system is indeed quadratic stabilizable, recursively feasible and input-to-state stable9, and if ps is an admissible steady-
state target contained within the tracking set  =  ⊕  , then it is an asymptotically stable point in closed-loop. Elsewise,
the achieved closed-loop equilibrium is given by: p⋆s =

(

x⋆s , u
⋆
s

)

= argminx⋆s V (x
⋆
s ).

Proof. The tracking pairs are given by p(k) = (x(k + i|k), u(k + i − 1|k)) and, therefore, the tracking set is given by the
Minkowski set addition between the feasibility sets on the states and on the control inputs, i.e.  =  ⊕  . Assume that ps
belongs to  (i.e. is admissible). Then, from any initial condition x0 contained within  , recursive feasibility is guaranteed and,
since the system is quadratic stabilizable and ISS property is verified, the proposed controlled with u(k) = �x(k) asymptoti-
cally steers the system to xs in an admissible way. Elsewise, if ps is not admissible and does not belong to  , the terminal stage
cost V (⋅) penalizes the final step for x inside the horizon, at x(k + Np), the closest x⋆s to xs will be tracked and, thus, since
recursive feasibility is ensured, the minimal cost minUNp JNp

found by the optimization procedure is minxs ||x
⋆
s − xs||

2
P , being

x⋆s the achieved steady-state x(k +Np) = x⋆s , which ends this proof.

3.4 Terminal Constraint
With the previously detailed horizon cost l(⋅) and terminal cost V (⋅), the proposed MPC algorithm forces the convergence of
x(k + i) towards a reference steady-state target xs. Anyhow, the model used in the optimization procedure of Problem 1 has a
mismatch to the real process, since it is based on the scheduling sequence estimate P̂k, which differs from the actual scheduling
sequence Pk (unknown). Because of the model uncertainty |w(k)| ≤ wmax ∀ k ∈ ℕ, a contractive terminal set constraint is
used to ensure the states converge to a final target set containing xs.

9These three conditions verified in the sequel.
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MPC design couples to the use of positively invariant set sequences is widely used throughout the literature to ensure the
algorithm guarantees asymptotic convergence despite these model-process uncertainties w(k).To compute these set sequences,
the bounds on rate of variation of the scheduling parameters )�(k) are taken into account.
At each sampling instant k, a finite-step set contraction sequence, according to Definition 8, is computed (with Nr = Np).

This sequence Np has the first element Np{1} = X1 as a SRPI set for the NLPV system at instant k, containing the target goal
xs, and a final set element Np{Np} = XNp that still contains the target goal and is a contracted version of the first element,
i.e. XNp = �X1. It follows that:

• At each sampling instant k, X1 is computed as a SRPI set for the Lipschitizian NLPV system in Eq. (1), computed
according to Theorem 1, such that X1 =  ⊖ X1

e :

X1
e ∶=

{

e(k) ∈ ℝnx
| eT (k)Pe(k) ≤

�w2
max

1 − 


}

. (64)

• It must hold that xs ∈ X1;

• The final SRPI set XNp is a contracted version of X1, computed as �X1 with a contraction variable � ∈ [0 , 1) so that
there exist (Np − 1) “in between” sets such that each set is the one-step RPI set from each other, i.e. Xj = 1{Xj+1} and
Xj+1 ⊂ Xj , ∀ j ∈ ℕ0,Np−2.

To compute the final SRPI and the contraction variable �, the following Corollary is used:

Corollary 1. The Np-steps-ahead SRPI set is computed on the basis of Theorem 1, but for x(k + Np). Since P̂k gives an
estimation for �(k +Np − 1) (that takes into account the rates of variation of scheduling parameters, i.e. �(k) + (Np − 1))� ≤
�(k+Np − 1) ≤ �(k) + (Np − 1))�), it suffices to solve the LMIs in this Theorem using �j = �(k+Np − 1) to compute XNp .
Then, since X1 is computed for �(k), the contraction variable is found directly.

With these previous developments in mind, to guarantee that withinNp steps from the initial instant k0 the controlled system
reaches a SRPI set XNp , the following contractive terminal set constraint is included to the MPC design (instead of constraint
(14)):

x(k +Np|k) ∈ Np{j} , j = max{Np − k , 0} , (65)

assuming that the finite-step set sequence Np is available. Note that this terminal set Np{j} is equal to the larger X0 at the
initial instant k being shrinked subsequently until, at k+Np, it becomes the smallest setXNp . This constraint makes the proposed
MPC algorithm intrinsically time-varying, since, at least for the firstNp samples, the sets are contracting.

4 STABILITY AND RECURSIVE FEASIBILITY ANALYSIS

In this Section, we verify Quadratic Stabilizability, Recursive Feasibility and Input-to-State Stability properties of the proposed
NLPV MPC algorithm.

Assumption 6. (i) There exists a  function �1(||x||) that lower bounds the horizon cost l(x); and (ii) there exists another 
function �2(||x||) that upper bounds the terminal cost V (x(k +Np)).

Proposition 2. Quadratic Stabilizability inside the Feasibility Region
The NLPV system given in Eq. (1) and regulated by the MPC policy with u(k) = �x(k) is quadratic stabilizable.

Remark 12. The MPC policy yields a quadratic stabilizability property if the third recursive feasibility axiom verifies, with
V = x(k)TPx(k), as demonstrated in the sequel.

Proposition 3. Recursive Feasibility
The proposed algorithm is recursively feasible inside the feasibility set for any starting condition x(k0) = x0 ∈  .

Proof. Since only the measured (state-feedback) variable x(k) and scheduling sequence Pk are used to solve Problem 1, at the
following discrete-time instants k > k0 = 0, the online optimization is not related to any disturbance variables and, thus, the
recursive feasibility property can be analysed albeit disturbances (feedforward compensation is neglected).
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Assume that Problem 1 is feasible for an initial condition x0, based on aPk0 scheduling sequence, resulting inU
⋆
k0
as the optimal

sequence of control action which solves Eq. (10) at instant k0; this optimal control policy leads to a minimal state sequence
⃖⃖⃗X⋆
k0,Np

with respect to the cost function JNp
(⋅). It holds that x⋆(k0 + i) ∈ Np{i} and u(k0 + i − 1|k0) ∈  ∀ i ∈ ℕ[1,Np].

Moreover, it is implied that x⋆(k0 + Np) ∈ Np{Np} = XNp , which is a scheduled RPI set for Lipschitzian NLPV system,
computed according to Theorem 1, with XNp =  ⊖ XNp

e , being XNp
e ∶= {e ∈ ℝnx

| e(k)Pe ≤ �w2max
1−


}.
The MPC control policy u(k0) = u⋆(k0|k0) is applied to the process and steers the system from the initial state x0 to a

successor state x(k0 + 1) = x̂⋆(k0 + 1|k0) = x⋆(k0 + 1|k0) = x⋆. Next, we need to demonstrate that, at instant k1 = k0 + 1,
for initial condition x1 = x(k1) and scheduling sequence Pk1 , there exists a feasible solution to Problem 1. We will use the
feasibility of the solution at instant k0 to construct a feasible solution at this following sample k1, which is shown for both the
real and the nominal predictions of the system (x and x̂, respectively).
For the real system, we take the bounds of the variation of the scheduling parameters into account, as follows:

x(k1 + 1) = A(�(k1))x1 + B(�(k1))Φ(x1)u(k1), (66)

since u(k1) = �x1 = �x⋆ and �(k1) = �(k0) +
∑k1−k0
l=0 )�(l), we arrive at:

x(k1 + 1) = A(�(k0) + )�(k0))x⋆ + B(�(k0) + )�(k0))Φ(x⋆)�x⋆ (67)
=

[

A(�(k0) + )�(k0)) + B(�(k0) + )�(k0))Φ(x⋆)�
]

x⋆

=
(

A(�(k0) + B(�(k0))Φ(x⋆)�
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Acl(�(k0),x⋆)

x⋆ +
(

A()�(k0)) + B()�(k0))Φ(x⋆)�
)

x⋆
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

w(k1)

.

Since w(k1) is ultimately bounded because of Lemma 2 and due to the bounds on the scheduling parameters’ variation rates,
)� ≤ )�(k) ≤ )�, and the bounds on x (i.e. x ∈ ), it holds that x(k1+1) is admissible, beingAcl(�(k0), x⋆)x⋆+w(k1) ∈  .
For the nominal prediction model, it follows quite directly:

x̂(k1 + 1|k1) = Acl(�(k1), x⋆)x⋆ , (68)

which also lies within  , since x⋆ is admissible. Thus, it is direct to see that:

e(k1 + 1) = x(k1 + 1) − x̂(k1 + 1|k1) (69)
= Acl(�(k0) − �(k1), x⋆)e⋆ +w(k1)
≤ Acl(�P , x⋆)e⋆ +wmax ,

which falls within the scheduled RPI set defined as:

Ω⋆ =

{

e ∈ ℝnx
| eTPe ≤

�w2
max

1 − 


}

. (70)

Finally, apart from this induction development, we also verify the three recursive feasibility axioms:
A1) Indeed l(x) is -class lower bounded, i.e.10:

l(x) =
(

x(k + i)TQx(k + 1) + u(k)TRu(k)
)

(71)
= (A(�)x + B(�)Φ(x)u)T Q (A(�)x + B(�)Φ(x)u) + xT �TR�x
= xT

(

A(�)TQA(�) + 2AT (�)QB(�)Φ(x)� + �TΦT (x)BT (�)QB(�)Φ(x)� + �TR�
)

x
= xT

(

Al(�, x)
)

x ≥ xT �1x = �1(||x||) ,

for any real constant scalar �1 = Al(�, x) ∀ x ∈ Ω = {Np − 1}.

10Notation is simplified, the (k + i) is dropped.
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A2) Indeed V (⋅) is -class upper bounded; departing from x(0) = x, it follows:

V (x(k +Np)) = xT (k +Np)Px(k +Np) (72)

=
(

ANp(Pk)x + BNp(Pk)Φ( ⃖⃖⃗Xk,Np
)� ⃖⃖⃗Xk,Np

)T
P
(

ANp(Pk)x + BNp(Pk)Φ( ⃖⃖⃗Xk,Np
)� ⃖⃖⃗Xk,Np

)

= xT

AV (Pk)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(ANp(Pk)PANp(Pk)) x + 2xT

ℎ(Pk, ⃖⃗Xk,Np )
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(

(ANp(Pk))TPBNp(Pk)Φ( ⃖⃖⃗Xk,Np
)�
)

⃖⃖⃗Xk,Np

+ ⃖⃖⃗XT
k,Np

(

�TΦ( ⃖⃖⃗Xk,Np
)(BNp(Pk))TPBNp(Pk)Φ( ⃖⃖⃗Xk,Np

)�
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
BV (Pk, ⃖⃗Xk,Np )

⃖⃖⃗Xk,Np
≤ xT �2x = �2(||x||) ,

for any real constant scalar �2 =
(

AV (Pk) + 2ℎ(P , ⃖⃖⃗Xk,Np
), ⃖⃖⃗Ak,Np

) + ⃖⃖⃗A
T

k,Np
BV (P , ⃖⃖⃗Xk,Np

)⃖⃖⃗Ak,Np

)

,∀ x ∈ XNp .
A3) Finally, the last axiom can be verified via an LMI. Consider x(k + j + 1) = x(k + 1) and x(k + j) = x, for notation
simplicity, which is valid for all j ∈ ℕ[0,Np−1]. We must verify that the terminal ingredient is decrescent along the solution
of x. Of course, the use of the contracting terminal constraints x(k + Np|k) ∈ Np{i}, for i = max{Np − k , 0}, implied
that the state trajectories are steered further towards the target set goal as k increases, this, by itself, should guarantee that V is
decrescent61,60. We demonstrate the decay of V (⋅):

V (x(k + 1)) − V (x) + l(x) ≤ 0 (73)
x(k + 1)TPx(k + 1) − xTPx + xT (Al(Pk, x))x ≤ 0

xT
(

A(�(k))TPA(�(k)) + 2A(�(k))PB(�(k))Φ(x)� + �TΦT (x)BT (�(k))PB(�(k))Φ(x)�
)

x
−xTPx + xT (Al(Pk, x))x ≤ 0 ,

which is equivalent to:
(

AT (�(k))(P +Q)A(�(k)) − P
)

+
(

�TΦT (x)BT (�(k))(P +Q)A(�(k)) + AT (�(k))(P +Q)B(�(k))Φ(x)�
)

(74)
+
(

�TΦT (x)BT (�(k))(P +Q)B(�(k))Φ(x)�
)

≤ �TR� ,

multiplying it by both sides by diag{(P +Q)I}, it yields the following LMI:
[

(AT (�(k))(P +Q)A(�(k) − P ) AT (�(k))(P +Q)B(�(k))
⋆ BT (�(k))(P +Q)B(�(k))

]

≤ �TR� , (75)

which, if multiplied by the left and, then, by the right with
[

I Φ(x)�
]

and
[

IT �TΦT (x)
]T , respectively, is equivalent to the

prior inequality in Eq. (74). It is direct to verify that if LMI holds, since �TR� is a scalar and LMI (24) implies the regional
decrease of V , Axiom A3 is valid. Therefore, P is computed such that (24) and (75) hold, being Q also full-rank and positive
definite by definition. This concludes proof.

Since recursive feasibility is verified, we will now verify the ISS property of the proposed algorithm.

Assumption 7. (i) There exists two  functions �i(x(0), k) and �i(wmax) that, added up, upper bound the norm of the system
states, for all k ∈ ℕ; and (ii) there exists a set of states x for which the MPC optimization problem in Eq. (10) is feasible.

Proposition 4. The MPC cost function l(⋅) and the terminal stage cost V (⋅) also agree with a singular local Lipschitz condition
in x for each of them. Let l(x, u, k) be such that l(0, 0, k) = 0 ∀ k ∈ ℕ. Assuming that l(⋅) is -class lower bounded, it is
Lipschitz continuous in  × , with a Lipschitz constant Γl in the 2-norm for all x , x̂ ∈  and u ∈  . Moreover, let V (x) be
such that V (0) = 0. Assuming that V (x) is -class lower bounded, it is Lipschitz continuous in  , with a Lipschitz constant
ΓV in the 2-norm for all x , x̂ ∈  . This is:

||l(x, u, k) − l(x̂, u, k)|| ≤ Γl||x − x̂|| , (76)
||V (x) − V (x̂)|| ≤ ΓV ||x − x̂|| . (77)
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Proof. For simplicity, we take xs and us as null. Then, we can directly find a locally Lipschitz condition in x, since l(⋅) and
V (⋅) are sums of weighted norms on x. This is:

||l(x, u, k) − l(x̂, u, k)|| = ||

(

xTQx + uTRu
)

−
(

x̂TQx̂ + uTRu
)

||

= ||

(

xTQx
)

−
(

x̂TQx̂
)

||

≤ |

|

|

|

|

|

||x − x̂||2Q
|

|

|

|

|

|

≤ Γl||x − x̂|| .

Equivalently,

||V (x) − V (x̂)|| = ||

(

xTPx
)

−
(

x̂TP x̂
)

||

≤ |

|

|

|

|

|

||x − x̂||2P
|

|

|

|

|

|

≤ ΓV ||x − x̂|| .

This concludes the proof.

Proposition 5. Input-to-State Stability
The closed-loop is input-to-state stable for all initial conditions x0 departing from within some region x.

Proof. Firstly, since Propositions 2 and 3, the NLPV system is stabilizable in the feasibility set  and the control policy is
recursively feasible for this same set. Therefore, we asume that the set region x =  .
In the sequel, we denote xf (k + i|k) and uf (k + i − 1|k) as the feasible sequences of states and control inputs, respectively;

x̂(k + i|k − 1) and u⋆(k + i − 1|k − 1) denote the state sequence and optimal control action sequence computed at k − 1,
respectively. Analogously, we denote the optimal cost at k − 1 as J⋆Np

(k − 1) and the cost of the feasible sequence computed at
k by J fNp

(k). The diference between these costs is given by:

)JNp
(k) = J fNp

(k) − J⋆Np
(k − 1) (78)

=
Np
∑

i=1

[

l(xf (k + i|k), uf (k + i − 1|k)) − l(x̂(k + i|k − 1), u⋆(k + i − 1|k − 1))
]

+ V (xf (k +Np|k)) − V (x̂(k +Np|k − 1))
= l(xf (k +Np|k), �x(k +Np − 1|k)) − l(x0, u⋆0 )

+
Np−1
∑

i=1

[

l(xf (k + i|k), uf (k + i − 1|k)) − l(x̂(k + i + 1|k − 1), u⋆(k + i|k − 1))
]

+ V (xf (k +Np|k)) − V (x̂(k +Np|k − 1)) ,

being x0 and u⋆0 the state of the system and the control input applied at instant k − 1.
Since uf (k+ i−1|k) is an admissibly feasible control sequence, it holds that uf (k+ i−1|k) = u⋆(k+ i|k−1) for i ∈ ℕ[1,Np]

(i.e. it is optimal). Hence, we can write:

l(xf (k + i|k), uf (k + i − 1|k)) − l(x̂(k + i|k − 1), u⋆(k + i − 1|k − 1)) ≤ ΓlΓewmax , (79)

and, analogously:

V (xf (k +Np|k)) − V (x̂(k +Np|k − 1)) ≤ ΓV Γewmax . (80)

Appending these expansion into Eq. (78) and considering that both xf (k+Np|k) and x̂(k+Np|k) belong to the RPI setXNp ,
we arrive at the following inequality:

)JNp
(k) ≤

[

l(xf (k +Np|k), �x(k +Np − 1|k)) + V (xf (k +Np|k)) − V (x̂(k +Np|k − 1))
]

(81)

+

ΓJ
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(

ΓV Γ
Np−2
e + Γl

ΓNp−2
e − 1
Γe − 1

)

wmax

−l(x0, u⋆0 )
≤ ΓJwmax − l(x̂(k|k − 1), u⋆(k − 1|k − 1)) .
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Considering that l(x, u, k) ≥ �1(||x||) (that it is-class lower bounded), as verified under Assumption 6 and Proposition 3,
and that the optimality of the solution holds, thence:

J⋆Np
(k) − J⋆Np

(k − 1) ≤ )JNp
(k) ≤ ΓJwmax − �1(||x||) . (82)

Therefore, the optimal cost J⋆Np
(⋅) is indeed an ISS-Lyapunov map of the closed-loop system, with respect to Definition 4, being


w(||w||) = ΓJwmax. Due to this fact, the closed-loop system is input-to-state stable under the referred predictive control policy.
This concludes the proof.

Corollary 2. Suboptimality
Under the Assumptions that prelude Proposition 3, the optimality of the solution is a not necessary (but a sufficient) condition
to guarantee the convergence of the closed-loop system. Thus, it suffices to compute the solution of the optimization procedure
with a lower cost J subNp

(⋅) than the one of the feasible solution J⋆Np
(⋅).

5 IMPLEMENTATION DETAILS

Since the proposed MPC framework has been thoroughly unveiled (and analysed in terms of stabilizability, recursive feasibility
and ISS properties), we will now proceed with discussing some implementation details of this algorithm.
For the proposed control policy to work properly, a necessary condition is to have the horizon cost as a-class lower bounded

function that agrees with Proposition 4, it is a sufficient conditions that Q is positive defined with rank{Q} = nx. Moreover,
for Proposition 4 to be valid, P must also be positive defined with rank{P } = nx (as states in Theorem 1).
Being Q and R fixed matrices with constant values, the implementation of the proposed MPC paradigm follows the lines of

the following Algorithm:

Proposed MPC Algorithm

Initialize: x(0) = x0, �(0) = �0, k = 0.
Require: Q, R,Np, ps, Γ.
Loop:

• Step (1): Measure �(k);

• Step (2): Compute the scheduling sequence guess P̂k;

• Step (3): Solve LMIs (24) and (75), verifying that inequality (25) holds for the Lipschitz constant Γ. Compute the terminal
set XNp according to P and Theorem 1;

• Step (4) ComputeX1 according to Definition 7, with x(k+1|k) ∈ X1. Compute the set sequence Np , with a contraction
variable �.

• Step (5): Solve the nonlinear optimization program of Eq. (10), finding �.

• Step (6): Apply the local control policy u(k) = �x(k);

• Step (7): Increment k, i.e. k← k + 1.

end

Remark 13. AQUI FALAR DA DIMENSAO DO ALGORITHMO
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6 SOME RESULTS

In this Section, simulation results are presented to demonstrate the performances of the proposed MPC method for NLPV
systems with Lipschitz nonlinearities.

6.1 Automotive Suspension System
We will consider the case of a 1∕5-scaled vehicle equipped with 4 semi-active Electro-rheological (ER) dampers11. Each corner
of the vehicle represents a singular NLPV system, for which the dampers act as actuators to diminish the effect of the road upon
the safety and comfort of the passengers onboard. Figure 1 shows an schematic diagram of the corner of a vehicle with a Semi-
Active suspension unit: the chassis body is represent by a sprung mass ms, which is connected to the wheel link, represented
by the unsprung mass mus, by a spring (with stiffness parameter ks) and a damper (with a variable damping coefficient c(⋅));
the wheel is represented by a spring with stiffness kt. The vertical dynamics are given by the displacement of the sprung and
unsprung masses (zs(t) and zus(t), respectively), while zr(t) represents the road profile (disturbance).

FIGURE 1 Vehicle Corner with Semi-Active Suspension System

We will consider a static nonlinear map62 to describe the force given by the ER damper, as follows:

Fd(t) = k0zdef (t) + c(⋅)żdef (t) (83)
= k0zdef (t) + c0żdef (t) + fc tanh(k1zdef (t) + c1żdef (t))u(t) ,

where zdef (t) = zs(t) − zus(t) represents the suspension deflection and u(t) is duty cycle of a PWM signal that regulates the
voltage input that provides the electrical field upon the damper. This electric field varies the viscosity of the ER fluid. In practice,
it is this PWM signal 0 ≤ u(t) ≤ 1 that acts as the control input to the application.
The spring and tire forces are given by:

Fs(t) = kszdef (t) , (84)
Ft(t) = kt(zus(t) − zr(t)) . (85)

The dynamics of the sprung mass and unsprung mass displacements are obtained using regular laws of motion around an
origin equilibrium:

msz̈s(t) = −Fs(t) − Fd(t) , (86)
musz̈us(t) = Fs(t) + Fd(t) − Ft(t) . (87)

Table 1 shows the values and description for each of the models parameters.

11Refer to http://www.gipsa-lab.fr/projet/inove/.
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TABLE 1 Vehicle Model Parameters

Parameter Description Value Unit
ms Sprung mass 2.27 kg
mus Unsprung mass 0.32 kg
ks Spring stiffness 1396 N∕m
kt Tire stiffness 12270 N∕m
k0 Passive damper stiffness 170.4 N∕m
k1 Hysteresis displacement coefficient 218.16 N∕m
c0 Viscous damping coefficient 68.83 N.s∕m
c1 Hysteresis velocity coefficient 21 N.s∕m
fc Dynamic yield force of the ER fluid 28.07 N

Finally, by selecting the systems states as:

x(t) =
[

zs(t) żs(t) zus(t) żus
]T , (88)

and !(t) = zr(t) as the load disturbance, we arrive at the following state-space model:

ẋ(t) = Acx(t) + Bc(�)Φ(x(t)) + Bc2!(t) , (89)

being Ac , Bc and Bc2 matrices given by:

Ac =

⎡

⎢

⎢

⎢

⎢

⎣

0 1 0 0
−(ks+k0)

ms

−c0
ms

(ks+k0)
ms

c0
ms

0 0 0 1
(ks+k0)
mus

c0
mus

−(ks+k0+kt)
mus

−c0
mus

⎤

⎥

⎥

⎥

⎥

⎦

, (90)

Bc(�) =
[

0 −fc�
ms

0 fc�
mus

]T
, (91)

Bc2 =
[

0 0 0 kt
mus

]T
. (92)

This model is Euler-discretized with a sampling period of Ts = 0.5 s, which yields a Lipschitzian NLPV system of the
following form:

x(k + 1) = Ax(k) + B(�(k))Φ(x(k)) + B2!(k) , (93)

where the control signal u is, in fact, also the scheduling parameter of the system, �(k) = u(k).
The explicit nonlinearity is:

Φ(x(k)) = tanh
(

k1(x1(k) − x3(k)) + c1(x2(k) − x4(k))
)

(94)
= tanh

(

Γinx(k)
)

,

with Γin = [k1, c1, −k1, −c1]. Therefore, Φ(x(k)) undergoes a Lipschitz condition agreement with respect to x(k):

||Φ(x(k)) − Φ(x̂(k))|| ≤ ||Γin(x(k) − x̂(k))|| (95)
≤ Γ||x(k) − x̂(k)|| ,

with Γ = ||Γin|| as the Lipschitz constant.

Remark 14. Note that this model in Eq. (93) is slightly different from the one pursued in the control development part of this
paper, from Eq. (1): the control input u(k) does not appear explicitly along with the nonlinearity map Φ(x(k)), because it is the
scheduling parameter of the plant. Nonetheless, all the prequel development holds, with u(k) = 1. Moreover, we have a load
disturbance variable !(t) that appears in Eq. (93) due to the road profile disturbances. To treat them so that the prediction model
x̂(k+ 1) is similar to the one in Eq. (1), these disturbances which will be compensated out of the prediction, assuming that they
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are known along the future Np steps. This is reasonable for the case of vehicle suspension systems, where the future road can
be very well estimated using cameras or adaptive algorithms63,64.

6.2 Control Goal
The primary control objective is to minimize chassis and wheel accelerations, which provides a smoother and more comfortable
ride for the passengers of the vehicle65. We will denote a control index given by:

JComfort = ∫
(

a1z̈
2
s(t) + a2z̈

2
us(t)

)

, (96)

where parameters a1 and a2 are taken as suggests66, this is 0.95 and 0.05, respectively. By minimizing JComfort, it is ensured
that passengers are isolated from the road bumping motion.
Since we can express these acceleations with respect to displacement and velocity variables (states) and control inputs, we

arrive at:

JComfort ≈ ∫
(

x(t)2Qx(t) + u(t)2Ru(t)
)

, (97)

taking a constant value forΦ(x(t)). The horizon cost matricesQ andR are, then, directly found, being full rank and as follows12:

Q = diag{a1(Ac{2, ∶}) + a2(Ac{4, ∶})} , (98)

R = fc(
a2
mus

−
a1
ms
) . (99)

Moreover, this control objective is complemented with a parallel goal of tracking an origin reference target, i.e. pt = (xs , us)
with xs =

[

0 0 0 0
]T and us = 0.

The control input for the suspension system is the controlled damping coefficient u(t). The total damper force is Fd(t) =
(c + u(t)) �, which is naturally bounded; this leads to the dissipativity contraints u(t) ∈  = [u , u].
The physical constraints are the damper dissipativity rules on u and the saturation limits on states. Parameters a1 and a2 are

taken as 0.95 and 0.05 to guarantee that Therefore, weighting matrices are Q = diag{
[

0 a1 0 a2
]

} and R = a1Im.

6.3 Simulation Scenario
To evaluate comfort performances of the vehicle under a controlled semi-active suspension system, we consider the simulation
scenario of a vehicle running in a straight line on a dry road, that suddenly (at t⋆ = 2.5 s) undergoes a series of 5mm bumps
along its four wheels. This scenario comprises 15 swith a sequence of three bumps; Figure 2 presents the road disturbance zr(k)
which represents these bumps.

6.4 Full Nonlinear Model
With respect to the control goal and the considered scenario, the simulation consists of a full-vehicle nonlinear model, which
has been validated on a real car67. As stated, this full nonlinear model is Euler-discretized considering a sampling period of
Ts = 0.5 s. The control horizon is synthesized with a prediction horizon ofNp = 10 steps, as suggested in previous papers66,36.

6.5 Numerical Toughness
Firstly, with respect to the proposed control method, we evaluate the numerical toughness it yields. We measure the computa-
tional effort in terms of mean average time elapsed to compute the control law, at each sampling instant. The numerical results
were obtained with the aid ofMatlab, Yalmip and SDPT3 and fmincon solvers, performed on a 2.4 GHz, 8 GB RAMMacintosh
computer.
In Table 2, we present the average computational stress (in seconds) needed to perform the two major tasks for the proposed

control: the computation of the RPI sets and the contracted sequence of sets (Steps (3) and (4) of Algorithm 1) and the actual

12Notation Ac{l, ∶} denotes the full lth line of matrix Ac .
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FIGURE 2 Road Profile Scenario

nonlinear optimization procedure to solve the control problem (Step (5) of Algorithm 1). As shown, the total average time is
smaller than the sampling period, which means the strategy is feasible under 0.3 s.
Of course, it becomes evident that the online part of the proposed method should be further enhanced (made faster) for system

with smaller sampling periods. The method is numerically heavy because the the predictions that arise from the NLPV model
are computed online, which is incontrovertibly complex.

TABLE 2 Proposed MPC: Average Computational Stress

Operation Average Computational Stress
RPI sets - Steps (3) and (4) 0.13ms

Nonlinear optimization - Step (5) 0.35ms
Total 0.48ms

6.6 Tracking Performances
In terms of performances, we compare the results obtained with the proposed MPC policy with those of a uncontrolled (passive)
damper, which corresponds to an open loop policy. In the sequel, the controlled performances are depicted in full red lines,
while the open loop results are depicted in dashed blue lines.
The chosen set-point xs is the origin. Figure 3 shows the evolution of the four system states x. As shown, the states are brought

to the origin as soon as the road bumping dissipates. Furthermore, it must be remarked that all saturation limits (feasibility set
) are respected.
The chosen set-point xs is the origin. Figure 3 shows the evolution of the four system states x, while the evolution of scheduling

parameter of this system is presented in Figure 4. As shown through these Figures, the states are brought to the origin as soon
as the road bumping dissipates. Furthermore, it must be remarked that all saturation limits (feasibility set ) are respected by
the MPC procedure. The LQR violates the lower constraints on x2; evidently, this method provides the worst performances,
noisy and abrupt, even deteriorated when compared the open-loop responses. This fact means that the robust LQR solution
cannot handle well the variability of the scheduling parameter and the Lipschitz nonlinearity, only ensuring stabilization but no
performance enhancements.
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More importantly, Figure 5 shows the control policy and the behaviour of the chassis and wheel link accelerations (z̈s(k) and
z̈us(k), respectively). These variables are those that the state-feedback policy is set tominimize, with respect to the chosenweight-
ing matrices and performance index JComfort. Evidently, the MPC yields much smaller accelerations, which greatly impacts the
comfort of the onboard passengers of the vehicle. Moreover, in terms of the comfort index JComfort, the MPC achieved 30.71%
enhanced performances with respect to the passive damper case, which is already quite significant.
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6.7 Contracting Sets
To corroborate these performance results, we demonstrate how the sequence of scheduled RPI sets Np

{⋅} are used to guarantee
that the last states x(k +Np), from the viewpoint of the MPC at instant k, belongs to an RPI set.
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The RPI setsΩe given by Theorem 1 are of ellipsoidal form, while the state feasibility sets  is a polyhedron. Since the actual
RPI sets Ω =  ⊖ Ωe, and Ωe is always verified as a subset of  , we see that the actual state RPI sets Ω = Ωe are also
ellipsoidal. Since the state variables are four-dimensional, we can only show ℝ2 and ℝ3 projections of these ellipsoids.
In Figure 6, we show the RPI sets and their contraction along k, for the first moment when there occurs a bump (t⋆ = 2.5 s)

until this bump has dissipated. This Figure shows the evolution for the first three states and how their trajectories are forced, by
the MPC policy, to a final contract set which contains the origin (set-point goal). This becomes clearer in Figure 7, which is the
same ellipsoids cut in the x1 × x3 axis.
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With respect to Theorem 1, we must also state that Γ = 309.95, while the average value found for the right-side of inequality
25 is 415.15.

6.8 Recursive Feasibility and Input-to-State Stability
Now, we demonstrate experimentally that the Assumptions and Propositions discussed in Section 4 were indeed valid. These
propositions were already demonstrated analytically; the following experimental results are simple complementary corollaries.
Firstly, we show that Assumption 6 is valid, showing l(x), V (x(k+Np)) and its lower and upper bounds �1(||x||) and �2(||x||),

respectively. This Assumption refers to the validity of axioms A1 and A2 for the recursive feasibility property (Proposition 3),
which is corroborated by A3, the decrescent decay of V (⋅). Figure 8 concatenates the validity of these axioms, showing, on its
top subfigure, the lower -class bound on l(k), on its middle subfigure, the upper -class bound on V (k) and, finally, on its
bottom subfigure, the decrescent decay of V (k) (after each bump).
Furthermore, with respect to Proposition 5, we show in Figure 9 the experimental values for )JNp

(k), and its upper bound
given by ΓJwmax − �1(||x||). This means that the optimal cost map J⋆Np

(⋅) is indeed an ISS-Lyapunov map and the system is
input-to-state stable.

7 CONCLUSIONS

This paper presented a novel state-feedback predictive control method for Nonlinear Parameter Varying systems with explicit
Lipschitzian nonlinear terms. As shown from the numerical simulation results, the method is of great effectiveness, guaranteeing
input-to-state stabilization and recursive feasibility of the optimization procedure. In terms of implementation of the proposed
method, we must stress that:

• the Scheduled Robust Invariant Set Sequence is computed online, at each sampling instant, which may be computationally
costly for larger systems;

• at each sampling instant an estimation guess for the following scheduling sequence is necessary - which can be retrieved
using simple (and fast) linear algorithms.
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Also note that a method for the computation of Robust Positively Invariant Sets for Lipschitzian NLPV system via LMIs has
been proposed in this paper.
For further works, we plan on investigating the robustness of the method towards the elasticity of the �P parameter, which

bounds the difference between the scheduling sequence estimation and real value.
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